





# Search for same-charge top-quark pair production in *pp* collisions at 13 TeV with the ATLAS detector

LHC top Working Group Meeting 2024 12.11.2024

arXiv:2409.14982

TOPQ-2021-14

Aaron van der Graaf (TU Dortmund & Bologna) On behalf of the ATLAS collaboration

2

dortmund

technische universität

- Same-charge (same-sign SS) top-quark pair production is **strongly suppressed** in the Standard Model (SM) d/s/b
- Very clean signature in the dileptonic final state
  - High p<sub>T</sub> same-charge lepton pair (++ or - )
  - Two b-jets
  - Missing transverse momentum
- Observation would imply the existence of new underlying physics
- First ATLAS search for same-sign top-quark pairs using SM Effective Field Theory (SMEFT)







arXiv:2409.14982

Different WCs setups created by reweighting

12/11/2024

## Effective Field Theory

technische universität

dortmund

- Three four-fermion operators are considered:  $O_{tu}^{(1)}$ ,  $O_{Qu}^{(1)}$ ,  $O_{Qu}^{(8)} \rightarrow$  Different chirality RR / LR
- $\mathcal{L}_{D=6}^{qq \to tt} = \frac{1}{\Lambda^2} \left( c_{tu}^{(1)} O_{tu}^{(1)} + c_{Qu}^{(1)} O_{Qu}^{(1)} + c_{Qu}^{(8)} O_{Qu}^{(8)} \right) + h.c.$
- Only quadratic EFT terms and  $\Lambda = 1 \text{ TeV}$
- Default signal sample simulated with following Wilson coefficients (WCs):
  - $c_{tu}^{(1)} = 0.04, c_{Qu}^{(1)} = 0.1, c_{Qu}^{(8)} = 0.2 \rightarrow \text{balanced cross-sections}$
  - $\sigma(pp \rightarrow tt) = 97.6 \text{ fb } \& \sigma(pp \rightarrow \bar{t}\bar{t}) = 2.4 \text{ fb}$
  - Highly charge-asymmetric





arXiv:2409.14982







### Analysis strategy

- Full Run 2 pp collision data at  $\sqrt{s} = 13$  TeV, 140 fb<sup>-1</sup>
- Neural networks (NNs) are used to split events in signal regions (SRs) and validation regions (VRs)
  - SRs are split by charge and EFT operators
- Control regions (CRs) described on next slides
  - Used to constrain normalisation of the background processes
- Combined binned profile-likelihood fit over the

### SRs+CRs simultaneously



#### Aaron van der Graaf

### \_\_\_\_5

## Signal vs Signal NN (NN<sup>SvsS</sup>)

technische universität

dortmund

- Goal: **Discriminate** signal events originating from  $c_{tu}^{(1)}$  vs  $c_{Qu}^{(1)}$  or  $c_{Qu}^{(8)}$ 
  - No further split between  $c_{Qu}^{(1)}$  and  $c_{Qu}^{(8)}$  due to being hardly distinguishable
- Only trained on signal events
- Two different signal samples used for training:
  - $c_{tu}^{(1)} = 0.04$   $\rightarrow c_{Qu}^{(1)} = 0, \ c_{Qu}^{(8)} = 0$
  - $c_{Qu}^{(1)} = 0.1, c_{Qu}^{(8)} = 0.2 \rightarrow c_{tu}^{(1)} = 0$
- Simple DNN (5 hidden layers)
- Using odd/even cross-validation
- 9 input variables ( $\Delta m_{\ell\ell}, \Delta \phi_{\ell\ell}, \Delta R_{\ell\ell}, \ldots$ )







arXiv:2409.14982







### Distinguish background from signal

- Trained NN<sup>SvsB</sup> for each of the four regions
- Same training and architecture as for the NN<sup>SvsS</sup>
- Split by charge due to different kinematics for tt and tt
  - $\sigma(tt) \ge \sigma(\bar{t}\bar{t}) \rightarrow$ **split** needed to be sensitive to  $\bar{t}\bar{t}$
- 6 input variables ( $H_T^{\text{lep}}, p_T^{\text{jet0}}, N_{\text{jets}}, \dots$ )
- NN<sup>SvsB</sup> output distribution used in the profile likelihood fit for the SRs
- Finalize SR definitions by requiring  $\Delta \Phi_{\ell,\ell} \ge 2.5$ 
  - Events with  $\Delta \Phi_{\ell,\ell} < 2.5$  used as VRs









