
CERN-TH-2024-192

FLAG Review 2024

Flavour Lattice Averaging Group (FLAG)

Y. Aoki1, T. Blum2,3, S. Collins4, L. Del Debbio5, M. Della Morte6, P. Dimopoulos7,8,
X. Feng9,10,11,12, M. Golterman13, Steven Gottlieb14, R. Gupta15, G. Herdoiza16,
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Abstract

We review lattice results related to pion, kaon,D-meson, B-meson, and nucleon physics
with the aim of making them easily accessible to the nuclear and particle physics commu-
nities. More specifically, we report on the determination of the light-quark masses, the
form factor f+(0) arising in the semileptonic K → π transition at zero momentum trans-
fer, as well as the decay-constant ratio fK/fπ and its consequences for the CKM matrix
elements Vus and Vud. We review the determination of the BK parameter of neutral kaon
mixing as well as the additional four B parameters that arise in theories of physics beyond
the Standard Model. For the heavy-quark sector, we provide results for mc and mb as
well as those for the decay constants, form factors, and mixing parameters of charmed
and bottom mesons and baryons. These are the heavy-quark quantities most relevant for
the determination of CKM matrix elements and the global CKM unitarity-triangle fit.
We review the status of lattice determinations of the strong coupling constant αs. We
review the determinations of nucleon charges from the matrix elements of both isovector
and flavour-diagonal axial, scalar and tensor local quark bilinears, and momentum frac-
tion, helicity moment and the transversity moment from one-link quark bilinears. We also
review determinations of scale-setting quantities. Finally, in this review we have added a
new section on the general definition of the low-energy limit of the Standard Model.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Stan-
dard Model of particle physics and for constraining possible extensions that go beyond it.
As the LHC and its experiments continue exploring the energy frontier, and as experi-
ments such as Belle-II, BESIII, NA62 and KOTO-2 continue extending the precision and
intensity frontiers, the importance of flavour physics will grow, both in terms of searches
for signatures of new physics through precision measurements and in terms of attempts to
construct the theoretical framework behind direct discoveries of new particles. Crucial to
such searches for new physics is the ability to quantify strong-interaction effects. Large-
scale numerical calculations of lattice QCD allow for the computation of these effects from
first principles. The scope of the Flavour Lattice Averaging Group (FLAG) is to review
the current status of lattice results for a variety of physical quantities that are important
for flavour physics. Set up in November 2007, it comprises experts in Lattice Field Theory,
Chiral Perturbation Theory, and Standard Model phenomenology. Our aim is to provide
an answer to the frequently posed question “What is currently the best lattice value for
a particular quantity?” in a way that is readily accessible to those who are not expert in
lattice methods. This is generally not an easy question to answer; different collaborations
use different lattice actions (discretizations of QCD) with a variety of lattice spacings
and volumes, and with a range of masses for the u and d quarks. Not only are the sys-
tematic errors different, but also the methodology used to estimate these uncertainties
varies between collaborations. In the present work, we summarize the main features of
each of the calculations and provide a framework for judging and combining the different
results. Sometimes, it is a single result that provides the “best” value; more often, it is a
combination of results from different collaborations. Indeed, when consistency of values
obtained using different formulations is found, this adds significantly to our confidence in
the results.

The first five editions of the FLAG review were made public in 2010 [1], 2013 [2],
2016 [3], 2019 [4], and 2021 [5] (and will be referred to as FLAG 10, FLAG 13, FLAG 16,
FLAG 19, and FLAG 21, respectively). The fifth edition reviewed results related to both
light (u-, d- and s-quark), and heavy (c- and b-quark) flavours. The quantities related to
pion and kaon physics were light-quark masses, the form factor f+(0) arising in semilep-
tonic K → π transitions (evaluated at zero momentum transfer), the decay constants
fK and fπ, the BK parameter from neutral kaon mixing, and the kaon mixing matrix
elements of new operators that arise in theories of physics beyond the Standard Model.
Their implications for the CKMmatrix elements Vus and Vud were also discussed. Further-
more, results were reported for some of the low-energy constants of SU(2)L×SU(2)R and
SU(3)L×SU(3)R Chiral Perturbation Theory. The quantities related to D- and B-meson
physics that were reviewed were the masses of the charm and bottom quarks together with
the decay constants, form factors, and mixing parameters of D and B mesons. These are
the heavy-light quantities most relevant to the determination of CKM matrix elements
and the global CKM unitarity-triangle fit. The current status of lattice results on the
QCD coupling αs was reviewed. Last but not least, we reviewed calculations of nucleon
matrix elements of flavour nonsinglet and singlet bilinear operators, including the nucleon
axial charge gA and the nucleon sigma term. These results are relevant for constraining
Vud, for searches for new physics in neutron decays and other processes, and for dark
matter searches.

In FLAG 21, we extended the scope of the review by adding a section on scale setting,
Sec. 11. The motivation for adding this section was that uncertainties in the value of
the lattice spacing a are a major source of error for the calculation of a wide range of
quantities. Thus we felt that a systematic compilation of results, comparing the different
approaches to setting the scale, and summarizing the present status, would be a useful
resource for the lattice community. An additional update was the inclusion, in Sec. 6.2,
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of a brief description of the status of lattice calculations of K → ππ decay amplitudes.
Although some aspects of these calculations were not yet at the stage to be included in our
averages, they are approaching this stage, and we felt that, given their phenomenological
relevance, a brief review was appropriate.

In the current review, we have omitted the section on low-energy constants in the chiral
Lagrangian as progress in that area has slowed. FLAG will keep monitoring the situation
and provide updates in future editions, should new results become available. On the other
hand, we have added a new section on isospin breaking, Sec. 3. For the most precisely
determined quantities, isospin breaking—both from the up-down quark-mass difference
and from QED—must be included. An important issue here is that, in the context of a
QED+QCD theory, the separation into QED and QCD contributions to a given physical
quantity is ambiguous. There are several ways of defining such a separation. The new
section allows a more uniform treatment in the sections on quark masses (see Sec. 4) and
scale setting (see Sec. 11). We stress, however, that the physical observable in QCD+QED
is defined unambiguously. Any ambiguity only arises because we are trying to separate a
well-defined, physical quantity into two unphysical parts that provide useful information
for phenomenology.

Our main results are collected in Tabs. 1, 2, 3, 4, and 5. As is clear from the tables,
for most quantities there are results from ensembles with different values for Nf . In most
cases, there is reasonable agreement among results with Nf = 2, 2 + 1, and 2 + 1 + 1. As
precision increases, we may some day be able to distinguish among the different values of
Nf , in which case, presumably 2 + 1 + 1 would be the most realistic. (If isospin violation
is critical, then 1+1+1 or 1+1+1+1 might be desired.) At present, for some quantities
the errors in the Nf = 2 + 1 results are smaller than those with Nf = 2 + 1 + 1 (e.g.,
for mc), while for others the relative size of the errors is reversed. In most situations we
expect the averages in this report for both Nf = 2 + 1 or Nf = 2 + 1 + 1 to provide
a sufficiently accurate description of QCD. In situations where charm-sea-quark and/or
isospin-breaking effects are expected to be subdominant systematic effects, both results
can be used. We do not recommend using the Nf = 2 results, except for studies of the Nf -
dependence of αs, as these have an uncontrolled systematic error coming from quenching
the strange quark.

Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper,
roughly on a triennial basis. This effort is supplemented by our more frequently updated
website http://flag.unibe.ch [6], where figures as well as pdf-files for the individual
sections can be downloaded. The papers reviewed in the present edition have appeared
before the closing date 30 April 2024.1

1Working groups were given the option of including papers submitted to arxiv.org before the closing date
but published after this date. This flexibility allows this review to be up-to-date at the time of submission.
Two papers of this type were included, cf. footnote 9.
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This review is organized as follows. In the remainder of Sec. 1, we summarize the
composition and rules of FLAG and discuss general issues that arise in modern lattice
calculations. In Sec. 2, we explain our general methodology for evaluating the robustness
of lattice results. We also describe the procedures followed for combining results from
different collaborations in a single average or estimate (see Sec. 2.2 for our definition of
these terms). The rest of the paper consists of sections, each dedicated to a set of closely
connected physical quantities, or, for the final section, to the determination of the lattice
scale. Each of these sections is accompanied by an Appendix with explicatory notes.2

In previous editions, we have provided, in an appendix, a glossary summarizing some
standard lattice terminology and describing the most commonly used lattice techniques
and methodologies. Since no significant updates in this information have occurred re-
cently, we have decided, in the interests of reducing the length of this review, to omit
this glossary, and refer the reader to FLAG 19 for this information [4]. This appendix
also contained, in previous versions, a tabulation of the actions used in the papers that
were reviewed. Since this information is available in the discussions in the separate sec-
tions, and is time-consuming to collect from the sections, we have dropped these tables.
In Appendix A, we have added a summary and explanations of acronyms introduced in
the manuscript. Collaborations referred to by an acronym can be identified through the
corresponding bibliographic reference. In Appendix B.1, we provide a short review of
how electromagnetic effects can be taken into account in lattice-QCD calculations. Ap-
pendix B.2 describes the parameterizations of semileptonic form factors that are used in
Sec. 8. A short appendix, Appendix B.3 provides all the details of the parameters used
in the form factor fits in Secs. 7 and 8.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community, both in terms of the geo-
graphical location of its members and the lattice collaborations to which they belong. We
aspire to provide the nuclear- and particle-physics communities with a single source of
reliable information on lattice results.

In order to work reliably and efficiently, we have adopted a formal structure and a set
of rules by which all FLAG members abide. The collaboration presently consists of an
Advisory Board (AB), an Editorial Board (EB), and eight Working Groups (WG). The
rôle of the Advisory Board is to provide oversight of the content, procedures, schedule and
membership of FLAG, to help resolve disputes, to serve as a source of advice to the EB
and to FLAG as a whole, and to provide a critical assessment of drafts. They also give
their approval of the final version of the preprint before it is released. The Editorial Board
coordinates the activities of FLAG, sets priorities and intermediate deadlines, organizes
votes on FLAG procedures, writes the introductory sections, and takes care of the editorial
work needed to integrate the sections written by the individual working groups into a
uniform and coherent review. The working groups concentrate on writing the review of
the physical quantities for which they are responsible, which is subsequently circulated to
the whole collaboration for critical evaluation.

The current list of FLAG members and their Working Group assignments is:

• Advisory Board (AB): M. Golterman, P. Hernandez, T. Onogi, S.R. Sharpe,
and R. Van de Water

• Editorial Board (EB): S. Gottlieb, A. Jüttner, and U. Wenger

• Working Groups (coordinator listed first):

– Quark masses T. Blum, A. Portelli, and A. Ramos

2In order to keep the length of this review within reasonable bounds, we have dropped these notes for older
data, since they can be found in previous FLAG reviews [1–5].
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– Vus, Vud T. Kaneko, J. N. Simone, and N. Tantalo

– BK P. Dimopoulos, X. Feng, and G. Herdoiza

– fB(s)
, fD(s)

, BB C. Monahan, Y. Aoki, and M. Della Morte

– b and c semileptonic and radiative decays E. Lunghi, S. Meinel,
and A. Vaquero

– αs S. Sint, L. Del Debbio, and P. Petreczky

– Nucleon matrix elements R. Gupta, S. Collins, A. Nicholson, and H. Wittig

– Scale setting R. Sommer, N. Tantalo, and U. Wenger

The most important FLAG guidelines and rules are the following:

• the composition of the AB reflects the main geographical areas in which lattice
collaborations are active, with members from America, Asia/Oceania, and Europe;

• the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

• whenever a replacement becomes necessary this has to keep, and possibly improve,
the balance in FLAG, so that different collaborations, from different geographical
areas are represented;

• in all working groups the members must belong to different lattice collaborations;

• a paper is in general not reviewed (nor colour-coded, as described in the next section)
by any of its authors;

• lattice collaborations will be consulted on the colour coding of their calculation;

• there are also internal rules regulating our work, such as voting procedures.

As for FLAG 21, for this review we sought the advice of external reviewers once a
complete draft of the review was available. For each review section, we have asked one
lattice expert (who could be a FLAG alumnus/alumna) and one nonlattice phenomenol-
ogist for a critical assessment.3 This is similar to the procedure followed by the Particle
Data Group in the creation of the Review of Particle Physics. The reviewers provide
comments and feedback on scientific and stylistic matters. They are not anonymous, and
enter into a discussion with the authors of the WG. Our aim with this additional step is
to make sure that a wider array of viewpoints enter into the discussions, so as to make
this review more useful for its intended audience.

1.2 Citation policy

We draw attention to this particularly important point. As stated above, our aim is to
make lattice-QCD results easily accessible to those without lattice expertise, and we are
well aware that it is likely that some readers will only consult the present paper and not
the original lattice literature. It is very important that this paper not be the only one
cited when our results are quoted. We strongly suggest that readers also cite the original
sources. In order to facilitate this, in Tabs. 1, 2, 3, 4 and 5, besides summarizing the
main results of the present review, we also cite the original references from which they
have been obtained. In addition, for each figure we make a bibtex file available on our
webpage [6] which contains the bibtex entries of all the calculations contributing to the
FLAG average or estimate. The bibliography at the end of this paper should also make
it easy to cite additional papers. Indeed, we hope that the bibliography will be one of the
most widely used elements of the whole paper.

3The one exception is the scale-setting section, where only a lattice expert has been asked to provide input.
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1.3 General issues

Several general issues concerning the present review are thoroughly discussed in Sec. 1.1
of our initial 2010 paper [1], and we encourage the reader to consult the relevant pages.
In the remainder of the present subsection, we focus on a few important points. Though
the discussion has been duly updated, it is similar to that of the corresponding sections
in the previous reviews [2–5].

The review aims to achieve two distinct goals: first, to provide a description of the
relevant work done on the lattice; and, second, to draw conclusions on the basis of that
work, summarizing the results obtained for the various quantities of physical interest.

The core of the information about the work done on the lattice is presented in the form
of tables, which not only list the various results, but also describe the quality of the data
that underlie them. We consider it important that this part of the review represents a
generally accepted description of the work done. For this reason, we explicitly specify the
quality requirements used and provide sufficient details in appendices so that the reader
can verify the information given in the tables.4

On the other hand, the conclusions drawn on the basis of the available lattice results are
the responsibility of FLAG alone. Preferring to err on the side of caution, in several cases
we draw conclusions that are more conservative than those resulting from a plain weighted
average of the available lattice results. This cautious approach is usually adopted when the
average is dominated by a single lattice result, or when only one lattice result is available
for a given quantity. In such cases, one does not have the same degree of confidence in
results and errors as when there is agreement among several different calculations using
different approaches. The reader should keep in mind that the degree of confidence cannot
be quantified, and it is not reflected in the quoted errors.

Each discretization has its merits, but also its shortcomings. For most topics covered
in this review we have an increasingly broad database, and for most quantities lattice
calculations based on totally different discretizations are now available. This is illustrated
by the dense population of the tables and figures in most parts of this review. Those cal-
culations that do satisfy our quality criteria indeed lead, in almost all cases, to consistent
results, confirming universality within the accuracy reached. The consistency between
independent lattice results, obtained with different discretizations, methods, and lattice
parameters, is an important test of lattice QCD, and observing such consistency also
provides further evidence that systematic errors are fully under control.

In the sections dealing with heavy quarks and with αs, the situation is not the same.
Since the b-quark mass can barely be resolved with current lattice spacings, most lattice
methods for treating b quarks use effective field theory at some level. This introduces
additional complications not present in the light-quark sector. An overview of the is-
sues specific to heavy-quark quantities is given in the introduction of Sec. 8. For B- and
D-meson leptonic decay constants, there already exist a good number of different inde-
pendent calculations that use different heavy-quark methods, but there are only a few
independent calculations of semileptonic B, Λb, and D form factors and of B − B̄ mixing
parameters. For αs, most lattice methods involve a range of scales that need to be resolved
and controlling the systematic error over a large range of scales is more demanding. The
issues specific to determinations of the strong coupling are summarized in Sec. 9.

Number of sea quarks in lattice calculations:
Lattice-QCD calculations currently involve two, three or four flavours of dynamical quarks.
Most calculations set the masses of the two lightest quarks to be equal, while the strange
and charm quarks, if present, are heavier (and tuned to lie close to their respective physi-
cal values). Our notation for these calculations indicates which quarks are nondegenerate,

4We also use terms like “quality criteria”, “rating”, “colour coding”, etc., when referring to the classification
of results, as described in Sec. 2.
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e.g., Nf = 2 + 1 if mu = md < ms and Nf = 2 + 1 + 1 if mu = md < ms < mc. Calcula-
tions with Nf = 2, i.e., two degenerate dynamical flavours, often include strange valence
quarks interacting with gluons, so that bound states with the quantum numbers of the
kaons can be studied, albeit neglecting strange sea-quark fluctuations. The quenched ap-
proximation (Nf = 0), in which all sea-quark contributions are omitted, has uncontrolled
systematic errors and is no longer used in modern lattice calculations with relevance to
phenomenology.5 Accordingly, we will review results obtained with Nf = 2, Nf = 2 + 1,
and Nf = 2+1+1, but omit earlier results with Nf = 0. The only exception concerns the
QCD coupling constant αs. Since this observable does not require valence light quarks, it
is theoretically well defined also in the Nf = 0 theory, which is simply pure gluodynamics.
The Nf -dependence of αs, or more precisely of the related quantity r0ΛMS, is a theoretical
issue of considerable interest; here r0 is a quantity with the dimension of length that sets
the physical scale, as discussed in Sec. 11. We stress, however, that only results with
Nf ≥ 3 are used to determine the physical value of αs at a high scale.

Lattice actions, parameters, and scale setting:
The remarkable progress in the precision of lattice calculations is due to improved al-
gorithms, better computing resources, and, last but not least, conceptual developments.
Examples of the latter are improved actions that reduce lattice artifacts and actions that
preserve chiral symmetry to a very good approximation. A concise characterization of the
various discretizations that underlie the results reported in the present review is given in
Appendix A.1 of FLAG 19 [4].

Physical quantities are computed in lattice calculations in units of the lattice spacing
so that they are dimensionless. For example, the pion decay constant that is obtained
from a calculation is fπa, where a is the spacing between two neighboring lattice sites.
(All calculations with results quoted in this review use hypercubic lattices, i.e., with the
same spacing in all four Euclidean directions.) To convert these results to physical units
requires knowledge of the lattice spacing a at the fixed values of the bare QCD parameters
(quark masses and gauge coupling) used in the calculation. This is achieved by requir-
ing agreement between the lattice calculation and experimental measurement of a known
quantity, which thus “sets the scale” of a given calculation. (See Sec. 11.)

Renormalization and scheme dependence:
Several of the results covered by this review, such as quark masses, the gauge coupling,
and B-parameters, are for quantities defined in a given renormalization scheme and at
a specific renormalization scale. The schemes employed (e.g., regularization-independent
MOM schemes) are often chosen because of their specific merits when combined with
the lattice regularization. For a brief discussion of their properties, see Appendix A.3
of FLAG 19 [4]. The conversion of the results obtained in these so-called intermediate
schemes to more familiar regularization schemes, such as the MS-scheme, is done with the
aid of perturbation theory. It must be stressed that the renormalization scales accessible
in calculations are limited, because of the presence of an ultraviolet (UV) cutoff of ∼ π/a.
To safely match to MS, a scheme defined in perturbation theory, Renormalization Group
(RG) running to higher scales is performed, either perturbatively or nonperturbatively
(the latter using finite-size scaling techniques).

Extrapolations:
Because of limited computing resources, lattice calculations are often performed at un-
physically heavy pion masses, although results at the physical point, where all quark
masses take their physical values, have become increasingly common. Further, numerical
calculations must be done at nonzero lattice spacing, and in a finite (four-dimensional)
volume. In order to obtain physical results, lattice data are obtained at a sequence of
pion masses and a sequence of lattice spacings, and then extrapolated to the physical

5Lattice calculations with Nf = 2 also have an uncontrolled systematic error, but it is reasonable to expect
that to be much smaller than for Nf = 0.
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pion mass and to the continuum limit. In principle, an extrapolation to infinite volume is
also required. However, for most quantities discussed in this review, finite-volume effects
are exponentially small in the linear extent of the lattice in units of the pion mass, and,
in practice, one often verifies volume independence by comparing results obtained on a
few different physical volumes, holding other parameters fixed. To control the associ-
ated systematic uncertainties, these extrapolations are guided by effective theories. For
light-quark actions, the lattice-spacing dependence is described by Symanzik’s effective
theory [149, 150]; for heavy quarks, this can be extended and/or supplemented by other
effective theories such as Heavy-Quark Effective Theory (HQET). The pion-mass depen-
dence can be parameterized with Chiral Perturbation Theory (χPT), which takes into
account the Nambu-Goldstone nature of the lowest excitations that occur in the presence
of light quarks. Similarly, one can use Heavy-Light Meson Chiral Perturbation Theory
(HMχPT) to extrapolate quantities involving mesons composed of one heavy (b or c) and
one light quark. One can combine Symanzik’s effective theory with χPT to simultane-
ously extrapolate to the physical pion mass and the continuum; in this case, the form
of the effective theory depends on the discretization. See Appendix A.4 of FLAG 19 [4]
for a brief description of the different variants in use and some useful references. Finally,
χPT can also be used to estimate the size of finite-volume effects measured in units of the
inverse pion mass, thus providing information on the systematic error due to finite-volume
effects in addition to that obtained by comparing calculations at different volumes.

Excited-state contamination:
In all the hadronic matrix elements discussed in this review, the hadron in question is
the lightest state with the chosen quantum numbers. This implies that it dominates the
required correlation functions as their extent in Euclidean time is increased. Excited-state
contributions are suppressed by e−∆E∆τ , where ∆E is the gap between the ground and
excited states, and ∆τ the relevant separation in Euclidean time. The size of ∆E depends
on the hadron in question, and in general is a multiple of the pion mass. In practice, as
discussed at length in Sec. 10, the contamination of signals due to excited-state contribu-
tions is a much more challenging problem for baryons than for the other particles discussed
here. This is in part due to the fact that the signal-to-noise ratio drops exponentially for
baryons, which reduces the values of ∆τ that can be used.

Critical slowing down:
The lattice spacings reached in recent calculations go down to 0.05 fm or even smaller. In
this regime, long autocorrelation times slow down the sampling of the configurations [151–
160]. Many groups check for autocorrelations in a number of observables, including the
topological charge, for which a rapid growth of the autocorrelation time is observed with
decreasing lattice spacing. This is often referred to as topological freezing. A solution to
the problem consists in using open boundary conditions in time [161], instead of the more
common periodic or antiperiodic ones. A combination of open and periodic boundary
conditions have recently been employed in a parallel tempering framework [162]. Other
approaches have been proposed, e.g., based on a multiscale thermalization algorithm
[163, 164], or based on defining QCD on a nonorientable manifold [165], or using huge
master fields [166, 167]. Approaches using trivializing or normalizing flows [168] try to
solve both the problem of topological freezing and critical slowing down by finding invert-
ible maps from simple probability distributions for the lattice configurations, which can be
efficiently sampled, to the target ones. Parameterizing these flows turns out to be difficult,
but can be facilitated by using machine-learning tools [169–173]. So far, these attempts
are restricted to simple field theories, low dimensions or, in four-dimensional SU(3) gauge
theories, to very small and coarse systems [174]. Reference [175] uses machine learning to
construct RG-improved gauge actions with highly suppressed lattice artifacts, such that
efficient calculations on coarse lattices suffice to yield solid continuum limits. The problem
of topological freezing and critical slowing down is also touched upon in Sec. 9.2.1, where
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it is stressed that attention must be paid to this issue.
Few results reviewed here have been obtained with any of the above methods. It is

usually assumed that the continuum limit can be reached by extrapolation from the ex-
isting calculations, and that potential systematic errors due to the long autocorrelation
times have been adequately controlled. Partially or completely frozen topology would
produce a mixture of different θ vacua, and the difference from the desired θ = 0 result
may be estimated in some cases using chiral perturbation theory, which gives predictions
for the θ-dependence of the physical quantity of interest [176, 177]. These ideas have been
systematically and successfully tested in various models in [178, 179], and a numerical
test on MILC ensembles indicates that the topology dependence for some of the physical
quantities reviewed here is small, consistent with theoretical expectations [180].

Algorithms and numerical errors:
Most of the modern lattice-QCD calculations use exact algorithms such as those of
Refs. [181, 182], which do not produce any systematic errors when exact arithmetic is
available. In reality, one uses numerical calculations at double (or in some cases even
single) precision, and some errors are unavoidable. More importantly, the inversion of the
Dirac operator is carried out iteratively and it is truncated once some accuracy is reached,
which is another source of potential systematic error. In most cases, these errors have
been confirmed to be much less than the statistical errors. In the following, we assume
that this source of error is negligible. Some of the most recent calculations use an inex-
act algorithm in order to speed up the computation, though it may produce systematic
effects. Currently available tests indicate that errors from the use of inexact algorithms
are under control [183].

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging
lattice quantities have been outlined in our first publication [1]. Our aim is to help the
reader assess the reliability of a particular lattice result without necessarily studying the
original article in depth. This is a delicate issue, since the ratings may make things appear
simpler than they are. Nevertheless, it safeguards against the possibility of using lattice
results, and drawing physics conclusions from them, without a critical assessment of the
quality of the various calculations. We believe that, despite the risks, it is important to
provide some compact information about the quality of a calculation. We stress, however,
the importance of the accompanying detailed discussion of the results presented in the
various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These
include, as discussed in detail below, the chiral, continuum, and infinite-volume extrap-
olations. To each such source of error for which systematic improvement is possible we
assign one of three coloured symbols: green star, unfilled green circle (which replaced
in Ref. [2] the amber disk used in the original FLAG review [1]) or red square. These
correspond to the following ratings:
⋆ the parameter values and ranges used to generate the data sets allow for a satisfac-

tory control of the systematic uncertainties;

◦ the parameter values and ranges used to generate the data sets allow for a reasonable
attempt at estimating systematic uncertainties, which however could be improved;

■ the parameter values and ranges used to generate the data sets are unlikely to allow
for a reasonable control of systematic uncertainties.
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The appearance of a red tag, even in a single source of systematic error of a given lattice
result, disqualifies it from inclusion in the global average.

Note that in the first two editions [1, 2], FLAG used the three symbols in order to rate
the reliability of the systematic errors attributed to a given result by the paper’s authors.
Starting with FLAG 16 [3] the meaning of the symbols has changed slightly—they now
rate the quality of a particular simulation, based on the values and range of the chosen
parameters, and its aptness to obtain well-controlled systematic uncertainties. They do
not rate the quality of the analysis performed by the authors of the publication. The
latter question is deferred to the relevant sections of the present review, which contain
detailed discussions of the results contributing (or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the following sources of system-
atic errors: (i) chiral extrapolation; (ii) continuum extrapolation; (iii) finite volume. As
we will see below, renormalization is another source of systematic uncertainties in several
quantities. This we also classify using the three coloured symbols listed above, but now
with a different rationale: they express how reliably these quantities are renormalized,
from a field-theoretic point of view (namely, nonperturbatively, or with 2-loop or 1-loop
perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those
rated by the coloured symbols, need to be evaluated before one can conclude whether a
particular analysis leads to results that should be included in an average or estimate. Some
of these aspects are not so easily expressible in terms of an adjustable parameter such
as the lattice spacing, the pion mass or the volume. As a result of such considerations,
it sometimes occurs, albeit rarely, that a given result does not contribute to the FLAG
average or estimate, despite not carrying any red tags. This happens, for instance, when-
ever aspects of the analysis appear to be incomplete (e.g., an incomplete error budget), so
that the presence of inadequately controlled systematic effects cannot be excluded. This
mostly refers to results with a statistical error only, or results in which the quoted error
budget obviously fails to account for an important contribution.

Of course, any colour coding has to be treated with caution; we emphasize that the
criteria are subjective and evolving. Sometimes, a single source of systematic error domi-
nates the systematic uncertainty and it is more important to reduce this uncertainty than
to aim for green stars for other sources of error. In spite of these caveats, we hope that
our attempt to introduce quality measures for lattice simulations will prove to be a useful
guide. In addition, we would like to stress that the agreement of lattice results obtained
using different actions and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are mea-
sured become tighter. For this reason FLAG reassesses criteria with each edition and as
a result some of the quality criteria (the one on chiral extrapolation for instance) have
been tightened up over time [1–4].

In the following, we present the rating criteria used in the current report. While these
criteria apply to most quantities without modification, there are cases where they need
to be amended or additional criteria need to be defined. For instance, the discussion
of the strong coupling constant in Sec. 9 requires tailored criteria for renormalization,
perturbative behaviour, and continuum extrapolation. Finally, in the section on nuclear
matrix elements, Sec. 10, the chiral extrapolation criterion is made slightly stronger, and
a new criterion is adopted for excited-state contributions. In such cases, the modified
criteria are discussed in the respective sections. Apart from only a few exceptions the
following colour code applies in the tables:
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• Chiral extrapolation:

⋆ Mπ,min < 200 MeV, with three or more pion masses used in the extrapolation
or two values of Mπ with one lying within 10 MeV of 135 MeV (the physical
neutral pion mass) and the other one below 200 MeV

◦ 200 MeV ≤ Mπ,min ≤ 400 MeV, with three or more pion masses used in the
extrapolation
or two values of Mπ with Mπ,min < 200 MeV
or a single value of Mπ, lying within 10 MeV of 135 MeV (the physical neutral
pion mass)

■ otherwise

This criterion is unchanged from FLAG 19. In Sec. 10 the upper end of the range
for Mπ,min in the green circle criterion is lowered to 300 MeV, as in FLAG 19.

• Continuum extrapolation:

⋆ at least three lattice spacings and at least two points below 0.1 fm and a range
of lattice spacings satisfying [amax/amin]

2 ≥ 2

◦ at least two lattice spacings and at least one point below 0.1 fm and a range of
lattice spacings satisfying [amax/amin]

2 ≥ 1.4
■ otherwise

It is assumed that the lattice action is O(a)-improved (i.e., the discretization er-
rors vanish quadratically with the lattice spacing); otherwise this will be explicitly
mentioned. For unimproved actions an additional lattice spacing is required. This
condition is unchanged from FLAG 19.

• Finite-volume effects:
The finite-volume colour code used for a result is chosen to be the worse of the QCD
and the QED codes, as described below. If only QCD is used the QED colour code
is ignored.

– For QCD:

⋆ [Mπ,min/Mπ,fid]
2 exp{4−Mπ,min[L(Mπ,min)]max} < 1, or at least three volumes

◦ [Mπ,min/Mπ,fid]
2 exp{3−Mπ,min[L(Mπ,min)]max} < 1, or at least two volumes

■ otherwise

where we have introduced [L(Mπ,min)]max, which is the maximum box size used in
the simulations performed at the smallest pion mass Mπ,min, as well as a fiducial
pion mass Mπ,fid, which we set to 200 MeV (the cutoff value for a green star in the
chiral extrapolation). It is assumed here that calculations are in the p-regime of
chiral perturbation theory, and that all volumes used exceed 2 fm. The rationale
for this condition is as follows. Finite-volume effects contain the universal factor
exp{−MπL}, and if this were the only contribution a criterion based on the values
of Mπ,minL would be appropriate. However, as pion masses decrease, one must
also account for the weakening of the pion couplings. In particular, 1-loop chiral
perturbation theory [184] reveals a behaviour proportional toM2

π exp{−MπL}. Our
condition includes this weakening of the coupling, and ensures, for example, that
simulations with Mπ,min = 135 MeV and Mπ,minL = 3.2 are rated equivalently to
those with Mπ,min = 200 MeV and Mπ,minL = 4.

– For QED (where applicable):

⋆ 1/([Mπ,minL(Mπ,min)]max)
nmin < 0.02, or at least four volumes

◦ 1/([Mπ,minL(Mπ,min)]max)
nmin < 0.04, or at least three volumes

■ otherwise

Because of the infrared-singular structure of QED, electromagnetic finite-volume
effects decay only like a power of the inverse spatial extent. In several cases like
mass splittings [185, 186] or leptonic decays [187], the leading corrections are known
to be universal, i.e., independent of the structure of the involved hadrons. In such
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cases, the leading universal effects can be directly subtracted exactly from the lattice
data. We denote nmin the smallest power of 1

L at which such a subtraction cannot be
done. In the widely used finite-volume formulation QEDL, one always has nmin ≤ 3
due to the nonlocality of the theory [188]. The QED criteria are used here only in
Sec. 4. Both QCD and QED criteria are unchanged from FLAG 19.

• Isospin-breaking effects (where applicable):

⋆ all leading isospin-breaking effects are included in the lattice calculation

◦ isospin-breaking effects are included using the electro-quenched approximation
■ otherwise

This criterion is used for quantities which are breaking isospin symmetry or which
can be determined at the sub-percent accuracy where isospin-breaking effects, if not
included, are expected to be the dominant source of uncertainty. In the current
edition, this criterion is only used for the up- and down-quark masses, and related
quantities (ϵ, Q2 and R2). The criteria for isospin-breaking effects are unchanged
from FLAG 19.

• Renormalization (where applicable):

⋆ nonperturbative

◦ 1-loop perturbation theory or higher with a reasonable estimate of truncation
errors

■ otherwise

In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop
in perturbation theory. In FLAG 13 [2], we decided that this was too restrictive,
since the error arising from renormalization constants, calculated in perturbation
theory at 1-loop, is often estimated conservatively and reliably. These criteria have
remained unchanged since then.

• Renormalization Group (RG) running (where applicable):
For scale-dependent quantities, such as quark masses or BK , it is essential that con-
tact with continuum perturbation theory can be established. Various different meth-
ods are used for this purpose (cf. Appendix A.3 in FLAG 19 [4]): Regularization-
independent Momentum Subtraction (RI/MOM), the Schrödinger functional, and
direct comparison with (resummed) perturbation theory. Irrespective of the par-
ticular method used, the uncertainty associated with the choice of intermediate
renormalization scales in the construction of physical observables must be brought
under control. This is best achieved by performing comparisons between nonper-
turbative and perturbative running over a reasonably broad range of scales. These
comparisons were initially only made in the Schrödinger functional approach, but
are now also being performed in RI/MOM schemes. We mark the data for which in-
formation about nonperturbative-running checks is available and give some details,
but do not attempt to translate this into a colour code.

The pion mass plays an important role in the criteria relevant for chiral extrapolation
and finite volume. For some of the regularizations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions, discretization effects give rise
to a mass difference between charged and neutral pions even when the up- and down-quark
masses are equal: the charged pion is found to be the heavier of the two for twisted-mass
Wilson fermions (cf. Ref. [189]). In early works, typically referring to Nf = 2 simulations
(e.g., Refs. [189] and [190]), chiral extrapolations are based on chiral perturbation theory
formulae which do not take these regularization effects into account. After the importance
of accounting for isospin breaking when doing chiral fits was shown in Ref. [191], later
works, typically referring to Nf = 2 + 1 + 1 simulations, have taken these effects into
account [8]. We use Mπ± for Mπ,min in the chiral-extrapolation rating criterion. On the
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other hand, we identify Mπ,min with the root mean square (RMS) of Mπ+ , Mπ− and Mπ0

in the finite-volume rating criterion.
In the case of staggered fermions, discretization effects give rise to several light states

with the quantum numbers of the pion.6 The mass splitting among these “taste” partners
represents a discretization effect of O(a2), which can be significant at large lattice spacings
but shrinks as the spacing is reduced. In the discussion of the results obtained with
staggered quarks given in the following sections, we assume that these artifacts are under
control. We conservatively identify Mπ,min with the root mean square (RMS) average
of the masses of all the taste partners, both for chiral-extrapolation and finite-volume
criteria.

In some of the simulations, the fermion formulations employed for the valence quarks
are different from those used for the sea quarks. Even when the fermion formulations are
the same, there are cases where the sea- and valence-quark masses differ. In such cases, we
use the smaller of the valence-valence and valence-sea Mπmin

values in the finite-volume
criteria, since either of these channels may give the leading contribution depending on
the quantity of interest at the 1-loop level of chiral perturbation theory. For the chiral-
extrapolation criteria, on the other hand, we use the unitary point, where the sea- and
valence-quark masses are the same, to define Mπmin

.
The strong coupling αs is computed in lattice QCD with methods differing substan-

tially from those used in the calculations of the other quantities discussed in this review.
Therefore, we have established separate criteria for αs results, which will be discussed in
Sec. 9.2.1.

In Sec. 10 on nuclear matrix elements, an additional criterion is used. This concerns
the level of control over contamination from excited states, which is a more challenging
issue for nucleons than for mesons. In response to an improved understanding of the
impact of this contamination, the excited-state contamination criterion has been made
more stringent compared to that in FLAG 19.

2.1.2 Data-driven criteria

For some time, the FLAG working groups have been considering using a ‘data-driven’
criterion in assessing how well the continuum limit is controlled. The quantity δ(a) is
defined as

δ(a) ≡ |Q(a)−Q(0)|
σQ

, (1)

were Q(a) is the quantity under consideration with lattice spacing a, Q(0) is the extrap-
olated continuum-limit value, and σQ is its error in the continuum limit. If amin is the
smallest lattice spacing used, there is concern if δ(amin) is very large. That is, the re-
sults at the finest lattice spacing should not be too many standard deviations from the
continuum limit in order for the extrapolation to be considered reliable.

The following is adopted for the current edition of the review: (1) Each working group
attempts to determine δ(amin) for each calculation that contributes to a FLAG average.
However, it is not currently used as a criterion for inclusion in the averages. (2) The text
of the report includes these values for calculations contributing to FLAG averages. (3)
For the current edition of FLAG it is at the discretion of each working group to decide
whether they wish to inflate the error of contributions to the average for calculations with
large values of δ(amin). If this is done, the inflation factor will be

s(δ) = max[1, 1 + 2(δ − 3)/3]. (2)

The inflation of the error is not displayed in tables or plots. It is only used to evaluate
FLAG averages.

6We refer the interested reader to a number of reviews on the subject [192–196].
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2.1.3 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action follows a very different
approach from that used for light flavours. There are several different methods for treating
heavy quarks on the lattice, each with its own issues and considerations. Most of these
methods use Effective Field Theory (EFT) at some point in the computation, either via
direct simulation of the EFT, or by using EFT as a tool to estimate the size of cutoff
errors, or by using EFT to extrapolate from the simulated lattice quark masses up to
the physical b-quark mass. Because of the use of an EFT, truncation errors must be
considered together with discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In
our earlier reviews, the calculations involving charm quarks often treated it using one of
the approaches adopted for the b quark. Since FLAG 16 [3], however, most calculations
simulate the charm quark using light-quark actions. This has become possible thanks to
the increasing availability of dynamical gauge field ensembles with fine lattice spacings.
But clearly, when charm quarks are treated relativistically, discretization errors are more
severe than those of the corresponding light-quark quantities.

