

Jet Finding as a Real-Time Object Detection Task

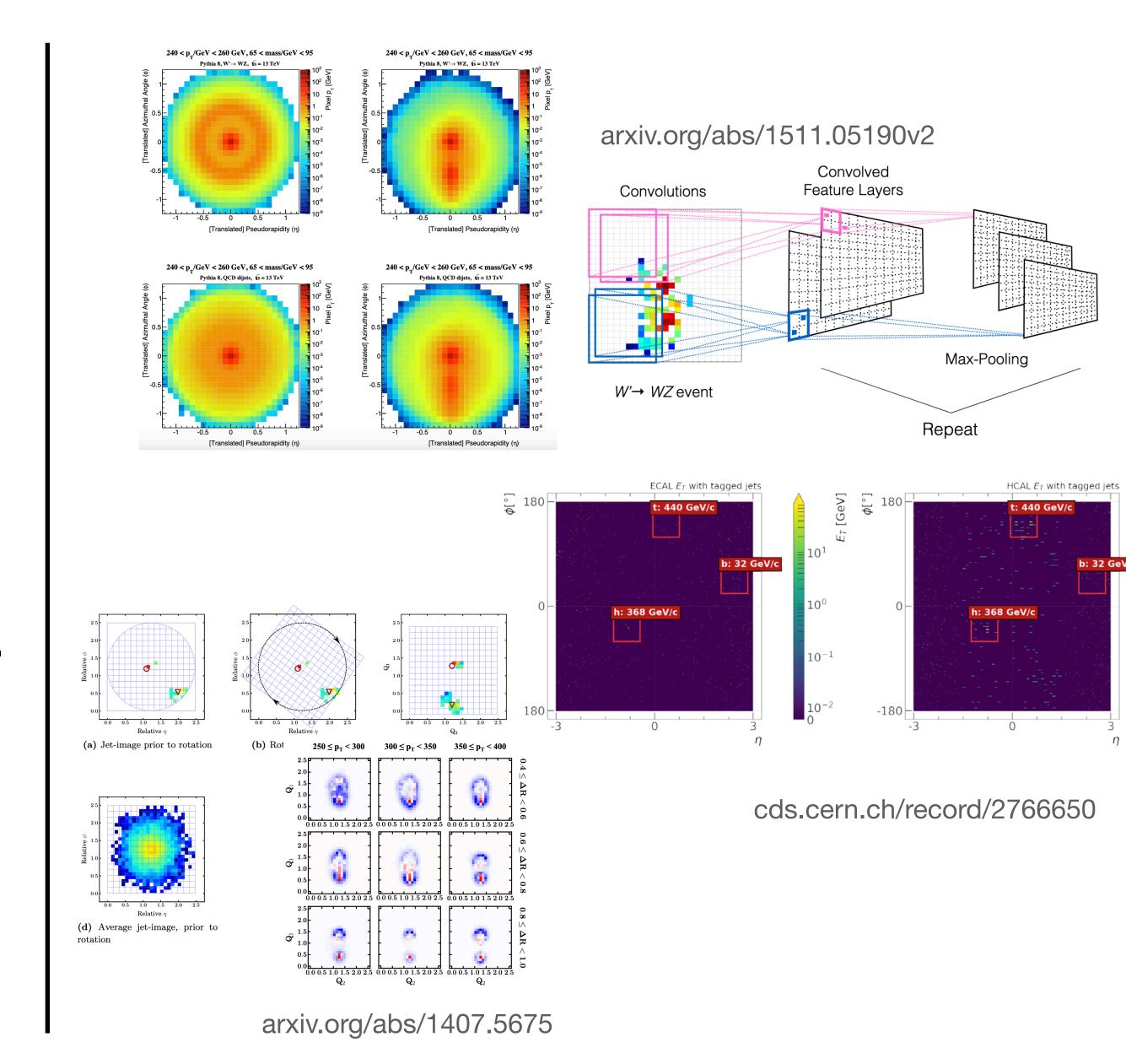
Leon Bozianu on behalf of the ATLAS collaboration

Introduction

- At the HL-LHC ATLAS trigger will be required to deal with more data and larger event sizes.
- Current jet preselection relies on sequential, iterative methods whose computational cost scales with the activity in the event.
- Can we approximate jets directly from calorimeter cells?
- Forego calorimeter clustering + jet reconstruction then use these primitive "cell jets" as a fast calorimeter-only preselection for jet triggers.
- Needs to be fast, flexible and robust to pile-up.
- Idea: Use a CNN to "detect" jets based on calorimeter energy deposits.

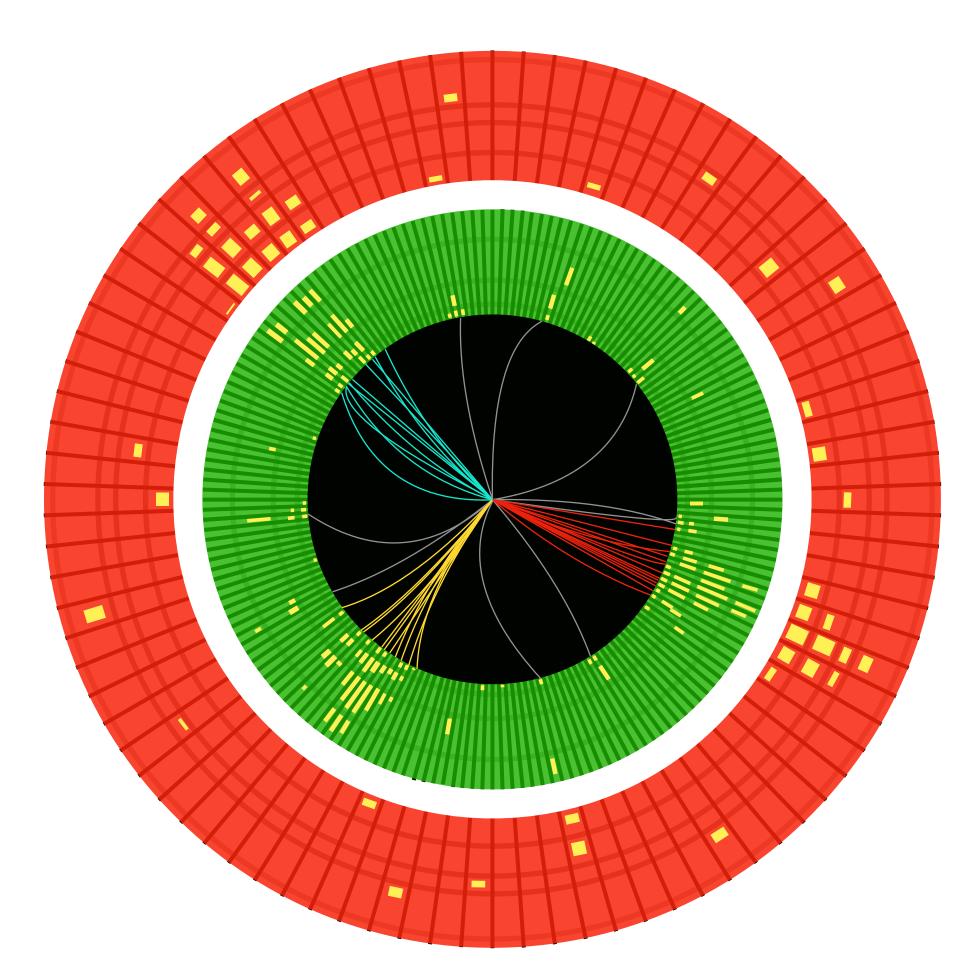
CNNs and Jets

- There is a lot of history treating jets as images.
- Previously many deep learning taggers have been proposed using CNNs.
- Exploit the translational invariance of CNNs + local spatial correlations.
- Most efforts focus on classification or regression tasks.
- In this work we consider the entire event at once.



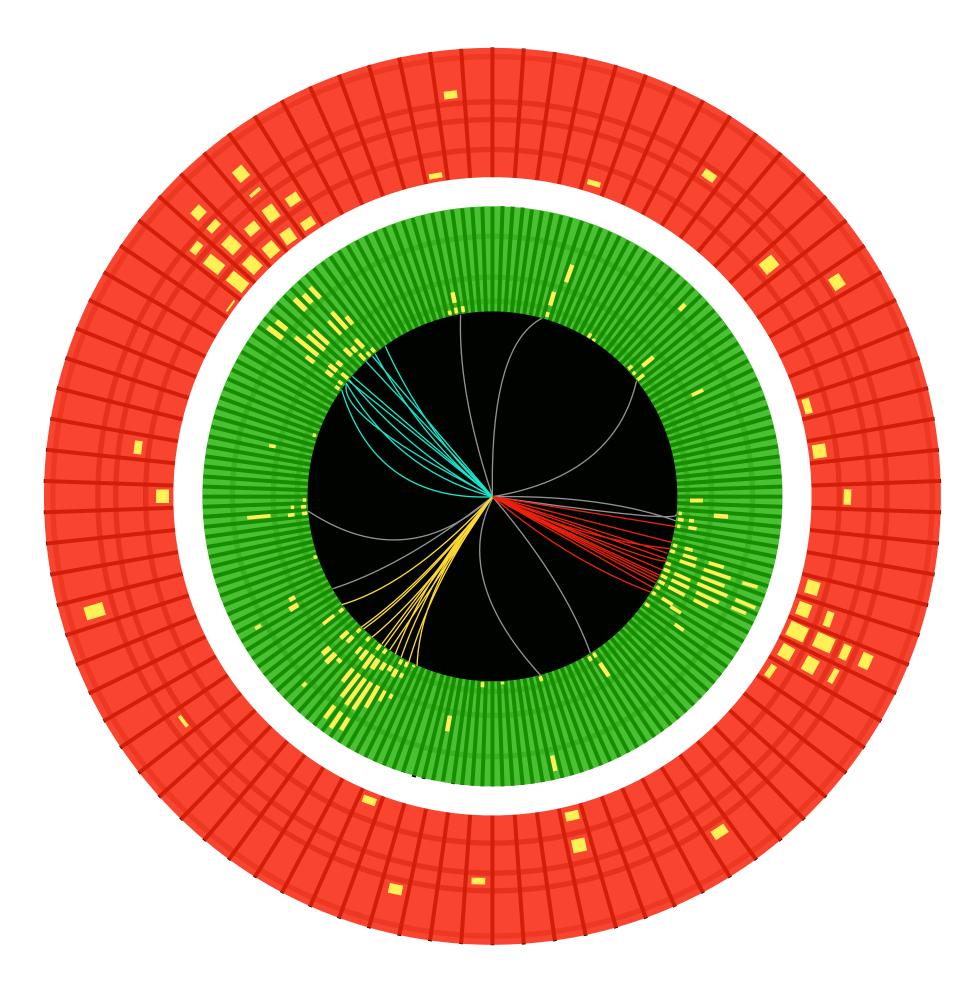
Jet Finding \iff Object Detection

- Use a CNN to identify jets from energy depositions in the calorimeter cells.
- Return a series of object proposals, to use & interpret in simple jet triggers.
- Compare these calorimeter jets to existing, iterative methods used in the trigger.
- Accelerate CNN inference using GPU. Explore timing constraints of ATLAS trigger for deployment.