arXiv:2409.14982

### Analysis makes use of 9 CRs

- 5 dilepton  $(2\ell)$  CRs:
  - All  $2\ell$ -CRs are enriched in heavy flavor e or  $\mu$  fakes CRs
  - > **Orthogonal** due to  $N_{b-tags}$  and lepton isolation requirements
- 4 three lepton  $(3\ell)$  CRs:
  - $t\bar{t}Z$  CR
  - Diboson CR
  - Material / internal photon conversion CRs
  - > Orthogonal due to requiring 3 leptons (electrons / muons)
- Normalization of major background processes constrained in the binned profile likelihood fit with dedicated CRs
- Dominant background:  $t\bar{t}W$ 
  - Normalisation constrained by bins with low NN output score in the SRs







arXiv:2409.14982

### Systematic Uncertainties

- Apart from statistical uncertainties  $t\bar{t}W$  modelling uncertainties have the largest impact on the final results
- Normalizations of major background process constrained via the CRs
  - For all other processes a normalization uncertainty is applied
- For larger backgrounds additional modeling uncertainties are applied by comparing the nominal sample with an alternative sample → details in paper / backup:
  - Parton shower and hadronization variation  $(t\bar{t}W, t\bar{t}Z, t\bar{t}H)$
  - Generator variation  $(t\bar{t}W, t\bar{t}H) \rightarrow different$  matrix element generator
  - Scale variations (*ttW*, *ttZ*, *ttH*, *VV*)
- Using the full set of ATLAS experimental uncertainties

Statistically dominated analysis !

### technische universität dortmund



10<sup>5</sup>



arXiv:2409.14982

### Results – CRs

ATLAS

0.5

1.5

2

- Very good post-fit agreement in the CRs
- All normalizations are in agreement with ۲ the SM, except  $t\bar{t}W$ 
  - Known excess in agreement with ATLAS  $t\bar{t}W$  cross-section measurement

1.15 0.21

1.37 0.26

1.06 0.23

0.90 0.26

0.88 0.37

1.19 <sup>0.31</sup> -0.31

0.68 0.34 -0.34

2.5



### technische universität dortmund





Results – SRs

- Good post-fit agreement in the SRs
- No significant signal contribution observed
  - All three WCs fitted to  $< 10^{-6}$
- Negligible signal contribution is not shown in the plots
- Setting 1D-limits on the WCs by scanning the likelihood while varying a single WC at a time









## Signal parametrization in the SRs

- For each **SR bin** the **EFT parametrization** for the three WCs is fitted
  - Uses all available EFT samples
- Allows to fit any set of WC values
- Direct connection between WC values and cross-section
- Parameterization is fitted individually for each SR
- Used to derive limits by scanning different sets of WC values



section





arXiv:2409.14982

### Results – Likelihood scans

- 1D observed (expected) limits at 95% CL:
  - $c_{tu}^{(1)} < 0.0068 \ (0.0071)$   $c_{Qu}^{(1)} < 0.020 \ (0.022)$   $c_{Qu}^{(8)} < 0.041 \ (0.046)^{\frac{7}{2}}$
- 2D limits for the three sets of WC combinations





## technische universität dortmund





arXiv:2409.14982

### Summary & Conclusion

- Results are in agreement with SM
- No significant signal detected
- Precision limited by statistical uncertainties
- Observed upper limit at 95% CL:  $\sigma(pp \rightarrow tt \ / \ \overline{tt}) < 1.6 \ fb$
- Most stringent limits on  $c_{tu}^{(1)}$ ,  $c_{Qu}^{(1)}$ ,  $c_{Qu}^{(8)}$ 
  - Improving previous WC limits by a factor of  $\approx 10$

|                                      | Wilson Coefficient limits at 95% CL ×100 |                |                |  |
|--------------------------------------|------------------------------------------|----------------|----------------|--|
| Uncertainties                        | $c_{tu}^{(1)}$                           | $c_{Qu}^{(1)}$ | $c_{Qu}^{(8)}$ |  |
| Statistical uncertainty only         | [-0.65, 0.65]                            | [-1.9, 1.9]    | [-3.9, 3.9]    |  |
| Statistical + modeling uncertainties | [-0.07, 0.07]                            | [-1.9, 1.9]    | [-4.0, 4.0]    |  |
| Total uncertainty                    | [-0.68, 0.68]                            | [-2.0, 2.0]    | [-4.1, 4.1]    |  |