In order to address these complications, the heavy-quark section adds an additional,
bipartite, treatment category to the rating system. The purpose of this criterion is to
provide a guideline for the level of action and operator improvement needed in each
approach to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy quarks on the lattice can
be found in Appendix A.1.3 of FLAG 19 [4]. For truncation errors we use HQET power
counting throughout, since this review is focused on heavy-quark quantities involving B
and D mesons rather than bottomonium or charmonium quantities. Here we describe the
criteria for how each approach must be implemented in order to receive an acceptable
rating (✓) for both the heavy-quark actions and the weak operators. Heavy-quark im-
plementations without the level of improvement described below are rated not acceptable
( ■ ). The matching is evaluated together with renormalization, using the renormaliza-
tion criteria described in Sec. 2.1.1. We emphasize that the heavy-quark implementations
rated as acceptable and described below have been validated in a variety of ways, such as
via phenomenological agreement with experimental measurements, consistency between
independent lattice calculations, and numerical studies of truncation errors. These tests
are summarized in Sec. 8.

Relativistic heavy-quark actions:

✓ at least tree-level O(a)-improved action and weak operators
This is similar to the requirements for light-quark actions. All current implementations
of relativistic heavy-quark actions satisfy this criterion.

NRQCD:

✓ tree-level matched through O(1/mh) and improved through O(a2)
The current implementations of NRQCD satisfy this criterion, and also include tree-level
corrections of O(1/m2

h) in the action.

HQET:

✓ tree-level matched through O(1/mh) with discretization errors starting at O(a2)
The current implementation of HQET by the ALPHA collaboration satisfies this criterion,
since both action and weak operators are matched nonperturbatively through O(1/mh).
Calculations that exclusively use a static-limit action do not satisfy this criterion, since
the static-limit action, by definition, does not include 1/mh terms. We therefore include
static computations in our final estimates only if truncation errors (in 1/mh) are discussed
and included in the systematic uncertainties.

Light-quark actions for heavy quarks:

✓ discretization errors starting at O(a2) or higher
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This applies to calculations that use the twisted-mass Wilson action, a nonperturbatively
improved Wilson action, domain-wall fermions or the HISQ action for charm-quark quan-
tities. It also applies to calculations that use these light-quark actions in the charm
region and above together with either the static limit or with an HQET-inspired extrapo-
lation to obtain results at the physical b-quark mass. In these cases, the combined list of
lattice spacings used for the data sets with mh > 0.5mh,phys must satisfy the continuum-
extrapolation criteria.

2.1.4 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key
role, but the colour coding cannot be carried over to the figures. On the other hand,
simply showing all data on equal footing might give the misleading impression that the
overall consistency of the information available on the lattice is questionable. Therefore,
in the figures we indicate the quality of the data in a rudimentary way, using the following
symbols:

■ corresponds to results included in the average or estimate (i.e., results that con-
tribute to the black square below);

■□ corresponds to results that are not included in the average but pass all quality
criteria;

□ corresponds to all other results;
■ corresponds to FLAG averages or estimates; they are also highlighted by a gray

vertical band.
The reason for not including a given result in the average is not always the same: the result
may fail one of the quality criteria; the paper may be unpublished; it may be superseded
by newer results; or it may not offer a complete error budget.

Symbols other than squares are used to distinguish results with specific properties and
are always explained in the caption.7

Often, nonlattice data are also shown in the figures for comparison. For these we use
the following symbols:

• corresponds to nonlattice results;
▲ corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we
clarify this distinction. To start with, both averages and estimates are based on results
without any red tags in their colour coding. For many observables there are enough
independent lattice calculations of good quality, with all sources of error (not merely
those related to the colour-coded criteria), as analyzed in the original papers, appearing
to be under control. In such cases, it makes sense to average these results and propose
such an average as the best current lattice number. The averaging procedure applied to
this data and the way the error is obtained is explained in detail in Sec. 2.3. In those
cases where only a sole result passes our rating criteria (colour coding), we refer to it
as our FLAG average, provided it also displays adequate control of all other sources of
systematic uncertainty.

On the other hand, there are some cases in which this procedure leads to a result that,
in our opinion, does not cover all uncertainties. Systematic errors are by their nature often
subjective and difficult to estimate, and may thus end up being underestimated in one or
more results that receive green symbols for all explicitly tabulated criteria. Adopting a

7For example, for quark-mass results we distinguish between perturbative and nonperturbative renormal-
ization, and for heavy-flavour results we distinguish between those from leptonic and semileptonic decays.
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conservative policy, in these cases we opt for an estimate (or a range), which we consider
as a fair assessment of the knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but reflects what we consider the
best possible analysis of the available information. The hope is that this will encourage
more detailed investigations by the lattice community.

There are two other important criteria that also play a role in this respect, but that
cannot be colour coded, because a systematic improvement is not possible. These are: i)
the publication status, and ii) the number of sea-quark flavours Nf . As far as the former
criterion is concerned, we adopt the following policy: we average only results that have
been published in peer-reviewed journals, i.e., they have been endorsed by referee(s). The
only exception to this rule consists in straightforward updates of previously published
results, typically presented in conference proceedings. Such updates, which supersede the
corresponding results in the published papers, are included in the averages. Note that
updates of earlier results rely, at least partially, on the same gauge-field-configuration
ensembles. For this reason, we do not average updates with earlier results. Nevertheless,
all results are listed in the tables,8 and their publication status is identified by the following
symbols:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of April 2024 is relevant. If
the paper appeared in print after that date, this is accounted for in the bibliography, but
does not affect the averages.9

As noted above, in this review we present results from simulations with Nf = 2,
Nf = 2 + 1 and Nf = 2 + 1 + 1 (except for r0ΛMS where we also give the Nf = 0
result). We are not aware of an a priori way to quantitatively estimate the difference
between results produced in simulations with a different number of dynamical quarks.
We therefore average results at fixed Nf separately; averages of calculations with different
Nf are not provided.

To date, no significant differences between results with different values of Nf have been
observed in the quantities listed in Tabs. 1, 2, 3, and 4. In particular, differences between
results from simulations with Nf = 2 and Nf = 2 + 1 would reflect Zweig-rule violations
related to strange-quark loops. Although not of direct phenomenological relevance, the
size of such violations is an interesting theoretical issue per se, and one that can be
quantitatively addressed only with lattice calculations. It remains to be seen whether the
status presented here will change in the future, since this will require dedicated Nf = 2
and Nf = 2 + 1 calculations, which are not a priority of present lattice work.

The question of differences between results with Nf = 2 + 1 and Nf = 2 + 1 + 1 is
more subtle. The dominant effect of including the charm sea quark is to shift the lattice
scale, an effect that is accounted for by fixing this scale nonperturbatively using physical
quantities. For most of the quantities discussed in this review, it is expected that residual
effects are small in the continuum limit, suppressed by αs(mc) and powers of Λ2/m2

c .
Here Λ is a hadronic scale that can only be roughly estimated and depends on the process
under consideration. Note that the Λ2/m2

c effects have been addressed in Refs. [198–202],
and were found to be small for the quantities considered. Assuming that such effects
are generically small, it might be reasonable to average the results from Nf = 2 + 1 and
Nf = 2 + 1 + 1 simulations, although we do not do so here.

8Whenever tables and figures turn out to be overcrowded, older, superseded results are omitted. However,
all the most recent results from each collaboration are displayed.

9As noted above in footnote 1, two exceptions to this deadline were made, Refs. [56, 197].
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2.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained by different collaborations,
and estimate the error on the resulting averages. Here we provide details on how averages
are obtained.

2.3.1 Averaging — generic case

We continue to follow the procedure of FLAG 13 and FLAG 16 [2, 3] which we describe
here in full detail.

One of the problems arising when forming averages is that not all of the data sets are
independent. In particular, the same gauge-field configurations, produced with a given
fermion discretization, are often used by different research teams with different valence-
quark lattice actions, obtaining results that are not really independent. Our averaging
procedure takes such correlations into account.

Consider a given measurable quantity Q, measured by M distinct, not necessarily un-
correlated, numerical experiments (simulations). The result of each of these measurement
is expressed as

Qi = xi ± σ
(1)
i ± σ

(2)
i ± · · · ± σ

(E)
i , (3)

where xi is the value obtained by the ith experiment (i = 1, · · · ,M) and σ
(α)
i (for α =

1, · · · , E) are the various errors. Typically σ
(1)
i stands for the statistical error and σ

(α)
i

(α ≥ 2) are the different systematic errors from various sources. For each individual result,
we estimate the total error σi by adding statistical and systematic errors in quadrature:

Qi = xi ± σi ,

σi ≡

√√√√ E∑
α=1

[
σ
(α)
i

]2
. (4)

With the weight factor of each total error estimated in standard fashion,

ωi =
σ−2
i∑M

i=1 σ
−2
i

, (5)

the central value of the average over all simulations is given by

xav =

M∑
i=1

xi ωi . (6)

The above central value corresponds to a χ2
min-weighted average, evaluated by adding

statistical and systematic errors in quadrature. If the fit is not of good quality (χ2
min/dof >

1), the statistical and systematic error bars are stretched by a factor S =
√
χ2/dof.

Next, we examine error budgets for individual calculations and look for potentially
correlated uncertainties. Specific problems encountered in connection with correlations
between different data sets are described in the text that accompanies the averaging. If
there is reason to believe that a source of error is correlated between two calculations, a
100% correlation is assumed. The covariance matrix Cij for the set of correlated lattice
results is estimated by a prescription due to Schmelling [203]. This consists in defining

σi;j =

√∑
α

′[
σ
(α)
i

]2
, (7)

with
∑′
α running only over those errors of xi that are correlated with the corresponding

errors of the measurement xj . This expresses the part of the uncertainty in xi that is
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correlated with the uncertainty in xj . If no such correlations are known to exist, then we
take σi;j = 0. The diagonal and off-diagonal elements of the covariance matrix are then
taken to be

Cii = σ2
i (i = 1, · · · ,M) ,

Cij = σi;j σj;i (i ̸= j) . (8)

Finally, the error of the average is estimated by

σ2
av =

M∑
i=1

M∑
j=1

ωi ωj Cij , (9)

and the FLAG average is
Qav = xav ± σav . (10)

2.3.2 Nested averaging

We have encountered one case where the correlations between results are more involved,
and a nested averaging scheme is required. This concerns the B-meson bag parameters
discussed in Sec. 8.2. In the following, we describe the details of the nested averaging
scheme. This is an updated version of the section added in the web update of the FLAG
16 report.

The issue arises for a quantity Q that is given by a ratio, Q = Y/Z. In most simula-
tions, both Y and Z are calculated, and the error in Q can be obtained in each simulation
in the standard way. However, in other simulations only Y is calculated, with Z taken
from a global average of some type. The issue to be addressed is that this average value
Z has errors that are correlated with those in Q.

In the example that arises in Sec. 8.2, Q = BB , Y = BBf
2
B and Z = f2B . In one

of the simulations that contribute to the average, Z is replaced by Z, the PDG average
for f2B [204] (obtained with an averaging procedure similar to that used by FLAG). This
simulation is labeled with i = 1, so that

Q1 =
Y1

Z
. (11)

The other simulations have results labeled Qj , with j ≥ 2. In this set up, the issue is that
Z is correlated with the Qj , j ≥ 2.10

We begin by decomposing the error in Q1 in the same schematic form as above,

Q1 = x1 ±
σ
(1)
Y1

Z
±
σ
(2)
Y1

Z
± · · · ±

σ
(E)
Y1

Z
± Y1σZ

Z
2 . (12)

Here the last term represents the error propagating from that in Z, while the others arise
from errors in Y1. For the remaining Qj (j ≥ 2) the decomposition is as in Eq. (3). The
total error of Q1 then reads

σ2
1 =

(
σ
(1)
Y1

Z

)2

+

(
σ
(2)
Y1

Z

)2

+ · · ·+
(
σ
(E)
Y1

Z

)2

+

(
Y1

Z
2

)2

σ2
Z
, (13)

10There is also a small correlation between Y1 and Z, but we follow the original Ref. [79] and do not take
this into account. Thus, the error in Q1 is obtained by simple error propagation from those in Y1 and Z.
Ignoring this correlation is conservative, because, as in the calculation of BK , the correlations between BBf

2
B

and f2
B tend to lead to a cancellation of errors. By ignoring this effect we are making a small overestimate of

the error in Q1.
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while that for the Qj (j ≥ 2) is

σ2
j =

(
σ
(1)
j

)2
+
(
σ
(2)
j

)2
+ · · ·+

(
σ
(E)
j

)2
. (14)

Correlations between Qj and Qk (j, k ≥ 2) are taken care of by Schmelling’s prescription,
as explained above. What is new here is how the correlations between Q1 and Qj (j ≥ 2)
are taken into account.

To proceed, we recall from Eq. (9) that σZ is given by

σ2
Z
=

M ′∑
i′,j′=1

ω[Z]i′ω[Z]j′C[Z]i′j′ . (15)

Here the indices i′ and j′ run over the M ′ simulations that contribute to Z, which, in
general, are different from those contributing to the results for Q. The weights ω[Z] and
covariance matrix C[Z] are given an explicit argument Z to emphasize that they refer
to the calculation of this quantity and not to that of Q. C[Z] is calculated using the

Schmelling prescription [Eqs. (7)–(9)] in terms of the errors, σ[Z]
(α)
i′ , taking into account

the correlations between the different calculations of Z.
We now generalize Schmelling’s prescription for σi;j , Eq. (7), to that for σ1;k (k ≥ 2),

i.e., the part of the error in Q1 that is correlated with Qk. We take

σ1;k =

√√√√ 1

Z
2

′∑
(α)↔k

[
σ
(α)
Y1

]2
+
Y 2
1

Z
4

M ′∑
i′,j′

ω[Z]i′ω[Z]j′C[Z]i′j′↔k . (16)

The first term under the square root sums those sources of error in Y1 that are correlated
with Qk. Here we are using a more explicit notation from that in Eq. (7), with (α) ↔ k

indicating that the sum is restricted to the values of α for which the error σ
(α)
Y1

is correlated

with Qk. The second term accounts for the correlations within Z with Qk, and is the
nested part of the present scheme. The new matrix C[Z]i′j′↔k is a restriction of the full
covariance matrix C[Z], and is defined as follows. Its diagonal elements are given by

C[Z]i′i′↔k = (σ[Z]i′↔k)
2 (i′ = 1, · · · ,M ′) , (17)

(σ[Z]i′↔k)
2 =

′∑
(α)↔k

(σ[Z]
(α)
i′ )2, (18)

where the summation
∑′

(α)↔k over (α) is restricted to those σ[Z]
(α)
i′ that are correlated

with Qk. The off-diagonal elements are

C[Z]i′j′↔k = σ[Z]i′;j′↔k σ[Z]j′;i′↔k (i′ ̸= j′) , (19)

σ[Z]i′;j′↔k =

√√√√ ′∑
(α)↔j′k

(σ[Z]
(α)
i′ )2, (20)

where the summation
∑′

(α)↔j′k over (α) is restricted to σ[Z]
(α)
i′ that are correlated with

both Zj′ and Qk.
The last quantity that we need to define is σk;1.

σk;1 =

√√√√ ′∑
(α)↔1

[
σ
(α)
k

]2
, (21)
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where the summation
∑′

(α)↔1 is restricted to those σ
(α)
k that are correlated with one of

the terms in Eq. (13).
In summary, we construct the covariance matrix Cij using Eq. (8), as in the generic

case, except the expressions for σ1;k and σk;1 are now given by Eqs. (16) and (21), respec-
tively. All other σi;j are given by the original Schmelling prescription, Eq. (7). In this
way, we extend the philosophy of Schmelling’s approach while accounting for the more
involved correlations.
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3 General definition of the low-energy limit of the
Standard Model

Authors: A. Portelli, A. Ramos, N. Tantalo

This section discusses the matching of quantum chromodynamics (QCD) and quantum
electrodynamics (QED) to nature in order to obtain predictions for low-energy Standard
Model observables. In particular, we discuss the prescription dependence, i.e., the depen-
dence on which observables are matched, arising when one neglects electromagnetic inter-
actions, an approximation made in numerous lattice and phenomenological calculations.
These ambiguities need to be controlled when combining high-precision observables—
typically with less than 1% of relative uncertainty—in that approximation. In order to
facilitate that, we propose here a fixed prescription for the separation of QCD and QED
contributions to any given hadronic observable. While this prescription is, in principle,
arbitrary, one has to take care not to introduce artificially large QED contributions and
to stay close to prescriptions used commonly in phenomenology. This prescription was
discussed and agreed upon during an open workshop that took place at the Higgs Cen-
tre for Theoretical Physics, Edinburgh, in May 2023, and therefore is referred to as the
“Edinburgh Consensus.”11

We note that since this consensus emerged only recently, the majority of results in this
review are averaged neglecting potential discrepancies arising from the ambiguities. This
is, on the one hand, an adequate procedure in the case of quantities with uncertainties
larger than the size of expected QED corrections. On the other hand, it can be difficult
to correct these ambiguities to a common prescription since it requires the knowledge of
derivatives of observables in quark masses and couplings, rarely communicated in papers.
We emphasize the present consensus in the hope that it will be widely adopted in upcoming
high-precision Standard Model predictions, allowing future editions of this review to avoid
uncertainties resulting from these ambiguities.

3.1 First-order isospin-breaking expansion

According to our present knowledge, hadronic physics is well described by the low-energy
limit of the Standard Model, which is understood as energies well below the electroweak
symmetry-breaking scale SESB ≈ 100 GeV. In that limit, the Standard Model is an
SU(3)×U(1) gauge theory defined by the QCD+QED Lagrangian, whose free parameters
are the e-, µ-, and τ -lepton masses, the u-, d-, s-, c-, and b-quark masses, and the strong
and electromagnetic coupling constants, respectively, gs and e. In that context, isospin
symmetry is defined by assuming that the up and down quarks are identical particles apart
from their flavour. This symmetry is only approximate and it is broken by two effects:
the small but different masses of the two quarks, and their different electric charges. The
total effect is expected to be small, typically a O(1%) perturbation of a hadronic energy
or amplitude. Therefore, we consider only first-order perturbations in isospin-breaking
effects, and we expect this approximation to be accurate at the level of O(10−4) relative
precision.

The asymptotic states of QCD are hadrons not quarks, and hadron properties are the
only unambiguous observables experimentally available. Similarly, the strong coupling
constant is not directly accessible and can be substituted through dimensional transmu-
tation by a dimensionful hadronic energy scale. Moreover, the running of the electromag-
netic coupling constant is a higher-order correction beyond the order considered here. It
can be fixed to its Thomson-limit value. Finally, nature can be reproduced (up to weak

11https://indico.ph.ed.ac.uk/event/257/

31

https://indico.ph.ed.ac.uk/event/257/


and gravitational effects) by fixing the bare parameters of the QCD+QED Lagrangian to
reproduce the following inputs:

1. the Thomson-limit constant αϕ = e2

4π = 7.2973525693(11)× 10−3 [205],

2. the experimentally observed lepton masses mϕ
ℓ ,

3. a choice of Nf known independent hadronic quantitiesMϕ, setting the quark masses,

4. a single known dimensionful hadronic quantity Sϕ, setting the QCD scale.

The vectors mℓ and M have three and Nf components, respectively, where Nf is the
number of quark flavours in the calculation. In the present context, “known” is understood
as experimentally known for measurable quantities, or theoretically predicted for more
abstract quantitities, which are not accessible experimentally, but are renormalized and
gauge invariant and can be predicted by lattice gauge theory. If the dependency of a
given observable X(α,mℓ,M,S) on the above variables is known, then its physical value
is predicted by

Xϕ = (Sϕ)[X]X̃(αϕ,mϕ
ℓ /Sϕ,Mϕ/Sϕ) ≡ X(αϕ,mϕ

ℓ ,M
ϕ,Sϕ) , (22)

where X̃ is the dimensionless function describing X in units of the scale S, and [X] is the
energy dimension of X. Here M and S are assumed, without loss of generality, to have
an energy dimension of 1. Due to the renormalizability of QCD+QED, this prediction is
unambiguous, i.e., changing the variablesMϕ and Sϕ to other inputs with known physical
values will lead to the same prediction for renormalized observables.12

In many instances, the precision required on hadronic observables is not as small as
one percent, and isospin-breaking effects are potentially negligible. In those cases, it is
generally considerably simpler to neglect the QED contributions, both for lattice and
phenomenological calculations. Moreover, even for observables requiring isospin-breaking
corrections to be computed, it can be phenomenologically relevant to separate an isospin-
symmetric value and isospin-breaking corrections (e.g., specific parts of the HVP contri-
bution to the muon g − 2, decay constants in weak decays). However, since experimental
measurements always contain isospin-breaking corrections, there are no experimental re-
sult available to define the list of inputs above for α = 0, or in the isospin-symmetric
limit. Still, one would like to define an expansion of the form

Xϕ = X̄ +Xγ +XSU(2) , (23)

where X̄ is the isospin-symmetric value of X, and Xγ and XSU(2) are the first-order
electromagnetic and strong isospin-breaking corrections, respectively. Only the sum of
these three terms is unambiguous.13 Defining a value for individual terms is prescription-
dependent, and requires additional, in principle arbitrary, inputs. This issue has been
discussed in reviews [206, 207], and both the phenomenology [208–210] and lattice [24, 25,
116, 211–221] literature. If quantities defined at α = 0 are involved in the investigation of
anomalies related to new physics searches, the associated prescriptions must be matched
across predictions. In the next section, we propose a prescription agreed upon at the
dedicated May 2023 workshop in Edinburgh.

3.2 Edinburgh Consensus

The decomposition Eq. (23) can be unambiguously defined given two extra sets of inputs
(m̂ℓ, M̂ , Ŝ) and (m̄ℓ, M̄ , S̄) specifying pure QCD and isospin-symmetric QCD, respectively

12Here “renormalizability” for QED is understood as perturbative renormalizability, which is sufficient in
this context.

13Here “unambiguous” is used in a loose sense. Ambiguities of the order O(1/mZ) and O(1/mNf+1), as well
as higher-order isospin-breaking corrections, remain and are considered to be irrelevant.
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QCD isoQCD QCD isoQCD
Mπ+ 135.0 MeV 135.0 MeV Mπ+/fπ+ 1.034 1.034
MK+ 491.6 MeV 494.6 MeV MK+/fπ+ 3.767 3.790
MK0 497.6 MeV 494.6 MeV MK0/fπ+ 3.813 3.790
MD+

s
1967 MeV 1967 MeV MD+

s
/fπ+ 15.07 15.07

MB0
s

5367 MeV 5367 MeV MB0
s
/fπ+ 41.13 41.13

fπ+ 130.5 MeV 130.5 MeV

Table 6: Edinburgh Consensus for the definition of pure QCD and isospin-symmetric QCD.
The rightmost table is redundant and provided for convenience.

(denoted QCD and isoQCD). It is understood that in QCD isospin symmetry can still
be broken by the up-down quark-mass difference. The QCD and isoQCD values of an
observable X can then be defined by

X̂ = X(0, m̂ℓ, M̂ , Ŝ) and X̄ = X(0, m̄ℓ, M̄ , S̄) , (24)

respectively. The variables M̄ , S̄ must have one dimension of linear dependency to reflect
the exact isospin symmetry of this theory. This means that there are only Nf independent
numbers. Finally, the corrections in Eq. (23) are then defined by

Xγ = Xϕ − X̂ and XSU(2) = X̂ − X̄ . (25)

One should notice that these definitions already constitute in themselves a prescription,
as QED has an isospin-symmetric component which is here assumed to be excluded from
the component X̄.

The proposed prescription defines lepton masses to always be equal to their ex-
perimental values (for which negligible experimental uncertainties are discarded), i.e.,

m̂ℓ = m̄ℓ = mϕ
ℓ , and is based on the mass variables M = (Mπ+ ,MK+ ,MK0 ,MD+

s
,MB0

s
)

and the scale-setting quantity fπ+ , with the values given in Tab. 6.14 We will now com-
ment on the definition and applications of that prescription.

3.3 Comparison to other schemes

The hadronic quantities that define the proposed prescription, as well as their input values,
have been chosen to balance between two main constraints, on the one hand numerical
and on the other hand theoretical. Since any uncertainties on the theoretical inputs
have to be propagated to the predictions, the numerical constraint requires choosing the
matching observables among those that can be computed on the lattice with the highest
accuracy. The theoretical constraint requires choosing a definition of QCD that leads to
isospin-breaking corrections which are as close as possible to what has commonly been
done in the past, in particular, in phenomenological calculations.

On the numerical side, all the chosen hadronic inputs can be extracted from the leading
exponential behaviour at large Euclidean times of two-point mesonic lattice correlators
with high numerical precision. This constraint is the main reason behind the choice of
fπ+ as the scale-setting observable. From the theoretical and phenomenological perspec-
tives, this can be seen as an uncomfortable choice. Indeed, the physical quantity that is
measured in experiments is the leptonic decay rate of the charged pion. In the full theory
(QCD+QED) soft photons as well as nonfactorisable virtual QED corrections have to be
taken into account in the theoretical calculation in order to use the experimental values as

14For calculations with no active c and/or b quarks, the M
D+

s
and/or MB0

s
components should be ignored.
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an input, and previous knowledge of the CKM matrix element Vud is required. From this
perspective, for example, the choice of the Ω−-baryon mass used by several lattice col-
laborations might be more natural. However, the majority of lattice calculations are still
performed in the α = 0 limit, which makes fπ+ a more accessible choice than a baryonic
quantity in most cases. It is crucial to note that our prescription defines QCD and iso-
QCD in the space of possible α = 0 theories, but the choice of coordinates to define these
points is arbitrary and can be changed using standard change-of-variable algebra, while
keeping the prescription fixed. In particular, the scale setting variable can be changed, as
we discuss now.

The prescription above can be implemented by using other inputs. This is possible
because QCD is renormalizable. Indeed, one can start by defining QCD using our pre-
scription to compute X̂ and M̂Ω, following the notation of the previous section, namely

X̂ = X(0, m̂ℓ, M̂ , f̂π+) and M̂Ω =MΩ(0, m̂ℓ, M̂ , f̂π+) , (26)

where M̂ and f̂π+ are given by the “QCD” column in Tab. 6. Once this calculation has
been done, the value of M̂Ω that has been obtained (assuming for the moment that the

errors are negligible) can be substituted to f̂π+ to redefine our prescription independently
from the pion decay constant. In practice, though, it will not be possible to neglect the
errors on M̂Ω. This means that the equivalence between the two sets of coordinates,
explicitly

X̂ = X(0, m̂ℓ, M̂ , f̂π+) = X(0, m̂ℓ, M̂ , M̂Ω) , (27)

can be established within the errors on M̂Ω that will have to be propagated on any
prediction. In this respect, the choice of defining QCD by prescribing with no errors the
values appearing in Tab. 6 puts the choice of f̂π+ on a slightly different footing than M̂Ω.
The accuracy of this matching will directly depend on the accuracy of the dimensionless
ratio M̂Ω/f̂π+ . The whole discussion above can be reiterated identically for isoQCD,
replacing hatted quantities (X̂, . . . ) with barred ones (X̄, . . . ). It is important to note
that fπ+ is used only to define QCD and plays no role in defining the full QCD+QED
theory. In particular, through a change of scale variable, like that discussed above, one
does not need to know the QED correction to the π+ leptonic decay rate to use our
prescription, and one does not lose the ability to predict this rate for high-precision
determinations of the |Vud| CKM matrix element.

Theoretical constraints are the main reason behind the particular choice of values
prescribed in Tab. 6. Most isospin-breaking separation schemes used in the literature
aim at keeping constant the value of a definition of the renormalized quark masses when
sending α to zero between the physical QCD+QED theory and QCD. Such a class of con-
straints was implemented in various ways, for example by the RM123/RM123S collabora-
tion by computing directly quark masses in the MS scheme at 2 GeV [212, 217, 222, 223].
Another example comes from the BMW collaboration, which used in several calcula-
tions [24, 116, 211, 221] a scheme defined by keeping fixed the squared masses of q̄q-
connected mesons when changing α. Although these schemes share similar aims, they are
not equivalent and differ by the choice of renormalization scale and scheme, as well as
the contribution from higher-order chiral corrections when using squared meson masses.
However, at the level of precision of current lattice calculations, no significant discrep-
ancies were observed between both approaches [217, 220, 221, 224], and the numerical
values of the pion and kaon masses in Tab. 6 are compatible with these determinations
within the current level of precision. We also note that the mass values prescribed here
are compatible with those produced from phenomenological inputs in the first edition of
FLAG [1], which predates the lattice references quoted above.

We end this chapter with a comment on Gasser-Rusetsky-Scimemi (GRS) type schemes
[209]. These authors emphasized the importance of keeping track of the scheme depen-
dence of the splitting in Eq. (23). They furthermore proposed to keep renormalized quark
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masses and the strong coupling at a particular matching scale µ1 (and a chosen renor-
malization scheme) fixed as one turns off the electromagnetic coupling. In contrast to the
perturbative models studied by GRS, such a scheme is hard to implement in QCD. Even
on the lattice, uncertainties are introduced which are larger than the isospin-breaking cor-
rections (see the sections on quark masses and αs). The RM123S scheme [222] mentioned
above is an electro-quenched GRS type scheme.15 Since there are no electromagnetic con-
tributions to αs in the electro-quenched approximation, the generic difficulties of a GRS
type scheme are circumvented.

15The electro-quenched approximation is defined by setting the electric charges of the sea quarks to zero.
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4 Quark masses

Authors: T. Blum, A. Portelli, A. Ramos

Quark masses are fundamental parameters of the Standard Model. An accurate de-
termination of these parameters is important for both phenomenological and theoretical
applications. The bottom- and charm-quark masses, for instance, are important sources
of parametric uncertainties in several Higgs decay modes. The up-, down- and strange-
quark masses govern the amount of explicit chiral symmetry breaking in QCD. From a
theoretical point of view, the values of quark masses provide information about the flavour
structure of physics beyond the Standard Model. The Review of Particle Physics of the
Particle Data Group contains a review of quark masses [225], which covers light as well
as heavy flavours. Here, we also consider light- and heavy-quark masses, but focus on
lattice results and discuss them in more detail. We do not discuss the top quark, however,
because it decays weakly before it can hadronize, and the nonperturbative QCD dynamics
described by present day lattice calculations is not relevant. The lattice determination
of light- (up, down, strange), charm- and bottom-quark masses is considered below in
Secs. 4.1, 4.2, and 4.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be
isolated, as they are confined inside hadrons. From a theoretical point of view, in QCD
with Nf flavours, a precise definition of quark masses requires one to choose a particu-
lar renormalization scheme. This renormalization procedure introduces a renormalization
scale µ, and quark masses depend on this renormalization scale according to the Renor-
malization Group (RG) equations. In mass-independent renormalization schemes the RG
equations read

µ
dm̄i(µ)

dµ
= m̄i(µ)τ(ḡ) , (28)

where the function τ(ḡ) is the anomalous dimension, which depends only on the value
of the strong coupling αs = ḡ2/(4π). Note that in QCD τ(ḡ) is the same for all quark
flavours. The anomalous dimension is scheme dependent, but its perturbative expansion

τ(ḡ)
ḡ→0∼ − ḡ2

(
d0 + d1ḡ

2 + . . .
)

(29)

has a leading coefficient d0 = 8/(4π)2, which is scheme independent.16 Equation (28),
being a first order differential equation, can be solved exactly by using Eq. (29) as the
boundary condition. The formal solution of the RG equation reads

Mi = m̄i(µ)[2b0ḡ
2(µ)]−d0/(2b0) exp

{
−
∫ ḡ(µ)

0

dx

[
τ(x)

β(x)
− d0
b0x

]}
, (30)

where b0 = (11 − 2Nf/3)/(4π)
2 is the universal leading perturbative coefficient in the

expansion of the β-function

β(ḡ) ≡ µdḡ
dµ

ḡ→0∼ − ḡ3
(
b0 + b1ḡ

2 + . . .
)

(31)

which governs the running of the strong coupling. The renormalization group invariant
(RGI) quark masses Mi are formally integration constants of the RG Eq. (28). They are
scale independent, and due to the universality of the coefficient d0, they are also scheme
independent. Moreover, they are nonperturbatively defined by Eq. (30). They only
depend on the number of flavours Nf , making them a natural candidate to quote quark
masses and compare determinations from different lattice collaborations. Nevertheless, it

16We follow the conventions of Gasser and Leutwyler [208].
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is customary in the phenomenology community to use the MS scheme at a scale µ = 2
GeV to compare different results for light quarks and the charm quark, and to use a
scale equal to its own mass for the charm and bottom. In this review, we will quote final
averages for both quantities.

Results for quark masses are always quoted in the four-flavour theory unless otherwise
noted. Nf = 2 + 1 results have to be converted to the four-flavour theory. Fortunately,
the charm quark is heavy (ΛQCD/mc)

2 < 1, and this conversion can be performed in
perturbation theory with negligible (∼ 0.2%) perturbative uncertainties.

Nonperturbative corrections in this matching are more difficult to estimate. Lattice
determinations do not show any significant deviation betweenNf = 2+1 andNf = 2+1+1
calculations. For example, the difference in the final averages for the mass of the strange
quark ms between Nf = 2 + 1 and Nf = 2 + 1 + 1 determinations is about 1.3%, or
about one standard deviation. Since these effects are suppressed by a factor of 1/Nc,
and a factor of the strong coupling at the scale of the charm mass, naive power counting
arguments would suggest that the effects are ∼ 1%, in line with the above observation. On
the other hand, numerical nonperturbative studies [198, 200, 226] have found this power
counting argument to be an overestimate by one order of magnitude in the determination
the Λ-parameter and other quantities.

We quote all final averages at 2 GeV in the MS scheme and also the RGI values (in
the four-flavour theory). We use the exact RG Eq. (30). Note that to use this equation
we need the value of the strong coupling in the MS scheme at a scale µ = 2 GeV. All our
results are obtained from the RG equation in the MS scheme and the 5-loop beta function

together with the value of the Λ-parameter in the four-flavour theory Λ
(4)

MS
= 295(10)MeV

obtained in this review (see Sec. 9). We use the 5-loop mass anomalous dimension as
well [227]. In the uncertainties of the RGI masses, we separate the contributions from the

determination of the quark masses and the propagation of the uncertainty of Λ
(4)

MS
. These

are identified with the subscripts m and Λ, respectively.
Conceptually, all lattice determinations of quark masses contain three basic ingredi-

ents:

1. Tuning the lattice bare-quark masses to match the experimental values of some
quantities. Pseudo-scalar meson masses provide the most common choice, since
they have a strong dependence on the values of quark masses.

2. Renormalization of the bare-quark masses. Bare-quark masses determined with the
above-mentioned criteria have to be renormalized. Many of the latest determinations
use some nonperturbatively defined scheme. One can also use perturbation theory
to connect directly the values of the bare-quark masses to the values in the MS
scheme at 2 GeV. Experience shows that 1-loop calculations are unreliable for the
renormalization of quark masses: usually at least two loops are required to have
trustworthy results.

3. If quark masses have been nonperturbatively renormalized, for example, to some
MOM or SF scheme, the values in this scheme must be converted to the phenomeno-
logically useful values in the MS scheme (or to the scheme/scale independent RGI
masses). Either option requires the use of perturbation theory. The larger the en-
ergy scale of this matching with perturbation theory, the better, and many recent
computations in MOM schemes do a nonperturbative running up to 3–4 GeV. Com-
putations in the SF scheme allow us to perform this running nonperturbatively over
large energy scales and match with perturbation theory directly at the electro-weak
scale ∼ 100 GeV.

Note that many lattice determinations of quark masses make use of perturbation theory
at a scale of a few GeV.

We mention that lattice-QCD calculations of the b-quark mass have an additional
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complication which is not present in the case of the charm and light quarks. At the
lattice spacings currently used in numerical calculations the direct treatment of the b
quark with the fermionic actions commonly used for light quarks is very challenging.
Only two determinations of the b-quark mass use this approach, reaching the physical
b-quark mass region at two lattice spacings with aM ∼ 1. There are a few widely used
approaches to treat the b quark on the lattice, which have already been discussed in the
FLAG 13 review (see Sec. 8 of Ref. [2]). Those relevant for the determination of the
b-quark mass will be briefly described in Sec. 4.3.

4.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for
the up and down quarks) or small (for the strange quark) compared to typical hadronic
scales. Thus, their impact on typical hadronic observables is minute, and it is difficult to
isolate their contribution accurately.

Fortunately, the spontaneous breaking of SU(3)L×SU(3)R chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e., pions, kaons, and eta. Indeed, the Gell-
Mann-Oakes-Renner relation [228] predicts that the squared mass of a NGB is directly
proportional to the sum of the masses of the quark and antiquark which compose it,
up to higher-order mass corrections. Moreover, because these NGBs are light, and are
composed of only two valence particles, their masses have a particularly clean statistical
signal in lattice-QCD calculations. In addition, the experimental uncertainties on these
meson masses are negligible. Thus, in lattice calculations, light-quark masses are typically
obtained by renormalizing the input quark mass and tuning them to reproduce NGB
masses, as described above.

4.1.1 Lattice determination of ms and mud

We now turn to a review of the lattice calculations of the light-quark masses and begin
with ms, the isospin-averaged up- and down-quark mass mud, and their ratio. Most
groups quote only mud, not the individual up- and down-quark masses. We then discuss
the ratio mu/md and the individual determinations of mu and md.

Quark masses have been calculated on the lattice since the mid-nineties. However,
early calculations were performed in the quenched approximation, leading to unquantifi-
able systematics. Thus, in the following, we only review modern, unquenched calculations,
which include the effects of light sea quarks.

Tables 7 and 8 list the results of Nf = 2+1 and Nf = 2+1+1 lattice calculations ofms

andmud. These results are given in the MS scheme at 2GeV, which is standard nowadays,
though some groups are starting to quote results at higher scales (e.g., Ref. [229]). The
tables also show the colour coding of the calculations leading to these results. As indicated
earlier in this review, we treat calculations with different values of Nf separately.