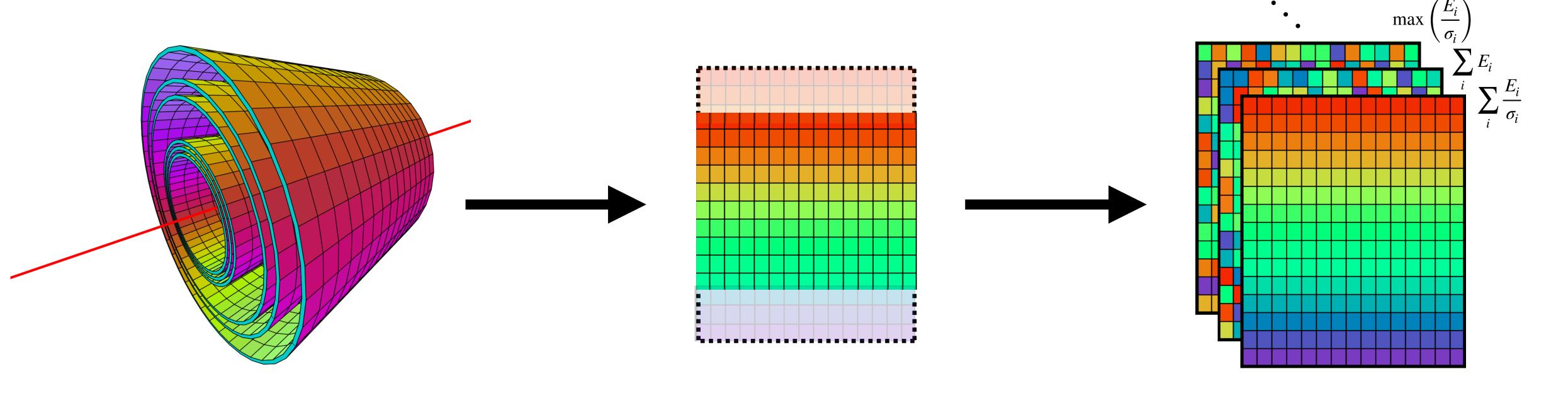


Jet Finding ←⇒ Object Detection

- Use a **CNN** to identify **jets** from energy depositions in the calorimeter **cells**.
- Return a series of **object proposals**, to use & interpret in simple jet triggers.
- Compare these calorimeter jets to existing, iterative methods used in the trigger.
- Accelerate CNN inference using GPU. Explore timing constraints of ATLAS trigger for deployment.
- How can we make a regular 2d representation from a highly complex, non-uniform and sparse set of calorimeter cells?



Preprocessing for CNNs



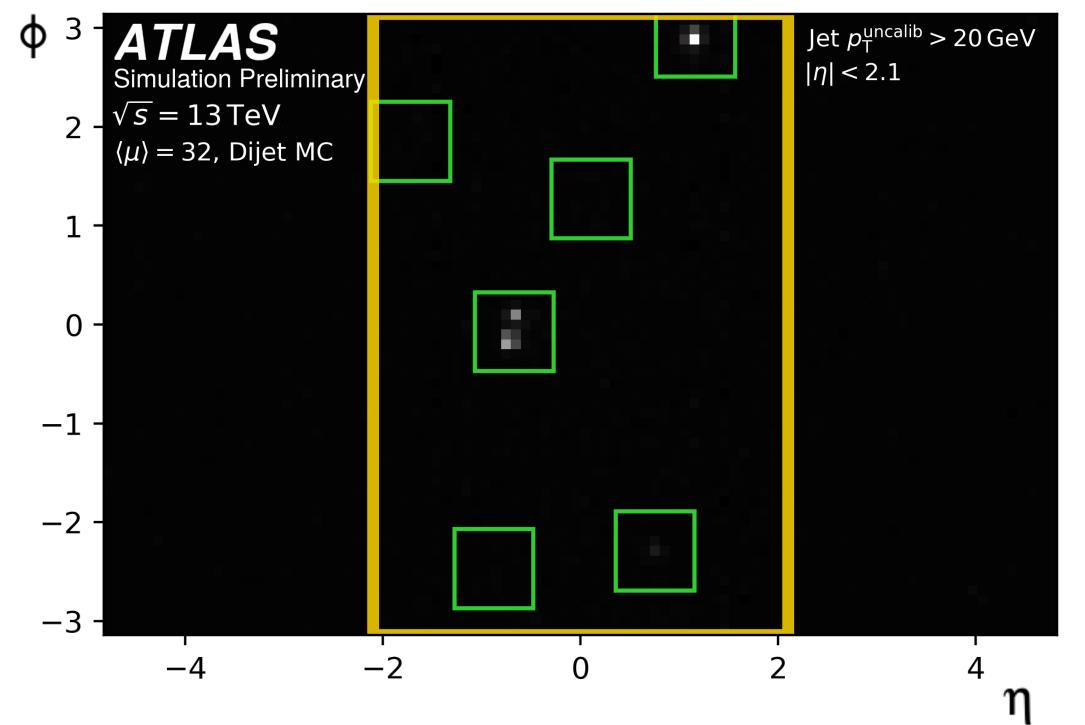
Focus on central "barrel" and project in $\eta - \phi$

"Wrap" boundary regions

Calculate separate channels using cell information

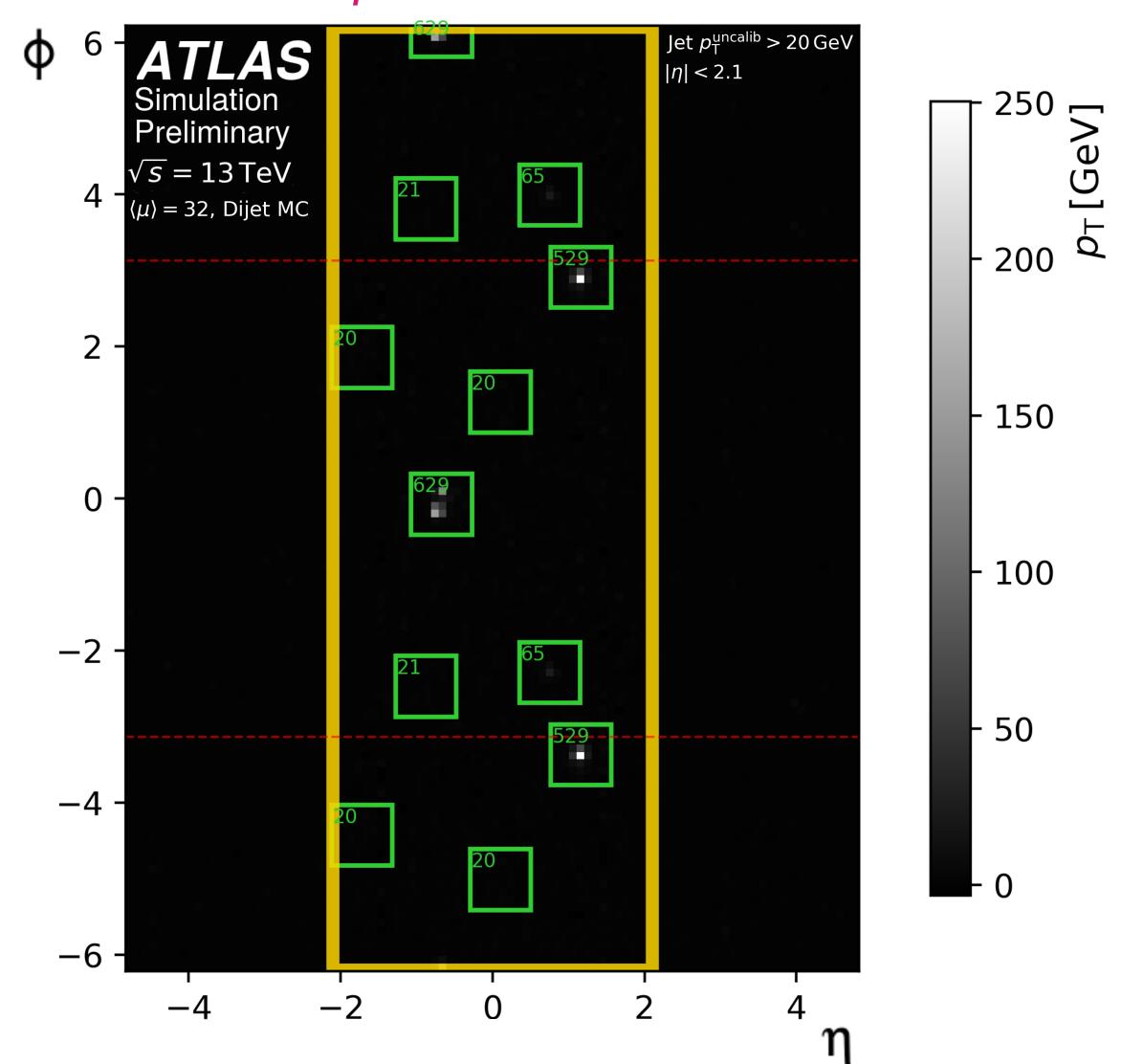
Anti- k_t jets as targets

What we "see" in the calorimeter:



*Note: All the jets are uncalibrated (considered at the jet constituent scale) AND central ($|\eta| < 2.1$)

What we pass to the network:



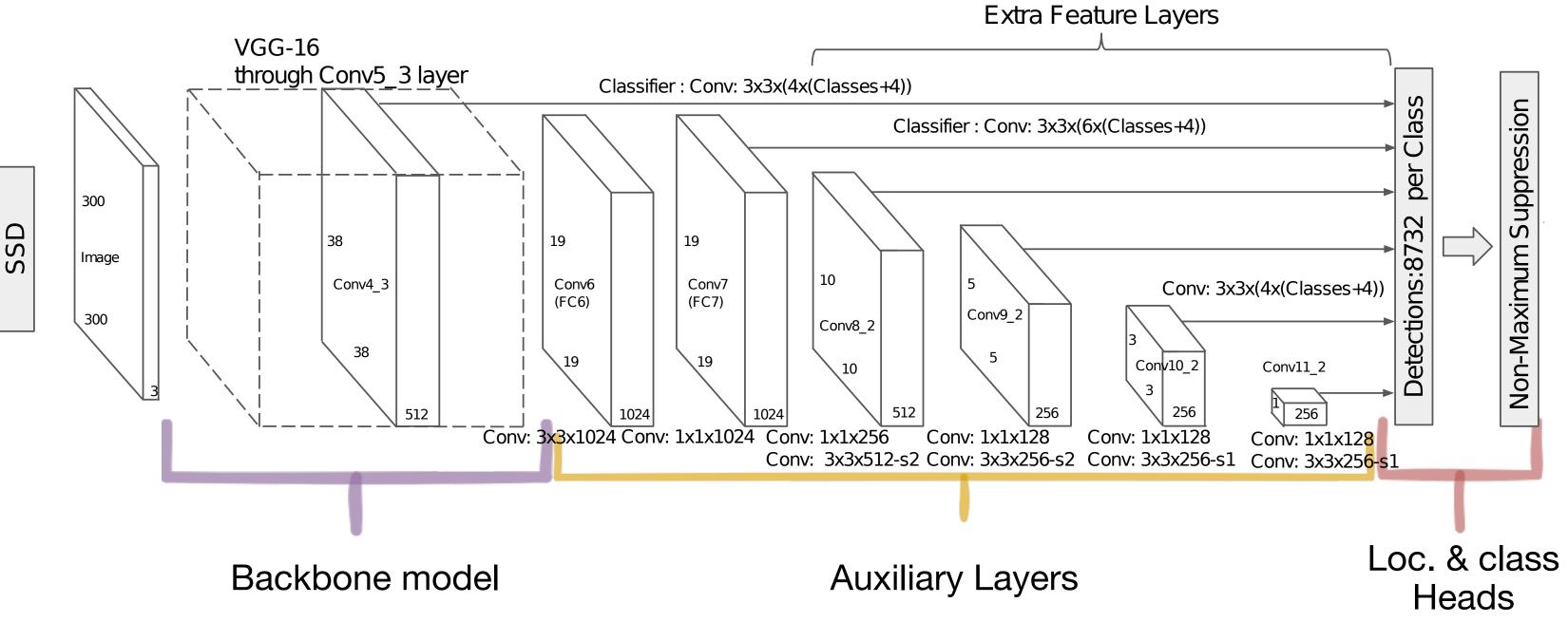
Network Architecture

Network Architecture

Original SSD architecture

Backbone

- VGG16 architecture used as feature extractor
- 35 million parameters, large + relatively old
- 6 Additional Feature Layers
 - Capture objects of different scales
- Residual connections between the layers and outputs
- Two output heads, regression + classification
- Total learnable parameters: 35,641,826



