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ABSTRACT

New developments in accelerator physics have broadened the set of available techniques for ma-
nipulating charged-particle beams. Adiabatic trapping and transport of beam in resonance islands
has been studied and successfully implemented at the CERN Proton Synchrotron to perform multi-
turn extraction. Bent crystals have been successfully installed in the CERN Large Hadron Collider,
improving the cleaning performance of the collimation system, and at the CERN Super Proton Syn-
chrotron for reducing losses at the extraction septum in the case of slow extraction. In this paper,
we discuss the potential of the combined use of resonance islands and bent crystals to devise a novel
technique to perform slow extraction in circular hadron accelerators. The proposed approach is
promising, particularly for applications with high-intensity beams, as it could dramatically reduce
the losses on the extraction devices.

Modern circular particle accelerators are based on a design rooted in seminal works that developed the concept of
strong focusing [1, 2]. In this paradigm, the dynamics of charged particles is assumed to be linear, from which any
departure necessitates correction techniques to mitigate nonlinear beam dynamics effects. Although considering non-
linearities to be harmful is partially correct, nonlinear beam dynamics can also open new possibilities for controlling
and manipulating charged-particle beams. This is exemplified by Multi-Turn Extraction (MTE) [3, 4], developed at the
CERN Proton Synchrotron (PS) and now the operational extraction mode of high-intensity fixed-target proton beams
for the Super Proton Synchrotron (SPS) [5, 6, 7, 8]. The usefulness of exploiting nonlinearities is further illustrated
by recently proposed advanced beam manipulations using transverse exciters [9, 10] or the crossing of 2D reson-
ances [11, 12]. While proven successful, such manipulations have not yet been widely adopted in operation outside
CERN and still present challenges that merit further studies.

Another cutting-edge topic in accelerator physics is the use of bent crystals to control the trajectory of particles [13].
After extensive research [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], bent crystals have become an
essential part of the operational collimation system of the CERN Large Hadron Collider (LHC) [30]. Several concepts
of crystal-assisted slow extraction have also been explored, such as non-resonant extraction of the beam halo [31]
or shadowing of the electrostatic septum using bent crystals [32, 33, 34, 35, 36]. Furthermore, the use of crystals
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Figure 1: Schematic illustration of the new proposed slow extraction technique. Left: Example phase space at the
crystal position, including the septum blade image. The core particles move into the resonance islands and follow the
separatrix until they reach the crystal, where different interactions can occur (center). Right: Path of particles around
the ring before and after various interactions with the crystal. A channeled particle (green) can jump the septum,
while other particles (cyan and orange) continue to circulate.

to extract the beam halo to use for fixed-target experiments in the LHC [37, 38, 39, 40, 41, 42, 43, 44] is currently
being investigated by the Physics Beyond Colliders initiative at CERN [45, 46, 47]. We present here a novel beam
manipulation that combines stable islands, generated by sextupoles and octupoles, and bent crystals to realize an
efficient alternative to the standard slow extraction technique.

Standard slow extraction uses third-order resonance driven by sextupoles to transport particles along unboun-
ded separatrices to higher amplitudes in the x plane. The thin blade of an electrostatic septum is used to cut
the distribution along one separatrix arm and deflect some particles toward the extraction channel (see, e.g.,
Refs. [48, 49, 50, 51, 52, 53, 54, 55, 56] and references therein). This process is characterized by the inherent loss of
the beam on the septum that produces irradiation that can reduce the useful life of the accelerator components, hinder
maintenance [57, 58], and limit the total intensity of the beam that can be extracted. Additionally, such an extracted
beam has a horizontal profile that is often difficult to match with the subsequent transfer line. The novel approach
presented here has the potential to improve both aspects.

In the proposed approach, sextupole and octupole magnets generate stable islands in the horizontal phase space as the
tune adiabatically approaches the third-order resonance. During the process, particles are captured in the islands in a
controlled manner and move close to the separatrix until they reach a bent crystal, as illustrated in Fig. 1. Their motion
is regular, unlike in the standard slow extraction, in which the particles have a stochastic dynamics. Within the crystal,
the particles can undergo different types of interactions (shown in Fig. 1, discussed later). For the presented approach,
the most relevant is planar channeling, which bends particles to a higher angle, allowing them to jump beyond the
septum blade2. Other interactions experienced by particles with less favorable initial conditions, such as volume
reflection [59] or slight scattering, do not significantly alter their subsequent path in the ring, so they will remain close
to the separatrix. As a result, they have the possibility of multiple passes through the crystal.This is made possible
by the use of stable islands and is in contrast to conventional slow extraction where the motion outside the core is
unstable, making multi-pass channeling impossible. Ensuring multiple passes through the crystal is essential, as this
increases the crystal efficiency and facilitates low-loss beam extraction. The slow change of the system’s parameters,
allowing trapping in the islands, generates a variation in the size of the islands. Two variable-amplitude orbit bumps
keep the horizontal beam position fixed at the crystal and the extraction septum.