Nf = 2 + 1 lattice calculations

We begin with Nf = 2 + 1 calculations (see FLAG 19 and earlier editions for two-
flavour results). These and the corresponding results for mud and ms are summarized
in Tab. 7. Given the very high precision of a number of the results, with total errors on
the order of 1%, it is important to consider the effects neglected in these calculations.
Isospin-breaking and electromagnetic effects are small on mud and ms, and have been
approximately accounted for in the calculations that will be retained for our averages.
We have already commented that the effect of the omission of the charm quark in the sea
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is expected to be small, below our current precision, and we do not add any additional
uncertainty due to these effects in the final averages.

The only new computation since the previous FLAG edition is the determination of
light-quark masses by the CLQCD collaboration (CLQCD 23 [10]). Using stout-smeared
clover fermions, the ensembles reach the physical point and have three lattice spacings
to perform the continuum extrapolation. These look under control, having in all cases
δ(amin) < 2 (see 2.1.2). Volumes are large, and these characteristics ensure that the rating
is ⋆ in all criteria. Renormalization is performed nonperturbatively in two different setups
(RI/MOM and SMOM), with the difference used as a systematic effect. This systematic
effect, in fact, dominates their error budget.

The ALPHA collaboration [22] uses nonperturbatively O(a) improved Wilson fermions
(a subset of the CLS ensembles [245]). The renormalization is performed nonperturba-
tively in the SF scheme from 200 MeV up to the electroweak scale ∼ 100 GeV [246].
This nonperturbative running over such large energy scales avoids any use of perturba-
tion theory at low energy scales, but adds a cost in terms of uncertainty: the running
alone propagates to ≈ 1% of the error in quark masses. This turns out to be one of the
dominant pieces of uncertainty for the case of ms. On the other hand, for the case of mud,
the uncertainty is dominated by the chiral extrapolations. The ensembles used include
four values of the lattice spacing below 0.09 fm, which qualifies for a ⋆ in the continuum
extrapolation, and pion masses down to 200 MeV. This value lies just at the boundary
of the ⋆ rating, but since the chiral extrapolation is a substantial source of systematic
uncertainty, we opted to rate the work with a ◦ . In any case, this work enters in the
average and their results show a reasonable agreement with the FLAG average. In all
cases the data driven continuum limit criteria shows δ(amin) < 3.

We now comment in some detail on previous works that also contribute to the averages.
RBC/UKQCD 14 [12] significantly improves on their RBC/UKQCD 12B [229] work

by adding three new domain wall fermion ensembles to three used previously. Two of the
new simulations are performed at essentially physical pion masses (Mπ ≃ 139MeV) on
lattices of about 5.4 fm in size and with lattice spacings of 0.114 fm and 0.084 fm. It is
complemented by a third simulation withMπ ≃ 371MeV, a ≃ 0.063 fm and a rather small
L ≃ 2.0 fm. Altogether, this gives them six simulations with six unitary (msea = mval)
Mπ’s in the range of 139 to 371MeV, and effectively three lattice spacings from 0.063 to
0.114 fm. They perform a combined global continuum and chiral fit to all of their results
for the π and K masses and decay constants, the Ω baryon mass and two Wilson-flow
parameters. Quark masses in these fits are renormalized and run nonperturbatively in the
RI-SMOM scheme. This is done by computing the relevant renormalization constant for
a reference ensemble, and determining those for other simulations relative to it by adding
appropriate parameters in the global fit. This calculation passes all of our selection
criteria, with δ(amin) ≈ 1.

Nf = 2 + 1 MILC results for light-quark masses go back to 2004 [239, 240]. They
use rooted staggered fermions. By 2009 their simulations covered an impressive range of
parameter space, with lattice spacings going down to 0.045 fm, and valence-pion masses
down to approximately 180 MeV [19]. The most recent MILC Nf = 2 + 1 results, i.e.,
MILC 10A [16] and MILC 09A [19], feature large statistics and 2-loop renormalization.
Since these data sets subsume those of their previous calculations, these latest results are
the only ones that need to be kept in any world average.

The BMW 10A, 10B [13, 14] calculation still satisfies our stricter selection criteria.
They reach the physical up- and down-quark mass by interpolation instead of by extrap-
olation. Moreover, their calculation was performed at five lattice spacings ranging from
0.054 to 0.116 fm, with small extrapolations δ(amin) < 2. The work uses full nonpertur-
bative renormalization and running and in volumes of up to (6 fm)3, guaranteeing that
the continuum limit, renormalization, and infinite-volume extrapolation are controlled. It
does neglect, however, isospin-breaking effects, which are small on the scale of their error
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bars.
Finally, we come to another calculation which satisfies our selection criteria, HPQCD 10

[15]. It updates the staggered-fermions calculation of HPQCD 09A [33]. In those papers,
the renormalized mass of the strange quark is obtained by combining the result of a pre-
cise calculation of the renormalized charm-quark mass mc with the result of a calculation
of the quark-mass ratio mc/ms. As described in Ref. [244] and in Sec. 4.2, HPQCD de-
termines mc by fitting Euclidean-time moments of the c̄c pseudoscalar density two-point
functions, obtained numerically in lattice QCD, to fourth-order, continuum perturbative
expressions. These moments are normalized and chosen so as to require no renormaliza-
tion with staggered fermions. Since mc/ms requires no renormalization either, HPQCD’s
approach displaces the problem of lattice renormalization in the computation of ms to
one of computing continuum perturbative expressions for the moments. To calculate mud

HPQCD 10 [15] use the MILC 09 determination of the quark-mass ratio ms/mud [196].
HPQCD 09A [33] obtains mc/ms = 11.85(16) [33] fully nonperturbatively, with a

precision slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass,
mc(mc) = 1.268(6),17 is even more precise, achieving an accuracy better than 0.5%.

This discussion leaves us with six results for our final average for ms: CLQCD
23 [10], ALPHA 19 [22], MILC 09A [19], BMW 10A, 10B [13, 14], HPQCD 10 [15]
and RBC/UKQCD 14 [12]. Assuming that the result from HPQCD 10 is 100% correlated
with that of MILC 09A, as it is based on a subset of the MILC 09A configurations, we
find ms = 92.3(1.0)MeV with a χ2/dof = 1.60.

For the light-quark mass mud, the results satisfying our criteria are CLQCD 23, AL-
PHA 19, RBC/UKQCD 14B, BMW 10A, 10B, HPQCD 10, and MILC 10A. For the
error, we include the same 100% correlation between statistical errors for the latter two
as for the strange case, resulting in the following (at scale 2 GeV in the MS scheme, and
χ2/dof=1.4),

mud = 3.387(39) MeV Refs. [11–16],
Nf = 2 + 1 : (32)

ms = 92.4(1.0) MeV Refs. [11–15, 19].

And the RGI values

MRGI
ud = 4.714(55)m(46)Λ MeV Refs. [10–16],

Nf = 2 + 1 : (33)
MRGI
s = 128.5(1.4)m(1.2)Λ MeV Refs. [10–15, 19].

Nf = 2 + 1 + 1 lattice calculations

Since the previous review a new computation of ms,mud has appeared, ETM 21A [7].
Using twisted-mass fermions with an added clover term to suppress O(a2) effects between
the neutral and charged pions, this work represents a significant improvement over ETM
14 [8]. Renormalization is performed nonperturbatively in the RI-MOM scheme. Their
ensembles comprise three lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for
the finest lattice spacings with pion masses reaching down to the physical point in the
two finest lattices spacings allowing a controlled chiral extrapolation. Their volumes are
large, with mπL between four and five. These characteristics of their ensembles pass the
most stringent FLAG criteria in all categories. This work extracts quark masses from two
different quantities, one based on the meson spectrum and the other based on the baryon
spectrum. Results obtained with these two methods agree within errors, but the size of
the continuum extrapolation is much larger for the case of the extractions based on the
meson spectrum. In particular, we estimate that δ(amin) = 4–4.5 for the individual fits
that enter the determination of mud,ms respectively. We note that while these values are

17To obtain this number, we have used the conversion from µ = 3 GeV to mc given in Ref. [244].
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somewhat large, the systematic errors that the authors estimate in the determinations of
the light-quark masses are about the same size as the statistical fluctuations. This will
reduce the stretching factors to a value close to one, and, therefore we do not apply any
additional corrections for these cases. Nevertheless, we stress that some large continuum
extrapolations are present in this work.

Determinations based on the baryon spectrum agree well with the FLAG average while
the ones based on the meson sector are high in comparison (there is good agreement with
their previous results, ETM 14 [8]). Related with the previous point, it is important to
note that the determinations that involve large continuum extrapolations are the ones
that show a larger tension.

There are three other works that enter in light-quark mass averages. Contributing
both to the average of mud and ms is FNAL/MILC/TUMQCD 18 [9]. They perform
a determination of the strange-quark mass using masses of the heavy-strange mesons as
input. In this case, some very large continuum extrapolations, with δ(amin) ≈ 14 enter
in a global analysis, but for the determination of the light-quark masses, we believe that
the influence of the data at heavier masses on the determination of the fit parameter
that determines ms is small. In the region mheavy < 3 GeV the extrapolations are much
better under control, and in fact involve up to five lattice spacing. We conclude that the
large value of δ(amin) does not influence significantly the values of the light-quark masses.
HPQCD 18 [17] and HPQCD 14A [18] contribute to the determination of mud, and both
show δ(amin) < 3 for most of their region of parameters.

The Nf = 2 + 1 + 1 results are summarized in Tab. 8. While the results of HPQCD
14A and HPQCD 18 agree well (using different methods), there are several tensions in
the determination of ms. The most significant discrepancy is between the results of
the ETM collaboration and other results. But also the two very precise determinations
of HPQCD 18 and FNAL/MILC/TUMQCD 18 show a tension. Note that the results of
Ref. [18] are reported asms(2GeV;Nf = 3) and those of Ref. [8] asmud(s)(2GeV;Nf = 4).
We convert the former to Nf = 4 and obtain ms(2GeV;Nf = 4) = 93.7(8)MeV. The
average of ETM 21A, FNAL/MILC/TUMQCD 18, HPQCD 18, ETM 14 and HPQCD
14A is 93.46(58)MeV with χ2/dof = 1.3. For the light-quark mass, we average ETM
21A, ETM 14 and FNAL/MILC/TUMQCD 18 to obtain 3.427(51) with a χ2/dof = 4.5.
We note these χ2 values are large. For the case of the light-quark masses there is a
clear tension between the ETM and FNAL/MILC/TUMQCD results. We also note that
the 2+1-flavour values are consistent with the four-flavour ones, so in all cases we have
simply quoted averages according to FLAG rules, including stretching factors for the errors
based on χ2 values of our fits. Nevertheless it is worth pointing out that large continuum
extrapolations are present in the Nf = 2+1+1 determination of quark masses. Global fits
that aim at describing results obtained for a wide range of quark masses are involved in
many analyses. At small quark masses many lattice spacing enter these determinations,
but how the large quark mass region influences the precision obtained at small quark
masses is something that deserves further investigation.

mud = 3.427(51) MeV Refs. [7–9],
Nf = 2 + 1 + 1 : (34)

ms = 93.46(58) MeV Refs. [7–9, 17, 18],

and the RGI values

MRGI
ud = 4.768(71)m(46)Λ MeV Refs. [7–9],

Nf = 2 + 1 + 1 : (35)
MRGI
s = 130.0(0.8)m(1.3)Λ MeV Refs. [7–9, 17, 18].

In Figs. 1 and 2 the lattice results listed in Tabs. 7 and 8 and the FLAG averages
obtained at each value of Nf are presented and compared with various phenomenological
results.
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Figure 1: MS mass of the strange quark (at 2 GeV scale) in MeV. The upper two panels show
the lattice results listed in Tabs. 7 and 8, while the bottom panel collects sum rule results [247–
251]. Diamonds and squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands represent our averages
(32) and (34). The significance of the colours is explained in Sec. 2.

4.1.2 Lattice determinations of ms/mud

The lattice results for ms/mud are summarized in Tab. 9. In the ratio ms/mud, one of the
sources of systematic error—the uncertainties in the renormalization factors—drops out.
This is especially important for the recent determination by the CLQCD collaboration,
since their error budget for the individual quark masses was dominated by the systematic
associated with the renormalization. Also, other systematic effects (like the effect of the
scale setting) are reduced in these ratios. This might explain that despite the discrepancies
that are present in the individual quark mass determinations, the ratios show an overall
very good agreement.

Nf = 2 + 1 lattice calculations

CLQCD 23 [10], discussed already, is the only new result for this section. The other
works contributing to this average are ALPHA 19, RBC/UKQCD 14B, which replaces
RBC/UKQCD 12 (see Sec. 4.1.1), and the results of MILC 09A and BMW 10A, 10B.

The results show very good agreement with a χ2/dof = 0.14. The final uncertainty
(≈ 0.5%) is smaller than the ones of the quark masses themselves. At this level of precision,
the uncertainties in the electromagnetic and strong isospin-breaking corrections might not
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Figure 2: Mean mass of the two lightest quarks, mud = 1
2(mu +md). The bottom panel

shows results based on sum rules [247, 250, 252] (for more details see Fig. 1).

be completely negligible. Nevertheless, we decided not to add any uncertainty associated
with this effect. The main reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive power counting estimates
(see Nf = 2 + 1 + 1 section),

Nf = 2 + 1 : ms/mud = 27.42 (12) Refs. [12–14, 19, 22] . (36)

Nf = 2 + 1 + 1 lattice calculations

For Nf = 2+ 1+ 1 there are four results, ETM 21 [7], MILC 17 [20], ETM 14 [8] and
FNAL/MILC 14A [21], all of which satisfy our selection criteria.

All these works have been discussed in the previous FLAG edition [4], except the new
result ETM 21A, that we have already examined. The fit has χ2/dof ≈ 1.7, and the result
shows reasonable agreement with the Nf = 2 + 1 result.

Nf = 2 + 1 + 1 : ms/mud = 27.227 (81) Refs. [7, 8, 20, 21], (37)
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which corresponds to an overall uncertainty equal to 0.4%. It is worth noting that Ref. [20]
estimates the EM effects in this quantity to be ∼ 0.18% (or 0.049 which is less than the
quoted error above).

All the lattice results listed in Tab. 9 as well as the FLAG averages for each value of
Nf are reported in Fig. 3 and compared with χPT and sum rules.
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Figure 3: Results for the ratio ms/mud. The upper part shows the lattice results listed in
Tab. 9 together with the FLAG averages for each value of Nf . The lower part shows results
obtained from χPT and sum rules [250, 253–256].

4.1.3 Lattice determination of mu and md

In this section, we review computations of the individual mu and md quark masses, as
well as the parameter ϵ related to the violations of Dashen’s theorem

ϵ =
(∆M2

K −∆M2
π)γ

∆M2
π

, (38)

where ∆M2
π =M2

π+−M2
π0 and ∆M2

K =M2
K+−M2

K0 are the pion and kaon squared mass
splittings, respectively. The subscript γ, here and in the following, denotes corrections that
arise from electromagnetic effects only according to the prescription given in Section 3.
This parameter is often a crucial intermediate quantity in the extraction of the individual
light-quark masses. Indeed, it can be shown using the G-parity symmetry of the pion
triplet, that ∆M2

π does not receive O(mu − md) isospin-breaking corrections. In other
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words

∆M2
π = (∆M2

π)γ and ϵ =
(∆M2

K)γ
∆M2

π

− 1 , (39)

at leading order in the isospin-breaking expansion. Once known, ϵ allows one to consis-
tently subtract the electromagnetic part of the kaon-mass splitting to obtain the QCD
part of the kaon mass splitting (∆M2

K)SU(2). In contrast with the pion, the kaon QCD
splitting is sensitive to mu − md and, in particular, proportional to it at leading order
in χPT. Therefore, the knowledge of ϵ allows for the determination of mu −md from a
chiral fit to lattice-QCD data. Originally introduced in another form in [257], ϵ vanishes
in the SU(3) chiral limit, a result known as Dashen’s theorem. However, in the 1990’s nu-
merous phenomenological papers pointed out that ϵ might be an O(1) number, indicating
a significant failure of SU(3) χPT in the description of electromagnetic effects on light-
meson masses. However, the phenomenological determinations of ϵ feature some level of
controversy, leading to the rather imprecise estimate ϵ = 0.7(5) given in the first edition
of FLAG. Starting with the FLAG 19 edition of the review, we quote more precise aver-
ages for ϵ, directly obtained from lattice-QCD+QED simulations. We refer the reader to
earlier editions of FLAG and to the review [214] for discussions of the phenomenological
determinations of ϵ.

The quality criteria regarding finite-volume effects for calculations including QED are
presented in Sec. 2.1.1. Due to the long-distance nature of the electromagnetic interaction,
these effects are dominated by a power law in the lattice spatial size. The coefficients of
this expansion depend on the chosen finite-volume formulation of QED. For QEDL, these
effects on the squared mass M2 of a charged meson are given by [185, 186, 188]

∆FVM
2 = αM2

{
c1
ML

+
2c1

(ML)2
+O

[
1

(ML)3

]}
, (40)

with c1 ≃ −2.83730. It has been shown in [185] that the two first orders in this expan-
sion are exactly known for hadrons, and are equal to the pointlike case. However, the
O[1/(ML)3] term and higher orders depend on the structure of the hadron. The universal
corrections for QEDTL can also be found in [185]. In all this part, for all computations
using such universal formulae, the QED finite-volume quality criterion has been applied
with nmin = 3, otherwise nmin = 1 was used (see 2.1.1).

Since FLAG 21, one new result has been reported for nondegenerate light-quark
masses, namely CLQCD 23 [10]. This result is based on a new set of Nf = 2 + 1 stout-
smeared clover fermion simulations, including one ensemble at the physical light-quark
mass. This calculation achieves a ⋆ rating in all criteria except the inclusion of isospin-
breaking effects. Regarding the latter, (∆M2

K)γ from RM123 17 [23] is used to estimate
the QCD kaon-mass splitting required to constrain mu and md. Because of the use of a
result already averaged for Nf = 2+1+1 up- and down-quark masses, and in application
of our quality criterion, we do not include CLQCD 23 in our average for mu/md.

Regarding results already presented in previous FLAG editions, we start by reviewing
predictions for the Nf = 2+1 sector. MILC 09A [19] uses the mass difference between K0

and K+, from which they subtract electromagnetic effects using Dashen’s theorem with
corrections, as discussed in the introduction of this section. The up and down sea quarks
remain degenerate in their calculation, fixed to the value of mud obtained from Mπ0 . To
determine mu/md, BMW 10A, 10B [13, 14] follow a slightly different strategy. They
obtain this ratio from their result for ms/mud combined with a phenomenological deter-
mination of the isospin-breaking quark-mass ratio Q = 22.3(8), from η → 3π decays [261]
(the decay η → 3π is very sensitive to QCD isospin breaking, but fairly insensitive to
QED isospin breaking). Instead of subtracting electromagnetic effects using phenomenol-
ogy, RBC 07 [262] and Blum 10 [233] actually include a quenched electromagnetic field in
their calculation. This means that their results include corrections to Dashen’s theorem,
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Figure 4: Lattice results and FLAG averages at Nf = 2+1 and 2+1+1 for the up-down-quark
masses ratio mu/md, together with the current PDG estimate.

albeit only in the presence of quenched electromagnetism. Since the up and down quarks
in the sea are treated as degenerate, very small isospin corrections are neglected, as in
MILC’s calculation. PACS-CS 12 [231] takes the inclusion of isospin-breaking effects one
step further. Using reweighting techniques, it also includes electromagnetic and mu−md

effects in the sea. However, they do not correct for the large finite-volume effects coming
from electromagnetism in their MπL ∼ 2 simulations, but provide rough estimates for
their size, based on Ref. [263]. QCDSF/UKQCD 15 [259] uses QCD+QED dynamical
simulations performed at the SU(3)-flavour-symmetric point, but at a single lattice spac-
ing, so they do not enter our average. The smallest partially quenched (msea ̸= mval) pion
mass is greater than 200 MeV, so our chiral-extrapolation criteria require a ◦ rating.
Concerning finite-volume effects, this work uses three spatial extents L of 1.6 fm, 2.2 fm,
and 3.3 fm. QCDSF/UKQCD 15 claims that the volume dependence is not visible on the
two largest volumes, leading them to assume that finite-size effects are under control. As
a consequence of that, the final result for quark masses does not feature a finite-volume
extrapolation or an estimation of the finite-volume uncertainty. However, in their work
on the QED corrections to the hadron spectrum [259] based on the same ensembles, a
volume study shows some level of compatibility with the QEDL finite-volume effects de-
rived in [186]. We see two issues here. First, the analytical result quoted from [186]
predicts large, O(10%) finite-size effects from QED on the meson masses at the values of
MπL considered in QCDSF/UKQCD 15, which is inconsistent with the statement made
in the paper. Second, it is not known that the zero-mode regularization scheme used here
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has the same volume scaling as QEDL. We therefore chose to assign the ■ rating for
finite volume to QCDSF/UKQCD 15. BMW 16A [24] reuses the data set produced from
their determination of the light-baryon octet-mass splittings [211] using electro-quenched
QCD+QEDTL smeared clover-fermion simulations. Finally, MILC 16 [258], which is a
preliminary result for the value of ϵ published in MILC 18 [25], also provides a Nf = 2+1
computation of the ratio mu/md.

We now describe the Nf = 2 + 1 + 1 calculations. ETM 14 [8] uses simulations in
pure QCD, but determines mu −md from the slope ∂M2

K/∂mud and the physical value
for the QCD kaon-mass splitting taken from the phenomenological estimate in FLAG
13. In the Nf = 2 + 1 + 1 sector, MILC 18 [25] computed ϵ using Nf = 2 + 1 asqtad
electro-quenched QCD+QEDTL simulations and extracted the ratio mu/md from a new
set of Nf = 2 + 1 + 1 HISQ QCD simulations. Although ϵ comes from Nf = 2 + 1
simulations, (∆M2

K)SU(2), which is about three times larger than (∆M2
K)γ , has been

determined in the Nf = 2 + 1 + 1 theory. We therefore chose to classify this result
as a four-flavour one. This result is explicitly described by the authors as an update of
MILC 17 [20]. In MILC 17 [20],mu/md is determined as a side-product of a global analysis
of heavy-meson decay constants, using a preliminary version of ϵ from MILC 18 [25]. In
FNAL/MILC/TUMQCD 18 [9] the ratio mu/md from MILC 17 [20] is used to determine
the individual massesmu andmd from a new calculation ofmud. The work RM123 17 [23]
is the continuation of the Nf = 2 work named RM123 13 [212] in the previous edition of
FLAG. This group now uses Nf = 2+ 1+ 1 ensembles from ETM 10 [264], however, still
with a rather large minimum pion mass of 270 MeV, leading to the ◦ rating for chiral
extrapolations.

Lattice results for mu, md and mu/md are summarized in Tab. 10. The colour coding
is specified in detail in Sec. 2.1. Considering the important progress in the last years on
including isospin-breaking effects in lattice simulations, we are now in a position where
averages for mu and md can be made without the need of phenomenological inputs.
Therefore, lattice calculations of the individual quark masses using phenomenological
inputs for isospin-breaking effects will be coded ■ .

We begin with Nf = 2 + 1 (for Nf = 2 see the 2021 edition). The only result that
qualifies to enter the FLAG average is BMW 16A [24],

mu = 2.27(9)MeV Ref. [24] ,

Nf = 2 + 1 : md = 4.67(9)MeV Ref. [24] , (41)

mu/md = 0.485(19) Ref. [24] ,

with errors of roughly 4%, 2% and 4%, respectively. These numbers result in the following
RGI averages

MRGI
u = 3.15(12)m(4)Λ MeV Ref. [24] ,

Nf = 2 + 1 : (42)MRGI
d = 6.49(12)m(7)Λ MeV Ref. [24] .

Finally, for Nf = 2 + 1 + 1, RM123 17 [23] and FNAL/MILC/TUMQCD 18 [9] enter
the average for the individual mu and md masses, and RM123 17 [23] and MILC 18 [25]
enter the average for the ratio mu/md, giving

mu = 2.14(8)MeV Refs. [9, 23] ,

Nf = 2 + 1 + 1 : md = 4.70(5)MeV Refs. [9, 23] , (43)

mu/md = 0.465(24) Refs. [23, 25] .

with errors of roughly 4%, 1% and 5%, respectively. One can observe some marginal
discrepancies between results coming from the MILC collaboration and RM123 17 [23].
More specifically, adding all sources of uncertainties in quadrature, one obtains a 1.7σ
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discrepancy between RM123 17 [23] and MILC 18 [25] for mu/md, and a 2.2σ discrepancy
between RM123 17 [23] and FNAL/MILC/TUMQCD 18 [9] for mu. However, the values
of md and ϵ are in very good agreement between the two groups. These discrepancies
are presently too weak to constitute evidence for concern, and will be monitored as more
lattice groups provide results for these quantities. The RGI averages for mu and md are

MRGI
u = 2.97(11)m(3)Λ MeV Refs. [9, 23] ,

Nf = 2 + 1 + 1 : (44)MRGI
d = 6.53(7)m(8)Λ MeV Refs. [9, 23] .

Every result for mu and md used here to produce the FLAG averages relies on electro-
quenched calculations, so there is some interest to comment on the size of quenching
effects. Considering phenomenology and the lattice results presented here, it is reasonable
for a rough estimate to use the value (∆M2

K)γ ∼ 2000 MeV2 for the QED part of the
kaon-mass splitting. Using the arguments presented in Sec. B.1, one can assume that the
QED sea contribution represents O(10%) of (∆M2

K)γ . Using SU(3) PQχPT+QED [265,
266] gives a ∼ 5% effect. Keeping the more conservative 10% estimate and using the
experimental value of the kaon-mass splitting, one finds that the QCD kaon-mass splitting
(∆M2

K)SU(2) suffers from a reduced 3% quenching uncertainty. Considering that this
splitting is proportional to mu−md at leading order in SU(3) χPT, we can estimate that
a similar error will propagate to the quark masses. So the individual up and down masses
look mildly affected by QED quenching. However, one notices that ∼ 3% is the level of
error in the new FLAG averages, and increasing significantly this accuracy will require
using fully dynamical calculations.

In view of the fact that a massless up quark would solve the strong CP problem, many
authors have considered this an attractive possibility, but the results presented above
exclude this possibility: the value of mu in Eq. (41) differs from zero by 26 standard
deviations. We conclude that nature solves the strong CP problem differently.

Finally, we conclude this section by giving the FLAG averages for ϵ defined in Eq. (38).
For Nf = 2 + 1 + 1, we average the results of RM123 17 [23] and MILC 18 [25] with the
value of (∆M2

K)γ from BMW 14 [185] combined with Eq. (39), giving

Nf = 2 + 1 + 1 : (45)ϵ = 0.79(6) Refs. [23, 25, 185] .

Although BMW 14 [185] focuses on hadron masses and did not extract the light-quark
masses, they are the only fully unquenched QCD+QED calculation to date that qualifies
to enter a FLAG average. With the exception of renormalization, which is not discussed
in the paper, that work has a ⋆ rating for every FLAG criterion considered for the mu

and md quark masses. For Nf = 2 + 1 we use the results from BMW 16A [24],

Nf = 2 + 1 : (46)ϵ = 0.73(17) Ref. [24] .

It is important to notice that the ϵ uncertainties from BMW 16A and RM123 17
are dominated by estimates of the QED quenching effects. Indeed, in contrast with the
quark masses, ϵ is expected to be rather sensitive to the sea-quark QED contributions.
Using the arguments presented in Sec. B.1, if one conservatively assumes that the QED
sea contributions represent O(10%) of (∆M2

K)γ , then Eq. (39) implies that ϵ will have
a quenching error of ∼ 0.15 for (∆M2

K)γ ∼ (45 MeV)2, representing a large ∼ 20%
relative error. It is interesting to observe that such a discrepancy does not appear between
BMW 14 and RM123 17, although the ∼ 10% accuracy of both results might not be
sufficient to resolve these effects. On the other hand, in the context of SU(3) chiral
perturbation theory, Bijnens and Danielsson [265] show that the QED quenching effects
on ϵ do not depend on unknown LECs at NLO in the chiral expansion and are therefore
computable at that order. In that approach, MILC 18 finds the effect at NLO to be only
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5%. To conclude, although the controversy around the value of ϵ has been significantly
reduced by lattice-QCD+QED determinations, computing this at few-percent accuracy
requires simulations with charged sea quarks.

4.1.4 Estimates for R and Q

The quark-mass ratios

R ≡ ms −mud

md −mu
and Q2 ≡ m2

s −m2
ud

m2
d −m2

u

(47)

compare SU(3) breaking with isospin breaking. Both numbers only depend on the ratios
ms/mud and mu/md,

R =
1

2

(
ms

mud
− 1

)
1 + mu

md

1− mu

md

and Q2 =
1

2

(
ms

mud
+ 1

)
R . (48)

The quantity Q is of particular interest because of a low-energy theorem [267], which
relates it to a ratio of meson masses,

Q2
M ≡

M̂2
K

M̂2
π

M̂2
K − M̂2

π

M̂2
K0 − M̂2

K+

, M̂2
π ≡ 1

2 (M̂
2
π+ +M̂2

π0) , M̂2
K ≡ 1

2 (M̂
2
K+ +M̂2

K0) . (49)

(We remind the reader that the ˆ denotes a quantity evaluated in the α→ 0 limit.) Chiral
symmetry implies that the expansion of Q2

M in powers of the quark masses (i) starts with
Q2 and (ii) does not receive any contributions at NLO [267]:

QM
NLO

= Q . (50)

For Nf = 2 + 1, we use Eqs. (36) and (41) and obtain

R = 38.1(1.5) , Q = 23.3(0.5) , (51)

and for Nf = 2 + 1 + 1,

R = 35.9(1.7) , Q = 22.5(0.5) , (52)

which are quite compatible (see the 2021 edition for the two flavour numbers which are
also compatible with the above). It is interesting to note that the most recent phenomeno-
logical determination of R and Q from η → 3π decay [268] gives the values R = 34.4(2.1)
and Q = 22.1(0.7), which are consistent with the averages presented here. The authors
of Refs. [268, 269] point out that this discrepancy is likely due to surprisingly large cor-
rections to the approximation in Eq. (50) used in the phenomenological analysis.

Our final results for the massesmu,md,mud,ms and the mass ratiosmu/md,ms/mud,
R, Q are collected in Tabs. 11 and 12.
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mud ms

CLQCD 23 [10] A ⋆ ⋆ ⋆ ⋆ e 3.60(11)(15) 98.8(2.9)(4.7)
ALPHA 19 [11] A ◦ ⋆ ⋆ ⋆ e 3.54(12)(9) 95.7(2.5)(2.4)
Maezawa 16 [230] A ■ ⋆ ⋆ ⋆ d – 92.0(1.7)
RBC/UKQCD 14B⊖ [12] A ⋆ ⋆ ⋆ ⋆ d 3.31(4)(4) 90.3(0.9)(1.0)
RBC/UKQCD 12⊖ [229] A ⋆ ◦ ⋆ ⋆ d 3.37(9)(7)(1)(2) 92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12⋆ [231] A ⋆ ■ ■ ⋆ b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [54] C ◦ ⋆ ⋆ ◦ − 3.31(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B+ [13, 14] A ⋆ ⋆ ⋆ ⋆ c 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 [232] A ⋆ ■ ■ ⋆ b 2.78(27) 86.7(2.3)
MILC 10A [16] C ◦ ⋆ ⋆ ◦ − 3.19(4)(5)(16) –
HPQCD 10∗∗ [15] A ◦ ⋆ ⋆ − − 3.39(6) 92.2(1.3)
RBC/UKQCD 10A [119] A ◦ ◦ ⋆ ⋆ a 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)

Blum 10† [233] A ◦ ■ ◦ ⋆ − 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [234] A ⋆ ■ ■ ⋆ b 2.97(28)(3) 92.75(58)(95)
HPQCD 09A⊕ [33] A ◦ ⋆ ⋆ − − 3.40(7) 92.4(1.5)
MILC 09A [19] C ◦ ⋆ ⋆ ◦ − 3.25 (1)(7)(16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [196] A ◦ ⋆ ⋆ ◦ − 3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [235] A ⋆ ■ ■ ■ − 2.527(47) 72.72(78)
RBC/UKQCD 08 [236] A ◦ ■ ⋆ ⋆ − 3.72(16)(33)(18) 107.3(4.4)(9.7)(4.9)
CP-PACS/
JLQCD 07

[237] A ■ ⋆ ⋆ ■ − 3.55(19)(+56
−20) 90.1(4.3)(+16.7

−4.3 )

HPQCD 05 [238] A ◦ ◦ ◦ ◦ − 3.2(0)(2)(2)(0)‡ 87(0)(4)(4)(0)‡

MILC 04, HPQCD/
MILC/UKQCD 04

[239, 240] A ◦ ◦ ◦ ■ − 2.8(0)(1)(3)(0) 76(0)(3)(7)(0)

⊖ The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using
numerically integrated 4-loop running [241, 242] with Nf = 3 and with the values of αs(MZ), mb, and
mc taken from Ref. [243]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that perturbative running uncertainties are small. We neglect them here.

⋆ The calculation includes electromagnetic and mu ̸= md effects through reweighting.
+ The fermion action used is tree-level improved.
∗∗ ms is obtained by combining mc and HPQCD 09A’s mc/ms = 11.85(16) [33]. Finally, mud is

determined from ms with the MILC 09 result for ms/mud. Since mc/ms is renormalization group
invariant in QCD, the renormalization and running of the quark masses enter indirectly through that
of mc (see below).

† The calculation includes quenched electromagnetic effects.
⊕ What is calculated is mc/ms = 11.85(16). ms is then obtained by combining this result with the

determination mc(mc) = 1.268(9) GeV from Ref. [244]. Finally, mud is determined from ms with the
MILC 09 result for ms/mud.

‡ The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop
to 1-loop renormalization factors.

a The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Nf = 3 RI-SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing
results in the two schemes in the region of 2 GeV to 3 GeV [119].

b The masses are renormalized and run nonperturbatively up to a scale of 40GeV in the Nf = 3 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 40 GeV all the way down to 3 GeV [232].

c The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI-MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [14].

d All required running is performed nonperturbatively.

e Running is performed nonperturbatively from 200 MeV to the electroweak scale ∼ 100 GeV.

Table 7: Nf = 2 + 1 lattice results for the masses mud and ms (MeV).

50



Collaboration Ref. pu
bl
ic
at
io
n
st
at
us

ch
ir
al
ex
tr
ap
ol
at
io
n

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

fin
it
e
vo
lu
m
e

re
no
rm

al
iz
at
io
n

ru
nn
in
g

mud ms

ETM 21A [7] A ⋆ ⋆ ⋆ ⋆ − 3.636(66)(+60
−57) 98.7(2.4)(+4.0

−3.2)

HPQCD 18† [17] A ⋆ ⋆ ⋆ ⋆ − 94.49(96)
FNAL/MILC/TUMQCD 18 [9] A ⋆ ⋆ ⋆ ⋆ − 3.404(14)(21) 92.52(40)(56)
HPQCD 14A ⊕ [18] A ⋆ ⋆ ⋆ − − 93.7(8)
ETM 14⊕ [8] A ◦ ⋆ ⋆ ⋆ − 3.70(13)(11) 99.6(3.6)(2.3)

† Bare-quark masses are renormalized nonperturbatively in the RI-SMOM scheme at scales µ ∼ 2–5 GeV
for different lattice spacings and translated to the MS scheme. Perturbative running is then used to run
all results to a reference scale µ = 3 GeV.

⊕ As explained in the text, ms is obtained by combining the results mc(5GeV;Nf = 4) = 0.8905(56) GeV
and (mc/ms)(Nf = 4) = 11.652(65), determined on the same data set. A subsequent scale and scheme
conversion, performed by the authors, leads to the value 93.6(8). In the table, we have converted this
to ms(2GeV;Nf = 4), which makes a very small change.

Table 8: Nf = 2 + 1 + 1 lattice results for the masses mud and ms (MeV).
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ms/mud

ETM 21A [7] 2+1+1 A ⋆ ⋆ ⋆ 27.17(32)+56
−38

MILC 17 ‡ [20] 2+1+1 A ⋆ ⋆ ⋆ 27.178(47)+86
−57

FNAL/MILC 14A [21] 2+1+1 A ⋆ ⋆ ⋆ 27.35(5)+10
−7

ETM 14 [8] 2+1+1 A ◦ ⋆ ◦ 26.66(32)(2)

CLQCD 23 [10] 2+1 A ⋆ ⋆ ⋆ 27.47(30)(13)
ALPHA 19 [22] 2+1 A ◦ ⋆ ⋆ 27.0(1.0)(0.4)
RBC/UKQCD 14B [12] 2+1 A ⋆ ⋆ ⋆ 27.34(21)
RBC/UKQCD 12⊖ [229] 2+1 A ⋆ ◦ ⋆ 27.36(39)(31)(22)
PACS-CS 12⋆ [231] 2+1 A ⋆ ■ ■ 26.8(2.0)
Laiho 11 [54] 2+1 C ◦ ⋆ ⋆ 28.4(0.5)(1.3)
BMW 10A, 10B+ [13, 14] 2+1 A ⋆ ⋆ ⋆ 27.53(20)(8)
RBC/UKQCD 10A [119] 2+1 A ◦ ◦ ⋆ 26.8(0.8)(1.1)

Blum 10† [233] 2+1 A ◦ ■ ◦ 28.31(0.29)(1.77)
PACS-CS 09 [234] 2+1 A ⋆ ■ ■ 31.2(2.7)
MILC 09A [19] 2+1 C ◦ ⋆ ⋆ 27.41(5)(22)(0)(4)
MILC 09 [196] 2+1 A ◦ ⋆ ⋆ 27.2(1)(3)(0)(0)
PACS-CS 08 [235] 2+1 A ⋆ ■ ■ 28.8(4)
RBC/UKQCD 08 [236] 2+1 A ◦ ■ ⋆ 28.8(0.4)(1.6)
MILC 04, HPQCD/
MILC/UKQCD 04

[239, 240] 2+1 A ◦ ◦ ◦ 27.4(1)(4)(0)(1)

‡ The calculation includes electromagnetic effects.
⊖ The errors are statistical, chiral and finite volume.
⋆ The calculation includes electromagnetic and mu ̸= md effects through reweighting.
+ The fermion action used is tree-level improved.
† The calculation includes quenched electromagnetic effects.