d7×7, 96

1×1, 384

GELU

ConvNeXt Block

ResNet Block

1×1, 64

3×3, 64

BN, ReLU

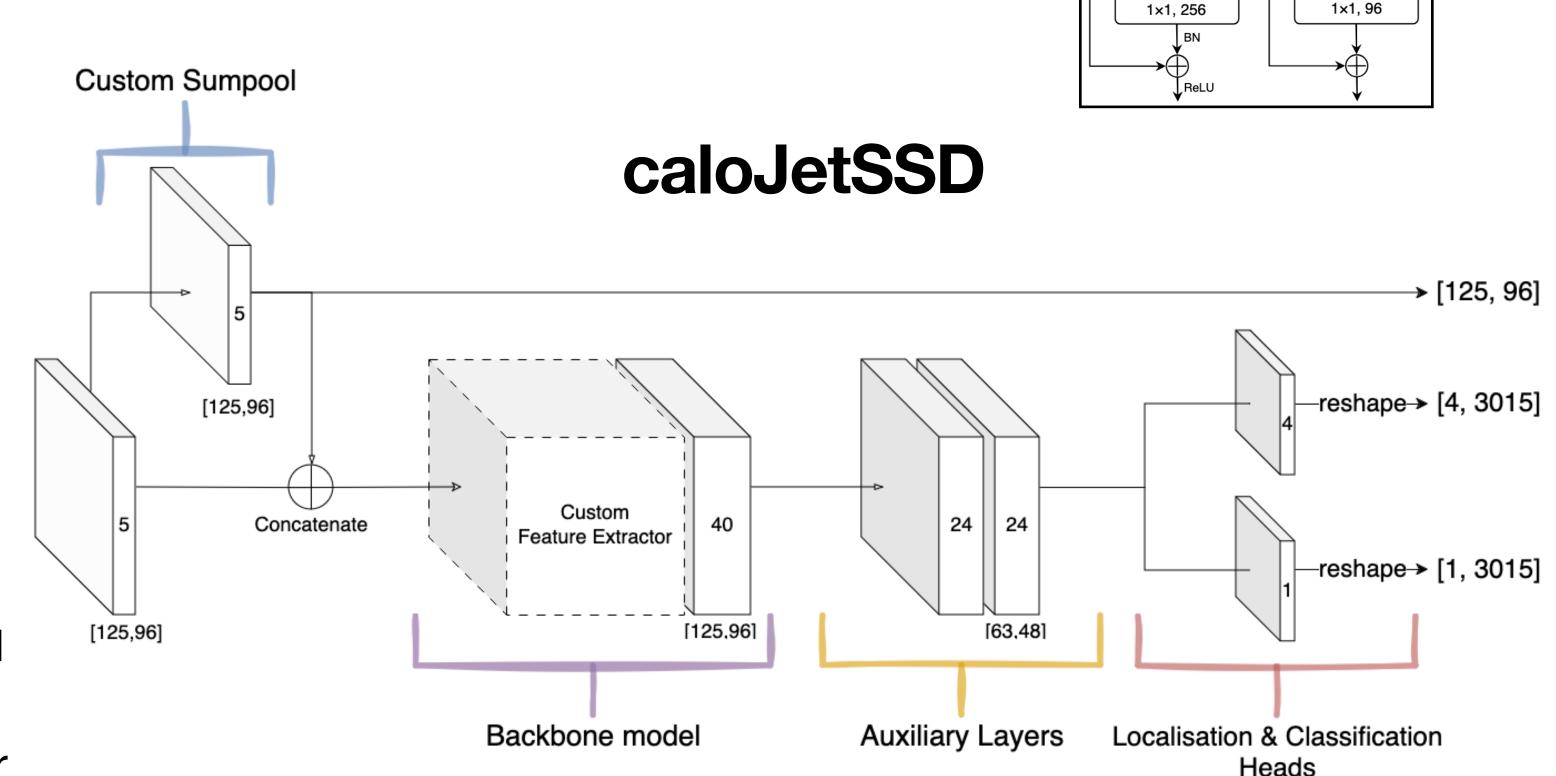
BN, ReLU

Network Architecture

Modernising SSD + feature extractor network

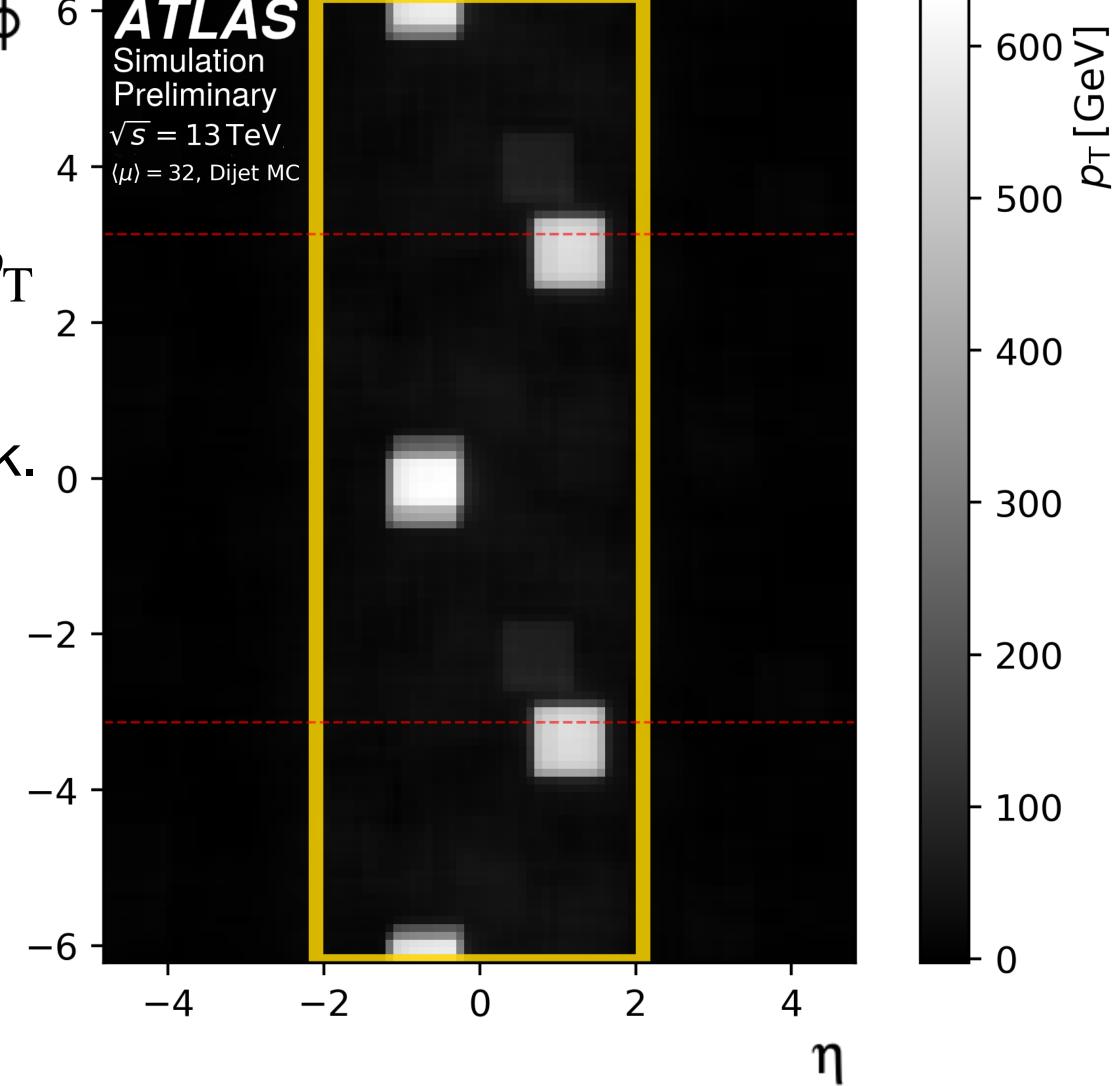
- Backbone
 - Very aggressively reduced the size and depth of the backbone
 - Adapted ConvNeXt blocks
 - >10m → 30k learnable params
- One Additional Feature Layer
 - Reduced the # kernels and channels in the auxiliary layer
- Output heads
 - Decreased number of prior boxes and shape of output (factor ~2)
 - Introduced "sumpool" output array for "quick" p_T estimation
- Total learnable parameters: 50,841

700 times fewer!



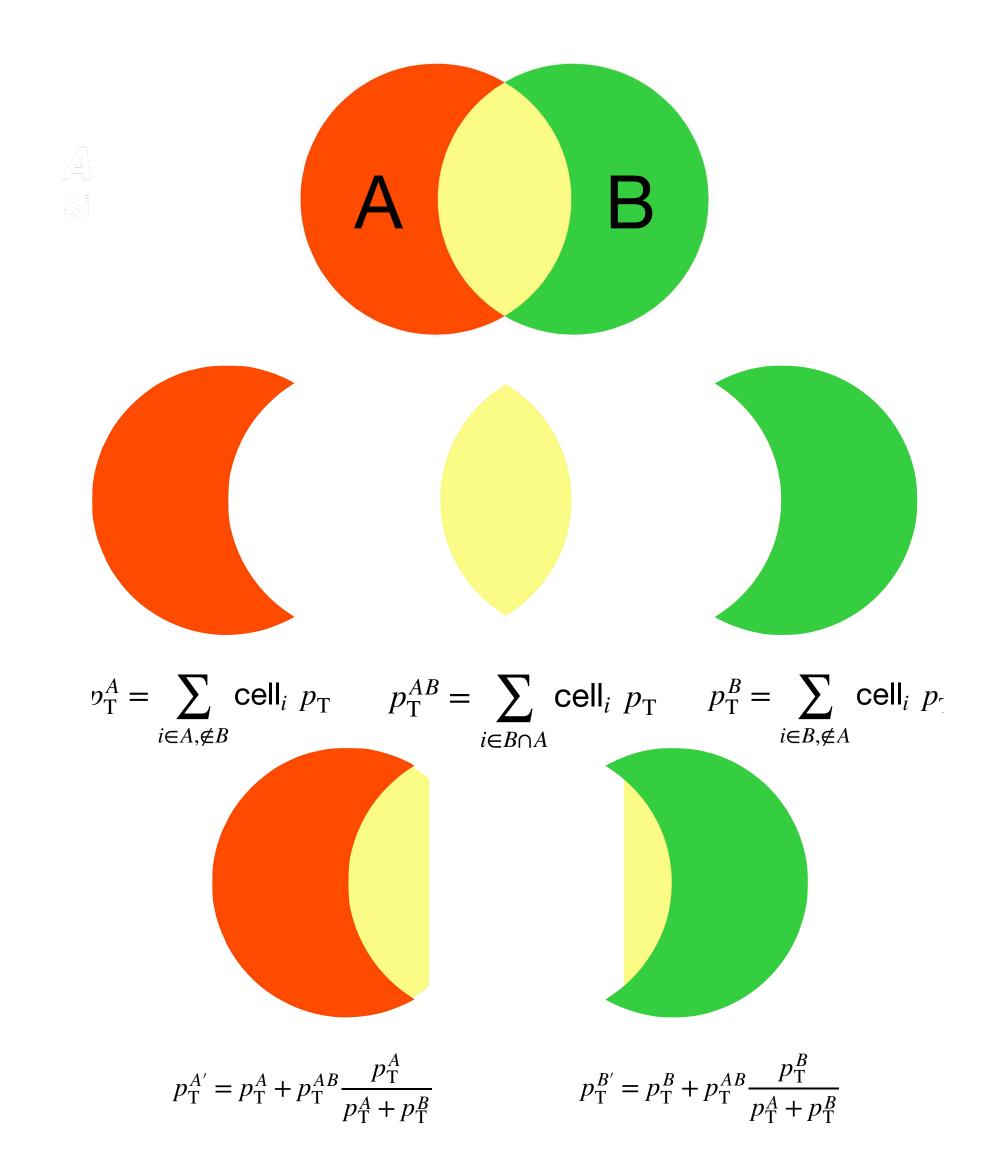
Transverse Momentum Estimation

- Object detection finds the location of the jets.
- To evaluate trigger decisions we estimate the $\ensuremath{p_{\mathrm{T}}}$ of the jet predictions.
- Direct method: Sumpool output of the network.
 - Sum pixels in 9x9 kernel or window.
 - Location of prediction determines $\sum p_{\mathrm{T}}$ value.