The principle was studied in numerical simulations using a one-turn map representing a simple model of nonlinear
transverse motion in a circular accelerator lattice in the presence of sextupoles and octupoles that are assumed to be
at the same location and are represented using the one-kick approximation [60]. This map can be represented in 4D

2When discussing hardware for particle accelerators, the term blade is customarily referred to the thick separation in a magnetic
septum, while in the case of an electrostatic septum, a thin foil or a line of wires is used. In this paper, the term blade will be used
with a generic meaning, which does not necessarily imply a magnetic device.
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Courant-Snyder coordinates [2] as x̂
p̂x
ŷ
p̂y


n+1

= R(2πQx, 2πQy)
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(1)

where R represents the 4 × 4 rotation matrix, obtained as the direct product of two 2 × 2 rotation matrices, namely
R(2πQx, 2πQy) = R(2πQx)⊗R(2πQy), with Qx and Qy being the horizontal and vertical betatron tunes, respect-
ively. Kn = 1

B0ρ
∂nBy

∂xn L are the integrated normal multipole strengths, where L represents the length of the multipolar
element, By the vertical component of its magnetic field, and B0ρ the magnetic rigidity. The horizontal and vertical
β-functions are represented by βx and βy , respectively, with χ = βy/βx. The parameters used in the numerical simu-
lations were chosen based on the SPS [61, 62]. K2 was set to 0.0722m−2, while horizontal and vertical β-functions
were set to 104m and 20m, respectively. Note that for χ ≪ 1 (χ = 0.19 in our case) the effect of the vertical plane
can be neglected, since the two degrees of freedom are only weakly nonlinearly coupled if Qy is far from any low-
order resonances. Nevertheless, for numerical simulations, the vertical degree of freedom was included, except for in
the semi-analytical calculations originating from the Normal Form analysis (see below). The simulations used a trans-
verse Gaussian beam distribution with normalized horizontal and vertical emittances ϵ∗x = 10 µm and ϵ∗y = 3.6 µm,
respectively, and a momentum pbeam = 400GeV/c corresponding to that of the SPS fixed-target proton beam.

The implementation of these ideas requires precise control of the separatrices, and an analytic model of their depend-
encies is necessary, which can be provided by Normal Form theory. Using a 2D equivalent of map (1), describing the
motion in the x plane where all beam manipulations take place, the Normal Form technique was used according to
the approach developed in Ref. [60] to obtain a time-independent Hamiltonian. The phase flow of this Hamiltonian
interpolates the particle orbits at integer times, and can be represented in the action angle coordinates (ρ, θ) as

H = ϵρ+
Ω2

2
ρ2 − ϵ cos 3θ

4 sin
(
3ϵ
2

)ρ3/2 ,
ϵ

2π
= Qx − 1

3
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2

3

K3

K2
2

1

βx
,

(2)

where Ω2 has a complicated dependence on Qx and the multipole strengths via κ. Analysis of the Hamiltonian (2)
allows us to determine the equation of the separatrices as a function of Qx and κ.

A key element of the approach is the trapping of particles in stable islands. In a time-independent system, the sep-
aratrix represents an impenetrable boundary. Therefore, it is essential to introduce a time dependence of some system
parameters to allow crossing of the separatrix and trapping in the islands. In the above model, Qx and κ are ob-
vious candidates for varying the shape, surface, and location of the different regions in the phase space. Trapping
and transport processes in the adiabatic regime occur according to probabilistic rules that have been fully determ-
ined [63, 64, 65, 66, 67] for the Hamiltonian case and verified for the case of maps [68, 9]. The necessary condition
for non-zero trapping probability in a given phase-space region is a positive rate of change of its area. Another im-
portant consideration in constructing the appropriate variation of the system parameters is the rate at which particles
cross the separatrix. To ensure a good extraction spill, it is desirable to decrease the intensity of the core linearly to
zero during the process.