# **Backup Slides**

## technische universität dortmund





### Data and MC simulation

- MC samples shown in parentheses are used for the estimation of systematic uncertainties
- Electron charge misidentification background is estimated from data using  $Z \rightarrow ee$  events

$$\begin{split} &O_{tu}^{(1)} = [\overline{t}_{\mathrm{R}} \gamma^{\mu} u_{\mathrm{R}}] [\overline{t}_{\mathrm{R}} \gamma_{\mu} u_{\mathrm{R}}], \\ &O_{Qq}^{(1)} = [\overline{Q}_{\mathrm{L}} \gamma^{\mu} q_{\mathrm{L}}] [\overline{Q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}], \\ &O_{Qq}^{(3)} = [\overline{Q}_{\mathrm{L}} \gamma^{\mu} \sigma^{a} q_{\mathrm{L}}] [\overline{Q}_{\mathrm{L}} \gamma_{\mu} \sigma^{a} q_{\mathrm{L}}], \\ &O_{Qu}^{(1)} = [\overline{Q}_{\mathrm{L}} \gamma^{\mu} q_{\mathrm{L}}] [\overline{t}_{\mathrm{R}} \gamma_{\mu} u_{\mathrm{R}}], \\ &O_{Qu}^{(8)} = [\overline{Q}_{\mathrm{L}} \gamma^{\mu} T^{A} q_{\mathrm{L}}] [\overline{t}_{\mathrm{R}} \gamma_{\mu} T^{A} u_{\mathrm{R}}]. \end{split}$$

| Process                                  | Generator           | ME order | PS            | PDF (ME)      | Tune           |
|------------------------------------------|---------------------|----------|---------------|---------------|----------------|
| SS tt/tt EFT signal                      | MadGraph5_aMC@NLO   | LO       | Ρυτηία 8      | NNPDF3.0L0    | A14            |
| $t\bar{t}W$                              | Sherpa 2.2.10       | NLO      | Sherpa        | NNPDF3.0nnlo  | SHERPA default |
|                                          | (MADGRAPH5_AMC@NLO) | (NLO)    | (Pythia 8)    | (NNPDF3.0nlo) | (A14)          |
|                                          | (Powheg Box)        | (NLO)    | (Pythia 8)    | (NNPDF2.3lo)  | (A14)          |
|                                          | (Powheg Box)        | (NLO)    | (Herwig 7.2)  | (NNPDF3.0nlo) | (H7.2-Default) |
| tītī                                     | MadGraph5_aMC@NLO   | NLO      | Ρυτηία 8      | NNPDF3.1nlo   | A14            |
| tĪH                                      | Powheg Box          | NLO      | Ρυτηία 8      | NNPDF3.0nlo   | A14            |
|                                          | (Powheg Box)        | (NLO)    | (Herwig 7.04) | (NNPDF3.0nlo) | (H7UE-MMHT)    |
|                                          | (MadGraph5_aMC@NLO) | (NLO)    | (Pythia 8)    | (NNPDF3.0nlo) | (A14)          |
| $t\bar{t}Z/\gamma^*$                     | MadGraph5_aMC@NLO   | NLO      | Ρυτηία 8      | NNPDF3.0nnlo  | A14            |
|                                          | (MADGRAPH5_AMC@NLO) | (NLO)    | (Herwig 7.2)  | (NNPDF3.0nlo) | (H7.2-Default) |
|                                          | (MADGRAPH5_AMC@NLO) | (NLO)    | (Pythia 8)    | (NNPDF3.0nlo) | (A14 Var3c)    |
| tīll                                     | MadGraph5_aMC@NLO   | NLO      | Ρυτηία 8      | NNPDF3.0nlo   | A14            |
| tī                                       | Powheg Box          | NLO      | Ρυτηία 8      | NNPDF3.0nlo   | A14            |
| s-, t-channel,                           | POWHEG BOX          | NLO      | Ρυτηία 8      | NNPDF3.0nlo   | A14            |
| Wt single top                            |                     |          |               |               |                |
| $Z \rightarrow l^+ l^- (matCO)$          | Powheg Box          | NLO      | Ρυτηία 8      | CT10nlo       | AZNLO          |
| $Z \rightarrow l^+ l^- + (\gamma *)$     | Powheg Box          | NLO      | Ρυτηία 8      | CT10nlo       | AZNLO          |
| $Z \rightarrow l^+ l^-$                  | Sherpa 2.2.1        | NLO      | Sherpa        | NNPDF3.0nnlo  | SHERPA default |
| W+jets                                   | Sherpa 2.2.1        | NLO      | Sherpa        | NNPDF3.0nnlo  | SHERPA default |
| $V\gamma$                                | Sherpa 2.2.8        | NLO      | Sherpa        | NNPDF3.0nnlo  | SHERPA default |
| VV, qqVV,                                | Sherpa 2.2.2        | NLO      | Sherpa        | NNPDF3.0nnlo  | SHERPA default |
| $VV_{lowm_{\ell\ell}}, VVV$              |                     |          |               |               |                |
| $t(Z/\gamma^*), t\bar{t}t, t\bar{t}WH$   | MadGraph5_aMC@NLO   | LO       | Ρυτηία 8      | NNPDF2.3lo    | A14            |
| $t\bar{t}W^+W^-, t\bar{t}ZZ, t\bar{t}HH$ | MadGraph5_aMC@NLO   | LO       | Ρυτηία 8      | NNPDF2.3lo    | A14            |
| $tW(Z/\gamma^*), tWH, tHqb$              | MadGraph5_aMC@NLO   | NLO      | Ρυτηία 8      | NNPDF3.0nlo   | A14            |
| VH                                       | POWHEG BOX          | NLO      | Ρυτηία 8      | NNPDF3.0nlo   | A14            |