Table 9: Lattice results for the ratio ms/mud.
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Nf mud ms ms/mud

2+1+1 3.410(43) 93.44(68) 27.23(10)

2+1 3.364(41) 92.03(88) 27.42(12)

Table 11: Our estimates for the average up-down-quark mass and the strange-quark mass
in the MS scheme at running scale µ = 2GeV. Mass values are given in MeV. In the results
presented here, the error is the one which we obtain by applying the averaging procedure of
Sec. 2.3 to the relevant lattice results.

Nf mu md mu/md R Q

2+1+1 2.14(8) 4.70(5) 0.465(24) 35.9(1.7) 22.5(0.5)

2+1 2.27(9) 4.67(9) 0.485(19) 38.1(1.5) 23.3(0.5)

Table 12: Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale µ = 2GeV. Mass
values are given in MeV.
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4.2 Charm-quark mass

In the following, we collect and discuss the lattice determinations of the MS charm-
quark mass mc. Most of the results have been obtained by analyzing the lattice-QCD
simulations of two-point heavy-light- or heavy-heavy-meson correlation functions, using
as input the experimental values of the D, Ds, and charmonium mesons. Some groups use
the moments method. The latter is based on the lattice calculation of the Euclidean time
moments of pseudoscalar-pseudoscalar correlators for heavy-quark currents followed by an
OPE expansion dominated by perturbative QCD effects, which provides the determination
of both the heavy-quark mass and the strong-coupling constant αs.

The heavy-quark actions adopted by various lattice collaborations have been discussed
in previous FLAG reviews [2–4], and their descriptions can be found in Sec. A.1.3 of FLAG
19 [4]. While the charm mass determined with the moments method does not need any
lattice evaluation of the mass-renormalization constant Zm, the extraction of mc from
two-point heavy-meson correlators does require the nonperturbative calculation of Zm.
The lattice scale at which Zm is obtained is usually at least of the order 2–3 GeV, and
therefore it is natural in this review to provide the values of mc(µ) at the renormalization
scale µ = 3 GeV. Since the choice of a renormalization scale equal to mc is still commonly
adopted (as by the PDG [225]), we have collected in Tab. 13 the lattice results for both
mc(mc) and mc(3 GeV), obtained for Nf = 2 + 1 and 2 + 1 + 1. For Nf = 2, interested
readers are referred to previous reviews [2, 3].

When not directly available in the published work, we apply a conversion factor using
perturbative QCD evolution at five loops to run down from µ = 3 GeV to the scales
µ = mc and 2 GeV of 0.7739(60) and 0.9026(23), respectively, where the error comes
from the uncertainty in ΛQCD. We use ΛQCD = 297(12) MeV for Nf = 4 (see Sec. 9).
Perturbation theory uncertainties, estimated as the difference between results that use
4- and 5-loop running, are significantly smaller than the parametric uncertainty coming
from ΛQCD. For µ = mc, the former is about about 2.5 times smaller.

In the next subsections, we review separately the results for mc with three or four
flavours of quarks in the sea.

4.2.1 Nf = 2 + 1 results

Since the last review [5], there is one new result: ALPHA 23 [28]. This work uses a sub-
set of CLS ensembles, based on simulations of nonperturbatively O(a)-improved Wilson
fermions. The difference with ALPHA 21 is that the valence sector uses both Wilson and
twisted-mass discretizations instead of just Wilson. Renormalization is based on previous
work by the ALPHA collaboration, and is performed nonperturbatively from 100 MeV
to the electroweak scale. The subset of ensembles used have large volumes, four lattice
spacings, and reach pion masses of 200 MeV, which guarantees entering in the average.
Contrary to the extraction of light-quark masses in ALPHA 19, the chiral extrapolation
does not dominate the error budget, and being less critical in this case we decide to give
a ⋆ for the chiral extrapolation. The data-driven criteria quantity for the continuum
extrapolation δ(amin) (see 2.1.2) is smaller than 3 in all cases.

Petreczky 19 employs the HISQ action on ten ensembles with ten lattice spacings
down to 0.025 fm, physical strange-quark mass, and two light-quark masses, the lightest
corresponding to 161 MeV pions. Their study incorporates lattices with 11 different sizes,
ranging from 1.6 to 5.4 fm. The masses are computed from moments of pseudoscalar
quarkonium correlation functions, and MS masses are extracted with 4-loop continuum
perturbation theory. Thus, that work easily rates green stars in all categories. Continuum
extrapolations are challenging, but judging the data itself the values of δ(amin) are not
very large. It is just that the functional form of the data is complicated.

ALPHA 21 uses the O(a)-improved Wilson-clover action with five lattice spacings from
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mc(mc) mc(3 GeV)

ETM 21A [7] 2+1+1 P ⋆ ⋆ ⋆ ⋆ 1.339(22)(+19
−10)(10)

† 1.036(17)(+15
−8 )

HPQCD 20A [27] 2+1+1 A ⋆ ⋆ ⋆ ⋆ 1.2719(78) 0.9841(51)
HPQCD 18 [17] 2+1+1 A ⋆ ⋆ ⋆ ⋆ 1.2757(84) 0.9896(61)
FNAL/MILC/
TUMQCD 18

[9] 2+1+1 A ⋆ ⋆ ⋆ − 1.273(4)(1)(10) 0.9837(43)(14)(33)(5)

HPQCD 14A [18] 2+1+1 A ⋆ ⋆ ⋆ − 1.2715(95) 0.9851(63)
ETM 14A [26] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.3478(27)(195) 1.0557(22)(153)∗

ETM 14 [8] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.348(46) 1.058(35)∗

ALPHA 23 [28] 2+1 A+ ⋆ ⋆ ⋆ ⋆ 1.296(15) 1.006(9)
ALPHA 21 [32] 2+1 A+ ⋆ ⋆ ⋆ ⋆ 1.296(19) 1.007(16)
Petreczky 19 [31] 2+1 A ⋆ ⋆ ⋆ ⋆ 1.265(10) 1.001(16)
Maezawa 16 [230] 2+1 A ■ ⋆ ⋆ ⋆ 1.267(12)
JLQCD 16 [30] 2+1 A ◦ ⋆ ⋆ − 1.2871(123) 1.0033(96)
χQCD 14 [29] 2+1 A ◦ ◦ ◦ ⋆ 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [15] 2+1 A ◦ ⋆ ◦ − 1.273(6) 0.986(6)
HPQCD 08B [244] 2+1 A ◦ ⋆ ◦ − 1.268(9) 0.986(10)

PDG [225] 1.27(2)

† We applied the running factor 0.7739(60) for µ = 3 GeV to mc. The errors are statistical, systematic,
and the uncertainty in the running factor.

∗ A running factor equal to 0.900 between the scales µ = 2 GeV and µ = 3 GeV was applied by us.
+ Published after the FLAG deadline.

Table 13: Lattice results for the MS charm-quark mass mc(mc) and mc(3 GeV) in GeV,
together with the colour coding of the calculations used to obtain them.

0.087 to 0.039 fm, produced by the CLS collaboration. For each lattice spacing, several
light sea-quark masses are used in a global chiral-continuum extrapolation (the lightest
pion mass for one ensemble is 198 MeV). The authors also use nonperturbative renormal-
ization and running through application of step-scaling and the Schrödinger functional
scheme. Finite-volume effects are investigated at one lattice spacing and only for ∼ 400
MeV pions on the smallest two volumes where results are compatible within statistical
errors. ALPHA 21 satisfies the FLAG criteria for green-star ratings in all of the categories
listed in Tab. 13. The values of δ(amin) are smaller than 3 in all continuum extrapolations.
Descriptions of the other works in this section can be found in an earlier review [4].

According to our rules on the publication status, the FLAG average for the charm-
quark mass at Nf = 2 + 1 is obtained by combining the results HPQCD 10, χQCD 14,
JLQCD 16, Petreczky 19, ALPHA 21 and ALPHA 23,

mc(mc) = 1.278(6) GeV Refs. [15, 28–32] , (53)
Nf = 2 + 1:

mc(3 GeV) = 0.991(6) GeV Refs. [15, 28–32] , (54)

56



This result corresponds to the following RGI average

MRGI
c = 1.526(7)m(21)Λ GeV Refs. [15, 29–32] . (55)

4.2.2 Nf = 2 + 1 + 1 results

For a discussion of older results, see the previous FLAG reviews. Since FLAG 19 two
groups have produced updated values with charm quarks in the sea.

HPQCD 20A [27] is an update of HPQCD 18, including a new finer ensemble (a ≈ 0.045
fm) and EM corrections computed in the quenched approximation of QED for the first
time. Besides these new items, the analysis is largely unchanged from HPQCD 18 except
for an added α3

s correction to the SMOM-to-MS conversion factor and tuning the bare
charm mass via the J/ψ mass rather than the ηc. Their new value in pure QCD is
mc(3 GeV) = 0.9858(51) GeV which is quite consistent with HPQCD 18 and the FLAG
19 average. The effects of quenched QED in both the bare charm-quark mass and the
renormalization constant are small. Both effects are precisely determined, and the overall
effect shifts the mass down slightly to mc(3 GeV) = 0.9841(51) where the uncertainty
due to QED is invisible in the final error. The shift from their pure QCD value due to
quenched QED is about −0.2%.

ETM 21A [7] is a new work that follows a similar methodology as ETM 14, but with
significant improvements. Notably, a clover-term is added to the twisted mass fermion
action which suppresses O(a2) effects between the neutral and charged pions. Additional
improvements include new ensembles lying very close to the physical mass point, better
control of nonperturbative renormalization systematics, and use of both meson and baryon
correlation functions to determine the quark mass. They use the RI-MOM scheme for
nonperturbative renormalization. The analysis comprises ten ensembles in total with three
lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for the finest lattice spacings
and four for the other two, and pion masses down to 134 MeV for the finest ensemble.
The values of mπL range mostly from almost four to greater than five. According to the
FLAG criteria, green stars are earned in all categories. The authors find mc(3 GeV) =
1.036(17)(+15

−8 ) GeV. In Tab. 13 we have applied a factor of 0.7739(60) to run from 3 GeV
tomc. As in FLAG 19, the new value is consistent with ETM 14 and ETM 14A, but is still
high compared to the FLAG average. The authors plan future improvements, including a
finer lattice spacing for better control of the continuum limit and a new renormalization
scheme, like RI-SMOM.

Six results enter the FLAG average for Nf = 2 + 1 + 1 quark flavours: ETM 14,
ETM 14A, HPQCD 14A, FNAL/MILC/TUMQCD 18, HPQCD 20A, and ETM 21A. We
note that while the ETM determinations of mc agree well with each other, they are in-
compatible with HPQCD 14A, FNAL/MILC/TUMQCD 18, and HPQCD 20A by several
standard deviations. While the ETM 14 and ETM 14A use the same configurations, the
analyses are quite different and independent, and ETM 21A is a new result on new ensem-
bles with improved methodology. As mentioned earlier, mud and ms values by ETM are
also systematically high compared to their respective averages. Combining all six results
yields yields

mc(mc) = 1.280(13) GeV Refs. [7–9, 18, 26, 27] , (56)
Nf = 2 + 1 + 1:

mc(3 GeV) = 0.989(10) GeV Refs. [7–9, 18, 26, 27] , (57)

where the errors include large stretching factors
√
χ2/dof ≈ 2.0 and 2.4, respectively.

We have assumed 100% correlation for statistical errors between ETM 14 and ETM 14A
results and the same for HPQCD 14A, HPQCD 20A, and FNAL/MILC/TUMQCD 18.

These are obviously poor χ2 values, and the stretching factors are quite large. While
it may be prudent in such a case to quote a range of values covering the central values
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of all results that pass the quality criteria, we believe in this case that would obscure
rather than clarify the situation. From Fig. 5, we note that not only do ETM 21A,
ETM 14A, and ETM 14 lie well above the other 2+1+1 results, but also above all of
the 2+1 flavour results. A similar trend is apparent for the light-quark masses (see
Figs. 1 and 2) while for mass ratios there is better agreement (Figs. 3, 4, and 6). The
latter suggests there may be underestimated systematic uncertainties associated with scale
setting and/or renormalization which have not been detected. Finally we note the ETM
results are significantly higher than the PDG average. For these reasons, which admittedly
are not entirely satisfactory, we continue to quote an average with a stretching factor as
in previous reviews.

The RGI average reads as follows,

MRGI
c = 1.528(15)m(21)Λ GeV Refs. [7–9, 18, 26, 27] . (58)

Figure 5 presents the values of mc(mc) given in Tab. 13 along with the FLAG averages
obtained for 2 + 1 and 2 + 1 + 1 flavours.
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+
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+

GeV
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HPQCD 08B
HPQCD 10
QCD 14

JLQCD 16
Maezawa 16
Petreczky 19
ALPHA 21
ALPHA 23
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ETM 14A
HPQCD 14A 
FNAL/MILC/TUMQCD 18
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HPQCD 20A
ETM 21A

FLAG average for = + +

( )

Figure 5: The charm-quark mass for 2 + 1 and 2 + 1 + 1 flavours. For the latter a large
stretching factor is used for the FLAG average due to poor χ2 from our fit.

4.2.3 Lattice determinations of the ratio mc/ms

Because some of the results for quark masses given in this review are obtained via the
quark-mass ratio mc/ms, we review these lattice calculations, which are listed in Tab. 14,
as well.

The Nf = 2 + 1 results from χQCD 14 and HPQCD 09A [33] are from the same cal-
culations that were described for the charm-quark mass in the previous review. Maezawa
16 does not pass our chiral-limit test (see the previous review), though we note that it is
quite consistent with the other values. Combining χQCD 14 and HPQCD 09A, we obtain
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mc/ms

ETM 21A [7] 2+1+1 P ⋆ ⋆ ⋆ 11.48(12)(+25
−19)

FNAL/MILC/TUMQCD 18 [9] 2+1+1 A ⋆ ⋆ ⋆ 11.784(11)(17)(00)(08)
HPQCD 14A [18] 2+1+1 A ⋆ ⋆ ⋆ 11.652(35)(55)
ETM 14 [8] 2+1+1 A ◦ ⋆ ◦ 11.62(16)

Maezawa 16 [230] 2+1 A ■ ⋆ ⋆ 11.877(91)
χQCD 14 [29] 2+1 A ◦ ◦ ◦ 11.1(8)
HPQCD 09A [33] 2+1 A ◦ ⋆ ⋆ 11.85(16)

Table 14: Lattice results for the quark-mass ratio mc/ms, together with the colour coding of
the calculations used to obtain them.

the same result reported in FLAG 19,

Nf = 2 + 1: mc/ms = 11.82(16) Refs. [29, 33], (59)

with a χ2/dof ≃ 0.85.
Turning to Nf = 2 + 1 + 1, there is a new result from ETM 21A (see the previous

section for details). The errors have actually increased compared to ETM 14, due to
larger uncertainties in the baryon sector which enter their average with the meson sector.
See the earlier reviews for a discussion of previous results.

We note that some tension exists between the HPQCD 14A and FNAL/MILC/TUMQCD
results. Combining these with ETM 14 and ETM 21A yields

Nf = 2 + 1 + 1: mc/ms = 11.766(30) Refs. [7–9, 18], (60)

where the error includes the stretching factor
√
χ2/dof ≃ 1.4. We have assumed a 100%

correlation of statistical errors for FNAL/MILC/TUMQCD 18 and HPQCD 14A.
Results formc/ms are shown in Fig. 6 together with the FLAG averages for Nf = 2+1

and 2 + 1 + 1 flavours.
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Figure 6: Lattice results for the ratio mc/ms listed in Tab. 14 and the FLAG averages
corresponding to 2 + 1 and 2 + 1+ 1 quark flavours. The latter average includes a stretching
factor of 1.4 on the error due a poor χ2 from our fit.

4.3 Bottom-quark mass

Now we review the lattice results for the MS bottom-quark mass mb. Related heavy-
quark actions and observables have been discussed in previous FLAG reviews [2–4], and
descriptions can be found in Sec. A.1.3 of FLAG 19 [4]. In Tab. 15, we collect results
for mb(mb) obtained with Nf = 2 + 1 and 2 + 1 + 1 sea-quark flavours. Available results
for the quark-mass ratio mb/mc are also reported. After discussing the new results, we
evaluate the corresponding FLAG averages.

4.3.1 Nf = 2 + 1

There are no new results since the last review, so we simply quote the same average of
HPQCD 10 and Petreczky 19 (both are reported for Nf = 5, so we simply quote the
average for Nf = 5).

Nf = 2 + 1 : mb(mb) = 4.171(20) GeV Refs. [15, 31] . (61)

The corresponding (four-flavour) RGI average is

Nf = 2 + 1 : MRGI
b = 6.888(33)m(45)Λ GeV Refs. [15, 31] . (62)

4.3.2 Nf = 2 + 1 + 1

HPQCD 21 [34] is an update of HPQCD 14A (and replaces it in our average. See FLAG
19 for details.), including EM corrections for the first time for the b-quark mass. Four
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mb(mb) mb/mc

HPQCD 21 [34] 2+1+1 A ⋆ ◦ ⋆ − ✓ 4.209(21)++ 4.586(12)∗∗

FNAL/MILC/TUM 18 [9] 2+1+1 A ⋆ ◦ ⋆ − ✓ 4.201(12)(1)(8)(1) 4.578(5)(6)(0)(1)
Gambino 17 [37] 2+1+1 A ◦ ⋆ ◦ ⋆ ✓ 4.26(18)
ETM 16B [36] 2+1+1 A ◦ ⋆ ◦ ⋆ ✓ 4.26(3)(10)+ 4.42(3)(8)

HPQCD 14B [35] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 4.196(0)(23)†

Petreczky19 [31] 2+1 A ⋆ ⋆ ⋆ ⋆ ✓ 4.188(37) 4.586(43)
Maezawa 16 [230] 2+1 A ■ ⋆ ⋆ ⋆ ✓ 4.184(89) 4.528(57)
HPQCD 13B [270] 2+1 A ■ ◦ − − ✓ 4.166(43)
HPQCD 10 [15] 2+1 A ⋆ ⋆ ⋆ − ✓ 4.164(23) 4.51(4)

ETM 13B [73] 2 A ◦ ⋆ ◦ ⋆ ✓ 4.31(9)(8)
ALPHA 13C [271] 2 A ⋆ ⋆ ⋆ ⋆ ✓ 4.21(11)
ETM 11A [272] 2 A ◦ ⋆ ◦ ⋆ ✓ 4.29(14)

PDG [225] 4.18+0.02
−0.03

++ We quote the four-flavour result. For Nf = 5, the value is 4.202(21).
∗∗ The ratio is quoted in the MS scheme for µ = 3 GeV because of the different charges of the bottom

and charm quarks.
† Only two pion points are used for chiral extrapolation.

Table 15: Lattice results for the MS bottom-quark mass mb(mb) in GeV, together with the
systematic error ratings for each. Available results for the quark-mass ratio mb/mc are also
reported.

flavours of HISQ quarks are used on MILC ensembles with lattice spacings from about 0.09
to 0.03 fm. Ensembles with physical- and unphysical-mass sea-quarks are used. Quenched
QED is used to obtain the dominant O(α) effect. The ratio of bottom- to charm-quark
masses is computed in a completely nonperturbative formulation, and the b-quark mass is
extracted using the value of mc(3 GeV) from HPQCD 20A. Since EM effects are included,
the QED renormalization scale enters the ratio which is quoted for 3 GeV and Nf = 4.
The total error on the new result is more than two times smaller than for HPQCD 14A,
but is only slightly smaller compared to the NRQCD result reported in HPQCD 14B.
The inclusion of QED shifts the ratio mb/mc up slightly from the pure QCD value by
about one standard deviation, and the value of mb(mb) is consistent, within errors, to
the other pure QCD results entering our average. Therefore, we quote a single average.
Cutoff effects are significant in that work, and are the dominant source of uncertainty in
the ratio mb/mc. It is difficult to estimate the value of δ(amin) from the data present in
the publication, but the authors provided extra information about their analysis with the
result that δ(amin) ≈ 3. Therefore, we do not inflate the errors of that computation. The
work rates green stars for all FLAG criteria except for the continuum limit (see Tab. 15)
where less than three ensembles at the physical b-quark mass were used in the a → 0
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extrapolation (in the previous FLAG review this was missed and is corrected here).
HPQCD 14B employs the NRQCD action [35] to treat the b quark. The b-quark mass

is computed with the moments method, that is, from Euclidean-time moments of two-
point, heavy-heavy-meson correlation functions (see also Sec. 9.8 for a description of the
method). Due to the effective treatment of the heavy quark, continuum extrapolations
are under control since five lattice spacings are employed, with the smallest about 0.09
fm, but the requirement that amb ≪ 1 is not relevant. Their final result is mb(µ =
4.18GeV) = 4.207(26) GeV, where the error is from adding systematic uncertainties in
quadrature only (statistical errors are smaller than 0.1% and ignored). The errors arise
from renormalization, perturbation theory, lattice spacing, and NRQCD systematics. The
finite-volume uncertainty is not estimated, but at the lowest pion mass they havemπL ≃ 4,
which leads to the tag ⋆ . In this case, the continuum extrapolations seem mild, in part,
thanks to the NRQCD action used to treat the b quark. The data-driven continuum-limit
criterion δ(amin) < 3, so no correction factor is necessary here.

The next four-flavour result (ETM 16B [36]) is from the ETM collaboration and up-
dates their preliminary result appearing in a conference proceedings [273]. The calculation
is performed on a set of ensembles generated with twisted-Wilson fermions with three lat-
tice spacings in the range 0.06 to 0.09 fm and with pion masses in the range 210 to 440
MeV. The b-quark mass is determined from a ratio of heavy-light pseudoscalar meson
masses designed to yield the quark pole mass in the static limit. The pole mass is related
to the MS mass through perturbation theory at N3LO. The key idea is that by taking
ratios of ratios, the b-quark mass is accessible through fits to heavy-light(strange)-meson
correlation functions computed on the lattice in the range ∼ 1–2×mc and the static limit,
the latter being exactly 1. By simulating below mb, taking the continuum limit is easier.
They find mb(mb) = 4.26(3)(10) GeV, where the first error is statistical and the second
systematic. The dominant errors come from setting the lattice scale and fit systematics.

Gambino et al. [37] use twisted-mass-fermion ensembles from the ETM collaboration
and the ETM ratio method as in ETM 16B. Three values of the lattice spacing are used,
ranging from 0.062 to 0.089 fm. Several volumes are also used. The light-quark masses
produce pions with masses from 210 to 450 MeV. The main difference with ETM 16
is that the authors use the kinetic mass defined in the heavy-quark expansion (HQE) to
extract the b-quark mass instead of the pole mass. They include an additional uncertainty
stemming from the conversion between kinetic and MS schemes which leads to a somewhat
larger total uncertainty compared to ETM 16B.

The final b-quark mass result is FNAL/MILC/TUM 18 [9]. The mass is extracted from
the same fit and analysis done for the charm quark mass. Note that relativistic HISQ
valence masses reach the physical b mass on the two finest lattice spacings (a = 0.042
fm, 0.03 fm) with physical and 0.2 × ms light-quark masses, respectively. In lattice
units, the heavy valence masses correspond to aMRGI > 0.90, making the continuum
extrapolation challenging. The extrapolations have δ(amin) ≈ 14 (taking into account
only the statistical error of the continuum extrapolation, which is a 40% of their total
error budget). According to our policy (2.1.2) we increase the error for the average by a
factor 3.5. Their results are also consistent with an analysis dropping the finest lattice
spacing from the fit. Since the b-quark mass region is only reached with two lattice
spacings, we rate this work with a green circle for the continuum extrapolation (the same
as HPQCD 21). Note, however, that for other values of the quark masses they use up to
five values of the lattice spacing (cf. their charm-quark mass determination) with small
values of δ(amin) in the continuum extrapolation. In summary, we judge that these large
scaling violations affect mainly the determination of the b-quark mass.

All of the above results enter our average. We note that here the ETM 16B result is
consistent with the average and a stretching factor on the error is not used.

Nf = 2 + 1 + 1 : mb(mb) = 4.200(14) GeV Refs. [9, 34–37] . (63)
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We have included a 100% correlation on the statistical errors of ETM 16B and Gambino 17,
since the same ensembles are used in both. While FNAL/MILC/TUM 18 and HPQCD
21 also use the same MILC HISQ ensembles, the statistical error in the HPQCD 21
analysis is negligible, so we do not include a correlation between them. The average has
χ2/dof = 0.02.

The above translates to the RGI average

Nf = 2 + 1 + 1 : MRGI
b = 6.938(23)m(45)Λ GeV Refs. [9, 34–37] . (64)

Results formb(mb) are shown in Fig. 7 together with the FLAG averages corresponding
to Nf = 2 + 1 and 2 + 1 + 1 quark flavours.

4.1 4.3 4.5 4.7

=
+

+
=

+

GeV
PDG

HPQCD 10
HPQCD 13B 
Maezawa 16 
Petreczky 19 

FLAG average for = +

ETM 16B
HPQCD 14B 
Gambino 17
FNAL/MILC/TUMQCD 18
HPQCD 21

FLAG average for = + +

( )

Figure 7: The b-quark mass for Nf = 2+1 and 2+1+1 flavours. The updated PDG value
from Ref. [274] is reported for comparison.
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5 Leptonic and semileptonic kaon and pion decay and
|Vud| and |Vus|
Authors: T. Kaneko, J. N. Simone, N. Tantalo

This section summarizes state-of-the-art lattice calculations of the leptonic kaon and
pion decay constants and the kaon semileptonic-decay form factor and provides an analysis
in the framework of the Standard Model. With respect to the previous edition of the FLAG
review [5], there has been a new study on f+(0) for Nf = 2 + 1, and a new entry to the
average of the decay constant ratio fK±/fπ± for Nf = 2 + 1 + 1.18 As in Ref. [5], when
combining lattice data with experimental results, we take into account the strong isospin
correction, either obtained in lattice calculations or estimated by using chiral perturbation
theory (χPT), both for the kaon leptonic decay constant fK± and for the ratio fK±/fπ± .

5.1 Experimental information concerning |Vud|, |Vus|, f+(0) and
fK±/fπ±

The following review relies on the fact that precision experimental data on kaon decays
very accurately determine the product |Vus|f+(0) [275] and the ratio |Vus/Vud|fK±/fπ±

[205, 275]:

|Vus|f+(0) = 0.21654(41) ,

∣∣∣∣VusVud

∣∣∣∣ fK±

fπ±
= 0.27599(41) . (65)

Here, and in the following, fK± and fπ± are the isospin-broken decay constants in QCD.
We will refer to the decay constants in the isospin-symmetric limit as fK and fπ (the
latter at leading order in the mass difference (mu−md) coincides with fπ±). The param-
eters |Vud| and |Vus| are elements of the Cabibbo-Kobayashi-Maskawa matrix and f+(q

2)
represents one of the form factors relevant for the semileptonic decay K0 → π−ℓ ν, which
depends on the momentum transfer q between the two mesons. What matters here is the
value at q2 = 0:

f+(0) ≡ fK
0π−

+ (0) = fK
0π−

0 (0) = qµ⟨π−(p′)|s̄γµu|K0(p)⟩/(M2
K −M2

π) q2→0
. (66)

The pion and kaon decay constants are defined by19

⟨0|dγµγ5 u|π+(p)⟩ = i pµfπ+ , ⟨0| sγµγ5 u|K+(p)⟩ = i pµfK+ . (67)

In this normalization, fπ± ≃ 130 MeV, fK± ≃ 155 MeV.
In Eq. (65), the electromagnetic effects have already been subtracted in the experi-

mental analysis using χPT [279–282]. In 2015, a new method [283] has been proposed
by the RM123-SOTON collaboration for calculating the leptonic decay rates of hadrons
including both QCD and QED on the lattice, and successfully applied to the case of
the ratio of the leptonic decay rates of kaons and pions [217, 223]. By employing the

18In this edition, we omit results for Nf = 2, because there has been no new entry after 2014. We refer to
the 2016 edition [3] for the Nf = 2 results.

19The pion decay constant represents a QCD matrix element—in the full Standard Model, the one-pion
state is not a meaningful notion: the correlation function of the charged axial current does not have a pole
at p2 = M2

π+ , but a branch cut extending from M2
π+ to ∞. The analytic properties of the correlation

function and the problems encountered in the determination of fπ are thoroughly discussed in Ref. [210]. The
“experimental” value of fπ depends on the convention used when splitting the sum LQCD + LQED into two
parts. The lattice determinations of fπ do not yet reach the accuracy where this is of significance, but at the
precision claimed by the Particle Data Group [243, 276], the numerical value does depend on the convention
used [209, 210, 277, 278].
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twisted-mass discretization, they simulate Nf = 2 + 1 + 1 QCD at three lattice spacings
a = 0.07, 0.08, 0.09 fm with pion masses down to ≈ 220 MeV on multiple lattice volumes
to directly examine finite-volume effects. The correction to the Kµ2/πµ2 decay rate, in-
cluding both electromagnetic and strong isospin-breaking effects, is found to be equal to
−1.26(14)% [217] to be compared to the estimate −1.12(21)% based on χPT [204, 282].20

Using the experimental values of the Kµ2 and πµ2 decay rates the result of Ref. [217]
implies ∣∣∣∣VusVud

∣∣∣∣ fKfπ = 0.27683 (29)exp (20)th [35] , (68)

where the last error in brackets is the sum in quadrature of the experimental and the-
oretical uncertainties, and the ratio of the decay constants is the one corresponding to
isosymmetric QCD. A large part of the theoretical uncertainty comes from the statistical
error and continuum and chiral extrapolation of lattice data, which can be systematically
reduced by a more realistic simulation with high statistics.

An independent study of the electromagnetic effects is carried out by the RBC/UKQCD
collaboration using the domain-wall discretization [220]. They simulate Nf = 2+ 1 QCD
at a single lattice spacing a = 0.11 fm, a pion mass close to its physical value, and a
lattice volume with MπL ∼ 3.9. Their result −0.86(+41

−40)% including the strong isospin
corrections is consistent with the RM123-SOTON estimate. The larger uncertainty is due
to the possibly large finite-volume effects, which are under active investigation in different
lattice-QED prescriptions [284].

At present, the superallowed nuclear β transitions provide the most precise deter-
mination of |Vud|. Its accuracy has been limited by hadronic uncertainties in the uni-
versal electroweak radiative correction ∆V

R . A 2018 analysis in terms of a dispersion
relation [285, 286] found ∆V

R larger than the previous estimate [287]. A more straightfor-
ward update [288] of Ref. [287] on the description of relevant hadronic contributions as
well as a lattice and perturbative-QCD calculation [289] also reported larger ∆V

R , which is
consistent with the dispersive estimate within uncertainties. Together with conservative
estimate of nuclear corrections [285, 290–298], a recent reanalysis of twenty-three β decays
obtained [205, 299]

|Vud| = 0.97373(31). (69)

The matrix element |Vus| can be determined from inclusive hadronic τ decays [300–
303]. Both Gamiz et al. [304, 305] and Maltman et al. [302, 306, 307] arrived at very
similar values of |Vus| by separating the inclusive decay τ → X{d,s}ντ into nonstrange
(Xdντ ) and strange (Xsντ ) final states and evaluating the relevant spectral integral using
the operator product expansion (OPE). However, |Vus| = 0.2195(19) quoted by HFLAV
18 [308] differs from the result one obtains from the kaon decays by about three standard
deviations (see Tab. 20 in Sec. 5.5). A new treatment of higher orders in the OPE obtained
a slightly larger value of |Vus| = 0.2219(22) with a different experimental input [309].

Reference [310] proposed a new method to determine |Vus| without any recourse to
the OPE by evaluating the spectral integral from lattice-QCD data of the hadronic vac-
uum polarization function through generalized dispersion relations. This led to an analy-
sis [309] yielding |Vus| = 0.2240(18), which is consistent with that from the kaon decays.
However, this result mostly relies on the τ → Kντ decay channel, which represents only
∼ 24% of the inclusive τ → Xsντ decay, due to their choice of the generalized dispersion
relation [311].

The ETM collaboration carried out a first lattice calculation of the fully inclusive rate
of the hadronic τ decays based on ideas to study inclusive processes on the lattice [312,
313]. Their study of τ → Xdντ led to 0.4% determination of |Vud| = 0.9752(39), which
is nicely consistent with Eq. (69) from nuclear β decay [314]. Their extension to the

20See the discussion concerning the definition of QCD and of the isospin-breaking corrections in Sec. 3.
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τ → Xsντ decay yields |Vus| = 0.2189(19) and confirms the above tension with that from
the kaon decays [315]. In Sec. 5.5 of this review, we quote

|Vus| = 0.2184(21) (70)

from HFLAV 22 [148] as |Vus| from the inclusive hadronic τ decays.
The experimental results in Eq. (65) are for the semileptonic decay of a neutral kaon

into a negatively charged pion and the charged pion and kaon leptonic decays, respec-
tively, in QCD. In the case of the semileptonic decays the corrections for strong and
electromagnetic isospin breaking in χPT at NLO have allowed for averaging the differ-
ent experimentally measured isospin channels [316]. This is quite a convenient procedure
as long as lattice-QCD calculations do not include strong or QED isospin-breaking ef-
fects. Several lattice results for fK/fπ are quoted for QCD with (squared) pion and kaon
masses of M2

π = M2
π0 and M2

K = 1
2

(
M2
K± +M2

K0 −M2
π± +M2

π0

)
for which the leading

strong and electromagnetic isospin violations cancel. For these results, contact with ex-
perimental results is made by correcting leading isospin breaking guided either by χPT
or by lattice calculations. We note, however, that the modern trend for the leptonic de-
cays is to include strong and electromagnetic isospin breaking in the lattice calculations
(e.g., Refs. [212–214, 222, 223, 235, 283, 317, 318]).

This trend is being extended to the semileptonic decays. Calculating the electromag-
netic correction to the Kℓ3 semileptonic decays on the lattice is more involved due to
the photon exchange between π± and ℓ∓ in the final state. A framework has been pro-
posed [319], and its applicability to the kaon semileptonic decays has been discussed in
Ref. [320]. References [321–323] pursue an effective field theory setup supplemented by
nonperturbative lattice-QCD inputs to estimate the radiative corrections.

5.2 Lattice results for f+(0) and fK±/fπ±

The traditional way of determining |Vus| relies on using estimates for the value of f+(0),
invoking the Ademollo-Gatto theorem [324]. This theorem states that the corrections to
the SU(3) symmetric limit f+(0) = 1 start at second order in SU(3) breaking, namely
∝ (ms−mud)

2. Theoretical models are used to estimate higher-order corrections. Lattice
methods have now reached the stage where quantities like f+(0) or fK/fπ can be deter-
mined to good accuracy. As a consequence, the uncertainties inherent in the theoretical
estimates for the higher order effects in the value of f+(0) do not represent a limiting
factor any more, and we shall, therefore, not invoke those estimates. Also, we will use the
experimental results based on nuclear β decay and inclusive hadronic τ decay exclusively
for comparison—the main aim of the present review is to assess the information gathered
with lattice methods and to use it for testing the consistency of the SM and its potential
to provide constraints for its extensions.

The database underlying the present review of the semileptonic form factor and the
ratio of decay constants is listed in Tabs. 16 and 17. The properties of the lattice data
play a crucial role for the conclusions to be drawn from these results: ranges of a, Mπ and
LMπ to control continuum extrapolation, extrapolation in the quark masses, finite-size
effects, etc. The key features of the various data sets are characterized by means of the
colour code specified in Sec. 2.1. More detailed information on individual computations
are compiled in Appendix C.2, which in this edition is limited to new results and to
those entering the FLAG averages. For other calculations the reader should refer to the
Appendix B.2 of Ref. [3].

The quantity f+(0) represents a matrix element of a strangeness-changing null-plane
charge, f+(0) = ⟨K|Qūs|π⟩ (see Ref. [325]). The vector charges obey the commutation
relations of the Lie algebra of SU(3), in particular [Qūs, Qs̄u] = Qūu−s̄s. This relation
implies the sum rule

∑
n |⟨K|Qūs|n⟩|2−

∑
n |⟨K|Qs̄u|n⟩|2 = 1. Since the contribution from
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the one-pion intermediate state to the first sum is given by f+(0)
2, the relation amounts

to an exact representation for this quantity [326]:

f+(0)
2 = 1−

∑
n ̸=π
|⟨K|Qūs|n⟩|2 +

∑
n

|⟨K|Qs̄u|n⟩|2 . (71)

While the first sum on the right extends over nonstrange intermediate states, the second
runs over exotic states with strangeness ±2 and is expected to be small compared to the
first.

The expansion of f+(0) in SU(3) χPT in powers of mu, md, and ms starts with
f+(0) = 1 + f2 + f4 + . . . [327]. The NLO contribution f2 is known, since it can be
expressed in terms of Mπ, MK , Mη and fπ [325]. In the language of the sum rule (71),
f2 stems from nonstrange intermediate states with three mesons. Like all other nonexotic
intermediate states, it lowers the value of f+(0): f2 = −0.023 when using the experimental
value of fπ as input. The corresponding expressions have also been derived in quenched or
partially quenched (staggered) χPT [40, 328]. At the same order in the SU(2) expansion
[329], f+(0) is parameterized in terms of Mπ and two a priori unknown parameters. The
latter can be determined from the dependence of the lattice results on the masses of the
quarks. For the SU(3) χPT formula for f2, one may use f0, that is the decay constant in
the chiral limit, instead of fπ. While this affects the result only at higher orders, it may
make a significant numerical difference in calculations where the higher-order corrections
are not explicitly accounted for. (Lattice results concerning the value of the ratio fπ/f0
are reviewed in Sec. 5.3 of the previous review [5].)

The lattice results shown in Fig. 8 indicate that the higher order contributions ∆f ≡
f+(0) − 1 − f2 are negative and thus amplify the effect generated by f2. This confirms
the expectation that the exotic contributions are small. The entries in the lower part
represent various model estimates for f4. In Ref. [330], the symmetry-breaking effects are
estimated in the framework of the quark model. The more recent calculations are more
sophisticated, as they make use of the known explicit expression for the Kℓ3 form factors
to NNLO in χPT [331, 332]. The corresponding formula for f4 accounts for the chiral
logarithms occurring at NNLO and is not subject to the ambiguity mentioned above.21

The numerical result, however, depends on the model used to estimate the low-energy
constants occurring in f4 [332–335]. The figure indicates that the most recent numbers
obtained in this way correspond to a positive or an almost vanishing rather than a negative
value for ∆f . We note that FNAL/MILC 12I [40], JLQCD 17 [336], FNAL/MILC 18 [39],
and Ref. [337] have made an attempt at determining a combination of some of the low-
energy constants appearing in f4 from lattice data.