Taking into account these constraints, the variation of Qx and κ shown in Fig. 2 was constructed, which provides the
integrated octupole strength K3 (K2 is kept constant). The initial Gaussian distribution of the particles in the horizontal
plane was tracked from far away from the resonance to the starting point of extraction using a linear change in tune and
constant κ, to allow filamentation in the triangular-shaped core region. The Hamiltonian was then used to establish
the relationship between κ and Qx that ensures faster growth of the island surface than a decrease in the core surface
as the tune approaches the resonance from below. Using the Hamiltonian again, the separatrix was calculated as κ and
Qx were varied to obtain the desired number of particles within the core as the resonance approaches, assuming the
adiabaticity of the process. The most appropriate variation of Qx (and thus κ) was then constructed by prescribing a
linear decrease in the intensity of the core. Note that, depending on the direction of approach of the resonance (from
below or above), it is also possible to achieve the constraints imposed by varying only Qx. All this allows particle
transport to large amplitudes, preserving the action of their orbit.

3
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Figure 2: Variation of system parameters Qx (black) and κ (red) as a function of the turn number used in the
numerical simulations.

The second key element of the proposed scheme is the use of a bent crystal to create the angular separation between
the particles circulating and those to be extracted. This is achieved through planar channeling, however, particles can
experience a variety of other interactions with the crystal depending on their entry conditions. An overview of these is
given below (for a more detailed description of physics, see [69, 70]).

Inside the crystal, the electric fields of the atomic planes form potential wells in which an incident charged particle can
be trapped: this is called channeling. In a bent crystal with a macroscopic radius of curvature R, channeled particles
oscillate between atomic planes following the curvature and emerge with an angle close to the crystal bending angle.
Channeling occurs only if the particle’s transverse momentum remains below the maximum of the potential well. This
implies a maximum impact angle, called the critical angle θc, which depends only on the crystal potential, Umax, the

particle momentum, p, and speed, v, and is given by |θc| =
√

2Umax
pv

(
1− Rc

R

)
[69], where Rc is the critical radius

below which channeling is impossible.

During its motion in the crystal, a particle can scatter off electrons, nuclei, or crystal defects, causing its transverse
energy to change. Thus, channeled particles may lose channeling conditions if their transverse energy increases above
the potential well maximum because of scattering. This is called dechanneling. The reverse process, called volume
capture, is also possible. A particle can also be reflected from the crystal plane when it impinges with a tangential
momentum (volume reflection). Finally, the particle may interact entirely amorphously with the crystal [71].

The numerical simulations presented here used the crystal implementation within the Xcoll module of the
Xsuite simulation package [72, 73]. The implementation is an exact transplantation of the crystal routine in
SixTrack [71, 74, 75], which was compared with the results of the beam tests carried out in the CERN North Area
(NA) and measurements in the LHC [76, 74, 77, 78, 30, 79]. The crystal parameters used in the simulations were
chosen within a range proven effective by NA tests and the LHC collimation system [80]: horizontal and vertical di-
mensions of 2mm and 5 cm, respectively, length of 2.8mm, and R = 28m, resulting in a bending angle of 100 µrad.
With these parameters, a simulated single-pass channeling efficiency of around 68% can be achieved for particles with
incident angle |px| ≲ |θc|, where |θc| ≈ 10 µrad for pbeam = 400GeV/c.

Figures 3 and 4 show the efficiency and shape of the extracted beam distribution at the crystal as a function of the
crystal’s angular and position alignment with respect to the island separatrix. The nominal crystal position is at
40mm, so that the extremum of the separatrix falls roughly in the middle of the crystal width, and the nominal angular
alignment of the crystal is horizontal. Particles were considered lost in the septum if they hit the phase-space region
covered by the image of the septum blade, backtracked by an optimal 60◦ phase advance through linear SPS optics, to
the crystal location. The apparent width of the septum was taken as 500 µm, consistent with the observed width of the
electrostatic septum of SPS [35, 81]. Particles that exceeded a radius of 10 cm in the x− y plane were considered lost
in the mechanical aperture of the ring.

