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Introduction
• At the HL-LHC ATLAS trigger will be required to deal with more data and larger 

event sizes.


• Current jet preselection relies on sequential, iterative methods whose 
computational cost scales with the activity in the event.


• Can we approximate jets directly from calorimeter cells?


• Forego calorimeter clustering + jet reconstruction then use these primitive “cell 
jets” as a fast calorimeter-only preselection for jet triggers.


• Needs to be fast, flexible and robust to pile-up.


• Idea: Use a CNN to “detect” jets based on calorimeter energy deposits.



CNNs and Jets
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• There is a lot of history treating jets 
as images.


• Previously many deep learning 
taggers have been proposed using 
CNNs.


• Exploit the translational invariance 
of CNNs + local spatial correlations.


• Most efforts focus on classification 
or regression tasks.


• In this work we consider the entire 
event at once.

arxiv.org/abs/1511.05190v2

cds.cern.ch/record/2766650

arxiv.org/abs/1407.5675
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Calorimeter Data Preparation
Jet Finding  Object Detection⟺
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• Use a CNN to identify jets from energy depositions 
in the calorimeter cells.


• Return a series of object proposals, to use & 
interpret in simple jet triggers.


• Compare these calorimeter jets to existing, 
iterative methods used in the trigger.


• Accelerate CNN inference using GPU. Explore 
timing constraints of ATLAS trigger for deployment.


• How to make a regular 2d representation of a 
highly complex, sparse, non-uniform set of 
calorimeter cells?
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• Use a CNN to identify jets from energy depositions 
in the calorimeter cells.


• Return a series of object proposals, to use & 
interpret in simple jet triggers.


• Compare these calorimeter jets to existing, 
iterative methods used in the trigger.


• Accelerate CNN inference using GPU. Explore 
timing constraints of ATLAS trigger for deployment.


• How can we make a regular 2d representation 
from a highly complex, non-uniform and sparse 
set of calorimeter cells?
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Calorimeter Data Preparation
Preprocessing for CNNs
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Focus on central 
“barrel” and 

project in η − ϕ
“Wrap” boundary regions Calculate separate channels 

using cell information 
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Calorimeter Data Preparation
Anti-  jets as targetskt
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What we “see” in the calorimeter:

What we pass to the network:

*Note: All the jets are uncalibrated  
(considered at the jet constituent scale) 
AND central ( )|η | < 2.1
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Network Architecture
Original SSD architecture
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• Backbone 

• VGG16 architecture used as 
feature extractor


• 35 million parameters, large + 
relatively old


• 6 Additional Feature Layers 

• Capture objects of different 
scales 

• Residual connections between the 
layers and outputs Backbone model Auxiliary Layers Loc. & class 

Heads
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• Two output heads, regression + classification


• Total learnable parameters: 35,641,826



Network Architecture
Modernising SSD + feature extractor network
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• Backbone 
• Very aggressively reduced the size 

and depth of the backbone

• Adapted ConvNeXt blocks


• >10m  30k learnable params

• One Additional Feature Layer 

• Reduced the # kernels and channels 
in the auxiliary layer 

• Output heads 
• Decreased number of prior boxes and 

shape of output (factor ~2)

• Introduced “sumpool” output array for 

“quick”  estimation 


• Total learnable parameters: 50,841

→

pT

arxiv.org/abs/2201.03545

caloJetSSD
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Transverse Momentum Estimation

• Object detection finds the location of the jets.


• To evaluate trigger decisions we estimate the  
of the jet predictions.


• Direct method: Sumpool output of the network.


• Sum pixels in 9x9 kernel or window.


• Location of prediction determines  value.

pT

∑ pT
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Transverse Momentum Estimation

 = 13 TeVs
Dijet MC  ⟨μ⟩ = 32

• Object detection finds the location of the jets.


• To evaluate trigger decisions we estimate the  
of the jet predictions.


• Direct method: Sumpool output of the network.


• Iterative method: Weighted circle.


• Retrieve cells in  circle centred on each 
prediction.


•  Share  among overlapping predictions.

pT

R = 0.4

pT

12

pA
T = ∑

i∈A,∉B
celli pT pAB

T = ∑
i∈B∩A

celli pT

A B

pB
T = ∑

i∈B,∉A
celli pT

pB′ 
T = pB

T + pAB
T

p B
T

pAT + pBT
pA′ 

T = pA
T + pAB

T
p A

T
pAT + pBT



Performance Results 



NMS post-
processing

Jet Detection for a single event with ⟨μ⟩ = 32
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Unmatched 
prediction (fake)

Non-Maximum Suppression 
post-processing

Anti-  jet  overlaid (green)


Sumpool  overlaid (red)

kt pT

pT



NMS post-processing

Jet Detection for a single event with ⟨μ⟩ = 200
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Non-Maximum Suppression 
post-processing
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Unmatched target 
(inaccuracy)

Anti-  jet  overlaid (green)


Sumpool  overlaid (red)

kt pT

pT
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Reconstructing jet pT
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LHC Run 2-like conditions HL-LHC high pile-up conditions

There are more low  
anti-  jets than the 
model predicts.

pT
kt



Performance across pT
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LHC Run 2-like conditions HL-LHC high pile-up conditions

Detection accuracy vs fake rate: 
• % matched - Target jets found with intersection over union (IoU) > 0.5 with any prediction.


• % unmatched - Predictions with no corresponding target jet, or predictions that overlap with a previously matched target.