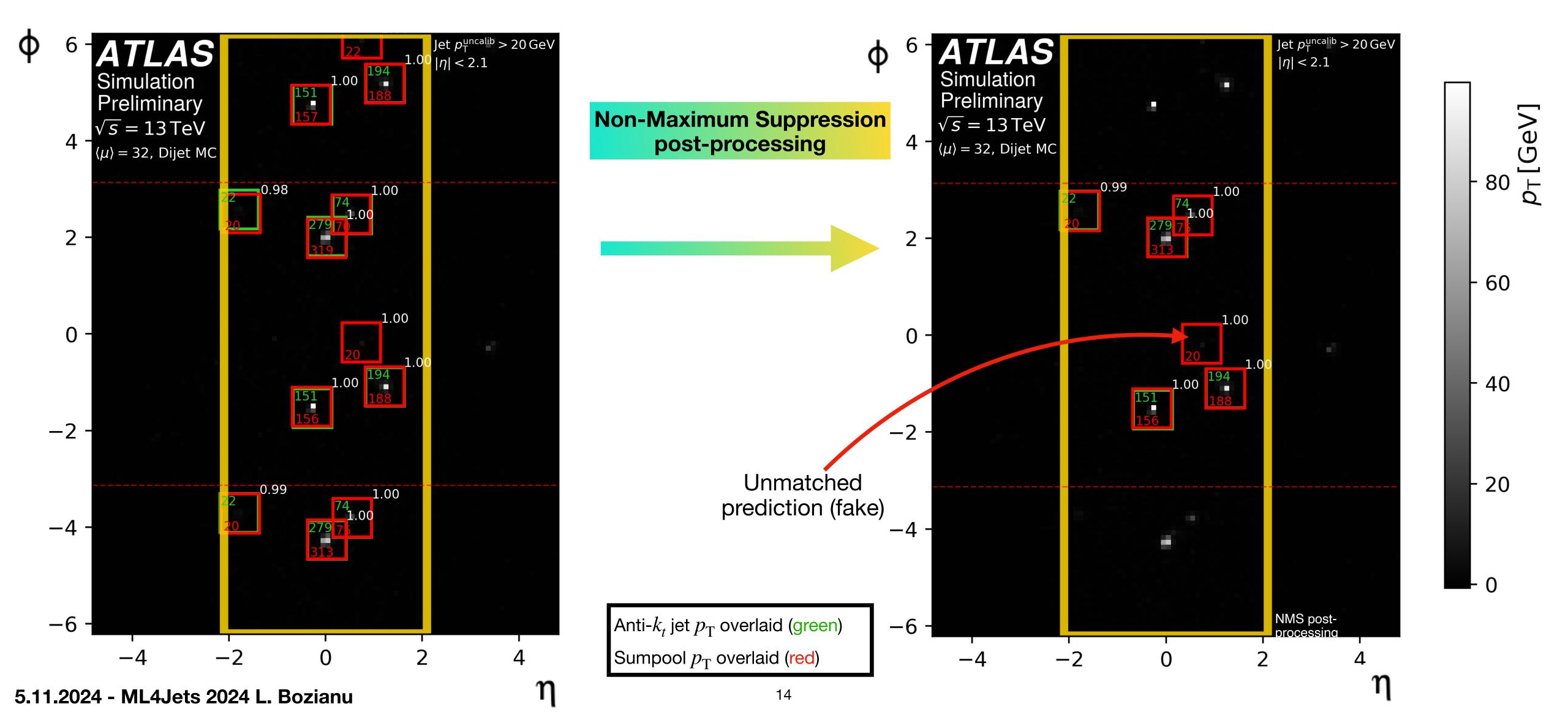
Transverse Momentum Estimation

- Object detection finds the location of the jets.
- To evaluate trigger decisions we estimate the p_{T} of the jet predictions.
- Direct method: Sumpool output of the network.
- Iterative method: Weighted circle.
 - Retrieve cells in R = 0.4 circle centred on each prediction.
 - Share $p_{\rm T}$ among overlapping predictions.

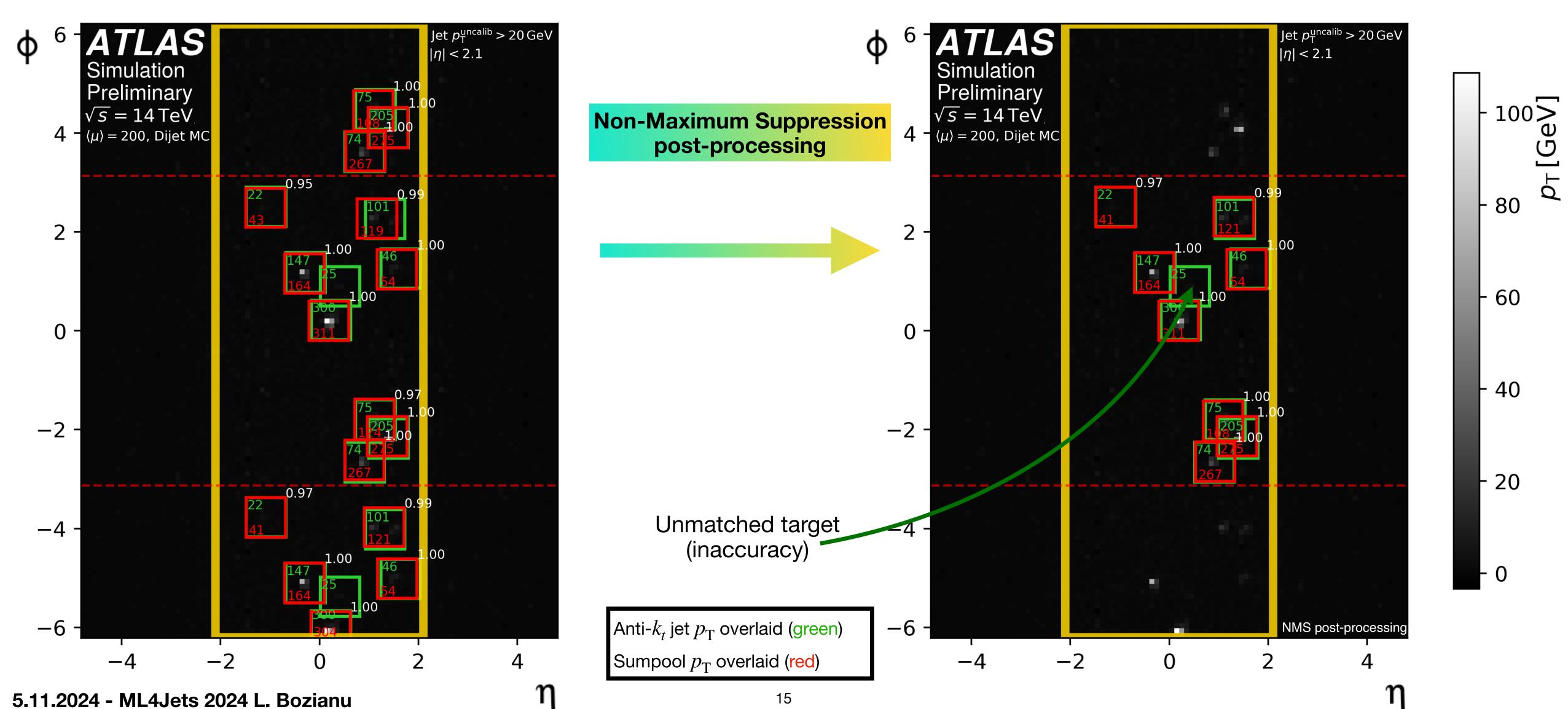


Performance Results

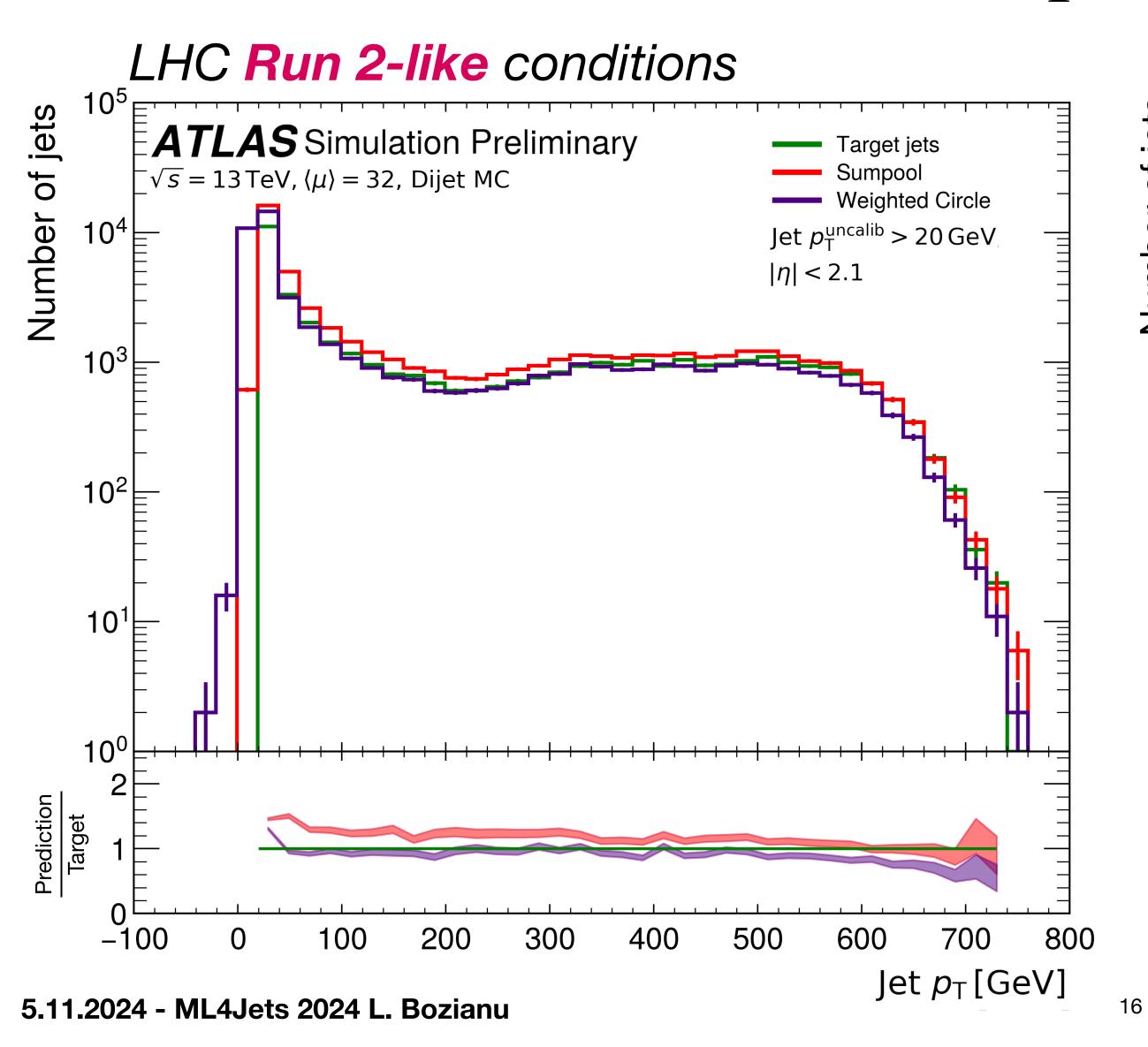
Jet Detection for a <u>single</u> event with $\langle \mu \rangle = 32$

