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Abstract: Sterile neutrinos are well-motivated beyond the Standard Model (BSM)
particles. The Standard Model Effective Field Theory (SMEFT) augmented with these
new fields is known as the νSMEFT. We present the first code for solving the renormal-
ization group equations (RGEs) of the νSMEFT in an automated way. For this purpose,
we have implemented the νSMEFT as a new effective field theory (EFT) in the Wil-
son coefficient exchange format WCxf. Furthermore, we included anomalous dimensions
depending on the gauge couplings and Yukawas in the python package wilson1. This
novel version of wilson allows a consistent inclusion of νSMEFT renormalization group
(RG) running effects above the electroweak (EW) scale in phenomenological studies in-
volving sterile neutrinos. Moreover, this new release allows us to study EW, strong,
and Yukawa running effects separately within the SMEFT.

1https://wilson-eft.github.io/
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1 Introduction

Right-handed neutrinos are a natural extension of the Standard Model (SM) of particle
physics. Since the observation of neutrino oscillations, neutrinos are known to have non-
zero masses. The mass hierarchy remains however yet to be determined [1], exhibiting
either normal ordering, i.e. m1 < m2 < m3 or inverse ordering (m3 < m1 < m2). In
order for the neutrinos to become mass states, a simple solution is to add right-handed
neutrinos to the SM. These can acquire a Majorana mass or, in combination with the
coupling to the Higgs a Dirac mass. Allowing for even higher-dimensional operators
involving right-handed neutrinos and the SM field content one arrives at the so-called
νSMEFT, which is the Standard Model Effective Field Theory [2] (for reviews, see
[3, 4]), augmented by right-handed neutrinos.

The νSMEFT has been studied extensively in the past few years [5–12]. However,
concerning loop corrections, the νSMEFT is not as mature as SMEFT. Recently the
renormalization of the νSMEFT has been completed at the 1-loop level [13–17]. The
one-loop anomalous dimensions of the νSMEFT depending upon both the gauge and
Yukawa couplings have been computed in these references. Such effects can be impor-
tant for the running between the new physics (NP) scale Λ and the electroweak (EW)
scale. Indeed these turn out to be crucial for phenomenological studies in the νSMEFT
[13, 16, 18]. However, as of now, there is no public code that provides numerical
solutions to the RG running within the νSMEFT for the complete set of operators.

In this work, we present a major upgrade of wilson [19], a Python package for
the running and matching of Wilson coefficients (WCs) above and below the EW scale.
Provided with the numerical values of the WCs at a high NP scale, the original wilson
package is capable of performing the RG evolution within the SMEFT [20–22], matching
onto the weak effective theory (WET) at the EW scale [23–25], as well as to perform
the full QCD/QED RG evolution below the EW scale down to hadronic scales relevant
for low-energy precision tests [26, 27]. In this upgraded version, we have included the
functionality of solving the renormalization group equations (RGEs) of the νSMEFT
in an automated way. Moreover, the subtle non-standard RG running effects due to
back-rotation [28] can now be included in νSMEFT.

The article is organized as follows. In Section 2, we introduce the νSMEFT, includ-
ing its Lagrangian together with the SU(3)6 flavour rotations of the νSMEFT operators.
In Section 3, we discuss the RG running in the νSMEFT. In Section 4, the implemen-
tation of the νSMEFT in wilson is discussed, along with additional upgrades. In
Section 5, we provide details of the checks performed on the output of our code, and
in Section 6 we give a summary and future prospects.
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2 νSMEFT

In this section, we discuss our conventions regarding the νSMEFT and choice of flavour
basis for νSMEFT operators involving fermions.
2.1 Lagrangian and Operator Basis

In addition to the SM fields, the νSMEFT contains sterile neutrinos. We denote the
corresponding fields by np, where p is the generation index and we assume p ∈ {1, 2, 3}.

The νSMEFT Lagrangian is given by

LνSMEFT ⊃ in̄/∂n+ (−1

2
mν(n

TCn) + h.c.) + LYukawa + (
∑
i

CiOi + h.c.) , (2.1)

where the first term is the kinetic term for the sterile neutrinos. If neutrinos are assumed
to be of Majorana nature, one can also add a Majorana mass term mν . The presence
of such a term does not explicitly enter most of the anomalous dimension matrices
(ADMs). However, one exception is the mixing of dipole operators into the Weinberg
operator [16]. In the current implementation, this piece of the ADM is not included. In
the Majorana mass term C stands for the charge-conjugate operator. Furthermore, Ci
are the WCs of the higher dimension (≥ 5) operators. We have omitted the LSM part
containing the usual dimension-four SM terms. Note that our actual implementation of
the νSMEFT in wilson follows WCxf conventions [29], in which the complex conjugated
part for the higher dimensional operators is added only for the non-hermitian operators.
In this way, only one out of two operators related through hermitian conjugation is
considered in the basis.