### Event and object reconstruction

### Leptons

- Using single- and dilepton-triggers
- $p_{\rm T} > 10~{\rm GeV}$
- $|\eta_{\text{Cluster}}| < 1.37 \text{ or } 1.52 < |\eta_{\text{Cluster}}| < 2.47 \text{ (e) and } |\eta| < 2.5 (\mu)$

### **Jets**

- Jets reconstruction via **PFlow**:
  - $\Delta R = 0.4$   $|\eta| < 2.5$
  - $p_{\mathrm{T}} > 25~\mathrm{GeV}$  JVT > 0.5 for  $p_{\mathrm{T}} < 25~\mathrm{GeV}, |\eta| < 2.4$
- B-tagging of jets via **DL1r**:
  - 60% and 77% WP are used in this analysis

- Use BDT discriminate (PLIV) to suppress non-prompt leptons
- Reject background electrons with wrong charge assignment with ECIDS BDT
- Sequential overlap removal







### Control region definitions (tables)

|                             |                                            |                                                       | CR HF TM             | CR HF MT        | CR HF MM    |               |  |
|-----------------------------|--------------------------------------------|-------------------------------------------------------|----------------------|-----------------|-------------|---------------|--|
|                             | $p_{\rm T}^{\rm lep}$                      | [GeV]                                                 |                      | >20             |             |               |  |
|                             | BDT                                        | WPs (same-sign $\ell$ pair)                           | TM                   | MT              | MM          |               |  |
|                             | $N_{\rm jets}$                             |                                                       |                      | ≥2              |             |               |  |
|                             | $N_{b-t}$                                  | agged jets                                            |                      | 1 at 77%        |             |               |  |
|                             | Total                                      | lepton charge                                         |                      | ++ or           |             |               |  |
|                             | $m_T(\text{all } \ell, E_T^{\text{miss}})$ |                                                       | < 250 GeV            |                 | -           |               |  |
|                             |                                            |                                                       | -                    |                 |             |               |  |
|                             |                                            |                                                       | -7 00                |                 |             |               |  |
|                             |                                            | VV CR                                                 | ttZ CR               |                 | CR Int Conv | CR Mat Conv   |  |
| $p_{\rm T}^{\rm lep}$ [GeV] |                                            |                                                       | > 20 (SS             | pair), > 10 (O  | S)          |               |  |
| BDT WPs                     |                                            | $M_{\rm inc}M_{\rm inc}$ (SS pair) $L_{\rm inc}$ (OS) |                      |                 |             |               |  |
| Total charge                |                                            |                                                       |                      | $\pm 1$         |             |               |  |
| Electron Conv. cand         | lidate                                     |                                                       | -                    |                 | Int. Conv.  | Mat. Conv.    |  |
| N <sub>jets</sub>           |                                            | 2 or 3                                                | $\geq 4$             |                 |             | ≥0            |  |
| Nb-tagged jets              |                                            | 1 <i>b</i> -tagged jet at 60% WP                      | $\  \ge 2 b$ -tagged | l jets at 77% W | P 0 at      | t <b>77</b> % |  |
| $ m_{SFOS} - m_Z $          |                                            | < 10 GeV                                              |                      | > 10            | ) GeV       |               |  |
| $ m(\ell\ell\ell) - m_Z $   |                                            | -                                                     | -                    |                 |             | < 10 GeV      |  |