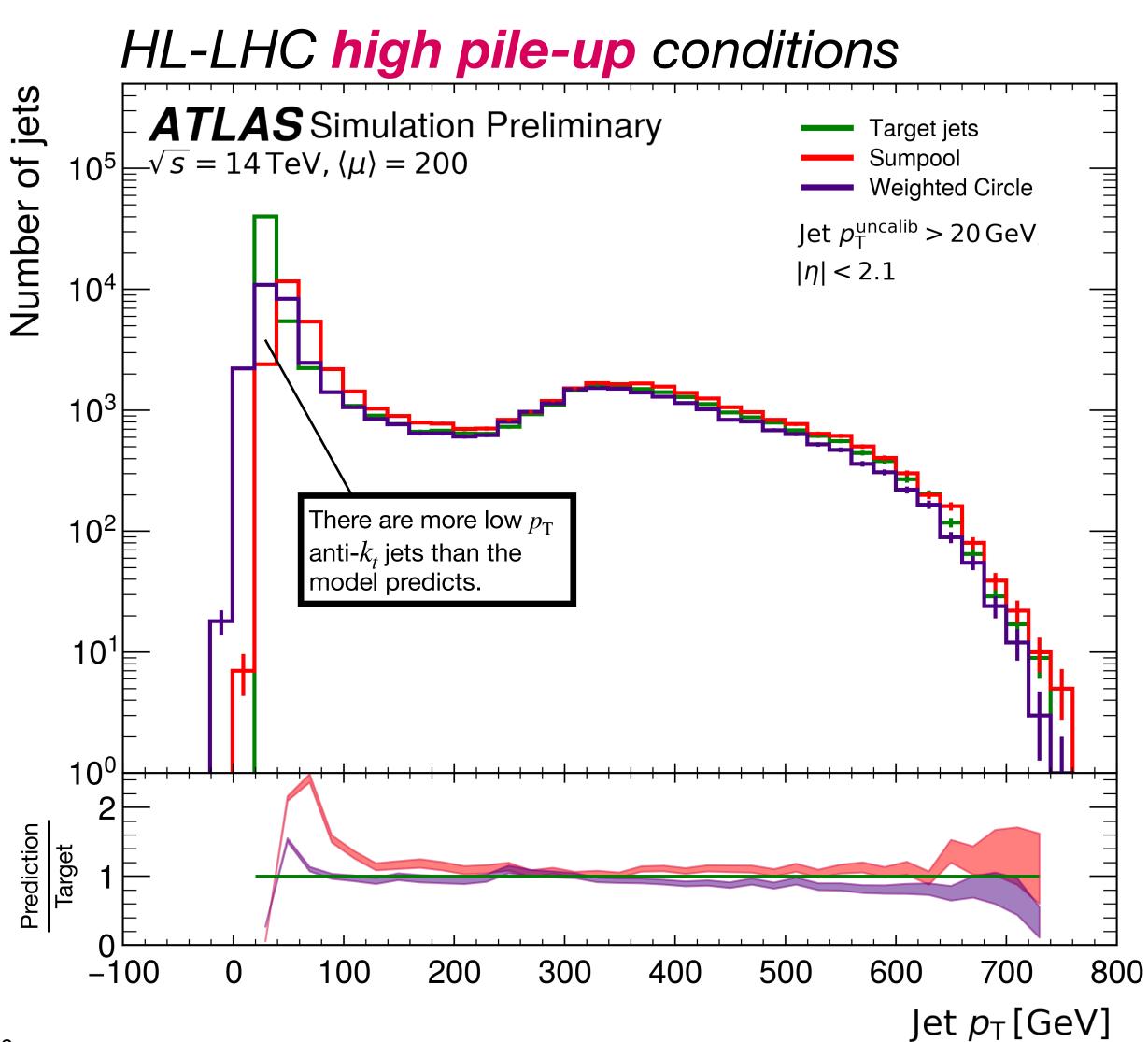


Jet Detection for a single event with $\langle \mu \rangle = 200$



Reconstructing jet p_{T}



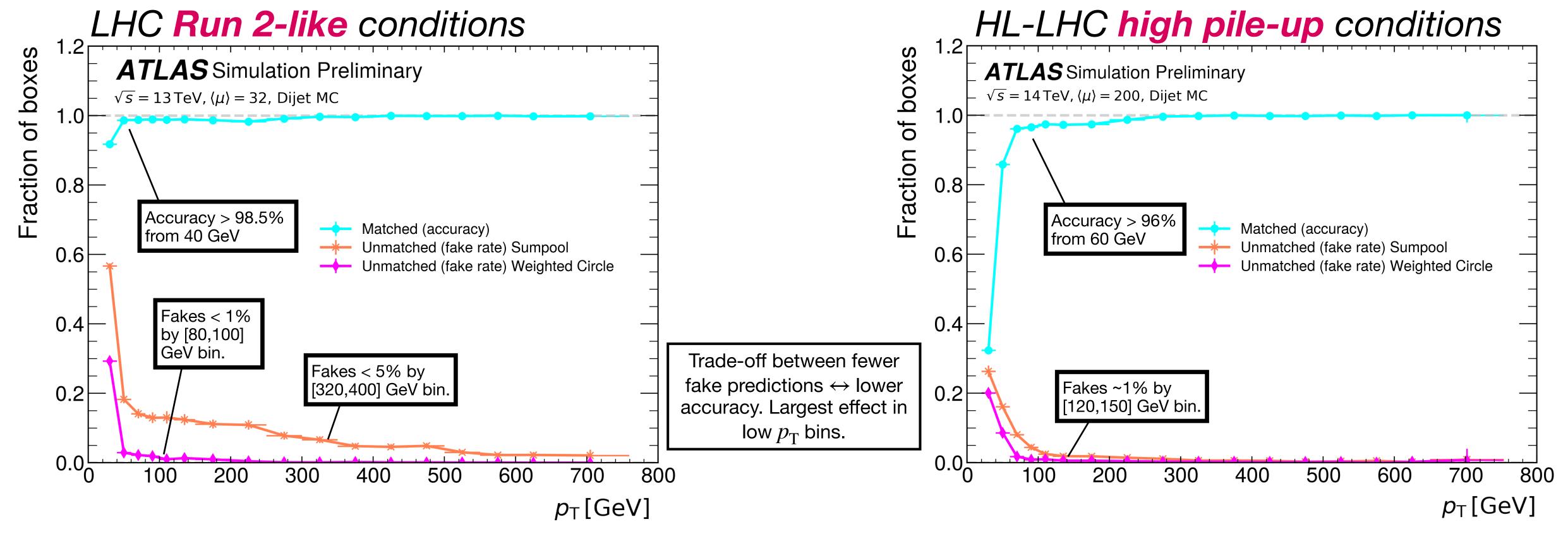


Performance across p_{T}

Area of Overlap Area of Union

Detection accuracy vs fake rate:

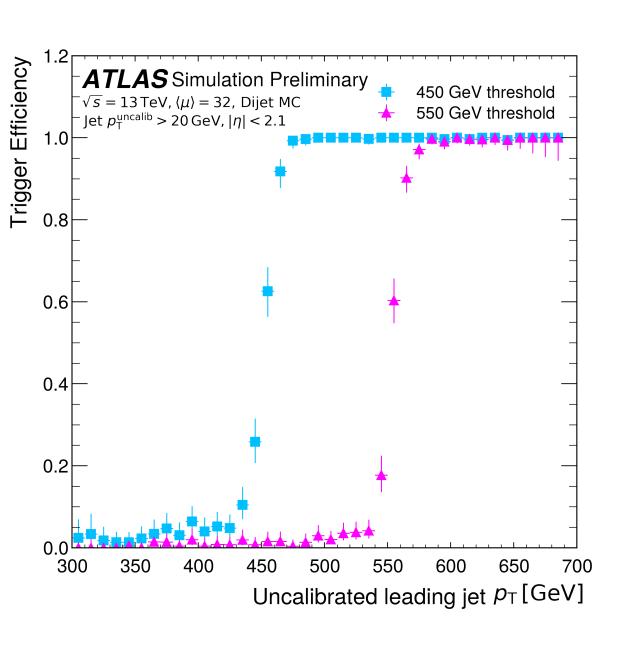
- % matched Target jets found with intersection over union (IoU) > 0.5 with any prediction.
- % unmatched Predictions with no corresponding target jet, or predictions that overlap with a previously matched target.