A subset of LSM, the Yukawa terms plus a new Dirac mass term for the neutrinos
are given by

LYukawa = −[ϕ†j d̄Ydqj + ϕ̃†jūYuqj + ϕ†j ēYeℓj + ϕ̃†jn̄Ynℓj + h.c.] , (2.2)

where ϕ is the Higgs doublet and its conjugate field is ϕ̃j = ϵjkϕ∗
k. Note that the

neutrino Yukawa matrix Yn is a NP parameter, unlike the other dimension-four terms
in LSM.

Ignoring the different flavour permutations, there are in total 16 (∆B = 0,∆L = 0)
new dimension-six operators as compared to the SMEFT. We assume that the right-
handed neutrinos have a lepton number L = 1. In Table 1a, we show these new
operators in the Warsaw basis convention [30], where prst are the flavour indices. In
addition, we also show two B− and L− violating operators in Table 1b that were first
discussed in [31] and agree with the findings in [32]. Further, two new dimension-five
operators are given in Table 1c.
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(R̄R)(R̄R) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

Ond (n̄pγµnr)(d̄sγ
µdt) Oqn (q̄pγµqr)(n̄sγ

µnt) Oℓnℓe (ℓ̄jpnr)ϵjk(ℓ̄
k
set)

Onu (n̄pγµnr)(ūsγ
µut) Oℓn (ℓ̄pγµℓr)(n̄sγ

µnt) O(1)
ℓnqd (ℓ̄jpnr)ϵjk(q̄

k
sdt)

One (n̄pγµnr)(ēsγ
µet) O(3)

ℓnqd (ℓ̄jpσµνnr)ϵjk(q̄
k
sσ

µνdt)

Onn (n̄pγµnr)(n̄sγ
µnt) Oℓnuq (ℓ̄jpnr)(ūsq

j
t )

Onedu (n̄pγµer)(d̄sγ
µut)

ψ2ϕ3 ψ2ϕ2D ψ2Xϕ

Onϕ (ϕ†ϕ)(l̄pnrϕ̃) Oϕn i(ϕ†
↔
Dµϕ)(n̄pγ

µnr) OnW (ℓ̄pσ
µνnr)τ

I ϕ̃W I
µν

Oϕne i(ϕ̃†Dµϕ)(n̄pγ
µer) OnB (ℓ̄pσ

µνnr)ϕ̃Bµν

(a) B- and L- conserving dimension-six operators in the νSMEFT in the Warsaw basis nota-
tion.

∆B = ∆L = 1 + h.c.

Oqqdn ϵαβγϵij(q
iα T
p Cqjβr )(dγ Ts Cnt)

Ouddn ϵαβγ(uαTp Cdβr )(d
γ T
s Cnt)

(b) B- and L- violating dimension-six opera-
tors in the νSMEFT.

ψ2X and ψ2ϕ2

OnnB (nTpCσ
µνnr)Bµν

Onnϕϕ (nTpCnr)ϕ
†ϕ

(c) L- violating dimension-five operators in
the νSMEFT.

Table 1: νSMEFT operator basis up to dimension-six.

The remaining Warsaw basis operators which are also part of the νSMEFT can
be found in [30]. The complete set of νSMEFT operators in WCxf conventions with
explicit flavour indices will be published on the WCxf webpage.

2.2 Choice of Flavour Basis

Extending the SM with three RH neutrino fields np (calling the resulting model to
be νSM), the maximal flavour symmetry group possessed by the νSM is then

SU(3)q ⊗ SU(3)u ⊗ SU(3)d ⊗ SU(3)ℓ ⊗ SU(3)e ⊗ SU(3)n. (2.3)
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Two-fermion Four-fermion

Cnϕ = U †
eL
C

′nϕUnR
(Cnd)f1f2f3f4 = (UnR

)g2f2(UdR)g4f4(UnR
)∗g1f1(UdR)

∗
g3f3

(C
′nd)g1g2g3g4

Cϕn = U †
nR
C

′ϕnUnR
(Cnu)f1f2f3f4 = (UnR

)g2f2(UuR)g4f4(UnR
)∗g1f1(UuR)