## Merged regions (SR+VR)









United Technology International Int Conv

SR cQu ++

CR HFµ MM

CR Mat Conv

■ tīH
 ■ Other
 ■ HFe
 ■ Diboson

I tī (Ζ/γ\*) Μat Conv ΗFμ

SR cQu --

CR HFe TM

CR ttZ

#### ATLAS Simulation Results – VRs & Pie chart **√**s = 13 TeV SR ctu ++ SR ctu --10<sup>5</sup> Events ATLAS Data tt W Four top √s = 13 TeV, 140 fb<sup>-1</sup> ∎tŧH $t\bar{t}(Z/\gamma^*)$ Int Conv Post-Fit ΗFμ HFe Diboson 10<sup>4</sup> Mat Conv QMisID Other // Uncertainty -- Pre-Fit Bkg. CR HFµ TM CR HFµ MT 10<sup>3</sup> -----10<sup>2</sup> <del>╶╶╴╴╴╴╸</del>╋╼╘╼╘╼╘╼╘╼╘╼╘</del> CR HFe MM CR Int Conv 10 Data / Bkg. 1.1 CR VV 0.9 0.8 VR ctu --VR<sub>CQU++</sub> VR ctu ++ VR CQU

12/11/2024







### Results – 1D likelihood scans









### Results – alternative limits comparison









### $t\bar{t}W$ measured cross-section

- Previous analysis within ATLAS and CMS saw tension in the measured  $t\bar{t}W$  cross-section and the SM
- In this analysis  $t\bar{t}W$  is normalized to:
  - QCD: 674.7 fb
  - EW: 47.7 fb
- The normalisation factor for  $t\bar{t}W$  QCD is fitted to 1.37
- Post-fit  $t\bar{t}W$  cross-section:
  - $\sigma(t\bar{t}W) = 674.7 \text{ fb} \cdot 1.37 + 47.7 \text{ fb} = 972.0 \text{ fb}$









### Yield Tables SRs

| Process               | $SR_{ctu++}$    | $SR_{ctu}$      | $SR_{cQu++}$      | $SR_{cQu}$      |
|-----------------------|-----------------|-----------------|-------------------|-----------------|
| $t\bar{t}W$           | 114 ± 15        | $62 \pm 10$     | $110 \pm 15$      | $56.9 \pm 9.0$  |
| $t\bar{t}(Z/\gamma*)$ | $25.5 \pm 2.4$  | $24.1 \pm 2.6$  | $19.5 \pm 1.8$    | $19.1 \pm 1.8$  |
| tĪH                   | $12.4 \pm 7.5$  | $12.3 \pm 7.1$  | $15.1 \pm 9.6$    | $15.1 \pm 9.2$  |
| Four top              | $0.72 \pm 0.15$ | $0.69 \pm 0.14$ | $4.16 \pm 0.83$   | $4.07 \pm 0.82$ |
| Diboson               | $18.1 \pm 9.3$  | $15.9 \pm 8.1$  | $6.3 \pm 3.2$     | $4.2 \pm 2.1$   |
| HFe                   | $6.5 \pm 2.9$   | $7.6 \pm 3.0$   | $3.0 \pm 1.1$     | $4.9 \pm 2.5$   |
| $\mathrm{HF}\mu$      | $12.6 \pm 2.7$  | $15.7 \pm 3.2$  | $6.3 \pm 1.8$     | $5.7 \pm 1.7$   |
| Mat Conv              | $7.6 \pm 2.5$   | $5.5 \pm 1.6$   | $2.73 ~\pm~ 0.83$ | $3.3 \pm 1.2$   |
| Int Conv              | $2.7 \pm 1.6$   | $3.0 \pm 1.7$   | $2.1 \pm 1.2$     | $2.7 \pm 1.6$   |
| QMisID                | $8.1 \pm 2.2$   | $8.1 \pm 2.2$   | $1.48 \pm 0.39$   | $1.48 \pm 0.39$ |
| Other                 | $20.3 \pm 5.4$  | $13.3 \pm 3.9$  | $9.3 \pm 2.7$     | $7.0 \pm 2.6$   |
| Total Bkg.            | 228 ± 11        | $167.7 \pm 7.9$ | $180 \pm 10$      | $124.5 \pm 6.3$ |
| Data                  | 230             | 162             | 181               | 123             |