5.3 Direct determination of f+(0) and fK±/fπ±

Many lattice results for the form factor f+(0) and for the ratio of decay constants, which
we summarize here in Tabs. 16 and 17, respectively, have been computed in isospin-
symmetric QCD. The reason for this unphysical parameter choice is that there are only a
few simulations of isospin-breaking effects in lattice QCD, which is ultimately the cleanest
way for predicting these effects [212–214, 220, 222, 223, 233, 283, 338–340]. In the
meantime, one relies either on χPT [239, 327] to estimate the correction to the isospin
limit or one calculates the breaking at leading order in (mu −md) in the valence quark
sector by extrapolating the lattice data for the charged kaons to the physical value of the
up(down)-quark mass (the result for the pion decay constant is always extrapolated to
the value of the average light-quark mass m̂). This defines the prediction for fK±/fπ± .

21Fortran programs for the numerical evaluation of the form factor representation in Ref. [332] are available
on request from Johan Bijnens.
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f+(0)

FNAL/MILC 18 [39] 2+1+1 A ⋆ ⋆ ⋆ 0.9696(15)(12)
ETM 16 [38] 2+1+1 A ◦ ⋆ ◦ 0.9709(45)(9)
FNAL/MILC 13E [341] 2+1+1 A ⋆ ⋆ ⋆ 0.9704(24)(22)

PACS 22 [342] 2+1 A ◦ ■ ⋆ 0.9615(10)(+47
−6 )

PACS 19 [343] 2+1 A ◦ ■ ⋆ 0.9603(16)(+50
−48)

JLQCD 17 [336] 2+1 A ◦ ■ ◦ 0.9636(36)(+57
−35)

RBC/UKQCD 15A [41] 2+1 A ⋆ ◦ ◦ 0.9685(34)(14)
RBC/UKQCD 13 [344] 2+1 A ⋆ ◦ ◦ 0.9670(20)(+18

−46)
FNAL/MILC 12I [40] 2+1 A ◦ ◦ ⋆ 0.9667(23)(33)
JLQCD 12 [345] 2+1 C ◦ ■ ⋆ 0.959(6)(5)
JLQCD 11 [346] 2+1 C ◦ ■ ⋆ 0.964(6)

RBC/UKQCD 10 [347] 2+1 A ◦ ■ ⋆ 0.9599(34)(+31
−47)(14)

RBC/UKQCD 07 [348] 2+1 A ◦ ■ ⋆ 0.9644(33)(34)(14)

Table 16: Colour codes for the data on f+(0). In this and previous editions [4, 5], old results
with two red tags have been dropped.

Since the majority of results that qualify for inclusion into the FLAG average include
the strong isospin-breaking correction, we provide in Fig. 9 the overview of the world data
of fK±/fπ± . For all the results of Tab. 17 provided only in the isospin-symmetric limit
we apply individually an isospin correction that will be described later on (see Eqs. (74) –
(75)).

The plots in Figs. 8 and 9 illustrate our compilation of data for f+(0) and fK±/fπ± .
The lattice data for the latter quantity is largely consistent even when comparing sim-
ulations with different Nf . In the case of f+(0), a slight tendency to get higher values
when increasing Nf seems to be visible, while it does not exceed one standard devia-
tion. We now proceed to form the corresponding averages, separately for the data with
Nf = 2 + 1 + 1 and Nf = 2 + 1 dynamical flavours, and in the following we will refer to
these averages as the “direct” determinations.

5.3.1 Results for f+(0)

For f+(0) there are currently two computational strategies: FNAL/MILC uses the Ward
identity to relate the K → π form factor at zero momentum transfer to the matrix
element ⟨π|S|K⟩ of the flavour-changing scalar current S = s̄u. Peculiarities of the stag-
gered fermion discretization used by FNAL/MILC (see Ref. [40]) makes this the favoured
choice. The other collaborations are instead computing the vector current matrix element
⟨π|s̄γµu|K⟩. Apart from FNAL/MILC 13E, RBC/UKQCD 15A, FNAL/MILC 18, PACS
19 and 22, all simulations in Tab. 16 involve unphysically heavy quarks and, therefore, the
lattice data needs to be extrapolated to the physical pion and kaon masses corresponding
to the K0 → π− channel. We note also that the recent computations of f+(0) make use of
the partially-twisted boundary conditions to determine the form-factor results directly at
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Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on χPT [330, 332–335] (blue circles). The black squares and grey bands indicate our
averages in Eqs. (72) and (73). The significance of the colours is explained in Sec. 2.

the relevant kinematical point q2 = 0 [349, 350], avoiding in this way any uncertainty due
to the momentum dependence of the vector and/or scalar form factors. The ETM collabo-
ration uses partially-twisted boundary conditions to compare the momentum dependence
of the scalar and vector form factors with the one of the experimental data [38, 351],
while keeping at the same time the advantage of the high-precision determination of the
scalar form factor at the kinematical end-point q2max = (MK −Mπ)

2 [352, 353] for the
interpolation at q2 = 0.

According to the colour codes reported in Tab. 16 and to the FLAG rules of Sec. 2.2,
the results FNAL/MILC 12I and RBC/UKQCD 15A with Nf = 2 + 1, and the results
ETM 16 and FNAL/MILC 18 with Nf = 2 + 1 + 1 dynamical flavours of fermions,
respectively, can enter the FLAG averages. Therefore, there is no new entry to form the
averages in Eqs. (72) and (73) in this edition.

AtNf = 2+1+1 the result from the FNAL/MILC collaboration, f+(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking effects, and includes simulations with three lattice spacings and physical
light-quark masses. These features lead to uncertainties due to the chiral extrapolation
and the discretization artifacts that are well below the statistical error. The remain-
ing largest systematic uncertainty comes from finite-size effects, which have been inves-
tigated in Ref. [354] using one-loop χPT (with and without taste-violating effects). In
Ref. [39], the FNAL/MILC collaboration presented a more precise determination of f+(0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study
the finite-size effects. The improvement of the precision with respect to FNAL/MILC
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13E is obtained mainly by an estimate of finite-size effects, which is claimed to be con-
trolled at the level of ∼ 0.05% by comparing two analyses with and without the one-loop
correction. The total uncertainty is reduced to ∼ 0.2%. An independent calculation of
such high precision would be highly welcome to solidify the lattice prediction of f+(0),
which currently suggests a tension with CKM unitarity with the updated value of |Vud|
(see Sec. 5.4).

The result from the ETM collaboration, f+(0) = 0.9709(45)(9) (ETM 16), makes use
of the twisted-mass discretization adopting three values of the lattice spacing in the range
0.06 − 0.09 fm and pion masses simulated in the range 210 − 450 MeV. The chiral and
continuum extrapolations are performed in a combined fit together with the momentum
dependence, using both a SU(2)-χPT inspired ansatz (following Ref. [351]) and a modified
z-expansion fit. The uncertainties coming from the chiral extrapolation, the continuum
extrapolation and the finite-volume effects turn out to be well below the dominant statis-
tical error, which includes also the error due to the fitting procedure. A set of synthetic
data points, representing both the vector and the scalar semileptonic form factors at the
physical point for several selected values of q2, is provided together with the corresponding
correlation matrix.

In ETM 16, a measure of the scaling violation δ(a) defined in Eq. (1) estimated
from their continuum and chiral extrapolation decreases toward the chiral limit with the
strange-quark mass kept fixed, because the SU(3)-breaking effects to be calculated on the
lattice increases, and more statistics are needed to keep the statistical accuracy toward
this limit. At the physical point, δ(a) is consistent with zero in their region of the lattice
spacing a. This is also the case for FNAL/MILC 18, where they demonstrated that
f+(0) extrapolated to the physical point at each simulated value of a is consistent with
the value extrapolated to the continuum limit within 2 σ. We note that, in contrast
to the heavy-meson semileptonic decays, relevant meson masses and momenta at zero
momentum transfer are at most O(MK), and hence well below the cutoff a−1.

The PACS collaboration carried out a calculation (PACS 19) for Nf = 2+1 using the
O(⊣)-improved Wilson quark action by creating an ensemble with the physical light-quark
mass on a large lattice volume of (10.9 fm)4 at a single spacing a = 0.085 fm [343]. Such
a large lattice enables them to interpolate f+(q

2) to zero momentum transfer and study
the momentum-transfer dependence of the form factors without using partially-twisted
boundary conditions. This was extended to a smaller lattice spacing a = 0.063 fm in
PACS 22, which yields f+(0) = 0.9615(10)

(
+47
−6

)
. However, their result does not enter

the FLAG average, because they simulate only two lattice spacings using unimproved
local and conserved vector currents. That setup is the source of the largest (and very
asymmetric) error in their calculation. Further extension to an even smaller lattice spacing
a = 0.041 fm has been reported in Ref. [355], where authors estimate the statistical error
only, and refrain from quoting a numerical value of f+(0).

For Nf = 2 + 1, the two results eligible to enter the FLAG average are the one from
RBC/UKQCD 15A, f+(0) = 0.9685(34)(14) [41], and the one from FNAL/MILC 12I,
f+(0) = 0.9667(23)(33) [40]. These results, based on different fermion discretizations
(staggered fermions in the case of FNAL/MILC and domain wall fermions in the case of
RBC/UKQCD) are in nice agreement. Moreover, in the case of FNAL/MILC the form
factor has been determined from the scalar current matrix element, while in the case of
RBC/UKQCD it has been determined including also the matrix element of the vector
current. To a certain extent, both simulations are expected to be affected by different
systematic effects.

RBC/UKQCD 15A has analyzed results on ensembles with pion masses down to
140 MeV, mapping out the complete range from the SU(3)-symmetric limit to the physical
point. No significant cut-off effects (results for two lattice spacings) were observed in the
simulation results. Ensembles with unphysical light-quark masses are weighted to work
as a guide for small corrections toward the physical point, reducing in this way the model
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dependence in the fitting ansatz. The systematic uncertainty turns out to be dominated
by finite-volume effects, for which an estimate based on effective theory arguments is
provided.

The result FNAL/MILC 12I is from simulations reaching down to a lightest RMS
pion mass of about 380 MeV (the lightest valence pion mass for one of their ensem-
bles is about 260 MeV). Their combined chiral and continuum extrapolation (results for
two lattice spacings) is based on NLO staggered χPT supplemented by the continuum
NNLO expression [332] and a phenomenological parameterization of the breaking of the
Ademollo-Gatto theorem at finite lattice spacing inherent in their approach. The p4

low-energy constants entering the NNLO expression have been fixed in terms of external
input [269].

Since there has been no new entry after the previous edition, the FLAG average for
f+(0) remains unchanged. The Nf = 2 + 1 + 1 average is based on the FNAL/MILC 18
and ETM 16 (uncorrelated) results, the Nf = 2 + 1 average based on FNAL/MILC 12I
and RBC/UKQCD 15A, which we consider uncorrelated:

direct, Nf = 2 + 1 + 1 : f+(0) = 0.9698(17) Refs. [38, 39], (72)

direct, Nf = 2 + 1 : f+(0) = 0.9677(27) Refs. [40, 41]. (73)

We stress that the results (72) and (73), corresponding to Nf = 2+1+1 and Nf = 2+1,
respectively, include simulations with physical light-quark masses.

5.3.2 Results for fK±/fπ±

In the case of the ratio of decay constants, the data sets that meet the criteria formulated
in the introduction are HPQCD 13A [42], ETM 14E [43], FNAL/MILC 17 [20] (which
updates FNAL/MILC 14A [21]), CalLat 20 [44] and ETM 21 [45] with Nf = 2+1+1, and
HPQCD/UKQCD 07 [46], MILC 10 [47], BMW 10 [48], RBC/UKQCD 14B [12], BMW
16 [49, 360], and QCDSF/UKQCD 16 [50] with Nf = 2 + 1 dynamical flavours. Note
that the new entry in this edition is ETM 21 for Nf = 2+ 1 + 1, which did not enter the
previous FLAG average due to its publication status.

CalLat 20 employs a mixed action setup with Möbius domain-wall valence quarks on
gradient-flowed HISQ ensembles at four lattice spacings a = 0.06–0.15 fm. The valence
pion mass reaches the physical point at three lattice spacings, and the smallest valence-
sea and sea pion masses are below 200 MeV. Finite-volume corrections are studied on
three lattice volumes at a = 0.12 fm and Mπ ∼ 220 MeV. The extrapolation to the
continuum limit and the physical point is based on NNLO χPT [363]. A comprehensive
study of systematic uncertainties is performed by exploring several options including the
use of the mixed-action effective theory expression, and the inclusion of N3LO counter
terms. They obtain fK±/fπ± = 1.1942(32)stat(12)χ(20)a2(1)FV (12)M (7)IB , where the
errors are statistical, due to the extrapolation in pion and kaon masses, extrapolation in
a2, finite-size effects, choice of the fitting form and strong isospin-breaking corrections.

ETM 14E uses the twisted-mass discretization and provides a comprehensive study
of the systematics by presenting results for three lattice spacings in the range 0.06–
0.09 fm and for pion masses in the range 210–450 MeV. This makes it possible to
constrain the chiral extrapolation, using both SU(2) [329] χPT and polynomial fits.
The ETM collaboration includes the spread in the central values obtained from differ-
ent ansätze into the systematic errors. The final result of their analysis is fK±/fπ± =
1.184(12)stat+fit(3)Chiral(9)a2(1)ZP

(3)FV (3)IB where the errors are (statistical + the error
due to the fitting procedure), due to the chiral extrapolation, the continuum extrapola-
tion, the mass-renormalization constant, the finite-volume and (strong) isospin-breaking
effects.

In ETM 21 [45], the ETM collaboration presented an independent estimate of fK/fπ
in isosymmetric QCD with 2+1+1 dynamical flavours of the twisted-mass quarks. Their
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fK/fπ fK±/fπ±

ETM 21 [45] 2+1+1 A ⋆ ⋆ ⋆ 1.1995(44)(7) 1.1957(44)(7)
CalLat 20 [44] 2+1+1 A ⋆ ⋆ ⋆ 1.1964(32)(30) 1.1942(32)(31)
FNAL/MILC 17 [20] 2+1+1 A ⋆ ⋆ ⋆ 1.1980(12)(+5

−15) 1.1950(15)(+6
−18)

ETM 14E [43] 2+1+1 A ◦ ⋆ ◦ 1.188(11)(11) 1.184(12)(11)
FNAL/MILC 14A [21] 2+1+1 A ⋆ ⋆ ⋆ 1.1956(10)(+26

−18)
ETM 13F [356] 2+1+1 C ◦ ⋆ ◦ 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [42] 2+1+1 A ⋆ ◦ ⋆ 1.1948(15)(18) 1.1916(15)(16)
MILC 13A [357] 2+1+1 A ⋆ ⋆ ⋆ 1.1947(26)(37)

MILC 11 [358] 2+1+1 C ◦ ◦ ◦ 1.1872(42)†stat.
ETM 10E [359] 2+1+1 C ◦ ◦ ◦ 1.224(13)stat

QCDSF/UKQCD 16 [50] 2+1 A ◦ ⋆ ◦ 1.192(10)(13) 1.190(10)(13)
BMW 16 [49, 360] 2+1 A ⋆ ⋆ ⋆ 1.182(10)(26) 1.178(10)(26)
RBC/UKQCD 14B [12] 2+1 A ⋆ ⋆ ⋆ 1.1945(45)
RBC/UKQCD 12 [229] 2+1 A ⋆ ◦ ⋆ 1.199(12)(14)

Laiho 11 [54] 2+1 C ◦ ⋆ ◦ 1.202(11)(9)(2)(5)††

MILC 10 [47] 2+1 C ◦ ⋆ ⋆ 1.197(2)(+3
−7)

JLQCD/TWQCD 10 [361] 2+1 C ◦ ■ ⋆ 1.230(19)
RBC/UKQCD 10A [119] 2+1 A ◦ ◦ ⋆ 1.204(7)(25)
BMW 10 [48] 2+1 A ⋆ ⋆ ⋆ 1.192(7)(6)
MILC 09A [19] 2+1 C ◦ ⋆ ⋆ 1.198(2)(+6

−8)
MILC 09 [196] 2+1 A ◦ ⋆ ⋆ 1.197(3)( +6

−13)
Aubin 08 [362] 2+1 C ◦ ◦ ◦ 1.191(16)(17)
RBC/UKQCD 08 [236] 2+1 A ◦ ■ ⋆ 1.205(18)(62)
HPQCD/UKQCD 07 [46] 2+1 A ◦ ◦ ◦ 1.189(2)(7)
MILC 04 [239] 2+1 A ◦ ◦ ◦ 1.210(4)(13)

† Result with statistical error only from polynomial interpolation to the physical point.
†† This work is the continuation of Aubin 08.

Table 17: Colour codes for the data on the ratio of decay constants: fK/fπ is the pure
QCD isospin-symmetric ratio, while fK±/fπ± is in pure QCD including the isospin-breaking
correction. In this and previous editions [4, 5], old results with two red tags have been
dropped.

new set of gauge ensembles reaches the physical pion mass. The quark action includes
the Sheikoleslami-Wohlert term [364] for a better control of discretization effects. The
finite-volume effects are examined by simulating three spatial volumes, and are corrected
by SU(2) χPT formulae [184]. Their new estimate fK/fπ = 1.1995(44)stat+fit(7)sys is
consistent with ETM 14E with the total uncertainty reduced by a factor of ∼ 3.5.

FNAL/MILC 17 has determined the ratio of the decay constants from a comprehensive
set of HISQ ensembles with Nf = 2 + 1 + 1 dynamical flavours. They have generated 24
ensembles for six values of the lattice spacing (0.03–0.15 fm, scale set with fπ+) and
with both physical and unphysical values of the light sea-quark masses, controlling in
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Figure 9: Comparison of lattice results for fK±/fπ± . This ratio is obtained in pure QCD
including the isospin-breaking correction (see Sec. 5.3). The black squares and grey bands
indicate our averages in Eqs. (76) and (77).

this way the systematic uncertainties due to chiral and continuum extrapolations. With
respect to FNAL/MILC 14A they have increased the statistics and added three ensembles
at very fine lattice spacings, a ≃ 0.03 and 0.042 fm, including for the latter case also
a simulation at the physical value of the light-quark mass. The final result of their
analysis is fK±/fπ± = 1.1950(14)stat(

+0
−17)a2(2)FV (3)fπ,PDG(3)EM (2)Q2 , where the errors

are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic effects and sampling of the topological charge distribution.22

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study of
fK±/fπ± is based on the same set of ensembles as FNAL/MILC 17 bar the ones at the
finest lattice spacings (namely, only a = 0.09–0.15 fm, scale set with fπ+ and relative
scale set with the Wilson flow [115, 365]) supplemented by some simulation points with
heavier quark masses. HPQCD employs a global fit based on continuum NLO SU(3)
χPT for the decay constants supplemented by a model for higher-order terms including
discretization and finite-volume effects (61 parameters for 39 data points supplemented by
Bayesian priors). Their final result is fK±/fπ± = 1.1916(15)stat(12)a2(1)FV (10), where
the errors are statistical, due to the continuum extrapolation, due to finite-volume effects
and the last error contains the combined uncertainties from the chiral extrapolation, the
scale-setting uncertainty, the experimental input in terms of fπ+ and from the uncertainty
in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensem-
bles, we assume a 100% correlation among their statistical errors. A 100% correlation on
the total systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD
13A with the HISQ valence quarks.

22To form the average in Eq. (76), we have symmetrized the asymmetric systematic error and shifted the
central value by half the difference as will be done throughout this section.

73



The discretization effects are not large, typically at the ≲ 1 % level in HPQCD 13A,
FNAL/MILC 17 and ETM21 in their simulation region of a. This does not necessarily
mean that δ(a) in units of the uncertainty of the observable is small. HPQCD 13A
observed that it also depends on the choice of the input to fix the lattice scale: δ(a) is
consistent with zero with the relative scale setting using r1 from the static potential and
w0 from the gradient flow, whereas δ(a) ≲ 7 with another flow scale

√
t0.

23 It is not
surprising that CalLat 20 observed larger scaling violation of ≲ 4 %: while they partly
share gauge ensembles with HPQCD 13A and FNAL/MILC 17, the Möbius domain-wall
action without the tree-level O(a2) improvement is employed in their mixed action setup.

For Nf = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter
the FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge
ensembles generated using tree-level clover-improved fermions with two HEX-smearings
and the tree-level Symanzik-improved gauge action. The ensembles correspond to five
values of the lattice spacing (0.05–0.12 fm, scale set by Ω mass), to pion masses in the
range 130–680 MeV and to values of the lattice size from 1.7 to 5.6 fm, obtaining a good
control over the interpolation to the physical mass point and the extrapolation to the
continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for
the fermions (mildly stout-smeared) and the tree-level Symanzik action for the gluons.
Four values of the lattice spacing (0.06–0.08 fm) have been simulated with pion masses
down to ∼ 220 MeV and values of the lattice size in the range 2.0–2.8 fm. The decay
constants are evaluated using an expansion around the symmetric SU(3) point mu =
md = ms = (mu +md +ms)

phys/3.
Note that for Nf = 2 + 1 MILC 10 and HPQCD/UKQCD 07 are based on stag-

gered fermions, BMW 10, BMW 16 and QCDSF/UKQCD 16 have used improved Wilson
fermions and RBC/UKQCD 14B’s result is based on the domain-wall formulation. In
contrast to RBC/UKQCD 14B and BMW 16, the other simulations are for unphysical
values of the light-quark masses (corresponding to smallest pion masses in the range 220–
260 MeV in the case of MILC 10, HPQCD/UKQCD 07, and QCDSF/UKQCD 16) and,
therefore, slightly more sophisticated extrapolations needed to be controlled. Various
ansätze for the mass and cutoff dependence comprising SU(2) and SU(3) χPT or simply
polynomials were used and compared in order to estimate the model dependence. While
BMW 10, RBC/UKQCD 14B, and QCDSF/UKQCD 16 are entirely independent compu-
tations, subsets of the MILC gauge ensembles used by MILC 10 and HPQCD/UKQCD
07 are the same. MILC 10 is certainly based on a larger and more advanced set of gauge
configurations than HPQCD/UKQCD 07. This allows them for a more reliable estima-
tion of systematic effects. In this situation, we consider both statistical and systematic
uncertainties to be correlated.

Before determining the average for fK±/fπ± , which should be used for applications
to Standard Model phenomenology, we apply the strong-isospin correction individually to
all those results that have been published only in the isospin-symmetric limit, i.e., BMW
10, HPQCD/UKQCD 07 and RBC/UKQCD 14B at Nf = 2 + 1. To this end, as in the
previous editions of the FLAG reviews [2–5], we make use of NLO SU(3) χPT [282, 327],
which predicts

fK±

fπ±
=
fK
fπ

√
1 + δSU(2) , (74)

where [282]

δSU(2) ≈
√
3 ϵSU(2)

[
− 4

3 (fK/fπ − 1) + 2
3(4π)2f2

0

(
M2
K −M2

π −M2
π ln

M2
K

M2
π

)]
. (75)

We use as input ϵSU(2) =
√
3/(4R) with the FLAG result for R of Eq. (51), F0 = f0/

√
2 =

80 (20) MeV, Mπ = 135 MeV and MK = 495 MeV (we decided to choose a conservative

23We refer to Sec. 11 for detailed discussions on the scale setting and choices of the input.
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uncertainty on f0 in order to reflect the magnitude of potential higher-order corrections).
The results are reported in Tab. 18, where in the last column the last error is due to the
isospin correction (the remaining errors are quoted in the same order as in the original
data).

fK/fπ δSU(2) fK±/fπ±

HPQCD/UKQCD 07 1.189(2)(7) −0.0038(6) 1.187(2)(7)(2)
BMW 10 1.192(7)(6) −0.0039(6) 1.190(7)(6)(2)
RBC/UKQCD 14B 1.1945(45) −0.0039(6) 1.1921(45)(24)

Table 18: Values of the isospin-breaking correction δSU(2) applied to the lattice data for fK/fπ,
entering the FLAG average at Nf = 2+1, for obtaining the corrected charged ratio fK±/fπ± .
The last error in the last column is due to a 100% uncertainty assumed for δSU(2) from SU(3)
χPT.

For Nf = 2 + 1 + 1, HPQCD [42], FNAL/MILC [20] and ETM [366] estimate a value
for δSU(2) equal to −0.0054(14), −0.0052(9) and −0.0073(6), respectively. Note that the
ETM result is obtained using the insertion of the isovector scalar current according to the
expansion method of Ref. [222], while the HPQCD and FNAL/MILC results correspond to
the difference between the values of the decay constant ratio extrapolated to the physical
u-quark mass mu and to the average (mu +md)/2 light-quark mass.

To remain on the conservative side, we add a 100% error to the correction based on
SU(3) χPT. For further analyses, we add (in quadrature) such an uncertainty to the
systematic error (see Tab. 18).

Using the results of Tab. 18 for Nf = 2 + 1 we obtain

direct, Nf = 2 + 1 + 1 : fK±/fπ± = 1.1934(19) Refs. [20, 42–45], (76)

direct, Nf = 2 + 1 : fK±/fπ± = 1.1917(37) Refs. [12, 46–50], (77)

for QCD with broken isospin.
The averages obtained for f+(0) and fK±/fπ± at Nf = 2 + 1 and Nf = 2 + 1 + 1

[see Eqs. (72-73) and (76-77)] exhibit a precision better than ∼ 0.3%. At such a level of
precision, QED effects cannot be ignored, and a consistent lattice treatment of both QED
and QCD effects in leptonic and semileptonic decays becomes mandatory.

5.3.3 Extraction of |Vud| and |Vus|
It is instructive to convert the averages for f+(0) and fK±/fπ± into a corresponding range
for the CKM matrix elements |Vud| and |Vus|, using the relations in Eq. (65). Consider
first the results for Nf = 2 + 1 + 1. The average for f+(0) in Eq. (72) is mapped into
the interval |Vus| = 0.22328(58), depicted as a horizontal red band in Fig. 10. That
for fK±/fπ± in Eq. (76) is converted into |Vus|/|Vud| = 0.23126(50) using the result
for |Vus/Vud|(fK±/fπ±) in Eq. (65), shown as a tilted red band. The red ellipse is the
intersection of these two bands and represents the 68% likelihood contour, obtained by
treating the above two results as independent measurements. Repeating the exercise for
Nf = 2 + 1 leads to the green ellipse.24 The vertical band shows |Vud| from nuclear β
decay, Eq. (69). The PDG value (69) indicates a tension with both the Nf = 2 + 1 + 1
and Nf = 2 + 1 results from lattice QCD.

24Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2] correspond instead to the 39% likelihood
contours. Note also that in Ref. [2] the likelihood was erroneously stated to be 68% rather than 39%.
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Figure 10: The plot compares the information for |Vud|, |Vus| obtained using lattice QCD
for Nf = 2 + 1 and Nf = 2 + 1 + 1 with |Vud| extracted from nuclear β transitions Eq. (69).
The black dotted line indicates the correlation between |Vud| and |Vus| that follows if the
CKM-matrix is unitary.

As we mentioned, the isospin corrections are becoming relevant for the extraction of
the CKM elements at the current precision of lattice QCD inputs. We obtain |Vus|/|Vud| =
0.23131(45) by taking the average of fK/fπ in isosymmetric QCD and combining it with
the value for |Vus|fK/|Vud|fπ in Eq. (68). This estimate plotted in Fig. 11 is consistent
with that obtained from Eq. (65) using the isospin corrections from ChPT. Unlike the
corrections from ChPT, the accuracy of the isospin corrections from lattice QCD can be
readily improved by more realistic simulations and higher statistics, further sharpening
the comparisons shown in the figure.

5.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the
first row obey

|Vu|2 ≡ |Vud|2 + |Vus|2 + |Vub|2 = 1 . (78)

The tiny contribution from |Vub| is known much better than needed in the present context:
|Vub| = 3.82(24)× 10−3 [205].25 In the following, we test the first row unitarity Eq. (78)
by calculating |Vu|2 and by analyzing the lattice data within the Standard Model.

In Fig. 10, the correlation between |Vud| and |Vus| imposed by the unitarity of the
CKM matrix is indicated by a dotted line (more precisely, in view of the uncertainty in
|Vub|, the correlation corresponds to a band of finite width, but the effect is too small
to be seen here). The plot shows that there is a tension with unitarity in the data for

25See also Sec. 8.8 for our determination of |Vub|.
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Figure 11: Same as Fig. 10 but with |Vus|/|Vud| obtained using Eq. (68).

Nf = 2 + 1 + 1: Numerically, the outcome for the sum of the squares of the first row of
the CKM matrix reads |Vu|2 = 0.9820(65), which deviates from unity at the level of ≃ 2.8
standard deviations. Still, it is fair to say that at this level the Standard Model passes a
nontrivial test on the kaon (semi)leptonic and pion leptonic decays.

The test sharpens considerably by combining the lattice results for f+(0) with the β
decay value of |Vud|: f+(0) for Nf = 2 + 1 + 1 in Eq. (72) and the PDG estimate of
|Vud| in Eq. (69) lead to |Vu|2 = 0.99802(66), which also shows a ≃ 3.0 σ deviation with
unitarity. On the other hand, unitarity is fulfilled (1.7 σ) with fK±/fπ± and |Vud| (69)
(|Vu|2 = 0.99888(67)). Note that the uncertainties on |Vu|2 coming from the error of |Vud|
is larger by a factor of about three than that from |Vus|.

The situation is similar for Nf = 2 + 1: with the lattice data alone one has |Vu|2 =
0.9836(92), which is consistent with unity at the level of ≃ 1.8 standard deviations. The
lattice results for f+(0) in Eqs. (73) with the PDG value of |Vud| (69) lead to |Vu|2 =
0.99824(69), implying a ≃ 2.5σ deviation from unitarity, whereas the deviation is reduced
to 1.4σ with fK±/fπ± in Eq. (77) (|Vu|2 = 0.99902(73)).

5.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in Eq. (65) and the unitarity condition Eq. (78) then reduce the four
quantities |Vud|, |Vus|, f+(0), fK±/fπ± to a single unknown: any one of these determines
the other three within narrow uncertainties.

Numerical results for |Vus| and |Vud| are listed in Tab. 19, where we restrict ourselves
to those determinations that enter the FLAG average in Sec. 5.3 (the error in the exper-
imental numbers used to convert the values of f+(0) and fK±/fπ± into values for |Vus|
is included in the statistical error). As Fig. 12 shows, the results obtained for |Vus| and
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|Vud| from the data on fK±/fπ± (squares) are consistent with the determinations via
f+(0) (triangles), while there is a tendency that |Vus| (|Vud|) from f+(0) is systematically
smaller (larger) than that from fK±/fπ± .

Collaboration Ref. Nf from |Vus| |Vud|

FNAL/MILC 18 [39] 2 + 1 + 1 f+(0) 0.22333(55)(28) 0.97474(13)(6)

ETM 16 [38] 2 + 1 + 1 f+(0) 0.2230(11)(2) 0.97480(26)(5)

ETM 21 [45] 2 + 1 + 1 fK±/fπ± 0.22490(85)(13) 0.97437(20)(3)

CalLat 20 [44] 2 + 1 + 1 fK±/fπ± 0.22517(65)(56) 0.97431(15)(13)

FNAL/MILC 17 [20] 2 + 1 + 1 fK±/fπ± 0.22513(42)(21) 0.97432(10)(5)

ETM 14E [43] 2 + 1 + 1 fK±/fπ± 0.2270(22)(20) 0.97388(51)(47)

HPQCD 13A [42] 2 + 1 + 1 fK±/fπ± 0.22564(42)(29) 0.97420(10)(7)

RBC/UKQCD 15A [41] 2 + 1 f+(0) 0.22358(89)(32) 0.97468(20)(7)

FNAL/MILC 12I [40] 2 + 1 f+(0) 0.22400(68)(76) 0.97458(16)(18)

QCDSF/UKQCD 16 [50] 2 + 1 fK±/fπ± 0.2259(18)(23) 0.97414(42)(54)

BMW 16 [49, 360] 2 + 1 fK±/fπ± 0.2281(19)(48) 0.9736(4)(11)

RBC/UKQCD 14B [12] 2 + 1 fK±/fπ± 0.22555(87)(43) 0.97422(20)(10)

MILC 10 [47] 2 + 1 fK±/fπ± 0.22503(48)(89) 0.97434(11)(21)

BMW 10 [48] 2 + 1 fK±/fπ± 0.2259(13)(11) 0.97414(30)(26)

HPQCD/UKQCD 07 [46] 2 + 1 fK±/fπ± 0.2265(5)(13) 0.97401(11)(31)

Table 19: Values of |Vus| and |Vud| obtained from the lattice determinations of either f+(0)
or fK±/fπ± assuming CKM unitarity. The first number in brackets represents the statistical
error including the experimental uncertainty, whereas the second is the systematic one.

In order to calculate the average of |Vus| forNf = 2+1+1, we consider the data both for
f+(0) and fK±/fπ± , treating ETM 16 and ETM 14E on the one hand and FNAL/MILC
18, CalLat 20, FNAL/MILC 17, and HPQCD 13A on the other hand, as statistically
correlated according to the prescription of Sec. 2.3. We obtain |Vus| = 0.22483(61), where
the error is stretched by a factor

√
χ2/dof ∼

√
2.0. This result is indicated on the left

hand side of Fig. 12 by the narrow vertical band. In the case Nf = 2+1, we consider MILC
10, FNAL/MILC 12I and HPQCD/UKQCD 07 on the one hand, and RBC/UKQCD 14B
and RBC/UKQCD 15A on the other hand, as mutually statistically correlated, since the
analysis in the two cases starts from partialy the same set of gauge ensembles. In this
way, we arrive at |Vus| = 0.2248(6) with χ2/dof ≃ 0.7. The figure shows that the results
obtained for the data with Nf = 2+ 1 and Nf = 2+ 1+ 1 are consistent with each other.

However, the larger error for Nf = 2 + 1 + 1 due to the stretch factor
√
χ2/dof suggests

a slight tension between the estimates from the semileptonic and leptonic decays.
We take the average of |Vud| similarly. Again, the result |Vud| = 0.97439(14) for

Nf = 2 + 1 + 1 is perfectly consistent with the values |Vud| = 0.97440(13) obtained from
the data with Nf = 2+1. These values are consistent with Eq. (69) from the superallowed
nuclear transitions within 2 σ.

As mentioned in Sec. 5.1, the HFLAV value of |Vus| from the inclusive hadronic τ de-
cays differs from those obtained from the kaon decays by about three standard deviations.
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Figure 12: Results for |Vus| and |Vud| that follow from the lattice data for f+(0) (triangles)
and fK±/fπ± (squares), on the basis of the assumption that the CKM matrix is unitary. The
black square and the grey band represent the average for each value of Nf . For comparison,
the figure also indicates the results obtained if the data on nuclear β decay and inclusive
hadronic τ decay is analyzed within the Standard Model.

Assuming the first row unitarity defined in Eq. (78) leads to a larger value of |Vud| than
those from the kaon and nuclear decays.

Ref. |Vus| |Vud|

Nf = 2 + 1 + 1 0.22483(61) 0.97439(14)

Nf = 2 + 1 0.22481(58) 0.97440(13)

nuclear β decay [205] 0.2277(13) 0.97373(31)

inclusive τ decay [148] 0.2184(21) 0.97585(47)

Table 20: The upper half of the table shows the results for |Vus| and |Vud| from the analysis
of the kaon and pion decays within the Standard Model. For comparison, the lower half lists
the values that follow if the lattice results are replaced by the experimental results on nuclear
β decay and inclusive hadronic τ decay, respectively.

5.6 Direct determination of fK± and fπ±

It is useful for flavour-physics studies to provide not only the lattice average of fK±/fπ± ,
but also the average of the decay constant fK± . The case of the decay constant fπ± is
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different, since the the PDG value [276] of this quantity, based on the use of the value
of |Vud| obtained from superallowed nuclear β decays [297], is often used for setting the
scale in lattice QCD. However, the physical scale can be set in different ways, namely, by
using as input the mass of the Ω baryon (mΩ) or the Υ-meson spectrum (∆MΥ), which
are less sensitive to the uncertainties of the chiral extrapolation in the light-quark mass
with respect to fπ± .26 In such cases, the value of the decay constant fπ± becomes a direct
prediction of the lattice-QCD simulations. Therefore, it is interesting to provide also the
average of the decay constant fπ± , obtained when the physical scale is set through another
hadron observable, in order to check the consistency of different scale-setting procedures.

Our compilation of the values of fπ± and fK± with the corresponding colour code
is presented in Tab. 21 and it is unchanged from the corresponding one in the previous
FLAG reviews [4, 5].

In comparison to the case of fK±/fπ± , we have added two columns indicating which
quantity is used to set the physical scale and the possible use of a renormalization constant
for the axial current. For several lattice formulations, the use of the nonsinglet axial-vector
Ward identity allows us to avoid the use of any renormalization constant.

One can see that the determinations of fπ± and fK± suffer from larger uncertainties
than those of the ratio fK±/fπ± , which is less sensitive to various systematic effects
(including the uncertainty of a possible renormalization constant) and, moreover, is not
exposed to the uncertainties of the procedure used to set the physical scale.

According to the FLAG rules, for Nf = 2 + 1 + 1 four data sets can form the average
of fK± only: ETM 21 [45], ETM 14E [43], FNAL/MILC 14A [21], and HPQCD 13A
[42]. Following the same procedure already adopted in Sec. 5.3 for the ratio of the decay
constants, we assume 100% statistical and systematic correlation between FNAL/MILC
14A and HPQCD 13A. For Nf = 2 + 1 three data sets can form the average of fπ± and
fK± : RBC/UKQCD 14B [12] (update of RBC/UKQCD 12), HPQCD/UKQCD 07 [46],
and MILC 10 [47], which is the latest update from the MILC program. We consider
HPQCD/UKQCD 07 and MILC 10 as statistically correlated and use the prescription of
Sec. 2.3 to form an average.

Thus, our averages read

Nf = 2 + 1 : fπ± = 130.2 (0.8) MeV Refs. [12, 46, 47], (79)

Nf = 2 + 1 + 1 : fK± = 155.7 (0.3) MeV Refs. [21, 42, 43, 45], (80)

Nf = 2 + 1 : fK± = 155.7 (0.7) MeV Refs. [12, 46, 47], (81)

The lattice results of Tab. 21 and our averages in Eqs. (79)–(81) are reported in Fig. 13.
Note that the FLAG average of fK± for Nf = 2+ 1+ 1 is based on calculations in which
fπ± is used to set the lattice scale, while the Nf = 2 + 1 average does not rely on that.