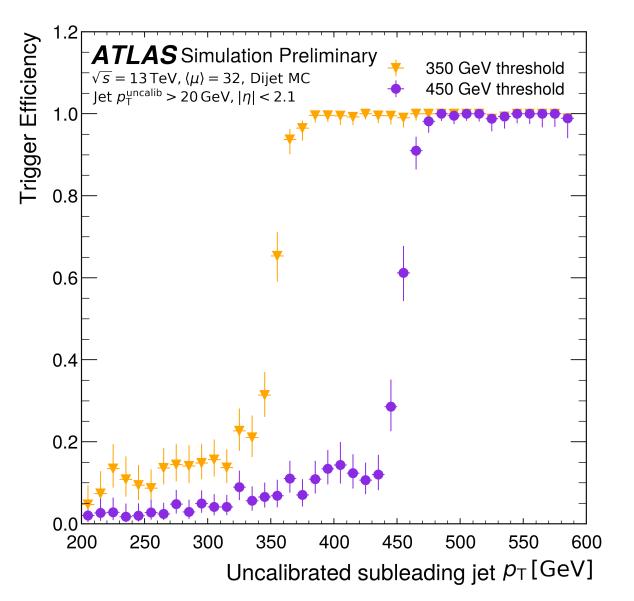


Trigger efficiencies

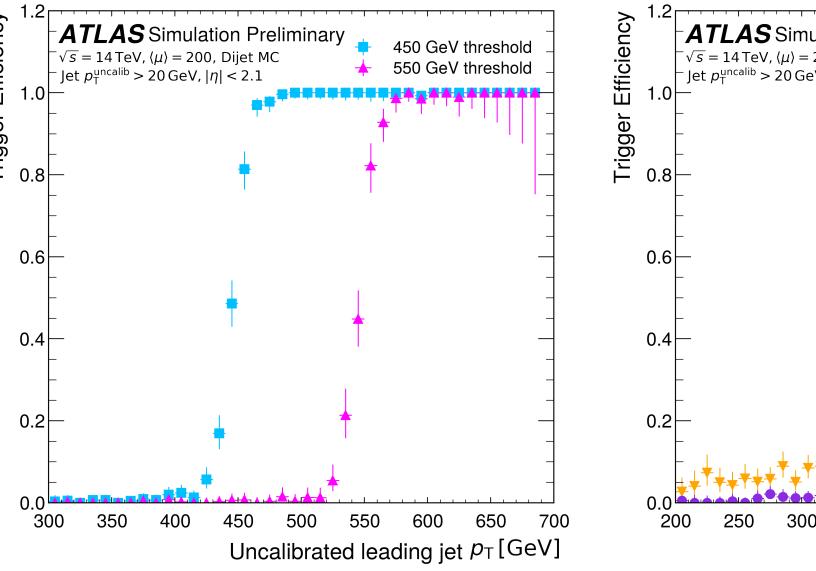
Leading and sub-leading jets using sumpool output

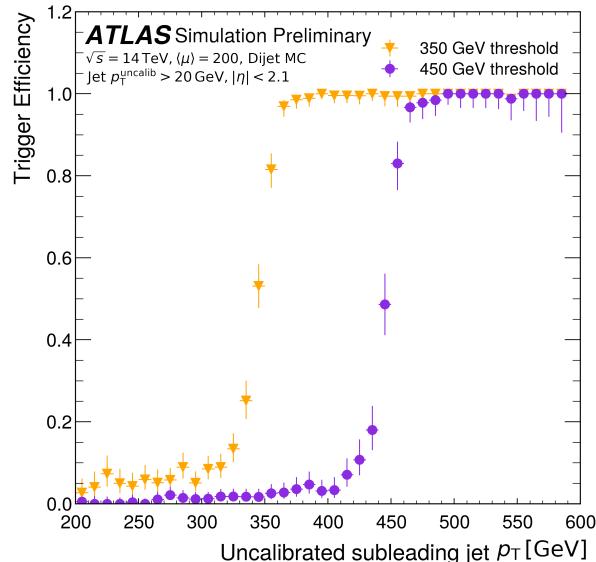
LHC Run 2-like conditions





HL-LHC high pile-up conditions

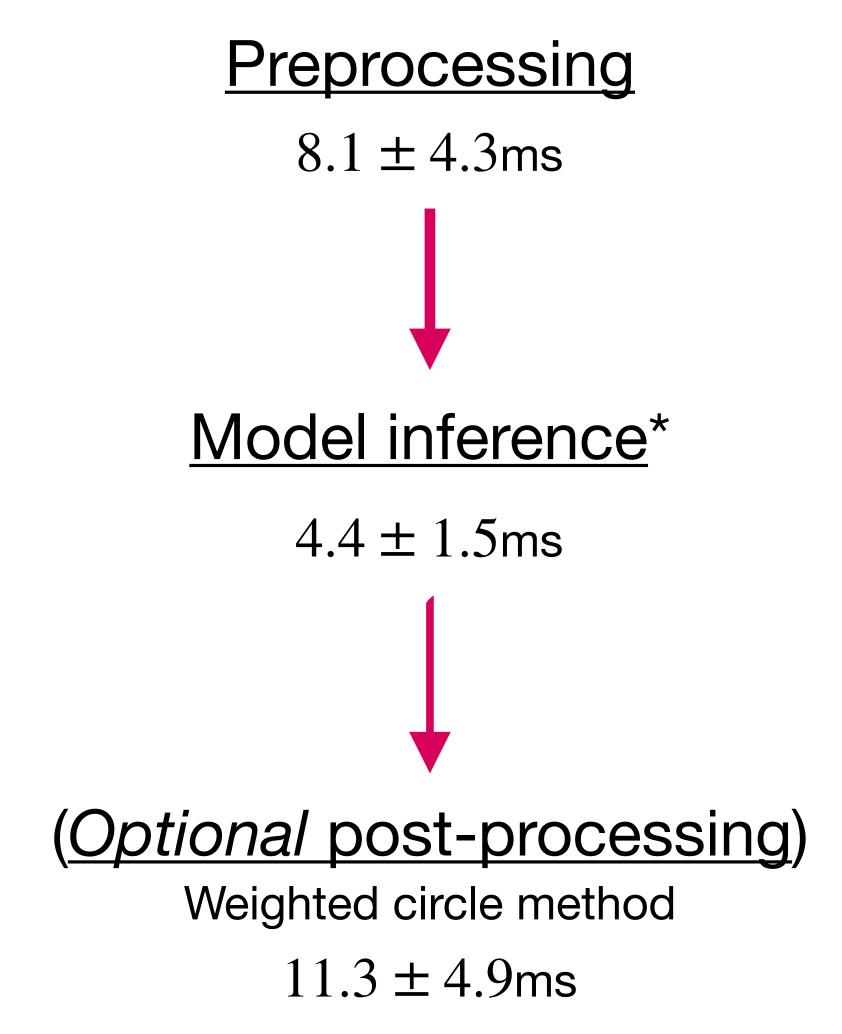




Sharp turn on with the plateau approaching 100% in both cases!

Timing evaluation

- Pre- and *optional* post-processing executed on a single CPU (AMD EPYC 7742 CPU).
- Model inference on a single NVidia RTX 2080 Ti GPU.
- The current, iterative calorimeter preselection jet reconstruction takes $\mathcal{O}(100\,\mathrm{ms}) \Longrightarrow$ caloJetSSD is an order of magnitude faster.



Conclusion

Conclusion

- We can use CNNs to approximate jets in the calorimeter.
- The complexity of the model can be reduced significantly, with respect to the SSD literature, without a loss in performance.
 - We don't need to use million-parameter models! caloJetSSD 700 times smaller.
- Promising trigger efficiencies for simple jet hypotheses.
- Robust against pile-up, still performant in HL-LHC conditions.
- Order of magnitude speed-up over current iterative methods.

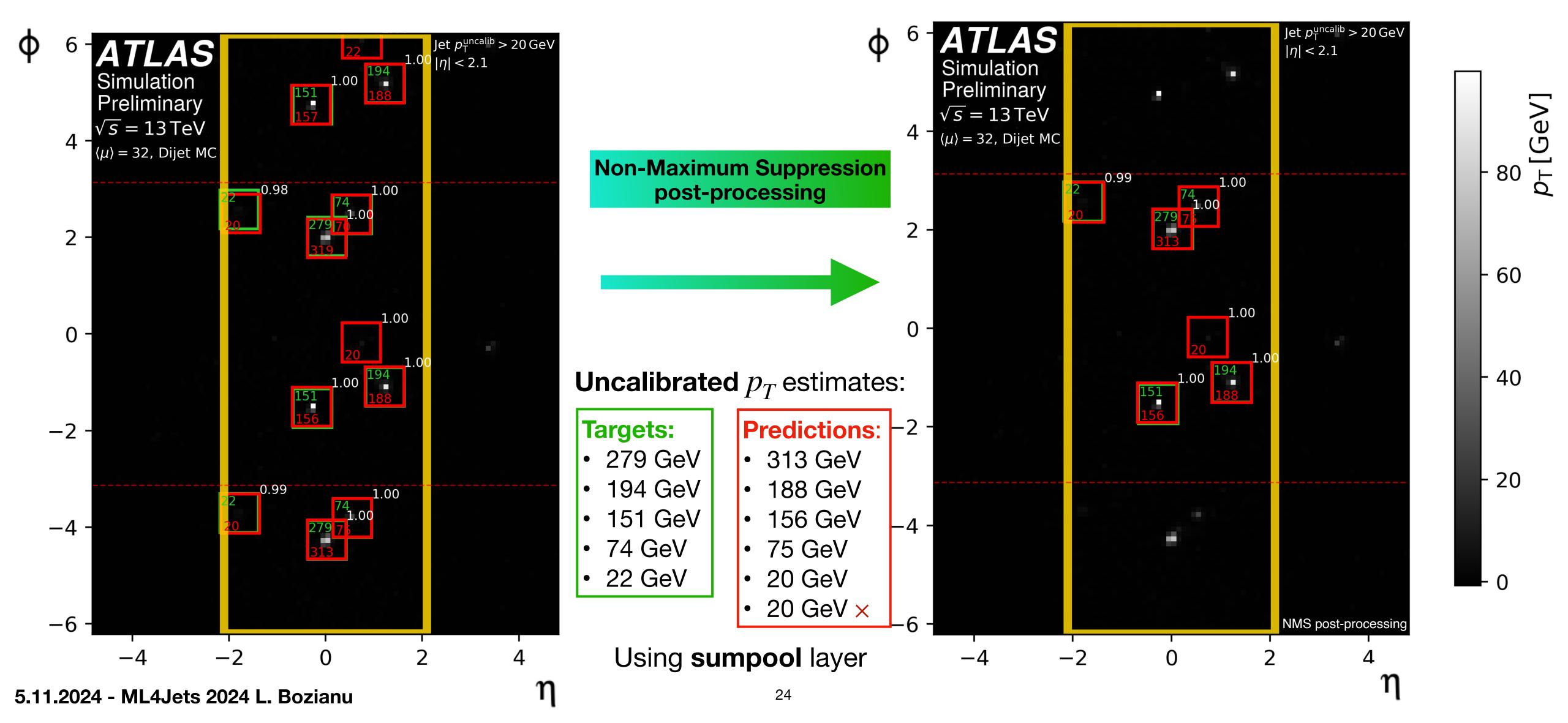
Conclusion

- We can use CNNs to approximate jets in the calorimeter.
- The complexity of the model can be reduced significantly, with respect to the SSD literature, without a loss in performance.
 - We don't need to use million-parameter models! caloJetSSD 700 times smaller.
- Promising trigger efficiencies for simple jet hypotheses.
- Robust against pile-up, still performant in HL-LHC conditions.
- Order of magnitude speed-up over current iterative methods.