∗
g3f3

(C
′nu)g1g2g3g4

Cϕne = U †
nR
C

′ϕneUeR (Cne)f1f2f3f4 = (UnR
)g2f2(UeR)g4f4(UnR

)∗g1f1(UeR)
∗
g3f3

(C
′ne)g1g2g3g4

CnW = U †
eL
C

′nWUnR
(Cnn)f1f2f3f4 = (UnR

)g2f2(UnR
)g4f4(UnR

)∗g1f1(UnR
)∗g3f3(C

′nn)g1g2g3g4

CnB = U †
eL
C

′nBUnR
(Cnedu)f1f2f3f4 = (UeR)g2f2(UuR)g4f4(UnR

)∗g1f1(UdR)
∗
g3f3

(C
′nedu)g1g2g3g4

CnnB = UT
nR
C

′nnBUnR
(Cqn)f1f2f3f4 = (UdL)g2f2(UnR

)g4f4(UdL)
∗
g1f1

(UnR
)∗g3f3(C

′qn)g1g2g3g4

Cnnϕϕ = UT
nR
C

′nnϕϕUnR
(Cℓn)f1f2f3f4 = (UeL)g2f2(UnR

)g4f4(UeL)
∗
g1f1

(UnR
)∗g3f3(C

′ℓn)g1g2g3g4

(Cℓnℓe)f1f2f3f4 = (UnR
)g2f2(UeR)g4f4(UeL)

∗
g1f1

(UeL)
∗
g3f3

(C
′ℓnℓe)g1g2g3g4

(Cℓnqd(1))f1f2f3f4 = (UnR
)g2f2(UdR)g4f4(UeL)

∗
g1f1

(UdL)
∗
g3f3

(C
′ℓnqd(1))g1g2g3g4

(Cℓnqd(3))f1f2f3f4 = (UnR
)g2f2(UdR)g4f4(UeL)

∗
g1f1

(UdL)
∗
g3f3

(C
′ℓnqd(3))g1g2g3g4

(Cℓnuq)f1f2f3f4 = (UnR
)g2f2(UdL)g4f4(UeL)

∗
g1f1

(UuR)
∗
g3f3

(C
′ℓnuq)g1g2g3g4

(Cqqdn)f1f2f3f4 = (UdL)g2f2(UnR
)g4f4(UdL)

∗
g1f1

(UdR)
∗
g3f3

(C
′qqdn)g1g2g3g4

(Cuddn)f1f2f3f4 = (UdR)g2f2(UnR
)g4f4(UuR)

∗
g1f1

(UdR)
∗
g3f3

(C
′uddn)g1g2g3g4

Table 2: Definitions (preserving SU(3)6) for the νSMEFT WCs of operators involving
fermions in the down-basis (i.e. obtained by setting Uq = UdL , Uℓ = UeL , Uu =

UuR , Ud = UdR , Ue = UeR and Un = UnR
).

The flavour symmetry transformations can be defined through:

q → Uqq , ℓ→ Uℓℓ ,

u→ Uuu , d→ Udd ,

e→ Uee , n→ Unn ,

(2.4)

with Uψ to be unitary matrices. The SU(3)n flavour symmetry can be broken down
to O(3)n by the Majorana mass term for the neutrinos (see (2.1)). The remaining
symmetry of νSM is broken by the Yukawas terms [33]. In the absence of Majorana
mass term, νSMEFT also possess the full flavour symmetry (2.3) up to redefinitions of
the WCs. Thus the flavour basis of νSMEFT is not unique.
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Two convenient choices of bases are defined by assigning specific values to Uq and
Uℓ:

Uq = UdL , Uℓ = UeL (down-basis) , (2.5)

Uq = UuL , Uℓ = UνL (up-basis). (2.6)

In the down-basis (up-basis), the down-type (up-type) Yukawa matrices take a diagonal
form. In Table. 2, we show the redefinitions of the νSMEFT WCs in the down-basis
convention. The corresponding redefinitions for the pure SMEFT operators can be
found in Ref. [34]. As a result in these two bases, the only unknown parameters are the
WCs, the SM parameters, and Ŷn. In the current implementation of the νSMEFT in
wilson we have adopted the down-basis convention assuming no Majorana mass term.