26See Sec. 11 for detailed discussions.
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fπ± fK±

ETM 21 [45] 2+1+1 A ⋆ ⋆ ⋆ na fπ – 155.92(62)(9)†

ETM 14E [43] 2+1+1 A ◦ ⋆ ◦ na fπ – 154.4(1.5)(1.3)
FNAL/MILC 14A [21] 2+1+1 A ⋆ ⋆ ⋆ na fπ – 155.92(13)(+34

−23)
HPQCD 13A [42] 2+1+1 A ⋆ ◦ ⋆ na fπ – 155.37(20)(27)
MILC 13A [357] 2+1+1 A ⋆ ◦ ⋆ na fπ – 155.80(34)(54)
ETM 10E [359] 2+1+1 C ◦ ◦ ◦ na fπ ✓ – 159.6(2.0)

JLQCD 15C [367] 2+1 C ◦ ⋆ ⋆ NPR t0 125.7(7.4)stat
RBC/UKQCD 14B [12] 2+1 A ⋆ ⋆ ⋆ NPR mΩ ✓ 130.19(89) 155.18(89)
RBC/UKQCD 12 [229] 2+1 A ⋆ ◦ ⋆ NPR mΩ ✓ 127.1(2.7)(2.7) 152.1(3.0)(1.7)

Laiho 11 [54] 2+1 C ◦ ⋆ ◦ na †† 130.53(87)(2.10) 156.8(1.0)(1.7)

MILC 10 [47] 2+1 C ◦ ⋆ ⋆ na †† 129.2(4)(1.4) –
MILC 10 [47] 2+1 C ◦ ⋆ ⋆ na fπ – 156.1(4)(+6

−9)
JLQCD/TWQCD 10 [361] 2+1 C ◦ ■ ⋆ na mΩ ✓ 118.5(3.6)stat 145.7(2.7)stat
RBC/UKQCD 10A [119] 2+1 A ◦ ◦ ⋆ NPR mΩ ✓ 124(2)(5) 148.8(2.0)(3.0)
MILC 09A [19] 2+1 C ◦ ⋆ ⋆ na ∆MΥ 128.0(0.3)(2.9) 153.8(0.3)(3.9)
MILC 09A [19] 2+1 C ◦ ⋆ ⋆ na fπ – 156.2(0.3)(1.1)
MILC 09 [196] 2+1 A ◦ ⋆ ⋆ na ∆MΥ 128.3(0.5)(+2.4

−3.5) 154.3(0.4)(+2.1
−3.4)

MILC 09 [196] 2+1 A ◦ ⋆ ⋆ na fπ 156.5(0.4)(+1.0
−2.7)

Aubin 08 [362] 2+1 C ◦ ◦ ◦ na ∆MΥ 129.1(1.9)(4.0) 153.9(1.7)(4.4)
RBC/UKQCD 08 [236] 2+1 A ◦ ■ ⋆ NPR mΩ ✓ 124.1(3.6)(6.9) 149.4(3.6)(6.3)
HPQCD/UKQCD 07 [46] 2+1 A ◦ ◦ ◦ na ∆MΥ ✓ 132(2) 156.7(0.7)(1.9)
MILC 04 [239] 2+1 A ◦ ◦ ◦ na ∆MΥ 129.5(0.9)(3.5) 156.6(1.0)(3.6)

The label ’na’ indicates the lattice calculations that do not require the use of any renormalization constant for
the axial current, while the label ’NPR’ signals the use of a renormalization constant calculated nonperturba-
tively.

† We evaluated from fK±/fπ± in Tab. 17 and their input to fix the scale fπ = 130.4(2).
†† The ratios of lattice spacings within the ensembles were determined using the quantity r1. The

conversion to physical units was made on the basis of Ref. [122], and we note that such a determination
depends on the PDG value [276] of the pion decay constant.

Table 21: Colour codes for the lattice data on fπ± and fK± together with information on the
way the lattice spacing was converted to physical units and on whether or not an isospin-
breaking correction has been applied to the quoted result (see Sec. 5.3). The numerical values
are listed in MeV units. In this and previous editions [4, 5], old results with two red tags
have been dropped.
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Figure 13: Values of fπ± and fK± . The black squares and grey bands indicate our averages
in Eqs. (79) and (81).

82



6 Kaon mixing

Authors: P. Dimopoulos, X. Feng, G. Herdóıza

The mixing of neutral pseudoscalar mesons plays an important role in the understand-
ing of the physics of quark-flavour mixing and CP violation. In this section, we discuss
K0− K̄0 oscillations, which probe the physics of indirect CP violation. Extensive reviews
on this subject can be found in Refs. [368–373]. The main changes in this section with
respect to the FLAG 21 edition [5] are as follows: A discussion on the ϵK calculation has
been added in Sec. 6.1. An updated discussion regarding new lattice determinations of
the K → ππ decay amplitudes and related quantities is provided in Sec. 6.2. New FLAG
averages for SM and BSM bag parameters are reported in Secs. 6.3 and 6.4, which con-
cern the kaon mixing within the Standard Model (SM) and Beyond the Standard Model
(BSM), respectively.

6.1 Indirect CP violation and ϵK in the SM

Indirect CP violation arises in KL → ππ transitions through the decay of the CP = +1
component of KL into two pions (which are also in a CP = +1 state). Its measure is
defined as

ϵK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
, (82)

with the final state having total isospin zero. The parameter ϵK may also be expressed
in terms of K0 − K̄0 oscillations. In the Standard Model, ϵK is given by the following
expression [372, 374–377]

ϵK = exp(iϕϵ) sin(ϕϵ)

[
Im(MSD

12 )

∆MK
+

Im(MLD
12 )

∆MK
+

Im(A0)

Re(A0)

]
, (83)

where the various contributions can be related to: (i) short-distance (SD) physics given
by ∆S = 2 “box diagrams” involving W± bosons and u, c and t quarks; (ii) long-distance
(LD) physics from light hadrons contributing to the imaginary part of the dispersive
amplitude M12, Im (MLD

12 ), used in the two-component description of K0 − K̄0 mixing;
(iii) the imaginary part of the absorptive amplitude Γ12 from K0 − K̄0 mixing which can
be related to Im(A0)/Re(A0), where A0 is the K → (ππ)I=0 decay amplitude, as (ππ)I=0

states provide the dominant contribution to the absorptive part of the integral in Γ12. The
various factors of this decomposition may vary according to phase conventions. In terms
of the ∆S = 2 effective Hamiltonian, H∆S=2

eff , it is common to represent contribution (i)
by

Im(MSD
12 ) ≡ 1

2MK
Im[⟨K̄0|H∆S=2

eff |K0⟩] . (84)

The phase of ϵK is given by

ϕϵ = arctan
∆MK

∆ΓK/2
. (85)

The quantities ∆MK and ∆ΓK are the mass and decay width differences between long-
and short-lived neutral kaons. The experimentally known values of the above quantities
are [274]:

|ϵK | = 2.228(11)× 10−3 , (86)

ϕϵ = 43.52(5)◦ , (87)

∆MK ≡ MKL
−MKS

= 3.484(6)× 10−12 MeV , (88)

∆ΓK ≡ ΓKS
− ΓKL

= 7.3382(33)× 10−12 MeV , (89)
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where the latter three measurements have been obtained by imposing CPT symmetry.
We will start by discussing the short-distance effects (i) since they provide the dom-

inant contribution to ϵK . To lowest order in the electroweak theory, the contribution
to K0 − K̄0 oscillations arises from the box diagrams, in which two W bosons and two
“up-type” quarks (i.e., up, charm, top) are exchanged between the constituent down and
strange quarks of the K mesons. The loop integration of the box diagrams can be per-
formed exactly. In the limit of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion interaction, expressed in terms
of the effective Hamiltonian

H∆S=2
eff =

G2
FM

2
W

16π2
F0Q∆S=2 + h.c. . (90)

In this expression, GF is the Fermi coupling, MW the W -boson mass, and

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] ≡ OVV+AA −OVA+AV , (91)

is a dimension-six, four-fermion operator. The subscripts V and A denote vector (s̄γµd)
and axial-vector (s̄γµγ5d) bilinears, respectively. The function F0 is given by

F0 = λ2cS0(xc) + λ2tS0(xt) + 2λcλtS0(xc, xt) , (92)

where λa = V ∗
asVad, and a = c , t denotes a flavour index. The quantities S0(xc), S0(xt)

and S0(xc, xt) with xc = m2
c/M

2
W, xt = m2

t/M
2
W are the Inami-Lim functions [378],

which express the basic electroweak loop contributions without QCD corrections. The
contribution of the up quark, which is taken to be massless in this approach, has been
taken into account by imposing the unitarity constraint λu+λc+λt = 0. By substituting
λc = −λu − λt, one can rewrite F0 as [379, 380]

F0 = λ2uS0(xc) + λ2t [S0(xt)+S0(xc)− 2S0(xc, xt)] + 2λuλt[S0(xc)−S0(xc, xt)] . (93)

Equations (92) and (93) are denoted as “c-t unitarity” and “u-t unitarity”, respectively.
Since λ2uS0(xc) is real, it does not factor into ϵK , even when accounting for QCD correc-
tions.

When strong interactions are included, ∆S = 2 transitions can no longer be discussed
at the quark level. Instead, the effective Hamiltonian must be considered between mesonic
initial and final states. Since the strong coupling is large at typical hadronic scales, the
resulting weak matrix element cannot be calculated in perturbation theory. The operator
product expansion (OPE) does, however, factorize long- and short-distance effects. For
energy scales below the charm threshold, the K0−K̄0 transition amplitude of the effective
Hamiltonian can be expressed in terms of the c-t unitarity framework as follows

⟨K̄0|H∆S=2
eff |K0⟩ =

G2
FM

2
W

16π2

[
λ2cS0(xc)η1 + λ2tS0(xt)η2 + 2λcλtS0(xc, xt)η3

]
×
(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0

dg

(
γ(g)

β(g)
+

γ0
β0g

)}
⟨K̄0|Q∆S=2

R (µ)|K0⟩ + h.c. , (94)

where ḡ(µ) and Q∆S=2
R (µ) are the renormalized gauge coupling and the four-fermion

operator in some renormalization scheme. The factors η1, η2 and η3 depend on the renor-
malized coupling ḡ, evaluated at the various flavour thresholds mt,mb,mc and MW, as
required by the OPE and Renormalization-Group (RG) running procedure that separate
high- and low-energy contributions. Explicit expressions can be found in Ref. [371] and
references therein, except that η1 and η3 have been calculated to NNLO in Refs. [381] and
[382], respectively. We follow the same conventions for the RG equations as in Ref. [371].
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Thus the Callan-Symanzik function and the anomalous dimension γ(ḡ) of Q∆S=2 are
defined by

dḡ

d lnµ
= β(ḡ) ,

dQ∆S=2
R

d lnµ
= −γ(ḡ)Q∆S=2

R , (95)

with perturbative expansions

β(g) = −β0
g3

(4π)2
− β1

g5

(4π)4
− · · · , (96)

γ(g) = γ0
g2

(4π)2
+ γ1

g4

(4π)4
+ · · · .

We stress that β0, β1 and γ0 are universal, i.e., scheme independent. As for K0 − K̄0

mixing, this is usually considered in the naive dimensional regularization (NDR) scheme
of MS, and below we specify the perturbative coefficient γ1 in that scheme:

β0 =

{
11

3
N − 2

3
Nf

}
, β1 =

{
34

3
N2 −Nf

(
13

3
N − 1

N

)}
, (97)

γ0 =
6(N − 1)

N
, γ1 =

N − 1

2N

{
−21 + 57

N
− 19

3
N +

4

3
Nf

}
.

Note that for QCD the above expressions must be evaluated for N = 3 colours, while
Nf denotes the number of active quark flavours. As already stated, Eq. (94) is valid at
scales below the charm threshold, after all heavier flavours have been integrated out, i.e.,
Nf = 3.

In Eq. (94), the terms proportional to η1, η2 and η3, multiplied by the contributions
containing ḡ(µ)2, correspond to the Wilson coefficient of the OPE, computed in pertur-
bation theory. Its dependence on the renormalization scheme and scale µ is canceled by
that of the weak matrix element ⟨K̄0|Q∆S=2

R (µ)|K0⟩. The latter corresponds to the long-
distance effects of the effective Hamiltonian and must be computed nonperturbatively.
For historical, as well as technical reasons, it is convenient to express it in terms of the
B-parameter BK , defined as

BK(µ) =

〈
K̄0
∣∣Q∆S=2

R (µ)
∣∣K0

〉
8
3f

2
KM

2
K

. (98)

The four-quark operator Q∆S=2(µ) is renormalized at scale µ in some regularization
scheme, for instance, NDR-MS. Assuming that BK(µ) and the anomalous dimension
γ(g) are both known in that scheme, the renormalization group independent (RGI) B-
parameter B̂K is related to BK(µ) by the exact formula

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0

dg

(
γ(g)

β(g)
+

γ0
β0g

)}
BK(µ) . (99)

At NLO in perturbation theory, the above reduces to

B̂K =

(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β2
0

]}
BK(µ) . (100)

To this order, this is the scale-independent product of all µ-dependent quantities in
Eq. (94).

Lattice-QCD calculations provide results for BK(µ). However, these results are usually
obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (94). Examples of intermediate schemes are
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the RI/MOM scheme [383] (also dubbed the “Rome-Southampton method”) and the
Schrödinger functional (SF) scheme [384]. These schemes permit the nonperturbative
renormalization of the four-fermion operator to be conducted, using an auxiliary lattice
simulation. This allows BK(µ) to be calculated with percent-level accuracy, as described
below.

In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity B̂K . This conversion relies on 1- or 2-loop perturbative matching
calculations, the truncation errors in which are, for many calculations, the dominant
source of error in B̂K (see, for instance, Refs. [12, 54–56, 229, 385]). While this scheme-
conversion error is not, strictly speaking, an error of the lattice calculation itself, it must be
included in results for the quantities of phenomenological interest, namely, BK(MS, 2GeV)
and B̂K . Incidentally, we remark that this truncation error is estimated in different ways
and that its relative contribution to the total error can considerably differ among the
various lattice calculations. We note that this error can be minimized by matching between
the intermediate scheme and MS at as large a scale µ as possible (so that the coupling
which determines the rate of convergence is minimized). The latest available calculations
have pushed the matching µ up to the range 3–3.5 GeV. This is possible because of the use
of nonperturbative RG running determined on the lattice [12, 53, 229]. The Schrödinger
functional offers the possibility to run nonperturbatively to scales µ ∼ MW where the
truncation error can be safely neglected. However, so far this has been applied only for
two flavours for BK in Ref. [386] and for the case of the BSM bag parameters in Ref. [387],
and in Ref. [388] for three flavours. (See more details in Sec. 6.4.)‘

Perturbative truncation errors in Eq. (94) also affect the Wilson coefficients η1, η2
and η3. It turns out that the largest uncertainty arises from the charm quark contribution
η1 = 1.87(76) [381]. Although it is now calculated at NNLO, the series shows poor
convergence. The net effect from the uncertainty on η1 on the amplitude in Eq. (94) is
larger than that of present lattice calculations of BK . Exploiting an idea presented in
Ref. [379], it has been shown in Ref. [380] that, by using the u-t instead of the usual c-t
unitarity in the ϵK computation, the perturbative uncertainties associated with residual
short-distance quark contributions can be reduced. We will elaborate upon this point
later.

Returning to Eq. (83), we note that an analytical estimate of the leading contri-
bution from Im(MLD

12 ) based on χPT, shows that it is approximately proportional to
ξ0 ≡ Im(A0)/Re(A0) so that Eq. (83) can be written as follows [376, 377]:

ϵK = exp(iϕϵ) sin(ϕϵ)
[ Im(MSD

12 )

∆MK
+ ρ ξ0

]
, (101)

where the deviation of ρ from one parameterizes the long-distance effects in Im(M12).
The general formula presented in Eq. (101) for the parameter ϵK provides one of the

most valuable inputs for tests of CKM unitarity. Moreover, it holds significant potential
as a probe for New Physics, provided that its precision can be enhanced. In the following,
we will provide a general overview of the current status of the computation of |ϵK |.

With a very good approximation the formula for |ϵK | can be written in the so-
called Wolfenstein parametrization [389]. The determination of |ϵK | requires the knowl-
edge of more than a dozen input quantities, which can be categorized into four groups.
The first group includes six quantities (GF , ϕϵ,MK0 ,∆MK ,MW and mt) whose values
are known from experiment with high precision. The second group consists of sev-
eral observables computed in lattice QCD, including the kaon decay constant fK , the
charm-quark mass mc(mc), the neutral kaon mixing bag parameter BK , and the ratio
ξ0 = Im(A0)/Re(A0).

27 Moreover, the values of the CKM matrix elements |Vud|, |Vus|
27Furthermore, the long-distance effects owing to light hadrons can be estimated on the lattice as noted
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and |Vcb| are required—see for instance Ref. [391]—which are based on lattice-QCD com-
putations. It is worth recalling that the present FLAG report provides average values for
these quantities, see Secs. 5 and 8. The third group involves the short-distance interaction
factors calculated in perturbation theory. In the c-t unitarity formula, these factors are
η1, η2, and η3, as mentioned earlier in this section and shown in Eq. (94). In the u-t
unitarity case, there appear only two relevant factors (see Refs. [380, 392]). Finally, the
fourth group of inputs consists of the pair of CKM triangle variables (ρ, η) whose values
are estimated from the unitarity triangle analysis. In particular, the Angle-only Fit (AoF)
analysis used in Refs. [393–395] (see also Ref. [396]) prevents any correlation of (ρ, η) with
the rest of the inputs used in the formula for |ϵK |.

Among the various inputs, given its precision, the value of |Vcb| has a dominant impact
on both the statistically propagated error and the systematic uncertainty of the final |ϵK |
result. The substantial statistical error arises due to the amplified propagated error caused
by the fourth-power dependence of |Vcb| in the |ϵK | formula.

The main source of systematic uncertainty is particularly significant, as it stems from
the known tension between the values of |Vcb| obtained from exclusive decays (derived
from lattice calculations of the relevant form factors) and those derived from inclusive
decays. The total errors associated with both determinations are comparable, yet their
values differ by nearly three standard deviations, as discussed in Sec. 8.

Another significant source of uncertainty, when the c-t unitarity formula for |ϵK | is
employed, is related to the factor η1 that is computed to NNLO in perturbation theory. For
more information on the estimation of the systematic error due to perturbative truncation,
see Refs. [381, 394, 397]. This source of uncertainty can be mitigated by adopting the u-t
unitarity formula for |ϵK |. In this case, it is found that the two relevant QCD perturbative
factors are not subject to significant systematic uncertainties. Furthermore, this approach
reduces the correlations between the individual perturbative contributions [380].

We close this discussion by mentioning that the use of the u-t unitarity formula leads to
a total statistical error of about 8% in |ϵK |. In this case, when analyzing the error budget,
we see that nearly half of the total error comes from the propagation of the uncertainty
from |Vcb|. Furthermore, the propagated error owing to the η error is the second most
significant source of uncertainty in |ϵK |. It is noteworthy that the propagated error from
BK is much smaller, accounting for only a few percent in the final error budget. It should
also be noted that the relative uncertainties contributing to the error budget are rather
sensitive to improvements in the precision of |Vcb|. 28 On the other hand, the additional
systematic uncertainty due to the tension of the inclusive and exclusive determinations
of |Vcb| is much larger than the statistical one. It is worth adding that the use of the
inclusive |Vcb| determination brings the theoretical estimate of |ϵK | to be compatible with
the experimental value. The resolution of this long-standing tension, in conjunction with
a reduction in the overall uncertainty of |ϵK |, is highly desirable in order to enhance its
impact on the search for New Physics. 29

In order to facilitate the subsequent discussions about the status of the lattice studies
of K → ππ and of the current estimates of ξ0 ≡ Im(A0)/Re(A0), we provide a brief
account of the parameter ϵ′ that describes direct CP-violation in the kaon sector. The
definition of ϵ′ is given by:

ϵ′ ≡ 1√
2

A[KS → (ππ)I=2]

A[KS → (ππ)I=0]

(A[KL → (ππ)I=2]

A[KS → (ππ)I=2]
− A[KL → (ππ)I=0]

A[KS → (ππ)I=0]

)
. (102)

below in Sec. 6.2, c.f. Ref. [390]. However, the current accuracy of this calculation is not yet high enough to
constrain the determination of |ϵK |.

28For a recent analysis with the c-t unitarity formulae see Ref. [391] and references therein.
29Note that a more precise determination of |ϵK | will require taking into account the effect of short-distance

power corrections from dim-8 operators to the ∆S = 2 effective Hamiltonian. It is estimated that their effect
leads to an increase of the central value by 1%, see Refs. [398, 399].
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By selecting appropriate phase conventions for the mixing parameters between K0 and
K̄0 CP-eigenstates (see, e.g., Ref. [369] for further details), the expression of ϵ′ can be
expressed in terms of the real and imaginary parts of the isospin amplitudes as follows:

ϵ′ =
iω ei(δ2−δ0)√

2

[
ξ2 − ξ0

]
, (103)

where ω ≡ Re(A2)/Re(A0), ξ2 ≡ Im(A2)/Re(A2), A2 denotes the ∆I = 3/2 K → ππ
decay amplitude, and δI denotes the strong scattering phase shifts in the corresponding,
I = 0, 2, K → (ππ)I decays. Given that the phase ϕ′ϵ = δ2 − δ0 + π/2 ≈ 42.3(1.5)◦ [274]
is nearly equal to ϕϵ in Eq. (87), the ratio of parameters characterizing the direct and
indirect CP-violation in the kaon sector can be approximated in the following way,

ϵ′/ϵ ≈ Re(ϵ′/ϵ) =
ω√
2 |ϵK |

[
ξ2 − ξ0

]
, (104)

where on the left hand side we have set ϵ ≡ ϵK . The experimentally measured value
reads [274],

Re(ϵ′/ϵ) = 16.6(2.3)× 10−4 . (105)

We remark that isospin breaking and electromagnetic effects (see Refs. [400, 401], and the
discussion in Ref. [370]) introduce additional correction terms into Eq. (104).

6.2 Lattice-QCD studies of the K → (ππ)I decay amplitudes, ξ0,
ξ2 and ϵ′/ϵ

As a preamble to this section, it should be noted that the study of K → ππ decay am-
plitudes requires the development of computational strategies that are at the forefront of
lattice QCD techniques. These studies represent a significant advance in the study of kaon
physics. However, at present, they have not yet reached the same level of maturity of most
of the quantities analyzed in the FLAG report, where, for instance, independent results
by various lattice collaborations are being compared and averaged. We will, therefore,
review the current status of K → ππ lattice computations, but we will provide a FLAG
average only for the case of the decay amplitude A2.

We start by reviewing the determination of the parameter ξ0 = Im(A0)/Re(A0).
An estimate of ξ0 has been obtained from a direct evaluation of the ratio of ampli-
tudes Im(A0)/Re(A0), where Im(A0) is determined from a lattice-QCD computation
by RBC/UKQCD 20 [402] employing Nf = 2+1 Möbius domain-wall fermions at a single
value of the lattice spacing, while Re(A0) ≃ |A0| and the value |A0| = 3.320(2) × 10−7

GeV are used based on the relevant experimental input [225] from the decay to two pions.
This leads to a result for ξ0 with a rather large relative error,

ξ0 = −2.1(5)× 10−4. (106)

Following a similar procedure, an estimate of ξ0 was obtained through the use of a previous
lattice QCD determination of Im(A0) by RBC/UKQCD 15G [403]. We refer to Tab. 22
for further details about these computations of Im(A0). The comparison of the estimates
of ξ0 based on lattice QCD input are collected in Tab. 24.

To determine the value of ξ0, the expression in Eq. (104) together with the experi-
mental values of Re(ϵ′/ϵ), |ϵK | and ω can also be used. This approach has been pursued
with the help of a lattice-QCD calculation of the ratio of amplitudes Im(A2)/Re(A2)
by RBC/UKQCD 15F [51] where the continuum-limit result is based on computations
at two values of the lattice spacing employing Nf = 2 + 1 Möbius domain-wall fermions.
Further details about the lattice computations of A2 are collected in Tab. 23. In this
case, we obtain ξ0 = −1.6(2) × 10−4. The use of the updated value of Im(A2) =
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−8.34(1.03) × 10−13 GeV from Ref. [402], in combination with the experimental value
of Re(A2) = 1.479(4) × 10−8 GeV, introduces a small change with respect to the above
result.30 The value for ξ0 reads 31

ξ0 = −1.7(2)× 10−4. (107)

A phenomenological estimate can also be obtained from the relationship of ξ0 to
Re(ϵ′/ϵ), using the experimental value of the latter and further assumptions concerning
the estimate of hadronic contributions. The corresponding value of ξ0 reads [376, 377]

ξ0 = −6.0(1.5)× 10−2 ×
√
2 |ϵK | = −1.9(5)× 10−4. (108)

We note that the use of the experimental value for Re(ϵ′/ϵ) is based on the assumption
that it is free from New Physics contributions. The value of ξ0 can then be combined
with a χPT-based estimate for the long-range contribution, ρ = 0.6(3) [377]. Overall, the
combination ρξ0 appearing in Eq. (101) leads to a suppression of the SM prediction of
|ϵK | by about 3(2)% relative to the experimental measurement of |ϵK | given in Eq. (86),
regardless of whether the phenomenological estimate of ξ0 [see Eq. (108)] or the most
precise lattice result [see Eq. (106)] are used. The uncertainty in the suppression factor
is dominated by the error on ρ. Although this is a small correction, we note that its
contribution to the error of ϵK is larger than that arising from the value of BK reported
below.

The evolution of lattice-QCD methodologies has enabled recent ongoing efforts to
calculate the long-distance contributions to ϵK [390, 405] and the KL − KS mass dif-
ference [379, 406–409]. However, the results are not yet precise enough to improve the
accuracy in the determination of the parameter ρ.

The lattice-QCD study of K → ππ decays provides crucial input to the SM prediction
of ϵK . During the last decade, the RBC/UKQCD collaboration has undertaken a series
of lattice-QCD calculations of K → ππ decay amplitudes [51, 402, 403, 410]. In 2015,
the first calculation of the K → (ππ)I=0 decay amplitude A0 was performed using phys-
ical kinematics on a 323 × 64 lattice with an inverse lattice spacing of a−1 = 1.3784(68)
GeV [403, 411]. The main features of the RBC/UKQCD 15G calculation included, fixing
the I = 0 ππ energy very close to the kaon mass by imposing G-parity boundary condi-
tions, a continuum-like operator mixing pattern through the use of a domain-wall fermion
action with accurate chiral symmetry, and the construction of the complete set of corre-
lation functions by computing seventy-five distinct diagrams. Results for the real and the
imaginary parts of the decay amplitude A0 from the RBC/UKQCD 15G computation are
collected in Tab. 22, where the first error is statistical and the second is systematic.

The calculation in RBC/UKQCD 20 [402] using the same lattice setup has improved
upon RBC/UKQCD 15G [403] in three important aspects: (i) an increase in statistics
by a factor of 3.4; (ii) the inclusion of a scalar two-quark operator and the addition of
another pion-pion operator to isolate the ground state, and (iii) the use of step scaling
techniques to raise the renormalization scale from 1.53 GeV to 4.01 GeV. The updated
determinations of the real and the imaginary parts of A0 in Ref. [402] are shown in Tab. 22.

In addition to utilizing G-parity boundary conditions to address the challenges asso-
ciated with extracting excited states for achieving the correct kinematics of K → ππ,

30The update in Im(A2) is due to a change in the value of the imaginary part of the ratio of CKM matrix
elements, τ = −V ∗

tsVtd/V
∗
usVud, as given in Ref. [404]. The lattice-QCD input is therefore the one reported in

Ref. [51].
31The current estimates for the corrections owing to isospin breaking and electromagnetic effects [401] imply

a relative change on the theoretical value for ϵ′/ϵ by about −20% with respect to the determination based on
Eq. (104). The size of these isospin breaking and electromagnetic corrections is related to the enhancement
of the decay amplitudes between the I = 0 and the I = 2 channels. As a consequence, one obtains a similar
reduction on ξ0, leading to a value that is close to the result of Eq. (106).
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Re(A0) Im(A0)
[10−7 GeV] [10−11 GeV]

RBC/UKQCD 23A [410] 2+1 A ■ ◦ ⋆ ⋆ a 2.84(0.57)(0.87) −8.7(1.2)(2.6)

RBC/UKQCD 20 [402] 2+1 A ■ ◦ ◦ ⋆ a 2.99(0.32)(0.59) −6.98(0.62)(1.44)

RBC/UKQCD 15G [403] 2+1 A ■ ◦ ◦ ⋆ b 4.66(1.00)(1.26) −1.90(1.23)(1.08)

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV and running to
4.0GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV. Conversion to MS
at 1-loop order at the same scale.

Table 22: Results for the real and imaginary parts of the K → ππ decay amplitude A0

from lattice-QCD computations with Nf = 2 + 1 dynamical flavours. Information about the
renormalization, running and matching to the MS scheme is indicated in the column “run-
ning/matching”, with details given at the bottom of the table. We refer to the text for further
details about the main differences between the lattice computations in Refs. [402] and [403].

the latest publications, RBC/UKQCD 23A [410] and RBC/UKQCD 23B [412], also in-
vestigate alternative approaches for overcoming this issue, namely employing variational
methods and periodic boundary conditions. Two-pion scattering calculations are carried
out for the isospin channels I = 0 and I = 2 on two gauge-field ensembles with physical
pion masses and inverse lattice spacings of 1.023 and 1.378 GeV [412] employing domain-
wall fermions. The results for scattering phase shifts in both I = 0 and I = 2 channels
exhibit consistency with the Roy equation and chiral perturbation theory, although the
statistical error for I = 0 remains relatively large. The computation of K → ππ decay
amplitudes and ϵ′ is performed on a single ensemble with a physical pion mass and an
inverse lattice spacing of 1.023 GeV [410]. The value obtained for Re(ϵ′/ϵ) is consistent
with that of the previous 2020 calculation, albeit with 1.7 times larger uncertainty. Re-
sults from RBC/UKQCD 23A for the real and imaginary parts of A0 and A2 are reported
in Tabs. 22 and 23, respectively.

As previously discussed, the determination of Im(A0) from Ref. [402] has been used to
obtain the value of the parameter ξ0 in Eq. (106). A first-principles computation of Re(A0)
is essential to address the so-called ∆I = 1/2 puzzle associated to the enhancement of
∆I = 1/2 over ∆I = 3/2 transitions owing, crucially, to long distance effects. Indeed,
short-distance enhancements in the Wilson coefficients are not large enough to explain
the ∆I = 1/2 rule [413, 414]. Lattice-QCD calculations do provide a method to study
such a long-distance enhancement. The combination of the most precise result for A0 in
Tab. 22, Ref. [402], with the earlier lattice calculation of A2 in Ref. [51] leads to the ratio,
Re(A0)/Re(A2) = 19.9(5.0), which agrees with the value Re(A0)/Re(A2) = 22.45(6)
that we obtain based solely on PDG 24 [274] experimental input. In Ref. [402], the lattice
determination of relative size of direct CP violation was updated as follows,

Re(ϵ′/ϵ) = 21.7(2.6)(6.2)(5.0)× 10−4, (109)
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Re(A2) Im(A2)
[10−8 GeV] [10−13 GeV]

RBC/UKQCD 23A [410] 2+1 A ■ ◦ ⋆ ⋆ a 1.74(0.15)(0.48) −5.91(0.13)(1.75)

RBC/UKQCD 15F [51] 2+1 A ◦ ◦ ⋆ ⋆ b 1.50(0.04)(0.14) −8.34(1.03)♢

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV and running to
4.0GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 3 GeV. Conversion to MS
at 1-loop order.

♢ This value of Im(A2) is an update reported in Ref. [402] which is based on the lattice QCD computation
in Ref. [51] but where a change in the value of the imaginary part of the ratio of CKM matrix elements
τ = −V ∗

tsVtd/V
∗
usVud reported in Ref. [404] has been applied.

Table 23: Results for the real and the imaginary parts of theK → ππ decay amplitude A2 from
lattice-QCD computations with Nf = 2+1 dynamical flavours. Information about the renor-
malization and matching to the MS scheme is indicated in the column “running/matching”,
with details given at the bottom of the table.

where the first two errors are statistical and systematic, respectively. The third error
arises from having omitted the strong and electromagnetic isospin breaking effects. The
value of Re(ϵ′/ϵ) in Eq. (109) uses the experimental values of Re(A0) and Re(A2). The
lattice determination of Re(ϵ′/ϵ) is in good agreement with the experimental result in
Eq. (105). However, while the result in Eq. (109) represents a significant step forward, it
is important to keep in mind that the calculation of A0 is currently based on a single value
of the lattice spacing. It is expected that future work with additional values of the lattice
spacing will contribute to improve the precision. For a description of the computation of
the ππ scattering phase shifts entering in the determination of Re(ϵ′/ϵ) in Eq. (109), we
refer to Ref. [415].

The complex amplitude A2 has been determined by RBC/UKQCD 15F [51] employing
Nf = 2 + 1 Möbius domain-wall fermions at two values of the lattice spacing, namely
a = 0.114 fm and 0.083 fm, and performing simulations at the physical pion mass with
MπL ≈ 3.8.

A compilation of lattice results for the real and imaginary parts of the K → ππ
decay amplitudes, A0 and A2, with Nf = 2 + 1 flavours of dynamical quarks is shown in
Tabs. 22 and 23. In Appendix C.3.3, we collect the corresponding information about the
lattice QCD simulations, including the values of some of the most relevant parameters.

The determination of the real and imaginary parts of A2 by RBC/UKQCD 15F shown
in Tab. 23 is free of red tags. We therefore quote the following FLAG averages:

Re(A2) = 1.50(0.04)(0.14)× 10−8 GeV,
Nf = 2 + 1 : Ref. [51]. (110)

Im(A2) = −8.34(1.03)× 10−13 GeV,

Results for the parameter ξ0 are presented in Tab. 24. Except for the most recent
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Collaboration Ref. Nf ξ0

RBC/UKQCD 23A◦ [410] 2+1 −2.63(37)(68) · 10−4

RBC/UKQCD 20† [402] 2+1 −2.1(5) · 10−4

RBC/UKQCD 15G⋄ [403] 2+1 −0.6(5) · 10−4

RBC/UKQCD 15F∗ [51] 2+1 −1.7(2) · 10−4

◦ Estimate for ξ0 has been provided by RBC/UKQCD (private communication with Masaaki Tomii.)
† Estimate for ξ0 obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0) where

Im(A0) is determined from the lattice-QCD computation of Ref. [402] while for Re(A0) ≃ |A0| is taken
from the experimental value for |A0|.

⋄ Estimate for ξ0 obtained from a direct evaluation of the ratio of amplitudes Im(A0)/Re(A0) where
Im(A0) is determined from the lattice-QCD computation of Ref. [403] while for Re(A0) ≃ |A0| is taken
from the experimental value for |A0|.

∗ Estimate for ξ0 based on the use of Eq. (104). The new value of Im(A2) reported in Ref. [402]—based
on the lattice-QCD computation of Ref. [51] following an update of a nonlattice input—is used in
combination with the experimental values for Re(A2), Re(ϵ′/ϵ), |ϵK | and ω.

Table 24: Results for the parameter ξ0 = Im(A0)/Re(A0) obtained through the combination
of lattice-QCD determinations of K → ππ decay amplitudes with Nf = 2 + 1 dynamical
flavours and experimental inputs.

calculation RBC/UKQCD 23A, which is based on the direct lattice calculation of the
relevant quantities, we note that, for the other reported values of ξ0, the total uncertainty
depends on the specific way in which lattice and experimental inputs are selected.

Besides the RBC/UKQCD collaboration programme [51, 402, 403, 410, 412] using
domain-wall fermions, an approach based on improved Wilson fermions [416, 417] has
presented a determination of the K → ππ decay amplitudes, A0 and A2, at unphysical
quark masses. See Refs. [418–420] for an analysis of the scaling with the number of colours
of K → ππ decay amplitudes using lattice-QCD computations

Proposals aiming at the inclusion of electromagnetism in lattice-QCD calculations
of K → ππ decays are being explored [421–423] in order to reduce the uncertainties
associated with isospin breaking effects.

6.3 Lattice computation of BK

Lattice calculations of BK are affected by the same type of systematic effects discussed in
the various sections of this review. However, the issue of renormalization merits special
attention. The reason is that the multiplicative renormalizability of the relevant operator
Q∆S=2 is lost once the regularized QCD action ceases to be invariant under chiral trans-
formations. As a result, the renormalization pattern of BK depends on the specific choice
of the fermionic discretization.

In the case of Wilson fermions, Q∆S=2 mixes with four additional dimension-six opera-
tors, which belong to different representations of the chiral group, with mixing coefficients
that are finite functions of the gauge coupling. This complicated renormalization pattern
was identified as the main source of systematic error in earlier, mostly quenched calcula-
tions of BK with Wilson quarks. It can be bypassed via the implementation of specifically
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designed methods, which are either based on Ward identities [424] or on a modification
of the Wilson quark action, known as twisted-mass QCD [425–427].

An advantage of staggered fermions is the presence of a remnant U(1) chiral symme-
try. However, at nonvanishing lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing with other dimension-six opera-
tors cannot be avoided in the staggered formulation, which complicates the determination
of the B-parameter. In general, taste conserving mixings are implemented directly in the
lattice computation of the matrix element. The effects of the broken taste symmetry are
usually treated through an effective field theory, staggered Chiral Perturbation Theory
(SχPT) [428, 429], parameterizing the quark-mass and lattice-spacing dependences.

Fermionic lattice actions based on the Ginsparg-Wilson relation [430] are invariant
under the chiral group, and hence four-quark operators such as Q∆S=2 renormalize multi-
plicatively. However, depending on the particular formulation of Ginsparg-Wilson fermions,
residual chiral symmetry breaking effects may be present in actual calculations. For in-
stance, in the case of domain-wall fermions, the finiteness of the extra 5th dimension
implies that the decoupling of modes with different chirality is not exact, which produces
a residual nonzero quark mass mres in the chiral limit. The mixing with dimension-six
operators of different chirality is expected to be an O(m2

res) suppressed effect [431, 432]
that should be investigated on a case-by-case basis.