### Yield Tables 2ℓ CRs

| Process               | CR HF $\mu$ TM    | $CR HF\mu MT$     | CR HF $\mu$ MM    | CR HFe TM         | CR HFe MM         |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $t\bar{t}W$           | $24.0 \pm 4.9$    | $10.3 \pm 2.0$    | $3.73 \pm 0.87$   | $15.1 \pm 2.9$    | $2.76 \pm 0.59$   |
| $t\bar{t}(Z/\gamma*)$ | $13.6 \pm 2.1$    | $6.20 \pm 0.97$   | $2.59 \pm 0.47$   | $8.4 \pm 1.7$     | $1.90 \pm 0.32$   |
| $t\bar{t}H$           | $6.6 \pm 4.0$     | $3.2 \pm 1.9$     | $1.28 \pm 0.79$   | $4.1 \pm 2.4$     | $0.90 \pm 0.58$   |
| Four top              | $0.113 \pm 0.028$ | $0.071 \pm 0.017$ | $0.046 \pm 0.012$ | $0.069 \pm 0.019$ | $0.036 \pm 0.010$ |
| Diboson               | $11.9 \pm 6.1$    | $4.9 \pm 2.5$     | $2.2 \pm 1.1$     | $8.6 \pm 4.4$     | $1.35 \pm 0.72$   |
| HFe                   | $1.6 \pm 1.1$     | $5.9 \pm 2.9$     | $1.71 \pm 0.97$   | 37 ±12            | $4.5 \pm 1.6$     |
| ${ m HF}\mu$          | $80 \pm 14$       | $21.9 \pm 5.6$    | $13.8 \pm 3.2$    | $2.20 \pm 0.66$   | $3.62 \pm 0.99$   |
| Mat Conv              | $2.0 \pm 7.1$     | $1.20 \pm 0.56$   | $1.62 \pm 0.51$   | $3.7 \pm 2.1$     | $1.38 \pm 0.43$   |
| Int Conv              | $0.68 \pm 0.41$   | $1.7 \pm 1.0$     | $0.30 \pm 0.18$   | $5.5 \pm 3.2$     | $0.48 \pm 0.30$   |
| QMisID                | $0.28 \pm 0.13$   | $0.75 \pm 0.54$   | $0.38 \pm 0.26$   | $5.2 \pm 2.9$     | $1.6 \pm 1.0$     |
| Other                 | $5.6 \pm 1.5$     | $2.71 \pm 0.66$   | $0.81 \pm 0.21$   | $4.2 \pm 1.0$     | $0.63 \pm 0.16$   |
| Total Bkg.            | 147 ± 12          | 59.0 ± 5.1        | $28.4 \pm 3.4$    | 94.4 ± 9.2        | $19.1 \pm 2.2$    |
| Data                  | 150               | 57                | 28                | 95                | 19                |







### Yield Tables 3ℓ CRs

-

| Process               | CR Int Conv       | CR Mat Conv     | CR ttZ            | CR VV             |
|-----------------------|-------------------|-----------------|-------------------|-------------------|
| $t\bar{t}W$           | _                 | _               | $8.4 \pm 1.8$     | $24.5 \pm 4.7$    |
| $t\bar{t}(Z/\gamma*)$ | _                 | _               | $378 \pm 32$      | $230 \pm 27$      |
| tīH                   | _                 | _               | $10.0 \pm 6.3$    | $6.3 \pm 4.0$     |
| Four top              | _                 | _               | $1.61 \pm 0.32$   | $0.092 \pm 0.020$ |
| Diboson               | $0.025 \pm 0.019$ | $1.34 \pm 0.72$ | 29 ±15            | $90 \pm 45$       |
| HFe                   | _                 | _               | $0.47 \pm 0.35$   | $9.2 \pm 6.8$     |
| ${ m HF}\mu$          | _                 | _               | $1.04 \pm 0.35$   | $7.5 \pm 1.8$     |
| Mat Conv              | $1.3 \pm 1.1$     | $37.6 \pm 8.6$  | $0.59 ~\pm~ 0.40$ | $2.19 ~\pm~ 0.77$ |
| Int Conv              | $42.5 \pm 6.8$    | $15.6 \pm 4.3$  | $0.14 \pm 0.15$   | $1.66 \pm 0.96$   |
| QMisID                | _                 | _               | $0.22 \pm 0.17$   | $0.83 \pm 0.41$   |
| Other                 | _                 | _               | $74 \pm 23$       | $218 \pm 40$      |
| Total Bkg.            | $43.9 \pm 6.6$    | 54.6 ± 7.3      | $503 \pm 22$      | $590 \pm 23$      |
| Data                  | 44                | 55              | 494               | 605               |