3 Evolution in the νSMEFT

The RG running in the νSMEFT from the NP scale to the EW scale is controlled by:

Ċi(µ) = 16π2µ
d

dµ
Ci(µ) = γ̂ij(g1, g2, g3, Ŷψ)Cj(µ) , (3.1)

where µ is the renormalization scale, and gi and Ŷψ are the gauge couplings and Yukawa
matrices for the quarks, leptons, and sterile neutrinos. The latter gives rise to a neutrino
Dirac mass term after EW symmetry breaking (EWSB). We implemented the full gauge
and Yukawa dependence of the ADM γ̂ij. For the code implementation, the explicit
expressions for γ̂ij are taken from [14] (gauge-coupling dependence) and [15] (Yukawa
dependence)1. The running of the Baryon number violating operators was taken from
[31]. For the purpose of implementation in wilson, to match the WCxf convention,
we have used the conjugate of Yukawas (denoted by Ŷψ) as compared to Eq. (2.2)
(corresponding to the original convention of Ref. [15]). The structure of the ADMs
within the νSMEFT due to gauge couplings exhibits a block structure for the SMEFT
and νSMEFT specific operators, meaning the corresponding operators mix only among
themselves. However, the Yukawa-dependent ADMs (or the ADMs depending upon
the combination of Yukawa and gauge couplings) also introduce mixing between pure
νSMEFT and pure SMEFT operators.

For the purpose of RG evolution within the νSMEFT, all dimension-four param-
eters are required at the input scale. In contrast to the SMEFT case, where all
dimension-four parameters at the NP scale can be determined from their correspond-
ing SM values at the EW scale, the neutrino Yukawa couplings Ŷn in the νSMEFT

1While this work was in preparation, in a recent study [17] the missing Yukawa terms in the ADMs
have been computed. These will be included in the future update of the wilson package.
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belong to the unknown NP parameter category, which must be inputted along with
the νSMEFT WCs to solve the above RGEs. At dimension-six level Ŷn also receives
corrections from the Cnϕ WC. Also, one can add a dimension-four Majorana mass term,

in addition to the dimension-five part originating within SMEFT from the Weinberg
operator. But such terms do not affect the νSMEFT ADMs directly [12, 14, 16], in
most cases.

4 νSMEFT implementation in wilson

The inclusion of νSMEFT evolution in wilson has the following components:

1. Addition of the νSMEFT as a new EFT in the WCxf format.

2. Addition of a basis file for the νSMEFT in the WCxf format. In wilson we
continue to call this the Warsaw basis, as this basis has been inspired by the
corresponding SMEFT Warsaw basis.

3. Addition of the νSMEFT ADMs in wilson.

Apart from that, we have made important changes to the wilson package. The major
one is replacing the SMEFT class with the EFTEvolve class. While the former was
dedicated to the SMEFT evolution, the latter is designed to be able to perform the RG
evolution within all three EFTs: SMEFT, νSMEFT, and WET. In the current version,
we do not utilize it for the WET evolution, which is kept as it was. In the forthcoming
versions, we plan to use EFTEvolve for the WET as well. The main difference between
the two classes is that the __init__ method of the EFTEvolve class also requires the
beta-function in form of a dictionary, in addition to the WCxf instance representing a
parameter point in the EFT space. At the user level, the evolution within the νSMEFT
can be performed using a few lines of code:� �

1 from wilson import Wilson
2 mywilson = Wilson ({’nd_1111 ’: 1e-6, ’lnle_1111 ’:1e-6},
3 scale=1e3 , eft=’nuSMEFT ’, basis=’Warsaw ’)
4 mywilson.match_run (91, ’nuSMEFT ’, ’Warsaw ’)� �

where the values of input dimension-six WCs need to be specified in units of GeV−2.
Unlike in the SMEFT, the dimension-four parameter Ŷn has to be provided as an

input parameter at the input scale. This can be done by the command set_option,
with the option yukawa_scale_in, which allows the user to input any Yukawa matrix
(Ŷψ, ψ = u, d, e, n). Its usage is demonstrated below:
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� �
1 from wilson import Wilson
2 import numpy
3 mywilson = Wilson ({’nd_1111 ’: 1e-6, ’lnle_1111 ’:1e-6},
4 scale=1e3 , eft=’nuSMEFT ’, basis=’Warsaw ’)
5 mywilson.set_option(’yukawa_scale_in ’, {’Gn’: numpy.eye (3), ’Gu’:

numpy.zeros ((3 ,3))})� �
The Yukawa matrices (represented by Gψ within the code) are given in a Python dic-
tionary, with the key being the name and its values passed on as a numpy array. In
this example, as an illustration, we input only two Yukawa matrices, where we set Ŷn
as a 3× 3 matrix with diagonal entries equal to 1, and Ŷu is a 3× 3 null matrix. If not
specified, the SM Yukawas Ŷu, Yd, Ye are internally determined within wilson, while Ŷn
is set to zero.

