CERN Accelerating science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Report number arXiv:2411.08740
Title Characterisation of analogue MAPS produced in the 65 nm TPSCo process
Author(s)

Ploerer, Eduardo (Vrije U., Brussels ; U. Zurich (main)) ; Baba, Hitoshi (Tokyo U.) ; Baudot, Jerome (Strasbourg, IPHC) ; Besson, Auguste (Strasbourg, IPHC) ; Bugiel, Szymon (Strasbourg, IPHC) ; Chujo, Tatsuya (Tsukuba U.) ; Colledani, Claude (Strasbourg, IPHC) ; Dorokhov, Andrei (Strasbourg, IPHC) ; Bitar, Ziad El (Strasbourg, IPHC) ; Goffe, Mathieu (Strasbourg, IPHC) ; Gunji, Taku (Tsukuba U.) ; Hu-Guo, Christine (Strasbourg, IPHC) ; Ilg, Armin (Zurich U.) ; Jaaskelainen, Kimmo (Strasbourg, IPHC) ; Katsuno, Towa (Hiroshima U.) ; Kluge, Alexander (CERN) ; Kostina, Anhelina (IEAP CTU, Prague) ; Kumar, Ajit (Strasbourg, IPHC) ; Lorenzetti, Alessandra (Zurich U.) ; Macchiolo, Anna (Zurich U.) ; Mager, Magnus (CERN) ; Park, Jonghan (Tsukuba U.) ; Sakai, Shingo (Tsukuba U.) ; Senyukov, Serhiy (Strasbourg, IPHC) ; Shamas, Hasan (Strasbourg, IPHC) ; Shibata, Daito (Tsukuba U.) ; Snoeys, Walter (CERN) ; Stanek, Pavel (IEAP CTU, Prague) ; Suljic, Miljenko (CERN) ; Tomasek, Lukas (IEAP CTU, Prague) ; Valin, Isabelle (Strasbourg, IPHC) ; Wada, Reita (Hiroshima U.) ; Yamaguchi, Yorito (Hiroshima U.)

Document contact Contact: arXiv
Imprint 2024-11-13
Number of pages 7
Note 7 pages, 12 figures; Proceedings for iWoRiD 2024 (Lisbon)
Presented at 25th international Workshop on Radiation Imaging Detectors (iWoRiD2024), Lisbon, Portugal, 30 Jun - 4 Jul 2024, pp.
Subject category hep-ex ; Particle Physics - Experiment ; physics.ins-det ; Detectors and Experimental Techniques
Accelerator/Facility, Experiment CERN LHC ; ALICE
Abstract Within the context of the ALICE ITS3 collaboration, a set of MAPS small-scale test structures were developed using the 65 nm TPSCo CMOS imaging process with the upgrade of the ALICE inner tracking system as its primary focus. One such sensor, the Circuit Exploratoire 65 nm (CE-65), and its evolution the CE-65v2, were developed to explore charge collection properties for varying configurations including collection layer process (standard, blanket, modified with gap), pixel pitch (15, 18, \SI{22.5}{\micro\meter}), and pixel geometry (square vs hexagonal/staggered). In this work the characterisation of the CE-65v2 chip, based on $^{55}$Fe lab measurements and test beams at CERN SPS, is presented. Matrix gain uniformity up to the $\mathcal{O}$(5%) level was demonstrated for all considered chip configurations. The CE-65v2 chip achieves a spatial resolution of under \SI2{\micro\meter} during beam tests. Process modifications allowing for faster charge collection and less charge sharing result in decreased spatial resolution, but a considerably wider range of operation, with both the \SI{15}{\micro\meter} and \SI{22.5}{\micro\meter} chips achieving over 99% efficiency up to a $\sim$180 e$^{-}$ seed threshold. The results serve to validate the 65 nm TPSCo CMOS process, as well as to motivate design choices in future particle detection experiments.
Other source Inspire
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)



 


 Записът е създаден на 2024-11-15, последна промяна на 2024-12-04


Пълен текст:
Сваляне на пълен текст
PDF