Before describing the results for BK , we would like to reiterate a discussion presented
in previous FLAG reports about an issue related to the computation of the kaon bag
parameters through lattice-QCD simulations with Nf = 2 + 1 + 1 dynamical quarks. In
practice, this only concerns the calculations of the kaon B-parameters including dynam-
ical charm-quark effects in Ref. [52], that were examined in the FLAG 16 report. As
described in Sec. 6.1, the effective Hamiltonian in Eq. (90) depends solely on the operator
Q∆S=2 in Eq. (91) —which appears in the definition of BK in Eq. (98)— at energy scales
below the charm threshold where charm-quark contributions are absent. As a result, a
computation of BK based on Nf = 2+ 1 + 1 dynamical simulations will include an extra
sea-quark contribution from charm-quark loop effects for which there is at present no
direct evaluation in the literature.

When the matrix element of Q∆S=2 is evaluated in a theory that contains a dynamical
charm quark, the resulting estimate for BK must then be matched to the three-flavour
theory that underlies the effective four-quark interaction.32 In general, the matching of
2+1-flavour QCD with the theory containing 2+1+1 flavours of sea quarks is performed
around the charm threshold. It is usually accomplished by requiring that the coupling
and quark masses are equal in the two theories at a renormalization scale µ around mc.
In addition, BK should be renormalized and run, in the four-flavour theory, to the value
of µ at which the two theories are matched, as described in Sec. 6.1. The corrections
associated with this matching are of order (E/mc)

2, where E is a typical energy in the
process under study, since the subleading operators have dimension eight [433].

When the kaon-mixing amplitude is considered, the matching also involves the relation
between the relevant box diagrams and the effective four-quark operator. In this case,
corrections of order (E/mc)

2 arise not only from the charm quarks in the sea, but also
from the valence sector, since the charm quark propagates in the box diagrams. We note
that the original derivation of the effective four-quark interaction is valid up to corrections
of order (E/mc)

2. The kaon-mixing amplitudes evaluated in the Nf = 2+1 and 2+1+1
theories are thus subject to corrections of the same order in E/mc as the derivation of
the conventional four-quark interaction.

Regarding perturbative QCD corrections at the scale of the charm-quark mass on the
amplitude in Eq. (94), the uncertainty on η1 and η3 factors is of O(αs(mc)

3) [381, 382],

32We thank Martin Lüscher for an interesting discussion on this issue.
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while that on η2 is of O(αs(mc)
2) [434]. 33 On the other hand, the corrections of order

(E/mc)
2 due to dynamical charm-quark effects in the matching of the amplitudes are

further suppressed by powers of αs(mc) and by a factor of 1/Nc, given that they arise
from quark-loop diagrams. In order to make progress in resolving this so far uncontrolled
systematic uncertainty, it is essential that any future calculation of BK with Nf = 2 +
1 + 1 flavours properly addresses the size of these residual dynamical charm effects in a
quantitative way.

Another issue in this context is how the lattice scale and the physical values of the
quark masses are determined in the 2+1 and 2+1+1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark.

A recent study [226] using three degenerate light quarks, together with a charm quark,
indicates that the deviations between the Nf = 3+ 1 and the Nf = 3 theories are consid-
erably below the 1% level in dimensionless quantities constructed from ratios of gradient
flow observables, such as t0 and w0, used for scale setting. This study extends the nonper-
turbative investigations with two heavy mass-degenerate quarks [198, 200] which indicate
that dynamical charm-quark effects in low-energy hadronic observables are considerably
smaller than the expectation from a naive power counting in terms of αs(mc). For an
additional discussion on this point, we refer to Ref. [52]. Given the hierarchy of scales
between the charm-quark mass and that of BK , we expect these errors to be modest.
The ETM 15 Nf = 2 + 1 + 1 BK result does not include an estimate of this systematic
uncertainty. A more quantitative understanding will be required as the statistical uncer-
tainties in BK will be reduced. Within this review we will not discuss this issue further.
However, we wish to point out that the present discussion also applies to Nf = 2 + 1 + 1
computations of the kaon BSM B-parameters discussed in Sec. 6.4.

A compilation of results for BK with Nf = 2+1+1, 2+1 and 2 flavours of dynamical
quarks is shown in Tabs. 25 and 26, as well as Fig. 14. An overview of the quality of
systematic error studies is represented by the colour coded entries in Tabs. 25 and 26.
The values of the most relevant lattice parameters and comparative tables on the various
estimates of systematic errors have been collected in the corresponding Appendices of the
previous FLAG editions [2–4].

Since the last FLAG report, one new result forBK appeared in RBC/UKQCD 24 [56]. 34

For the determination of BK , the RBC/UKQCD Collaboration employs domain-wall
fermions at three lattice spacings spanning the range [0.07, 0.11] fm. For the two coars-
est lattice spacings, simulations have been performed at the physical pion mass, whereas
for the finest lattice spacing, a pion mass of about 230 MeV has been used. Residual
chiral symmetry breaking effects induced by the finite extent of the 5th dimension in
the domain-wall fermion formulation have been checked and found to contribute to the
systematic uncertainty of the final estimate of BK at the per-mille level. Finite-volume
effects are found to be negligible. The renormalization constants of the lattice operators
are determined nonperturbatively in two RI-SMOM schemes, namely (/q, /q) and (γµ, γµ),
corresponding to two different choices of renormalization conditions (see Ref. [12]). The
final values of the renormalization constants are obtained from the average over the results
of the two schemes. The error from the (γµ, γµ) scheme is used to quote the uncertainty
arising from the lattice computation. The renormalization constants in the RI-SMOM

33The results of Ref. [380], based on the use of u-t unitarity for the two corresponding perturbative factors,
also have an uncertainty of O(αs(mc)

2) and O(αs(mc)
3). The estimates for the missing higher-order contri-

butions are, however, expected to be reduced with respect to the more traditional case where c-t unitarity is
used; for a discussion on the |ϵK | computation in the u-t unitarity, see the relevant discussion in Sec. 6.1.

34We also mention the report of an ongoing work [435] related to the calculation of BK in which the relevant
operators are defined in the framework of gradient flow. A small flow time expansion method was applied in
order to compute, to 1-loop approximation, the finite matching coefficients between the gradient flow and the
MS schemes for the operators entering the BK computation.
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schemes are computed at the renormalization scale µ = 2 GeV. A nonperturbative step-
scaling procedure is used to run them to µ = 3 GeV where the results are perturbatively
matched to the MS scheme. The continuum and physical point result for BK is obtained
through a combined chiral and continuum extrapolation using NLO SU(2) chiral pertur-
bation theory. The spread between the result obtained as described above and the result
of a calculation performed directly at µ = 3 GeV is taken as an estimate of the uncertainty
due to discretization effects. The dominant error of the RBC/UKQCD 24 computation of
BK arises from the perturbative matching of the RI-SMOM schemes used in the lattice
computation to the MS scheme. This is estimated as half the difference of the results
obtained from the use of the two intermediate RI-SMOM schemes in the matching. In
this computation of BK , a green star symbol is assigned to all FLAG quality criteria.

For a detailed description of previous BK calculations we refer the reader to FLAG
16 [3].

We now give the FLAG averages for BK for Nf = 2 + 1 + 1, 2 + 1, and 2 dynamical
flavours.
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Figure 14: Unquenched lattice results for the RGI B-parameter B̂K . The grey bands indicate
our averages described in the text. For Nf = 2+1+1 and Nf = 2 the FLAG averages coincide
with the results by ETM 15 and ETM 12D, respectively.

We begin with the Nf = 2 + 1 global average, which is estimated by employing
five different BK results, namely BMW 11 [53], Laiho 11 [54], RBC/UKQCD 14B [12],
SWME 15A [55], and RBC/UKQCD 24 [56]. Moreover, we recall that the expression of ϵK
in terms of BK is derived in the three-flavour theory (see Sec. 6.1). Our procedure is: first,
we combine in quadrature the statistical and systematic errors of each individual result
of the RGI B parameter B̂K. A weighted average is then obtained from the set of results.
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For the final error estimate, we take correlations between different collaborations into ac-
count. Specifically, we consider the statistical and finite-volume errors of SWME 15A and
Laiho 11 to be correlated, since both groups use the asqtad ensembles generated by the
MILC Collaboration. Laiho 11 and RBC/UKQCD 14B both use domain-wall quarks in
the valence sector and employ similar procedures for the nonperturbative determination
of matching factors. Hence, we treat their quoted renormalization and matching uncer-
tainties as correlated. Moreover, we treat the results obtained by RBC/UKQCD 14B and
RBC/UKQCD 24 as fully correlated because part of the sea ensembles in the two calcu-
lations are common.35 In the calculation of the average, we incorporate the new FLAG
data-driven criterion (see Sec. 2.1.2) concerning the extrapolation to the continuum limit
which increases by approximately 3.7% the total error of the RBC/UKQCD 24 calcula-
tion. Following Schmelling’s procedure [203] to construct the global covariance matrix of
the results contributing to the average, we arrive at the following value, B̂K = 0.7533(85).
Since the fit implementing the weighted average has χ2/dof = 1.142, according to the gen-
eral FLAG rule, we stretch the error by the square root of the reduced χ2 value. This
effect is mainly driven by the two most precise determinations of B̂K, corresponding to
RBC/UKQCD 24 and BMW 11, which differ at the 2σ level. This procedure leads to the
following result:

Nf = 2 + 1 : B̂K = 0.7533(91) Refs. [12, 53–56], (111)

After applying the NLO conversion factors B̂K/B
MS
K (2GeV) = 1.369 and B̂K/B

MS
K (3GeV) =

1.415 36, this becomes

Nf = 2 + 1 : BMS
K (2GeV) = 0.5503(66), BMS

K (3GeV) = 0.5324(64) , Refs. [12, 53–56].
(112)

Improvements in lattice calculations in recent years have led to a considerable reduc-
tion in statistical errors. This has implied that some of the results contributing to the
global average are nowadays statistically incompatible. Only by taking into account the
contributions to systemic uncertainties, both from the lattice calculations themselves and,
notably, from perturbative matching, can it be seen that the weighted average produces
a value of O(1) for the reduced χ2.

There is only a single result forNf = 2+1+1, computed by the ETM collaboration [52].
Since it is free of red tags, it qualifies to the following average,

Nf = 2 + 1 + 1 : B̂K = 0.717(18)(16) , Ref. [52]. (113)

Using the same conversion factors as in the three-flavour theory, this value translates into

Nf = 2 + 1 + 1 : BMS
K (2GeV) = 0.524(13)(12), BMS

K (3GeV) = 0.507(13)(11), Ref. [52].
(114)

For Nf = 2 flavours the average is based on a single result, that of ETM 12D [57]:

Nf = 2 : B̂K = 0.727(22)(12), Ref. [57] , (115)

which, using the same conversion factors as in the three-flavour theory, translates into

Nf = 2 : BMS
K (2GeV) = 0.531(16)(9), BMS

K (3GeV) = 0.514(16)(8), Ref. [57]. (116)

35However, due to partly different methodology in the analysis and the renormalization procedure the two
computations are considered as separate, and for this reason they are both included in the global average.

36We refer to FLAG 19 [4] for a discussion of the procedure followed in estimating the conversion factors
to MS at 2 GeV. In addition, for the computation of the conversion factor from RGI to the MS scheme at 3
GeV, which is new here, we have used the three-flavour ΛQCD from FLAG 21 and the 4-loop formula for the
β-function of the strong coupling constant. The propagation error owing to the error of ΛQCD is found to be
negligible compared to the total uncertainty of the BK estimate.
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BK(MS, 2GeV) B̂K

ETM 15 [52] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.524(13)(12) 0.717(18)(16)1

RBC/UKQCD 24 [56] 2+1 A ⋆ ⋆ ⋆ ⋆ b 0.540(2)(20)2 0.7436(25)(78)

RBC/UKQCD 16 [58] 2+1 A ◦ ◦ ◦ ⋆ c 0.543(9)(13)2 0.744(13)(18)3

SWME 15A [55] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(4)(26) 0.735(5)(36)4

RBC/UKQCD 14B [12] 2+1 A ⋆ ⋆ ⋆ ⋆ c 0.5478(18)(110)2 0.7499(24)(150)

SWME 14 [385] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.5388(34)(266) 0.7379(47)(365)

SWME 13A [436] 2+1 A ⋆ ◦ ⋆ ◦‡ − 0.537(7)(24) 0.735(10)(33)

SWME 13 [437] 2+1 C ⋆ ◦ ⋆ ◦‡ − 0.539(3)(25) 0.738(5)(34)

RBC/UKQCD 12A [229] 2+1 A ◦ ⋆ ◦ ⋆ c 0.554(8)(14)2 0.758(11)(19)

Laiho 11 [54] 2+1 C ⋆ ◦ ◦ ⋆ − 0.5572(28)(150) 0.7628(38)(205)4

SWME 11A [438] 2+1 A ⋆ ◦ ◦ ◦‡ − 0.531(3)(27) 0.727(4)(38)

BMW 11 [53] 2+1 A ⋆ ⋆ ⋆ ⋆ d 0.5644(59)(58) 0.7727(81)(84)

RBC/UKQCD 10B [439] 2+1 A ◦ ◦ ⋆ ⋆ e 0.549(5)(26) 0.749(7)(26)

SWME 10 [440] 2+1 A ⋆ ◦ ◦ ◦ − 0.529(9)(32) 0.724(12)(43)

Aubin 09 [441] 2+1 A ◦ ◦ ◦ ⋆ − 0.527(6)(21) 0.724(8)(29)

‡ The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of
the uncertainty.

a BK is renormalized nonperturbatively at scales 1/a ∼ 2.2–3.3 GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at 1-loop order at 3 GeV.

b BK is renormalized nonperturbatively at a scale of 2.0 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. A direct computation
at 3 GeV is also used to estimate systematic uncertainties related to discretization effects. Conversion
to MS is at 1-loop order at 3 GeV.

c BK is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

d BK is renormalized and run nonperturbatively to a scale of 3.5GeV in the RI/MOM scheme. At
the same scale, conversion at 1-loop order to MS is applied. Nonperturbative and NLO perturbative
running agrees down to scales of 1.8GeV within statistical uncertainties of about 2%.

e BK is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Nf = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with
Nf = 2 + 1.

2 BK(MS, 2GeV) value from a private communication with the authors. The first error is due to lattice
statistical and systematic uncertainties; the second error is associated with the perturbative truncation
uncertainty in matching to MS at a scale of 2 GeV.

3 B̂K is obtained from BK(MS, 3GeV) using the conversion factor employed in Ref. [12].
4 B̂K is obtained from the estimate for BK(MS, 2GeV) using the conversion factor 1.369.

Table 25: Results for the kaon B-parameter in QCD with Nf = 2 + 1 + 1 and Nf = 2 + 1,
together with a summary of systematic errors. Information about nonperturbative running
is indicated in the column “running,” with details given at the bottom of the table.
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BK(MS, 2GeV) B̂K

ETM 12D [57] 2 A ⋆ ◦ ◦ ⋆ f 0.531(16)(9) 0.727(22)(12)1

ETM 10A [442] 2 A ⋆ ◦ ◦ ⋆ g 0.533(18)(12)1 0.729(25)(17)

f BK is renormalized nonperturbatively at scales 1/a ∼ 2–3.7 GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [442, 443].

g BK is renormalized nonperturbatively at scales 1/a ∼ 2–3 GeV in the Nf = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [442, 443].

1 BK(MS, 2GeV) and B̂K are related using the conversion factor 1.369, i.e., the one obtained with Nf =
2 + 1.

Table 26: Results for the kaon B-parameter in QCD with Nf = 2, together with a summary
of systematic errors. Information about nonperturbative running is indicated in the column
“running,” with details given at the bottom of the table.

6.4 Kaon BSM B-parameters

We now consider the matrix elements of operators that encode the effects of physics
beyond the Standard Model (BSM) to the mixing of neutral kaons. In this theoretical
framework, both the SM and BSM contributions add up to reproduce the experimentally
observed value of ϵK . As long as BSM contributions involve heavy particles with masses
much larger than ΛQCD, they will be short-distance dominated. The effective Hamiltonian
for generic ∆S = 2 processes including BSM contributions reads

H∆S=2
eff,BSM =

5∑
i=1

Ci(µ)Qi(µ), (117)

where Q1 is the four-quark operator of Eq. (91) that gives rise to the SM contribution
to ϵK . In the so-called SUSY basis introduced by Gabbiani et al. [444], the operators
Q2, . . . , Q5 are 37

Q2 =
(
s̄a(1− γ5)da

)(
s̄b(1− γ5)db

)
,

Q3 =
(
s̄a(1− γ5)db

)(
s̄b(1− γ5)da

)
,

Q4 =
(
s̄a(1− γ5)da

)(
s̄b(1 + γ5)d

b
)
,

Q5 =
(
s̄a(1− γ5)db

)(
s̄b(1 + γ5)d

a
)
, (118)

where a and b are colour indices. In analogy to the case of BK , one then defines the
B-parameters of Q2, . . . , Q5 according to

Bi(µ) =

〈
K̄0 |Qi(µ)|K0

〉
Ni
〈
K̄0 |s̄γ5d| 0

〉
⟨0 |s̄γ5d|K0⟩ , i = 2, . . . , 5. (119)

37Thanks to QCD parity invariance lattice computations for three more dimension-six operators, whose
parity conserving parts coincide with the corresponding parity conserving contributions of the operators Q1, Q2

and Q3, can be ignored.
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The factors {N2, . . . , N5} are given by {−5/3, 1/3, 2, 2/3}, and it is understood that Bi(µ)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [52, 56–58, 445]. Alternatively, one can
employ the chiral basis of Buras, Misiak and Urban [446]. The SWME collaboration
prefers the latter since the anomalous dimension that enters the RG running has been
calculated to 2-loop order in perturbation theory [446]. Results obtained in the chiral
basis can be easily converted to the SUSY basis via

BSUSY
3 = 1

2

(
5Bchiral

2 − 3Bchiral
3

)
. (120)

The remaining B-parameters are the same in both bases. In the following, we adopt the
SUSY basis and drop the superscript.

Older quenched results for the BSM B-parameters can be found in Refs. [447–449].
For a nonlattice approach to get estimates for the BSM B-parameters see Ref. [450].

Estimates for B2, . . . , B5 have been reported for QCD with Nf = 2 (ETM 12D [57]),
Nf = 2+1 (RBC/UKQCD 12E [445], SWME 13A [436], SWME 14C [451], SWME 15A [55],
RBC/UKQCD 16 [58, 452], RBC/UKQCD 24 [56]) and Nf = 2 + 1 + 1 (ETM 15 [52])
flavours of dynamical quarks. Since the publication of FLAG 19 [4] a single new work
Ref. [56] has appeared. The basic characteristics of this calculation have been reported
in the BK section, see Sec. 6.3. As in the case of BK , the dominant error for all the BSM
B-parameters arises from the systematic uncertainty associated to the truncation error
in the perturbative matching from the intermediate schemes to the MS scheme. This is
estimated as half the difference of the results obtained from the matching to MS of the
two intermediate schemes. The ratio of the BSM to SM matrix elements are also reported
in Ref. [56].

All the available results are listed and compared in Tab. 27 and Fig. 15. In general,
one finds that the BSM B-parameters computed by different collaborations do not show
the same level of consistency as the SM kaon-mixing parameter BK discussed previously.
Control over the systematic uncertainties from chiral and continuum extrapolations as
well as finite-volume effects in B2, . . . , B5 is expected to be at a comparable level as that
for BK , as far as the results by ETM 12D, ETM 15, SWME 15A and RBC/UKQCD 16
are concerned, since the set of gauge ensembles employed in both kinds of computations is
the same. However, the most recent results by RBC/UKQCD 24 with Nf = 2+1 flavours
are, in general, much more precise than the older ones. Notice that the calculation by
RBC/UKQCD 12E has been performed at a single value of the lattice spacing and a
minimum pion mass of 290MeV.

As reported in RBC/UKQCD 16 [58] and RBC/UKQCD 24 [56], the comparison of
results obtained in the conventional RI-MOM and in two RI-SMOM schemes shows sig-
nificant discrepancies for some of the BSM B-parameters. Tensions are observed for the
cases of B4 and B5, where the discrepancies between results obtained with RI-MOM and
RI-SMOM are at the level of 2.6 σ and 4.5 σ, respectively. The results of RBC/UKQCD 16
and RBC/UKQCD 24 lie closer to those of SWME 15A which rely on perturbative renor-
malization at 1-loop order. On the other hand, the results for B2 and B3 obtained by
ETM 15, SWME 15A, RBC/UKQCD 16 and RBC/UKQCD 24 show a better level of
compatibility.

The findings by RBC/UKQCD 16 [58], RBC/UKQCD 17A [452] and RBC/UKQCD 24
[56] highlight the importance of carefully assessing the systematic effects on the implemen-
tation of the Rome-Southampton method used for nonperturbative renormalization. In
particular, the RI-MOM and RI-SMOM schemes differ in that the use of nonexceptional
kinematics, in the RI-SMOM scheme, removes the need to subtract the pseudo-Goldstone
boson pole contamination, as is required in the RI-MOM case. In addition, for each of
the schemes a specific analysis of the truncaction error in the perturbative matching to
MS must be carried out.

99



Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

ch
ir
al
ex
tr
ap
ol
at
io
n

fin
it
e
vo
lu
m
e

re
no
rm

al
iz
at
io
n

ru
nn
in
g

B2 B3 B4 B5

ETM 15 [52] 2+1+1 A ⋆ ◦ ◦ ⋆ a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)

RBC/UKQCD 24 [56] 2+1 A ⋆ ⋆ ⋆ ⋆ b 0.4794(25)(35) 0.746(13)(17) 0.897(02)(10) 0.6882(78)(94)

RBC/UKQCD 16 [58] 2+1 A ◦ ◦ ◦ ⋆ b 0.488(7)(17) 0.743(14)(65) 0.920(12)(16) 0.707(8)(44)

SWME 15A [55] 2+1 A ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)

SWME 14C [451] 2+1 C ⋆ ◦ ⋆ ◦† − 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)

SWME 13A‡ [436] 2+1 A ⋆ ◦ ⋆ ◦† − 0.549(3)(28) 0.790(30) 1.033(6)(46) 0.855(6)(43)

RBC/ [445] 2+1 A ■ ◦ ⋆ ⋆ b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E

ETM 12D [57] 2 A ⋆ ◦ ◦ ⋆ c 0.47(2)(1) 0.78(4)(2) 0.76(2)(2) 0.58(2)(2)

† The renormalization is performed using perturbation theory at 1-loop order, with a conservative
estimate of the uncertainty.

a Bi are renormalized nonperturbatively at scales 1/a ∼ 2.2–3.3 GeV in the Nf = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at 1-loop order at 3 GeV.

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV.

c Bi are renormalized nonperturbatively at scales 1/a ∼ 2–3.7 GeV in the Nf = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

‡ The computation of B4 and B5 has been revised in Refs. [55] and [451].

Table 27: Results for the BSM B-parameters B2, . . . , B5 in the MS scheme at a reference scale
of 3GeV. Information about nonperturbative running is indicated in the column “running,”
with details given at the bottom of the table.
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A nonperturbative computation of the running of the four-fermion operators contribut-
ing to the B2, . . . , B5 parameters has been carried out with two dynamical flavours using
the Schrödinger functional renormalization scheme [387]. Renormalization matrices of
the operator basis are used to build step-scaling functions governing the continuum-limit
running between hadronic and electroweak scales. A comparison to perturbative results
using NLO (2-loop order) for the four-fermion operator anomalous dimensions indicates
that, at scales of about 3GeV, nonperturbative effects can induce a sizeable contribution
to the running. Similar conclusions are obtained on the basis of preliminary results for the
renormalization-group running of the complete basis of ∆F = 2 four-fermion operators
using Nf = 3 dynamical massless flavours in the Schrödinger setup [388].

A closer look at the calculations reported in ETM 15 [52], SWME 15A [55], RBC/UKQCD 16
[58], and RBC/UKQCD 24 [56] reveals that cutoff effects tend to be larger for the BSM
B-parameters compared to those of BK . In order to take into account this effect in the
average analysis, we make use of the new FLAG data-driven criterion (see Sec. 2.1.2)
concerning the extrapolation to the continuum limit. In summary, we report that in the
average procedure, (a) for B2 the total errors by RBC/UKQCD 24 and RBC/UKQCD 16
have been inflated by a factor 2.6 and by 22%, respectively; (b) for B3 the total errors by
ETM 15, RBC/UKQCD 16 and RBC/UKQCD 24 have been inflated by 11%, 45% and
52%, respectively; (c) for B4 no error inflation is required; and (d) for B5 the total errors
by SWME 15A and RBC/UKQCD 16 have been inflated by 3% and 24%, respectively.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme
at scale 3GeV. For Nf = 2 + 1 our estimate is given by the average of the results from
SWME 15A, RBC/UKQCD 16, and RBC/UKQCD 24. In our analysis, the results in
RBC/UKQCD 16 and RBC/UKQCD 24, though obtained through partially different
analyses, are considered as fully correlated because some gauge ensembles are common
in the two computations. We find B2 = 0.488(12) (χ2/dof = 1.58); B3 = 0.757(27)
(χ2/dof = 0.17); B4 = 0.903(12) (χ2/dof = 1.36); B5 = 0.691(14) (χ2/dof = 0.43).
Following the FLAG rule, for cases that have a value of the reduced χ2 greater than
unity, we use the square root of the latter to stretch the respective error. Hence our
averages are

Nf = 2 + 1 : (121)

B2 = 0.488(15), B3 = 0.757(27), B4 = 0.903(14), B5 = 0.691(14), Refs. [55, 56, 58].

For Nf = 2 + 1 + 1 and Nf = 2, our estimates coincide—with one exception—with the
ones by ETM 15 and ETM 12D, respectively, since there is only one computation for each
case. Only for the case of B3 with Nf = 2+1+1, owing to the application of the δ(amin)
criterion the error of the average estimate is inflated by about 11% with respect to the
ETM 15 reported value. Thus we quote

Nf = 2 + 1 + 1 : (122)

B2 = 0.46(1)(3), B3 = 0.79(6), B4 = 0.78(2)(4), B5 = 0.49(3)(3), Ref. [52],

Nf = 2 : (123)

B2 = 0.47(2)(1), B3 = 0.78(4)(2), B4 = 0.76(2)(2), B5 = 0.58(2)(2), Ref. [57].

Based on the above discussion about the effects of employing different intermediate mo-
mentum subtraction schemes in the nonperturbative renormalization of the operators,
there is evidence that the discrepancy in the B4 and B5 results between Nf = 2, 2+1+1,
and Nf = 2+1 calculations should not be directly attributed to an effect of the number of
dynamical flavours. To clarify the present situation, it would be important to perform a
direct comparison of results by the ETM collaboration obtained both with RI-MOM and
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RI-SMOM methods. A calculation based an on a different nonperturbative renormaliza-
tion scheme, such as the Schrödinger functional, would provide valuable information to
shed light on the current situation.

In closing, we encourage authors to provide the correlation matrix of theBi parameters—
as done in Ref. [56]—since this information is required in phenomenological studies of New
Physics scenarios.
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Figure 15: Results for the BSM B-parameters defined in the MS scheme at a reference scale
of 3GeV (see Tab. 27).
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7 Charm-hadron decay constants and form factors

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, A. Vaquero

Leptonic and semileptonic decays of charmed D and Ds mesons or Λc and other charm
baryons occur via chargedW -boson exchange, and are sensitive probes of c→ d and c→ s
quark flavour-changing transitions. Given experimental measurements of the branching
fractions combined with sufficiently precise theoretical calculations of the hadronic matrix
elements, they enable the determination of the CKM matrix elements |Vcd| and |Vcs|
(within the Standard Model) and a precise test of the unitarity of the second row of the
CKM matrix. Here, we summarize the status of lattice-QCD calculations of the charmed
leptonic decay constants. Significant progress has been made in charm physics on the
lattice in recent years, largely due to the availability of gauge configurations produced
using highly-improved lattice-fermion actions that enable treating the c quark with the
same action as for the u, d, and s quarks.

This section updates the corresponding section in the last review (FLAG 21 [5]) for
results that appeared before April 30, 2024. As in FLAG 19 [4] and FLAG 21 [5], we
limit our review to results based on modern simulations with reasonably light pion masses
(below approximately 500 MeV). This excludes results with two flavours in the sea, even if
they use light pion masses. Nf = 2 results can still be checked in previous FLAG editions.

For the heavy-meson decay constants and mixing parameters, estimates of the quantity
δ(amin) described in Sec. 2.1.2 are provided for all computations entering the final FLAG
averages or ranges. For heavy-hadron semileptonic-decay form factors, implementing this
data-driven continuum-limit criterion was found to be not feasible. The problem is that
these quantities are functions of the momentum transfer in addition to the other lattice
parameters, and many calculations are based on global fits whose reconstruction was not
possible.

Following our review of lattice-QCD calculations of D(s)-meson leptonic decay con-
stants and charm-hadron semileptonic form factors, we then interpret our results within
the context of the Standard Model. We combine our best-determined values of the
hadronic matrix elements with the most recent experimentally-measured branching frac-
tions to obtain |Vcd(s)| and test the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fD and fDs

In the Standard Model, and up to electromagnetic corrections, the decay constant fD(s)

of a pseudoscalar D or Ds meson is related to the branching ratio for leptonic decays
mediated by a W boson through the formula

B(D(s) → ℓνℓ) =
G2
F |Vcq|2τD(s)

8π
f2D(s)

m2
ℓmD(s)

(
1− m2

ℓ

m2
D(s)

)2

, (124)

where q is d or s and Vcd (Vcs) is the appropriate CKM matrix element for a D (Ds)
meson. The branching fractions have been experimentally measured by CLEO, Belle,
Babar and BES with a precision around 2.5–4.5% for both the D and the Ds-meson
decay modes [274]. When combined with lattice results for the decay constants, they
allow for determinations of |Vcs| and |Vcd|.

The decay constants fD(s)
are defined through the matrix elements of the axial current

⟨0|Aµcq|Dq(p)⟩ = ifDq
pµDq

, (125)

with q = d, s and Aµcq = c̄γµγ5q. Such matrix elements can be extracted from Euclidean
two-point functions computed on the lattice.
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Figure 16: Decay constants of the D and Ds mesons [values in Tab. 28 and Eqs. (126-131)].
As usual, full green squares are used in the averaging procedure, pale green squares have
either been superseded by later determinations or are only published in Proceedings or have
not been published within the current deadline (April 30, 2024), while pale red squares do
not satisfy the criteria. The black squares and grey bands indicate our averages.

Results for Nf = 2 + 1 and 2 + 1 + 1 dynamical flavours are summarized in Tab. 28
and Fig. 16. Since the publication of FLAG 21, a handful of results for fD and fDs

have
appeared, as described below. We consider isospin-averaged quantities, although, in a
few cases, results for fD+ are quoted (see, for example, the FNAL/MILC 11,14A and 17
computations, where the strong-isospin-breaking effect given by the difference between
fD and fD+ has been estimated to be around 0.5 MeV).

For the first time, we restrict the review here to results obtained using Nf = 2+1 and
2 + 1 + 1 dynamical flavours. No new results with Nf = 2 appeared since 2019 and they
have been presented in previous FLAG reviews.

Another novelty is the re-inclusion of the quantity δ(amin) described in the Introduc-
tion. Our working group introduced and applied this quantity in FLAG 13 [2], but it
was not applied in following reviews. As computations have become increasingly precise
and often dominated by systematic uncertainties, we believe that a closer scrutiny of the
continuum extrapolations is needed since such extrapolations usually produce one of the
largest systematic errors. Here, we provide (where possible) an estimate of δ(amin) for all
computations entering the final FLAG averages or ranges. Those estimates do not need
to be very precise as the natural size of the error on δ(amin) is O(1).

Two new results appeared with Nf = 2 + 1. In Ref. [28] (ALPHA 23) maximally
twisted Wilson valence fermions (for light and heavy quarks) are implemented on a set
of ensembles of configurations generated within the CLS initiative using O(a)-improved
Wilson fermions. As a consequence of the maximal twist, observables in the charm sector
are free from O(amc) discretisation effects. In addition the decay constants fD(s)

are
automatically normalized and do not require the computation of normalization factors.
Four different lattice spacings have been used in the continuum extrapolation, ranging
between 0.087 and 0.05 fm. Pion masses reach down to 200 MeV and volumes are such
that 3.9 ≤ mπL ≤ 6.4. The uncertainties are dominated by statistics and the chiral-
continuum fits. Judging from the plots in Ref. [28], the values for δ(amin) are around 1
for fD and around 3 for fDs .
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fD fDs fDs/fD

ETM 21B [453] 2+1+1 C ⋆ ⋆ ⋆ ⋆ ✓ 210.1(2.4) 248.9(2.0) 1.1838(115)

FNAL/MILC 17 ∇∇ [20] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 212.1(0.6) 249.9(0.5) 1.1782(16)

FNAL/MILC 14A∗∗ [21] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 212.6(0.4)
(
+1.0
−1.2

)
249.0(0.3)

(
+1.1
−1.5

)
1.1745(10)

(
+29
−32

)
ETM 14E [43] 2+1+1 A ⋆ ◦ ◦ ⋆ ✓ 207.4(3.8) 247.2(4.1) 1.192(22)

ETM 13F [356] 2+1+1 C ◦ ◦ ◦ ⋆ ✓ 202(8) 242(8) 1.199(25)

FNAL/MILC 13 [454] 2+1+1 C ⋆ ⋆ ⋆ ⋆ ✓ 212.3(0.3)(1.0) 248.7(0.2)(1.0) 1.1714(10)(25)

FNAL/MILC 12B [455] 2+1+1 C ⋆ ⋆ ⋆ ⋆ ✓ 209.2(3.0)(3.6) 246.4(0.5)(3.6) 1.175(16)(11)

RQCD/ALPHA 24 [456] 2+1 P ⋆ ⋆ ⋆ ⋆ ✓ 208.4(0.7)(0.7)(1.1) 246.8(0.6)(0.6)(1.0) 1.1842(21)(22)(19)

ALPHA 23 [28] 2+1 A ⋆ ◦ ⋆ ⋆ ✓ 211.3(1.9)(0.6) 247.0(1.9)(0.7) 1.177(15)(5)

χQCD 20A†† [457] 2+1 A ■ ⋆ ⋆ ⋆ ✓ 213(5) 249(7) 1.16(3)

RBC/UKQCD 18A□∇ [76] 2+1 P ⋆ ⋆ ⋆ ⋆ ✓ 1.1740(51)
(
+68
−68

)
RBC/UKQCD 17 [61] 2+1 A ⋆ ⋆ ◦ ⋆ ✓ 208.7(2.8)

(
+2.1
−1.8

)
246.4(1.3)

(
+1.3
−1.9

)
1.1667(77)

(
+57
−43

)
χQCD 14†□ [29] 2+1 A ◦ ◦ ◦ ⋆ ✓ 254(2)(4)

HPQCD 12A [59] 2+1 A ◦ ◦ ◦ ⋆ ✓ 208.3(1.0)(3.3) 246.0(0.7)(3.5) 1.187(4)(12)

FNAL/MILC 11 [60] 2+1 A ◦ ◦ ◦ ◦ ✓ 218.9(11.3) 260.1(10.8) 1.188(25)

PACS-CS 11 [458] 2+1 A ■ ⋆ ■ ◦ ✓ 226(6)(1)(5) 257(2)(1)(5) 1.14(3)

HPQCD 10A [62] 2+1 A ⋆ ◦ ⋆ ⋆ ✓ 213(4)∗ 248.0(2.5)

HPQCD/UKQCD 07 [46] 2+1 A ◦ ◦ ◦ ⋆ ✓ 207(4) 241 (3) 1.164(11)

FNAL/MILC 05 [459] 2+1 A ◦ ◦ ■ ◦ ✓ 201(3)(17) 249(3)(16) 1.24(1)(7)

∗ This result is obtained by using the central value for fDs/fD from HPQCD/UKQCD 07 and increasing the
error to account for the effects from the change in the physical value of r1.∗∗ At β = 5.8, mπ,minL = 3.2 but this lattice spacing is not used in the final cont./chiral extrapolations.
∇∇ Update of FNAL/MILC 14A. The ratio quoted is fDs/fD+ = 1.1749(16). In order to compare with
results from other collaborations, we rescale the number by the ratio of central values for fD+ and fD. We
use the same rescaling in FNAL/MILC 14A. At the finest lattice spacing the finite-volume criterium would
produce an empty green circle, however, as checked by the authors, results would not significantly change by
excluding this ensemble, which instead sharpens the continuum limit extrapolation.
□∇ Update of RBC/UKQCD 17.
†□ Two values of sea pion masses.
†† Four valence pion masses between 208 MeV and 114 MeV have been used at one value of the sea pion
mass of 139 MeV.

Table 28: Decay constants of the D and Ds mesons (in MeV) and their ratio.

A second new computation with Nf = 2 + 1 has been performed by the RQCD-
ALPHA Collaboration [456] on a set of 49 gauge ensembles generated again within the
CLS effort. For this reason statistical errors between ALPHA 23 and RQCD/ALPHA 24
will be treated as 100% correlated when performing averages. Notice, however, that since
RQCD/ALPHA 24 was not yet published in a journal by the FLAG deadline, it is not
being considered in the averages for this review. In RQCD/ALPHA 24 nonperturbatively
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O(a)-improved Wilson fermions have been used both in the valence sector and the sea.38

The simulations cover six different lattice spacings with 0.039 fm ≤ a ≤ 0.098 fm, pion
masses from 420 MeV down to 130 MeV and mπL ranging from 2.83 to 6.42. The largest
volume at mπ = 130 MeV gives mπL = 4.05. In the discussion of the final errors the
uncertainty due to the scale setting is treated separately. That turns out to be the largest
contribution to the total error for fD and fDs (around 50%), while for the ratio of decay
constants statistical, systematic (chiral and continuum extrapolations) and scale-setting
uncertainties are of about the same size. The quantity δ(amin), as estimated from the
figures in [456] is around 1.