Similarly, another option named gauge_higgs_scale_in for the command set_option
allows the user to enter gauge couplings g1, g2 and g3 (denoted by gp, g and gs, respec-
tively in the program), and Higgs parameters m2

H and λ (denoted by m2 and Lambda,
respectively in the program) in the form of a dictionary. Its usage is demonstrated in
the following code snippet:� �

1 from wilson import Wilson
2 import numpy
3 mywilson = Wilson ({’nd_1111 ’: 1e-6, ’lnle_1111 ’:1e-6},
4 scale=1e3 , eft=’nuSMEFT ’, basis=’Warsaw ’)
5 mywilson.set_option(’gauge_higgs_scale_in ’, {’g’: 0, ’gp’: 1, ’gs’:

0.5, ’Lambda ’: 100, ’m2’: 100})� �
The values of m2

H and Λ have to be given in the units of GeV2 and GeV, respectively.

5 Comparison and cross-checks

To test the proper functioning of the new code, we made several checks by running
internal test functions, as well as comparing the output with known results. Two major
checks of the output were performed for the case of the SMEFT and the νSMEFT,
as only the corresponding part of the code was upgraded (the WET EFT remains
unmodified).

5.1 SMEFT evolution

To test the proper functioning of our upgraded code for the SMEFT, we compare the
results from our new version of the code with the previous version. For this purpose
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dictionaries of all 1635 SMEFT Wilson coefficients in the Warsaw basis (including all
the non-redundant combinations of the indices) with randomly generated input values
at Λ = 1 TeV were generated. The running is then performed to the EW scale using
the new and the old versions of the implementation. As expected, the output matched
precisely, confirming the stable working of the new code for the SMEFT case.

5.2 νSMEFT evolution

To verify the results of the novel implementation for the νSMEFT, we have reproduced
the results of the article [14]. For this test, we set the indices prst = 1111 and list the
16× 16 νSMEFT WCs in the basis

C⃗ = {Cnd, Cnu, Cne, Cqn, Cℓn, Cϕn, Cnϕ, CnW , CnB, C(1)
ℓnqd, C

(3)
ℓnqd, Cnedu, Cℓnℓe, Cℓnuq, Cϕne, Cnn} .

(5.1)

The 16 WCs at the EW scale and at Λ = 1 TeV are then related by

δC(MZ)

10−3
=



−0.89 1.77 −0.89 0.89 −0.89 0.44
1.77 −3.54 1.77 −1.77 1.77 −0.89
−2.66 5.32 −2.66 2.66 −2.66 1.33
0.44 −0.89 0.44 −0.44 0.44 −0.22
−1.33 2.66 −1.33 1.33 −1.33 0.66
1.33 −2.66 1.33 −1.33 1.33 −0.66

46.26 39.39 −8.9
0 7.17 5.27
0 15.81 −1.19

136.72 −107.42
−2.24 −25.01

7.97
−0.31

138.71
5.98

0


C(Λ) ,

(5.2)
The results shown in this matrix agree well with those given in [14]. The running effects
in the 6 × 6 and 3 × 3 blocks are small because only EW gauge couplings contribute.
The mixing in the 2× 2 block is large as it is governed by QCD running.

6 Summary

The lack of observations of new particles at the LHC indicates the scale of NP to
be well above the EW scale. Potential BSM effects can then be encoded in terms of
Wilson coefficients of the SMEFT in a general manner. However, the field content of
the SMEFT is restricted to SM particles, which makes it unfit for certain NP models
containing light sterile neutrino states. Adding such fields to the SMEFT results in
new higher-dimensional operators starting at the dimension-five and dimension-six lev-
els. Those operators can mix within themselves as well as with the standard SMEFT
operators at the one-loop level. While anomalous dimensions for such mixing terms
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are known, including their effects in the physical observables requires solving the corre-
sponding RGEs. For this purpose, a careful consideration of properly evaluating the SM
parameters at the NP scale is a must, but often ignored in phenomenological studies,
where typically only first leading log solutions are considered.

In this work, we have presented an upgrade of the wilson package, which is the
first public code that includes the full numerical evolution of the νSMEFT parameters
including subtle effects such as back-rotation of flavour bases. For the purpose of RG
running within the νSMEFT, the neutrino Yukawa matrix has to be provided along
with the Wilson coefficients while all other dimension-four parameters are internally
evaluated within wilson, unless provided by the user. This implementation allows
to include RG effects in studies related to light sterile neutrino particles and their
correlations with other sectors such as flavour physics. In the future, we plan to include
the WET augmented with sterile neutrinos in wilson, together with the corresponding
matching conditions from the νSMEFT and a proper treatment of neutrino masses and
mixing.
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