The efficiencies achieved in these simulations are comparable to or, in some cases, slightly exceed the measured slow
extraction efficiencies in the SPS in 2016-2017 [82]. With careful crystal alignment, it is possible to reduce septum
losses below 1%. To minimize these losses, the crystal should be aligned so that the distribution of channeled particles
is as close to the septum blade as possible without intersecting it. Increasing the separation between the channeled
distribution and the septum slightly increases the septum losses as a higher density of dechanneled particles hits the
blade. The biggest novelty of the proposed extraction scheme is that it can operate even without a septum, provided
that the crystal can be placed in the lattice so that the channeled particles arrive at the right position and angle to the
extraction channel. In this case, dedicated collimation of the dechanneled particles may be necessary. The possibility

4
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Figure 3: From top to bottom: extraction efficiency, and losses on the mechanical aperture, in the crystal, and in the
septum as a function of the angular and position alignment of the crystal with respect to the island separatrix. The
remaining particles continue to circulate at the end of the process and can be extracted by pushing the horizontal tune
closer to resonance.

of septum-less slow extraction is particularly exciting due to significant operational improvements it would present.
It is worth mentioning that this study assumed a simple accelerator lattice composed of periodic FODO cells. It is
reasonable to expect further performance improvements if dedicated insertions with optimized optical configurations
are implemented.

As Fig. 4 illustrates, the profile of the extracted distribution can vary depending on the crystal alignment. To some
extent, it is possible to tune the profile without significantly degrading efficiency, thus generating an extracted beam
distribution that can be better matched to a transfer line or experimental requirements. In all cases, a low-density halo
of particles scattered by the crystal is formed at higher angles or amplitudes that extend beyond the septum blade. In
the most efficient configuration, this comprises less than 0.2% of extracted particles. In reality, these particles would
most likely be lost on the mechanical aperture of the ring or the transfer line, slightly affecting the overall efficiency.
However, a dedicated collimation of these particles can be easily envisioned in the ring, mitigating any risk to the
accelerator.

Another important aspect of slow extraction is the temporal structure of the extraction spill. Fixed-target experiments
require minimal variations in spill rate to avoid detector pile-up and other saturation phenomena. Figure 5 (top) shows
a complete extraction spill, simulated using the nominal crystal alignment. Apart from the start of the spill, the average
extracted particle count is constant within 2% with a standard deviation of 3.25%, closely approaching the Poisson

5
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Figure 4: Horizontal phase-space distribution (color) of the extracted particles at the crystal position for various
angular and position alignments of the crystal with respect to the island separatrix. Projections along x and px are
also shown (black), as well as the image of the septum blade (red).

Figure 5: Top: Simulated extraction spill with 109 particles and standard deviation of the number of particles
extracted per turn. The most stable part of the spill is shaded in gray. Bottom: Standard deviation of the extracted
spill in the shaded interval as a function of number of particles tracked.

6
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limit. The lower quality of the initial part of the spill is due to the difficulty in steadily extracting the filamented tails
of the transverse Gaussian distribution. Furthermore, the highest rate of change in system parameters occurs in this
segment, resulting in insufficient adiabaticity and lower spill quality. In Fig. 5 (bottom), the standard deviation as a
function of particle number used in the simulation in the most stable part of the spill, between 40% and 90% of the
spill time (shaded area), follows the Poisson scaling. This demonstrates that the observed fluctuations are not related
to the method, but rather to the simulation statistics. Note also that the level of fluctuations is comparable to that of
standard slow extraction using Eq. 1 without the octupole and crystal.

In a real machine, power supply ripples cause tune modulation, strongly affecting the trapping, and thus the extrac-
tion efficiency and spill quality. Introducing a tune modulation similar to that observed in SPS [83], with dominant
frequencies of 50Hz and its higher harmonics (see Ref. [84]) showed that only the lowest harmonics (50Hz, 100Hz,
150Hz) are harmful to the quality of the spill. This is also observed in simulations of standard slow extraction using
Eq. 1 without octupole and crystal. Therefore, standard mitigation measures are necessary for these effects (see, e.g.,
[85]).

In conclusion, a novel slow extraction that combines stable islands and bent crystal is proposed. Simulations using a
simple accelerator lattice model demonstrate its potential to reproduce or even exceed the efficiencies of standard tech-
niques, while introducing the prospect of septumless slow extraction and the ability to shape the extracted distribution
to match a subsequent transfer line. In a real accelerator, the use of multiple nonlinear elements with suitable phase
advances would allow full control of the shape and location of the island, allowing the creation of narrower islands in
which most particles hit the crystal within its angular acceptance, likely further improving efficiency.

It was also shown that the approach does not inherently degrade the quality of the spill compared to standard meth-
ods. However, active compensation of low-frequency power supply ripples will still be necessary to maintain good
efficiency and spill quality.

Studies using a more realistic accelerator lattice are underway to mitigate any adverse effects of momentum-dependent
tune offset and entry conditions at the crystal due to chromaticity and dispersion in the presence of a momentum
distribution in the beam. Experimental tests are also being considered in the SPS.
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