Accuracy > 96% 
from 60 GeV

Fakes ~1% by 
[120,150] GeV bin.

Accuracy > 98.5% 
from 40 GeV

Fakes < 5% by 
[320,400] GeV bin.

Fakes < 1% 
by [80,100] 
GeV bin. Trade-off between fewer 

fake predictions  lower 
accuracy. Largest effect in 

low  bins.

↔

pT

IoU = Area of Overlap
Area of Union

Poor
IoU = 0.23

Good
IoU = 0.68

Excellent
IoU = 0.90

Image: M. Moors



5.11.2024 - ML4Jets 2024 L. Bozianu

Leading and sub-leading jets using sumpool output 
Trigger efficiencies
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LHC Run 2-like conditions HL-LHC high pile-up conditions

Sharp turn on with the plateau 
approaching 100% in both cases!



Timing evaluation
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• Pre- and optional post-processing executed  
on a single CPU (AMD EPYC 7742 CPU).


• Model inference on a single NVidia RTX 2080 Ti 
GPU. 


• The current, iterative calorimeter preselection 
jet reconstruction takes   
caloJetSSD is an order of magnitude faster. 

𝒪(100 ms) ⟹

Preprocessing

(Optional post-processing)

Model inference*

*including data transfer + decoding

ms8.1 ± 4.3

ms4.4 ± 1.5

ms11.3 ± 4.9
Weighted circle method
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Conclusion
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• We can use CNNs to approximate jets in the calorimeter.


• The complexity of the model can be reduced significantly, with 
respect to the SSD literature, without a loss in performance.

• We don’t need to use million-parameter models! caloJetSSD 700 times smaller.


• Promising trigger efficiencies for simple jet hypotheses.


• Robust against pile-up, still performant in HL-LHC conditions.


• Order of magnitude speed-up over current iterative methods.

21



Conclusion
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Thanks for your attention

• We can use CNNs to approximate jets in the calorimeter.


• The complexity of the model can be reduced significantly, with 
respect to the SSD literature, without a loss in performance.

• We don’t need to use million-parameter models! caloJetSSD 700 times smaller.


• Promising trigger efficiencies for simple jet hypotheses.


• Robust against pile-up, still performant in HL-LHC conditions.


• Order of magnitude speed-up over current iterative methods.



Backup
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NMS post-processing

Jet Detection for a single event with ⟨μ⟩ = 32
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Non-Maximum Suppression 
post-processing

Uncalibrated  estimates:pT

Targets: 
• 279 GeV

• 194 GeV

• 151 GeV

• 74 GeV

• 22 GeV

Predictions:

• 313 GeV

• 188 GeV

• 156 GeV

• 75 GeV

• 20 GeV

• 20 GeV ×

Using sumpool layer
24



NMS post-processing

p T
[G

eV
]

Jet Detection for a single event with ⟨μ⟩ = 200
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Non-Maximum Suppression 
post-processing

Uncalibrated  estimates:pT
Targets: 
• 300 GeV

• 205 GeV

• 147 GeV

• 101 GeV

• 75 GeV

• 74 GeV

• 46 GeV

• 25 GeV

• 22 GeV

Predictions:

• 311 GeV

• 275 GeV

• 164 GeV

• 121 GeV

• 108 GeV

• 267 GeV

• 54 GeV

• . 

• 41 GeV

×

Using sumpool layer
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Jet & Prediction Multiplicities
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LHC Run 2-like conditions HL-LHC high pile-up conditions

There are more anti-  jets than 
model predictions. 
Hyperparameters unoptimised.

kt

Number of model 
predictions is greater than 
the actual number of anti-  
jets in the event.

kt



Jet Direction
Comparing to online anti-  algorithmkt
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• The angular distributions for the entire test set 
of 10,000 events.


• Run 2-like conditions, 32 pile-up interactions 
on average.


• Compare sumpool and weighted circle 
method to anti-  algorithm.


• Sumpool: Geometric centre of the prediction.


• Weighted Circle: Energy weighted mean of 
cells.

kt
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|η | < 2.1

Pr
ed

ic
tio

n
Ta

rg
et

Pr
ed

ic
tio

n
Ta

rg
et



Jet Direction
Comparing to online anti-  algorithmkt
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• The angular distributions for the entire test set 
of 10,000 events.


• Run 4-like conditions, 200 pile-up interactions 
on average.


• Compare sumpool and weighted circle 
method to anti-  algorithm.


• Sumpool: Geometric centre of the prediction.


• Weighted Circle: Energy weighted mean of 
cells.

kt
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Comparing  methodspT
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• Sumpool method: Sumpool output 
of the network.


• 9x9 window centred on jet. 


• Vulnerable to overlapping jets


• Weighted circle method: Weighted 
circle.


• Retrieve cells in  circle 
centred on each prediction.


•  Share  among overlapping 
predictions.

R = 0.4

pT



Timing Evaluation
Comparing to online anti-  algorithm?kt
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• Timing estimates for current model 
implementation.


• Pre- and post-processing executed on single 
CPU (AMD EPYC 7742 CPU).


• Model inference and data transfer with one 	
NVidia RTX 2080 Ti GPU. 

• Includes transfer calorimeter image to 

GPU, a single forward pass, output transfer 
to CPU and a decoding of the output. 


• Model size no longer limiting latency, rather 
the size of the input image.

Preprocessing

(Optional post-processing)

Model inference*

*data transfer + decoding

ms8.1 ± 4.3

ms4.4 ± 1.5

ms11.3 ± 4.9

Weighted circle method
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