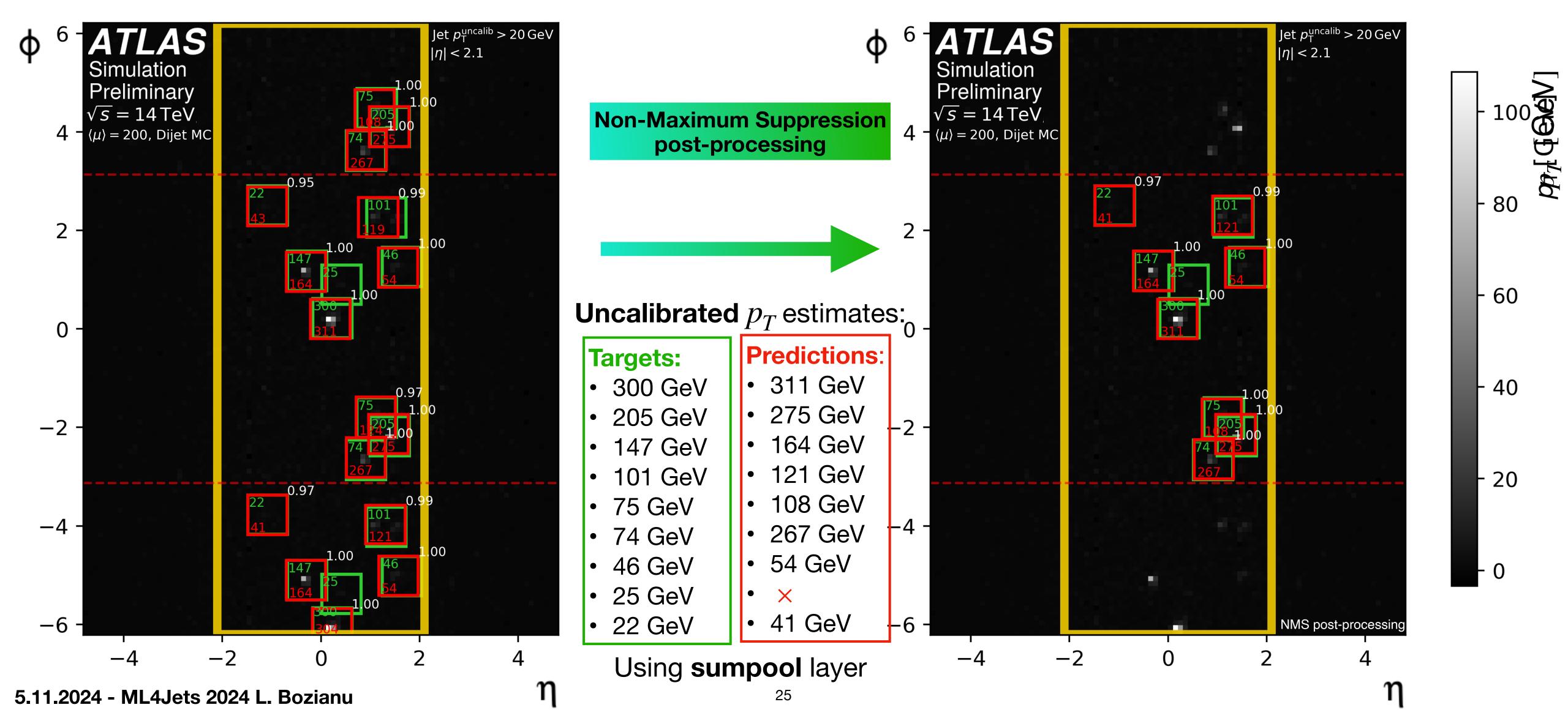
Thanks for your attention

Backup

Jet Detection for a single event with $\langle \mu \rangle = 32$

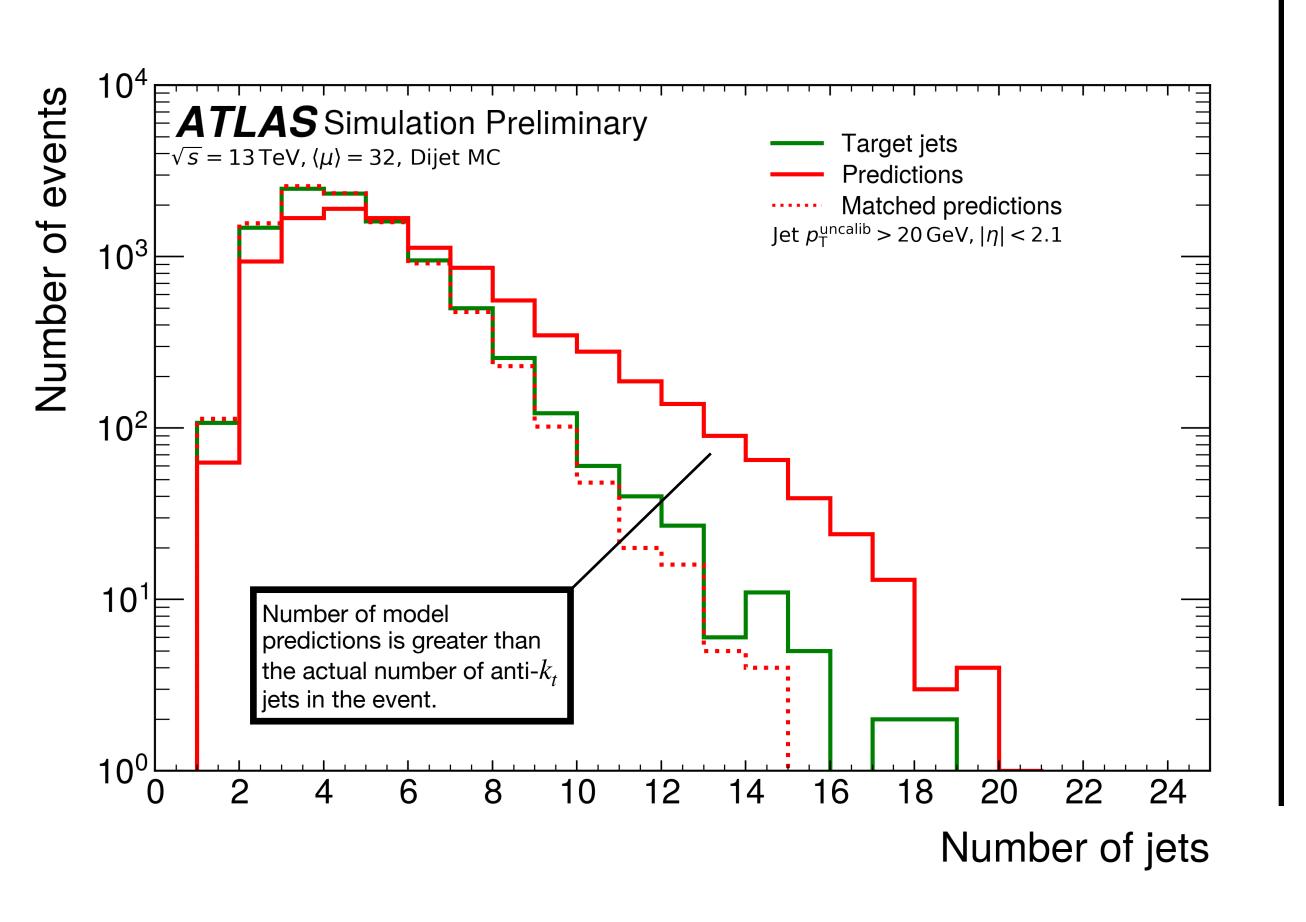


Jet Detection for a single event with $\langle \mu \rangle = 200$

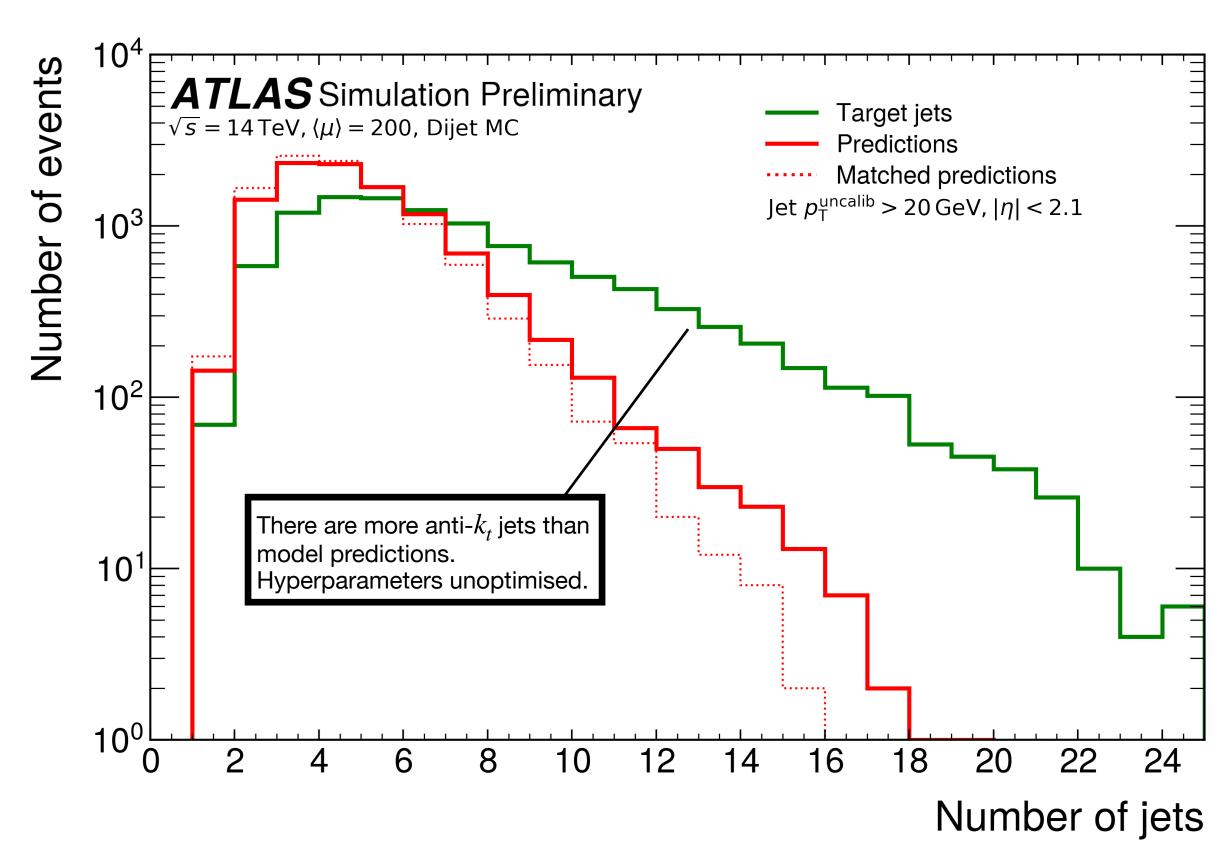


Jet & Prediction Multiplicities

LHC Run 2-like conditions



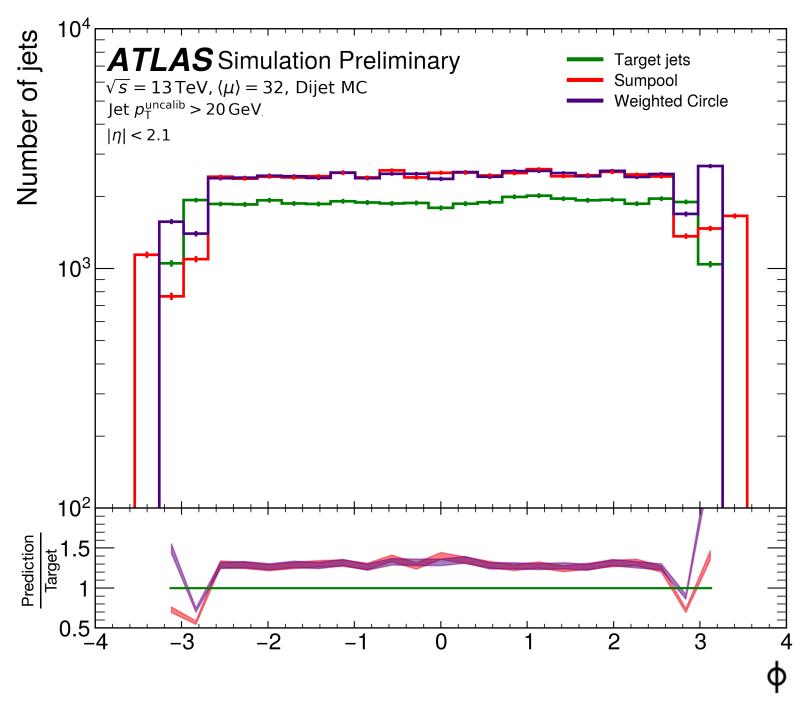
HL-LHC high pile-up conditions

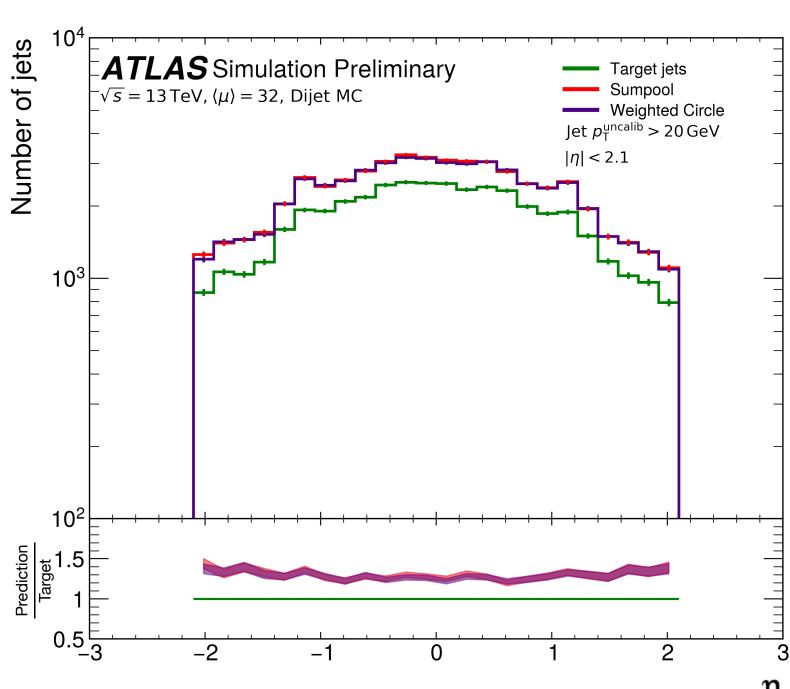


Jet Direction

Comparing to online anti- k_t algorithm

- The angular distributions for the entire test set of 10,000 events.
- Run 2-like conditions, 32 pile-up interactions on average.
- Compare sumpool and weighted circle method to anti- k_t algorithm.
- Sumpool: Geometric centre of the prediction.
- Weighted Circle: Energy weighted mean of cells.

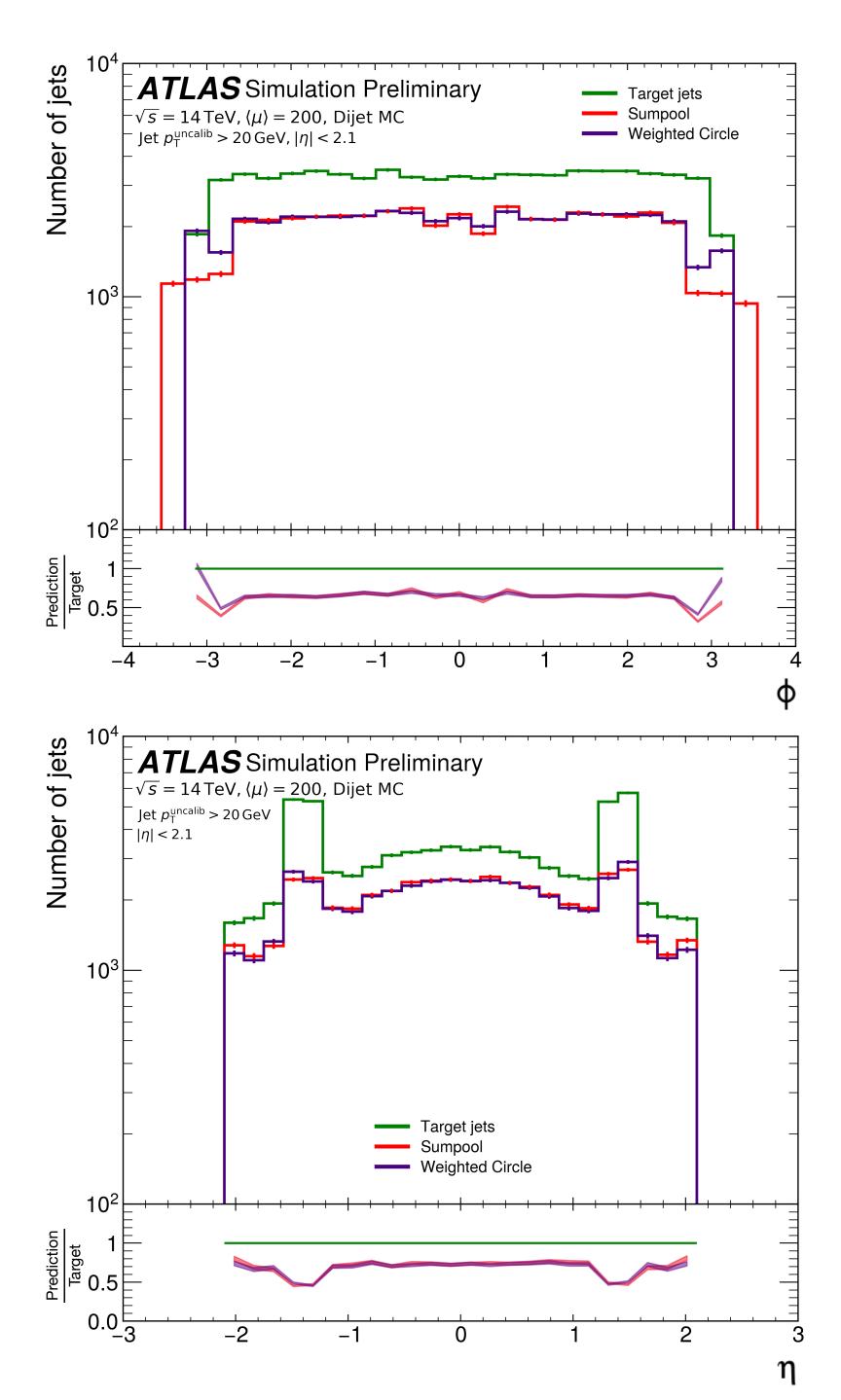




Jet Direction

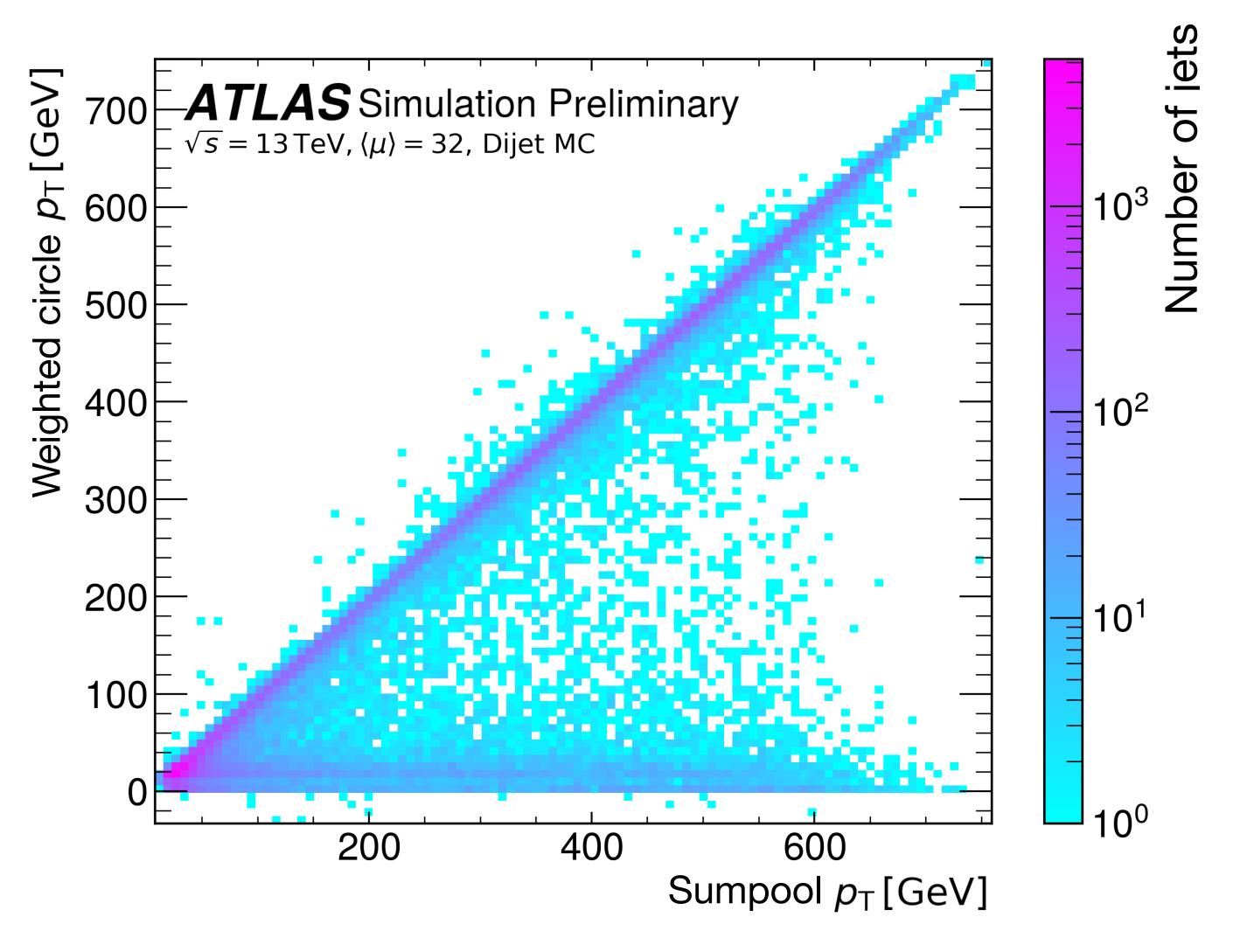
Comparing to online anti- k_t algorithm

- The angular distributions for the entire test set of 10,000 events.
- Run 4-like conditions, 200 pile-up interactions on average.
- Compare sumpool and weighted circle method to anti- k_t algorithm.
- Sumpool: Geometric centre of the prediction.
- Weighted Circle: Energy weighted mean of cells.



Comparing p_T methods

- Sumpool method: Sumpool output of the network.
 - 9x9 window centred on jet.
 - Vulnerable to overlapping jets
- Weighted circle method: Weighted circle.
 - Retrieve cells in R = 0.4 circle centred on each prediction.
 - Share $p_{\rm T}$ among overlapping predictions.



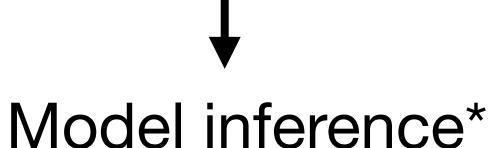
Timing Evaluation

Comparing to online anti- k_t algorithm?

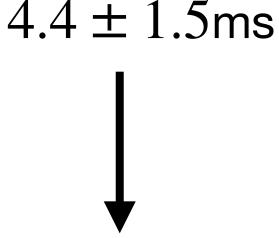
- Timing estimates for current model implementation.
- Pre- and post-processing executed on single CPU (AMD EPYC 7742 CPU).
- Model inference and data transfer with one NVidia RTX 2080 Ti GPU.
 - Includes transfer calorimeter image to GPU, a single forward pass, output transfer to CPU and a decoding of the output.
 - Model size no longer limiting latency, rather the size of the input image.

Preprocessing

$$8.1 \pm 4.3 \text{ms}$$



4 4 1 1 5



(Optional post-processing)

Weighted circle method

 $11.3 \pm 4.9 \text{ms}$