The updated Nf = 2 + 1 FLAG averages read

Nf = 2 + 1 : fD = 210.4(1.5) MeV Refs. [28, 59–61], (126)

Nf = 2 + 1 : fDs
= 247.7(1.2) MeV Refs. [28, 29, 60–62], (127)

Nf = 2 + 1 :
fDs

fD
= 1.174(0.007) Refs. [28, 59–61]. (128)

Those come from the results in HPQCD 12A [59], FNAL/MILC 11 [60] as well as
RBC/UKQCD 17 [61] and ALPHA 23 [28] concerning fD while for fDs

also the χQCD 14
[29] result contributes, and instead of the value in HPQCD 12A [59] the one in HPQCD 10A
[62] is used. In addition, the statistical errors between the results of FNAL/MILC and
HPQCD have been everywhere treated as 100% correlated since the two collaborations use
overlapping sets of configurations. The same procedure had been used in the past reviews.
Concerning the values of δ(amin) for older computations entering those estimates, they are
all smaller than 2 for the results before 2013, as discussed in the second FLAG review [2],
where that was used as a necessary condition to enter the averages. For RBC/UKQCD 17
δ(amin) is estimated to be around 1.5, while for χQCD 14 it is not possible to assess the
value of δ(amin) from the published figures and tables.

For Nf = 2 + 1 + 1 only a Proceedings contribution to the 2021 Lattice Conference
by the ETM Collaboration [453] appeared containing new results. This ETM 21B result
extends ETM 14E [43] by including simulations closer to the physical point for light and
heavy quarks. Twisted-mass fermions at maximal twist are used in the sea, in order to
ensure automatic O(a) improvement. In the valence sector Osterwalder-Seiler fermions
are adopted for the strange and charm quarks to avoid mixing effects at O(a2). Three
different lattice resolutions between 0.095 fm and 0.069 fm have been used with mπL at
the lightest pion mass (134 MeV) being around 3.7. Also in this case the final errors are
dominated by statistics and the chiral-continuum extrapolations. Although we do not
provide an estimate of δ(amin) for results that do not enter the final averages, ETM 21B
makes an important observation in showing that the cutoff effects strongly depend on the
intermediate scaling variable used. In the case of fDs

, when using w0, δ(amin) would turn
out to be very large, while when using the strange-charm meson mass cutoff effects are
much reduced and δ(amin) is around 1.

Our global averages coincide with those in FLAG 21, Ref. [5], namely

Nf = 2 + 1 + 1 : fD = 212.0(0.7) MeV Refs. [20, 43], (129)

Nf = 2 + 1 + 1 : fDs
= 249.9(0.5) MeV Refs. [20, 43], (130)

Nf = 2 + 1 + 1 :
fDs

fD
= 1.1783(0.0016) Refs. [20, 43], (131)

where the error on the average of fD has been rescaled by the factor
√
χ2/dof = 1.22.

For the two computations entering the results above δ(amin) is around 2 at most.

38The coefficient b̄A has been neglected because its nonperturbative value, computed in [460], turned out to
be compatible with zero for the relevant range of gauge couplings.
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Concerning the inclusion of QED effects, significant progress has been made in the
computation of form factors for radiative leptonic decays of D mesons.39 We do not
present results in detail here since they are not yet at the level to be reviewed according
to the FLAG criteria, however, such processes are important for two reasons. In the
region of soft-photon energies they are needed in order to compute the QED corrections
to leptonic decays. In that case they have to be combined with the contributions stemming
from virtual exchanges of photons between the meson and the charged lepton, in order
to remove infrared divergent terms. For hard photons radiative leptonic decays become
important probes of the internal structure of hadrons and therefore of physics Beyond the
Standard Model. The form factors appear in the decomposition of the hadronic matrix
element

Hαr
W (k,p) = ϵrµ(k)

∫
d4y eiky T⟨0|jαW (0)jµem(y)|P (p)⟩ , (132)

with ϵrµ(k) the polarisation vector of the outgoing photon (with momentum k), p the
momentum of the generic pseudoscalar meson P and jαW and jµem the weak and elec-
tromagnetic currents, respectively. Such matrix elements can be extracted from suit-
able three-point correlation functions that can be computed on an Euclidean lattice. In
Ref. [461] a set of numerical methods is explored with the main goals of keeping system-
atic effects due to contributions from unwanted states under control and of optimizing the
signal. The study is performed on a single ensemble with 2 + 1 flavours of domain wall
fermions, a ≃ 0.11 fm and mπ ≃ 340 MeV.

In Ref. [462], which extends Ref. [463], the form factors for the decay Ds → ℓνℓγ
have been computed on four different ensembles of Nf = 2 + 1 + 1 gauge configurations
produced by the ETM Collaboration. Lattice spacings span the interval [0.056, 0.09] fm
and quarks masses are close to their physical values. The full kinematical range, with
a cut Eγ ≥ 10 MeV, is covered by the results. The structure-dependent contribution is
found to dominate the amplitude for ℓ = e, as opposed to the cases with ℓ = µ and τ .
Since the point-like contribution is (helicity) suppressed by (mℓ/mP )

2, a nonperturbative
computation of the form factors is of paramount importance for B mesons. An analysis
of the noise-to-signal ratio for the three-point functions is presented following the Parisi-
Lepage approach [464, 465] and a strategy to mitigate the problem is discussed. That
coincides with one of the methods studied, with different motivations, in Ref. [461].

7.2 Form factors for D → πℓν and D → Kℓν semileptonic decays

The SM prediction for the differential decay rate of the semileptonic processes D → πℓν
and D → Kℓν can be written as

dΓ(D → Pℓν)

dq2
=
η2EWG

2
F|Vcx|2

24π3

(q2 −m2
ℓ)

2
√
E2
P −m2

P

q4m2
D

×
[(

1 +
m2
ℓ

2q2

)
m2
D(E

2
P −m2

P )|f+(q2)|2 +
3m2

ℓ

8q2
(m2

D −m2
P )

2|f0(q2)|2
]

(133)

where x = d, s is the daughter light quark, P = π,K is the daughter light-pseudoscalar
meson, ℓ = e, µ indicates the light charged lepton, EP is the light-pseudoscalar meson
energy in the rest frame of the decaying D, and q = (pD − pP ) is the momentum of the
outgoing lepton pair. Here, we have included the short-distance electroweak correction

39The accuracy of the estimates presented here is often below the percent level and a first-principles compu-
tation of isospin-breaking corrections is therefore very desirable. However, for the determination of the CKM
matrix elements, the experimental accuracy on the branching ratios and hence on the products |Vcq|2f2

D(q)

varies between 2.2% and 5%, see section 7.5.
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factor [466], whose value at µ = mD is ηEW = 1.009 [123]. The vector and scalar form
factors f+(q

2) and f0(q
2) parameterize the hadronic matrix element of the heavy-to-light

quark flavour-changing vector current Vµ = xγµc,

⟨P |Vµ|D⟩ = f+(q
2)

(
pDµ + pP µ −

m2
D −m2

P

q2
qµ

)
+ f0(q

2)
m2
D −m2

P

q2
qµ , (134)

and satisfy the kinematic constraint f+(0) = f0(0). Because the contribution to the decay
width from the scalar form factor is proportional tom2

ℓ , within current precision standards
it can be neglected for ℓ = e, and Eq. (133) simplifies to

dΓ(D → Peν)

dq2
=
η2EWG

2
F

24π3
|p⃗P |3|Vcx|2|f+(q2)|2 . (135)

In models of new physics, decay rates may also receive contributions from matrix elements
of other parity-even currents. In the case of the scalar density (x̄c), partial vector-current
conservation allows one to write its matrix elements in terms of f+ and f0, while for tensor
currents Tµν = x̄σµνc a new form factor has to be introduced, viz.,

⟨P |Tµν |D⟩ = 2

mD +mP
[pµP p

ν
D − pνP pµD] fT (q2) . (136)

Recall that, unlike the Noether current Vµ, the operator Tµν requires a scale-dependent
renormalization.

Lattice-QCD computations of f+,0 allow for comparisons to experiment to ascer-
tain whether the SM provides the correct prediction for the q2-dependence of dΓ(D →
Pℓν)/dq2; and, subsequently, to determine the CKM matrix elements |Vcd| and |Vcs| from
Eq. (133). The inclusion of fT allows for analyses to constrain new physics. Currently,
state-of-the-art experimental results by CLEO-c [467] and BESIII [468, 469] provide data
for the differential rates in the whole q2 range, with a precision of order 2–3% for the total
branching fractions in both the electron and muon final channels.

Calculations of the D → πℓν and D → Kℓν form factors typically use the same
light-quark and charm-quark actions as those of the leptonic decay constants fD and fDs .
Therefore, many of the same issues arise; in particular, considerations about cutoff effects
coming from the large charm-quark mass, or the normalization of weak currents, apply.
Additional complications arise, however, due to the necessity of covering a sizeable range
of values in q2:

• Lattice kinematics impose restrictions on the values of the hadron momenta. Be-
cause lattice calculations are performed in a finite spatial volume, the pion or kaon
three-momentum components can only take discrete values in units of 2π/L when
periodic boundary conditions are used. For typical box sizes in lattice D- and B-
meson form-factor calculations at heavier-than-physical pion masses, L ∼ 2.5–3 fm;
thus, the smallest nonzero momentum in most of these analyses is |p⃗P | ∼ 400–
500 MeV. On the other hand, the ranges relevant for the semileptonic decays are
0 ≤ |p⃗π| ≲ 940 MeV and 0 ≤ |p⃗K | ≲ 1 GeV, respectively. Thus, when using periodic
boundary conditions, only a small number of allowed lattice momenta fall into this
range. As a consequence, many studies have incorporated the use of nonperiodic
“twisted” boundary conditions (tbc) [470, 471] in the valence fields used for the com-
putation of observables, which allows a continuous choice of momentum and hence
finer resolution of the q2-dependence [63, 472–476]. Note that more recent calcula-
tions [65, 123] include ensembles with physical pion masses and L ≈ 5.5–5.75 fm,
so the momentum unit when using periodic boundary conditions is correspondingly
smaller, making the use of twisted boundary conditions less relevant.
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• Final-state pions and kaons can have energies ≳ 1 GeV, given the available kine-
matical range 0 ≲ q2 ≤ q2max = (mD −mP )

2. This makes the use of (heavy-meson)
chiral perturbation theory to extrapolate to physical light-quark masses potentially
problematic. This issue has become less relevant as modern calculations include
ensembles with physical light-quark masses.

• Accurate comparisons to experiment, including the determination of CKM parame-
ters, requires good control of systematic uncertainties in the parameterization of the
q2-dependence of form factors. While this issue is far more important for semilep-
tonic B decays, where it is harder to cover the kinematic range on the lattice, the
increase in experimental precision requires accurate work in the charm sector as well.
The parameterization of semileptonic form factors is discussed in detail in Appendix
B.2.

The first published Nf = 2 + 1 lattice-QCD calculation of the D → πℓν and D →
Kℓν form factors came from the Fermilab Lattice, MILC, and HPQCD collaborations
(FNAL/MILC 04) [477].40 This work uses asqtad-improved staggered sea quarks and light
(u, d, s) valence quarks and the Fermilab action for the charm quarks, with a single lattice
spacing of a ≈ 0.12 fm, and a minimum RMS-pion mass of ≈ 510 MeV, dictated by the
presence of fairly large staggered taste splittings. The vector current is normalized using a
mostly nonperturbative approach, such that the perturbative truncation error is expected
to be negligible compared to other systematics. Results for the form factors are provided
over the full kinematic range, rather than focusing just at q2 = 0 as was customary in
most previous work, and fitted to a Bečirević-Kaidalov ansatz (calculations in the full
kinematic range had already been done earlier in the quenched approximation [478, 479]).
The publication of Ref. [477] predated the precise measurements of the D → Kℓν decay
width by the FOCUS [480] and Belle experiments [481], and showed good agreement
with the experimental determination of the shape of fD→K

+ (q2). Progress on extending
this work was reported in [482]; efforts are aimed at reducing both the statistical and
systematic errors in fD→π

+ (q2) and fD→K
+ (q2) by increasing the number of configurations

analyzed, simulating with lighter pions, and adding lattice spacings as fine as a ≈ 0.045 fm.
The most precise published calculations of the D → πℓν and D → Kℓν form factors in

Nf = 2+1 QCD are by the HPQCD collaboration (HPQCD 11 [64] and HPQCD 10B [66],
respectively). They are also based on Nf = 2 + 1 asqtad-improved staggered MILC con-
figurations, but use two lattice spacings a ≈ 0.09 and 0.12 fm, and a HISQ action for
the valence u, d, s, and c quarks. In these mixed-action calculations, the HISQ valence
light-quark masses are tuned so that the ratio ml/ms is approximately the same as for the
sea quarks; the minimum RMS sea-pion mass ≈ 390 MeV. Form factors are determined
only at q2 = 0, by using a Ward identity to relate matrix elements of vector currents
to matrix elements of the absolutely normalized quantity (mc − mx)⟨P |x̄c|D⟩ (where
x = u, d, s), and exploiting the kinematic identity f+(0) = f0(0) to yield f+(q

2 = 0) =
(mc−mx)⟨P |x̄c|D⟩/(m2

D−m2
P ). A modified z-expansion (cf. Appendix B.2) is employed

to simultaneously extrapolate to the physical light-quark masses and the continuum and
to interpolate to q2 = 0, and allow the coefficients of the series expansion to vary with
the light- and charm-quark masses. The form of the light-quark dependence is inspired
by χPT, and includes logarithms of the form m2

πlog(m
2
π) as well as polynomials in the

valence-, sea-, and charm-quark masses. Polynomials in Eπ(K) are also included to pa-
rameterize momentum-dependent discretization errors. The number of terms is increased
until the result for f+(0) stabilizes, such that the quoted fit error for f+(0) not only con-
tains statistical uncertainties, but also reflects relevant systematics. The largest quoted
uncertainties in these calculations are from statistics and charm-quark discretization er-
rors.

40Because only two of the authors of this work are members of HPQCD, and to distinguish it from other
more recent works on the same topic by HPQCD, we hereafter refer to this work as “FNAL/MILC.”

109



The most recent Nf = 2 + 1 computation of D semileptonic form factors has been
carried out by the JLQCD collaboration, and so far only published in conference proceed-
ings; most recently in Ref. [483] (JLQCD 17B). They use their own Möbius domain-wall
configurations at three values of the lattice spacing a = 0.080, 0.055, 0.044 fm, with sev-
eral pion masses ranging from 226 to 501 MeV (though there is so far only one ensemble,
with mπ = 284 MeV, at the finest lattice spacing). The vector and scalar form factors
are computed at four values of the momentum transfer for each ensemble. The computed
form factors are observed to depend mildly on both the lattice spacing and the pion mass.
The momentum dependence of the form factors is fitted to a BCL z-parameterization (see
Appendix B.2) with a Blaschke factor that contains the measured value of the D∗

(s) mass
in the vector channel, and a trivial Blaschke factor in the scalar channel. The systematics
of this latter fit is assessed by a BCL fit with the experimental value of the scalar reso-
nance mass in the Blaschke factor. Continuum and chiral extrapolations are carried out
through a linear fit in the squared lattice spacing and the squared pion and ηc masses. A
global fit that uses hard-pion HMχPT to model the mass dependence is furthermore used
for a comparison of the form factor shapes with experimental data.41 Since the compu-
tation is only published in proceedings so far, it will not enter our Nf = 2 + 1 average.42

Another Nf = 2 + 1 calculation of the D → π, D → K, and Ds → K form factors using
domain-wall fermions is currently being carried out by the RBC/UKQCD collaboration,
as reported in Ref. [485].

The first full computation of both the vector and scalar form factors in Nf = 2+1+1
QCD was achieved by the ETM collaboration [63] (ETM 17D). Furthermore, they have
provided a separate determination of the tensor form factor, relevant for new-physics anal-
yses [476] (ETM 18). Both works use the available Nf = 2 + 1 + 1 twisted-mass Wilson
ensembles [264], totaling three lattice spacings down to a ≈ 0.06 fm, and a minimum pion
mass of 220 MeV. Matrix elements are extracted from suitable double ratios of correlation
functions that avoid the need of nontrivial current normalizations. Only one source-sink
separation per ensemble is used for the three-point functions, although the authors state
that this separation was optimized to achieve a balance between excited-state contami-
nation and statistical uncertainties. The use of twisted boundary conditions allows both
for imposing several kinematical configurations, and considering arbitrary frames that in-
clude moving initial mesons. After interpolation to the physical strange- and charm-quark
masses, the results for form factors are fitted to a modified z-expansion that takes into
account both the light-quark mass dependence through hard-pion SU(2) χPT [486], and
the lattice-spacing dependence. In the latter case, a detailed study of Lorentz-breaking
effects due to the breaking of rotational invariance down to the hypercubic subgroup is
performed, leading to a nontrivial momentum-dependent parameterization of cutoff ef-
fects. The z-parameterization (see Appendix B.2) itself includes a single-pole Blaschke
factor (save for the scalar channel in D → K, where the Blaschke factor is trivial), with
pole masses treated as free parameters. The final quoted uncertainty on the form factors
is about 5–6% for D → π, and 4% for D → K. The dominant source of uncertainty is
quoted as statistical+fitting procedure+input parameters — the latter referring to the
values of quark masses, the lattice spacing (i.e., scale setting), and the LO SU(2) LECs.

The second Nf = 2+1+ 1 computation of f+ and f0 in the full kinematical range for
the D → Klν mode, performed by HPQCD, has been published in 2021 — HPQCD 21A
(Ref. [65]). This work uses MILC’s HISQ ensembles at five values of the lattice spacing,

41It is important to stress the finding in Ref. [484] that the factorization of chiral logs in hard-pion χPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use
to model the mass dependence of form factors can thus be questioned.

42The ensemble parameters quoted in Ref. [483] appear to show that the volumes employed at the lightest
pion masses are insufficient to meet our criteria for finite-volume effects. There is, however, a typo in the
table which results in a wrong assignment of lattice sizes, whereupon the criteria are indeed met. We thank
T. Kaneko for correspondence on this issue.

110



and pion masses reaching to the physical point for the three coarsest values of a. Vector
currents are normalized nonpertubatively by imposing that form factors satisfy Ward
identities exactly at zero recoil. Results for the form factors are fitted to a modified z-
expansion ansatz, with all sub-threshold poles removed by using the experimental value of
the mass shifted by a factor that matches the corresponding result at finite lattice spacing.
The accuracy of the description of the q2-dependence is crosschecked by comparing to a
fit based on cubic splines. Finite-volume effects are expected to be small, and chiral-
perturbation-theory-based estimates for them are included in the chiral fit. The impact
of frozen topology at the finest lattice spacing is neglected (the size of this effect was
later shown to be ≲ 0.03% in a similar calculation [123]). The final uncertainty from the
form factors in the determination of |Vcs| quoted in HPQCD 21A is at the 0.5% level, and
comparable to the rest of the uncertainty (due to the experimental error, as well as weak
and electromagnetic corrections); in particular, the precision of the form factors is around
seven times higher than that of the earlier Nf = 2+1+1 determination by ETM 17D. The
work also provides an accurate prediction for the lepton-flavour-universality ratio between
the muon and electron modes, where the uncertainty is overwhelmingly dominated by the
electromagnetic corrections. An extension of the work of HPQCD 21A to heavier quark
masses has also enabled the determination of the B → K form factors [487] (HPQCD 22),
and provides the tensor form factors for both B → K and D → K in addition to the
vector form factors.

In 2022, the FNAL/MILC collaboration completed another Nf = 2+1+1 computation
of f+ and f0 in the full kinematic ranges for D → Kℓν, D → πℓν, and Ds → Klν –
FNAL/MILC 22 [123]. Like HPQCD 21A, this calculation uses the MILC HISQ ensembles
and renormalization using the vector Ward identity. This calculation does not include the
0.15 fm ensembles that were part of the HPQCD 21A analysis, and shares only one of the
two 0.12 fm ensembles used in HPQCD 21A. Compared to HPQCD 21A, FNAL/MILC 22
reaches a finer lattice spacing at the physical pion mass, 0.057 fm, while the ensemble at
the finest lattice spacing of 0.042 fm is common to both calculations. Overall, four of
the seven ensembles are shared, but FNAL/MILC 22 uses more configurations and source
positions on those ensembles. In FNAL/MILC 22, the chiral/continuum extrapolation
is performed using rooted staggered heavy-meson chiral perturbation theory prior to a
continuum BCL z expansion fit. This work also corrects the effects of the frozen topology
at the finest lattice spacing using chiral perturbation theory; the correction is found to be
≲ 0.03%.

Table 29 contains our summary of the existing calculations of the charm-meson semilep-
tonic form factors. Additional tables in Appendix C.4.1 provide further details on the
simulation parameters and comparisons of the error estimates. Recall that only calcula-
tions without red tags that are published in a refereed journal are included in the FLAG
average. For Nf = 2 + 1, only HPQCD 10B,11 qualify, which provides our estimate for
f+(q

2 = 0) = f0(q
2 = 0). For Nf = 2+1+1, we quote as the FLAG estimate for fD→π

+ (0)
the weighted average of the results by ETM 17D and FNAL/MILC 22, while for fD→K

+ (0)
we quote the weighted average of the values published by ETM 17D, HPQCD 21A, and
FNAL/MILC 22:

fD→π
+ (0) = 0.666(29) Ref. [64],

Nf = 2 + 1 : (137)
fD→K
+ (0) = 0.747(19) Ref. [66],

fD→π
+ (0) = 0.6296(50) Refs. [63, 123],

Nf = 2 + 1 + 1 : (138)
fD→K
+ (0) = 0.7430(27) Refs. [63, 65, 123].

In Fig. 17, we display the existing Nf = 2, Nf = 2+ 1, and Nf = 2+ 1+ 1 results for
fD→π
+ (0) and fD→K

+ (0); the grey bands show our estimates of these quantities.
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fD→π
+ (0) fD→K

+ (0)

FNAL/MILC 22 [123] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 0.6300(51) 0.7452(31)

HPQCD 22 [487] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ n/a 0.7441(40)

HPQCD 21A [65] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ n/a 0.7380(44)

HPQCD 20 [488] 2+1+1 A ⋆ ◦ ⋆ ⋆ ✓ n/a n/a

ETM 17D, 18 [63, 476] 2+1+1 A ⋆ ◦ ◦ ⋆ ✓ 0.612(35) 0.765(31)

JLQCD 17B [483] 2+1 C ⋆ ⋆ ◦ ⋆ ✓ 0.615(31)(+17
−16)(

+28
−7 )∗ 0.698(29)(18)(+32

−12)
∗

HPQCD 11 [64] 2+1 A ◦ ◦ ◦ ⋆ ✓ 0.666(29)

HPQCD 10B [66] 2+1 A ◦ ◦ ◦ ⋆ ✓ 0.747(19)

FNAL/MILC 04 [477] 2+1 A ■ ■ ◦ ◦ ✓ 0.64(3)(6) 0.73(3)(7)

∗ The first error is statistical, the second from the q2 → 0 extrapolation, the third from the chiral-
continuum extrapolation.

Table 29: Summary of computations of charmed-meson semileptonic form factors. Note that
HPQCD 20 (discussed in Sec. 7.4) addresses the Bc → Bs and Bc → Bd transitions—hence
the absence of quoted values for fD→π

+ (0) and fD→K
+ (0)—while ETM 18 and HPQCD 22

provide computations of tensor form factors. The value for fD→K
+ (0) from HPQCD 22 [487]

is obtained as a by-product of the B → K analysis and is not independent from HPQCD 21A
[65]. FNAL/MILC 22 also provides results for the Ds → K form factors in addition to the
D → K and D → π form factors [123].

In the case of Nf = 2 + 1 + 1, we can also provide an analysis of the q2-dependence
of f+ and f0. FLAG 21 included a BCL fit to the ETM 17D and HPQCD 21 results for
the D → K form factors; this fit had a relatively poor χ2/dof = 9.17/3 due to a tension
between the results from the two collaborations at large q2; for D → π, only the ETM 17D
results were available at that time. Now, the FNAL/MILC 22 calculation [123] provides
new high-precision Nf = 2+1+1 results for bothD → K andD → π (as well asDs → K).
For D → K, we update our previous BCL fit to include the FNAL/MILC 22 results. We
consider the statistical correlations between the final HPQCD 21A and FNAL/MILC 22
results to be negligible, given that there is only partial overlap among the ensembles, the
source positions for the correlation functions are different, and the analyses are performed
with different fit methodologies. As in FLAG 21, we generate synthetic data from the
parameterizations provided by the collaborations. The inputs to our fit from ETM 17D
and HPQCD 21A are unchanged; for FNAL/MILC 22 we use four q2 values because the
parameterization used in that reference is of higher order. In both cases, this includes
the kinematical endpoints q2 = 0 and q2 = (mD − mK)2 of the semileptonic interval.
We fit the resulting dataset to a BCL ansatz (cf. Eqs. (527) and (528)); the constraint
f+(0) = f0(0) is used to rewrite the highest-order coefficient a0N0−1 in f0 in terms of the
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D → Kℓν (Nf = 2 + 1 + 1)

values correlation matrix

a+
0 0.7953(53) 1. −0.690759 −0.051101 −0.061092 0.501293 0.469810 0.132470

a+
1 −1.0090(87) −0.690759 1. −0.231861 0.133663 0.004097 0.149657 0.137516

a+
2 0.22(59) −0.051101 −0.231861 1. −0.113075 −0.095636 0.101738 0.238861

a+
3 0.14(10) −0.061092 0.133663 −0.113075 1. −0.109883 0.116543 0.112918

a0
0 0.7026(21) 0.501293 0.004097 −0.095636 −0.109883 1. 0.339786 −0.251322

a0
1 0.773(39) 0.469810 0.149657 0.101738 0.116543 0.339786 1. 0.589149

a0
2 0.54(40) 0.132470 0.137516 0.238861 0.112918 −0.251322 0.589149 1.

Table 30: Coefficients for the N+ = 4, N0 = 4 z-expansion of the Nf = 2 + 1 + 1 FLAG
average for the D → K form factors f+ and f0, and their correlation matrix. The inputs are
from ETM 17D, HPQCD 21A, and FNAL/MILC 22. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.1.

other N++N0−1 coefficients. In both form factors, we include nontrivial Blaschke factors,
with pole masses set to the experimental values of the D∗

s (for the vector channel) and D
∗
s0

(scalar channel) masses found in the PDG [225]. We take flavour averages of charged and
neutral states for the D and K masses. Our external input is thus mD = 1.87265 GeV,
mK = 495.644 MeV, mD∗

s
= 2.1122 GeV, andmD∗

s0
= 2.317 GeV. As a result of including

the new FNAL/MILC 22 data points, we found it necessary to increase the order of the
z expansion from N+ = N0 = 3 (as used in FLAG 21) to N+ = N0 = 4. The fit has
χ2/dof ≈ 2.39 (due to the tension between the ETM 17D results at high q2 and the
results from the other two collaborations, and due to a slight tension between the results
from HPQCD 21A and FNAL/MILC 22 in f0) and we have scaled the uncertainties of all
parameters by a factor of

√
χ2/dof ≈ 1.55. The results are quoted in full in Tab. 30 and

illustrated in Fig. 18.
As can be seen in Fig. 19 of Ref. [123], for D → π there is a very large tension between

the ETM 17D and FNAL/MILC 22 results at high q2, in the same direction as the tension
also seen for D → K. In this case, the tension is so significant that attempting BCL fits
to average the ETM 17D and FNAL/MILC 22 results gives values of χ2/dof of order
100. We are concerned about possible excited-state contamination in ETM 17D, but the
authors of ETM 17D stated that there is no evidence of an uncontrolled systematic effect;
the tension remains unexplained. We therefore do not quote any results for the D → π
form factors away from q2 = 0.
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Figure 17: D → πℓν and D → Kℓν semileptonic form factors at q2 = 0. The Nf = 2 + 1
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7.3 Form factors for Λc and Ξc semileptonic decays

The motivation for studying charm-baryon semileptonic decays is two-fold. First, these
decays allow for independent determinations of |Vcs|. Second, given that possible new-
physics contributions to the c → sℓν weak effective Hamiltonian are already constrained
to be much smaller compared to b→ uℓν̄ and b→ sℓℓ, charm-baryon semileptonic decays
allow testing the lattice techniques for baryons that are also employed for bottom-baryon
semileptonic decays (see Sec. 8.6) in a better-controlled environment.

The amplitudes of the decays Λc → Λℓν receive contributions from both the vector
and the axial components of the current in the matrix element ⟨Λ|s̄γµ(1− γ5)c|Λc⟩, and
can be parameterized in terms of six different form factors f+, f0, f⊥, g+, g0, g⊥ — see,
e.g., Ref. [489] for a complete description.

The computation in Meinel 16 [490] uses RBC/UKQCD Nf = 2+ 1 DWF ensembles,
and treats the c quarks within the Columbia RHQ approach. Two values of the lattice
spacing (a ≈ 0.11, 0.085 fm) are considered, with the absolute scale set from the Υ(2S)–
Υ(1S) splitting. In one ensemble, the pion mass mπ ≈ 139 MeV is at the physical point,
while for other ensembles it ranges from 295 to 352 MeV. Results for the form factors
are obtained from suitable three-point functions, and fitted to a modified z-expansion
ansatz that combines the q2-dependence with the chiral and continuum extrapolations.
The paper predicts for the total rates in the e and µ channels

Γ(Λc → Λe+νe)

|Vcs|2
= 0.2007(71)(74) ps−1 ,

Γ(Λc → Λµ+νµ)

|Vcs|2
= 0.1945(69)(72) ps−1 ,

(139)

where the uncertainties are statistical and systematic, respectively. In combination with
the recent experimental determination of the total branching fractions by BESIII [491,
492], it is possible to extract |Vcs| as discussed in Sec. 7.5 below.

Lattice results are also available for the Λc → N form factors, where N is a neutron or
proton [493]. This calculation uses the same lattice actions but a different set of ensembles
with parameters matching those used in the 2015 calculation of the Λb → p form factors
in Ref. [494] (cf. Sec. 8.6). Predictions are given for the rates of the c → d semileptonic
decays Λc → nℓ+νℓ; these modes have not yet been observed. Reference [493] also studies
the phenomenology of the flavour-changing neutral-current decay Λc → pµ+µ−. As is
typical for rare charm decays to charged leptons, this mode is dominated by long-distance
effects that have not yet been calculated on the lattice and whose description is model-
dependent.

The authors of Zhang 21 [495] also performed a first lattice calculation of the Ξc → Ξ
form factors and extracted |Vcs|, with still large uncertainties, from the recent Belle mea-
surement of the Ξc → Ξℓ+νℓ branching fractions [496]. This calculation uses only two
ensembles with 2+1 flavours of clover fermions, with lattice spacings of 0.108 and 0.080 fm
and nearly identical pion masses of 290 and 300 MeV. The results are extrapolated to the
continuum limit but are not extrapolated to the physical pion mass. No systematic un-
certainty is estimated for the effect of the missing chiral extrapolation. A new calculation
of the Ξc → Ξ form factors using domain-wall fermions is in progress [497].

The calculations discussed so far in this section all have JP = 1
2

+
baryons in the

final state. A first lattice calculation of the form factors for a charm-baryon semileptonic

decay to a JP = 3
2

−
baryon, Λc → Λ∗(1520)ℓ+νℓ, is also available: Meinel 21B [498]. The

calculation was done using three RBC/UKQCD ensembles with 2+1 flavours of domain-
wall fermions, with a ≈ 0.11, 0.08 fm and pion masses in the range from approximately
300 to 430 MeV. Chiral-continuum extrapolations linear in m2

π and a2 were performed,
with systematic uncertainties estimated using higher-order fits. Finite-volume effects
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and effects associated with the strong decays of the Λ∗(1520) are not quantified. The
calculation was done in the Λ∗(1520) rest frame, where the cubic symmetry is sufficient
to avoid mixing with unwanted lower-mass states.

A summary of the lattice calculations of charm-baryon semileptonic-decay form factors
is given in Tab. 31.
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Λc → Λ∗(1520)ℓν Meinel 21B [498] 2+1 A ◦ ◦ ■ ◦ ✓
Ξc → Ξℓν Zhang 21 [495] 2+1 P ◦ ■ ◦ ⋆ ■

Λc → nℓν Meinel 17 [493] 2+1 A ◦ ◦ ■ ◦ ✓
Λc → Λℓν Meinel 16 [490] 2+1 A ◦ ⋆ ⋆ ◦ ✓

Table 31: Summary of computations of charmed-baryon semileptonic form factors. The
rationale for the ■ rating of finite-volume effects in Meinel 21B (despite meeting the ◦
criterion based on the minimum pion mass) is that the unstable nature of the final-state
baryons was neglected in the analysis.

7.4 Form factors for charm semileptonic decays with heavy spec-
tator quarks

Two other decays mediated by the c → sℓν and c → dℓν transitions are Bc → Bsℓν and
Bc → B0ℓν, respectively. At present, there are no experimental results for these processes,
but it may be possible to produce them at LHCb in the future. The HPQCD Collaboration
has recently computed the form factors for both of these Bc decay modes with Nf =
2 + 1 + 1 [488]. The calculation uses six different MILC ensembles with HISQ light,
strange, and charm quarks, and employs the PCAC Ward identity to nonperturbatively
renormalize the c→ s and c→ d currents. Data were generated for two different choices of
the lattice action for the spectator b quark: lattice NRQCD on five of the six ensembles,
and HISQ on three of the six ensembles (cf. Sec. 8 for a discussion of different lattice
approaches used for the b quark). For the NRQCD calculation, two of the ensembles have
a physical light-quark mass, and the lattice spacings are 0.15 fm, 0.12 fm, and 0.09 fm.
The heavy-HISQ calculation is performed only at ml/ms = 0.2, and at lattice spacings of
0.12 fm, 0.09 fm, and 0.06 fm. The largest value of the heavy-HISQ mass used is 0.8 in
lattice units on all three ensembles, which does not reach the physical b-quark mass even
at the finest lattice spacing.

Form-factor fits are performed using z-expansions (see Appendix B.2) modified to
include a dependence on the lattice spacing and quark masses, including an expansion in
the inverse heavy quark mass in the case of the heavy-HISQ approach. The parameters
t+ are set to (mBc

+ mB(s)
)2 even though the branch cuts start at (mD + mK)2 or

(mD + mπ)
2, as also noted by the authors. The variable z is rescaled by a constant.

The lowest charmed-meson poles are removed before the z-expansion, but this still leaves
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the branch cuts and higher poles below t+. As a consequence of this structure, the good
convergence properties of the z-expansion are not necessarily expected to apply. Fits are
performed (i) using the NRQCD data only, (ii) using the HISQ data only, and (iii) using
the NRQCD data, but with priors on the continuum-limit form-factor parameters equal
to the results of the HISQ fit. The results from fits (i) and (ii) are mostly consistent, with
the NRQCD fit having smaller uncertainties than the HISQ fit. Case (iii) then results in
the smallest uncertainties and gives the predictions (for massless leptons)

Γ(Bc → Bsℓ
+νℓ)

|Vcs|2
= 1.738(55)× 10−11 MeV ,

Γ(Bc → B0ℓ+νℓ)

|Vcd|2
= 2.29(12)× 10−11 MeV ,

Γ(Bc → Bsℓ
+νℓ)|Vcd|2

Γ(Bc → B0ℓ+νℓ)|Vcs|2
= 0.759(44).

(140)

We note that there is a discrepancy between the NRQCD and HISQ results in the case of
f0(Bc → B0), and the uncertainty quoted for method (iii) does not cover this discrepancy.
However, this form factor does not enter in the decay rate for massless leptons.

7.5 Determinations of |Vcd| and |Vcs| and test of second-row CKM
unitarity

We now use the lattice-QCD results for the charm-hadron decays to determine the CKM
matrix elements |Vcd| and |Vcs| in the Standard Model.

For the leptonic decays, we use the latest experimental averages from the Particle Data
Group [274] (see Sec. 72.3.1)

fD|Vcd| = 45.82(1.10) MeV , fDs
|Vcs| = 243.5(2.7) MeV, (141)

where the errors include those from nonlattice theory, e.g., estimates of radiative cor-
rections to lifetimes [499]. Also, the values quoted by the Particle Data Group are ob-
tained after applying the correction factor η2EW = 1.018, due to universal short-distance
electroweak contributions [466], to the branching ratios. Hadronic-structure-dependent
electromagnetic corrections to the rate have not been computed on the lattice for the case
of D(s) mesons, while they have been calculated for pion and kaon decays [217, 220]. The
errors given above include a systematic uncertainty of 0.7% estimated as half the size of
the applied radiative corrections.

By combining these with the averaged Nf = 2 + 1 and 2 + 1 + 1 results for fD and
fDs in Eqs. (126-130), we obtain

Nf = 2 + 1 + 1:

{
|Vcd| = 0.2161(7)(52)

|Vcs| = 0.974(2)(11)
[D(s) → ℓν,Refs. [20, 43]], (142)

Nf = 2 + 1:

{
|Vcd| = 0.2178(16)(52)

|Vcs| = 0.983(5)(11)
[D(s) → ℓν,Refs. [28, 29, 59–62]], (143)

where the errors shown are from the lattice calculation and experiment (plus nonlattice
theory), respectively. For the Nf = 2 + 1 and the Nf = 2 + 1 + 1 determinations, the
uncertainties from the lattice-QCD calculations of the decay constants are significantly
smaller than the experimental uncertainties in the branching fractions.

For D-meson semileptonic decays, in the case of Nf = 2+1 there are no changes with
respect to FLAG 21 other than the inclusion of the short-distance electroweak correction
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and a systematic uncertainty due to missing long-distance QED corrections; the only
works entering the FLAG averages are HPQCD 10B/11 [64, 66], which provide fDπ+ (0)
and fDK+ (0). We use these results in combination with the HFLAV averages for the
combinations f+(0)ηEW|Vcx| [308],

fDπ+ (0)ηEW|Vcd| = 0.1426(18) , fDK+ (0)ηEW|Vcs| = 0.7180(33), (144)

and obtain

Nf = 2 + 1: |Vcd| = 0.2121(92)(29)(21) [D → πℓν,Ref. [64]], (145)

Nf = 2 + 1: |Vcs| = 0.958(25)(5)(10) [D → Kℓν,Ref. [66]], (146)

where the uncertainties are lattice, experimental (plus nonlattice theory), and missing
long-distance QED corrections (estimated to be 1%), respectively.

For Nf = 2+ 1+ 1, we update our BCL fit to the binned D → Kℓν differential decay
rates by adding the FNAL/MILC 22 inputs for f+(q

2) and f0(q
2) at four q2 values (the

ETM 17D and HPQCD 21A inputs remain unchanged). The experimental datasets we
include are unchanged with respect to FLAG 21 and are three different measurements
of the D0 → K−e+νe mode by BaBar (BaBar 07, Ref. [500]), CLEO-c (CLEO 09/0,
Ref. [467]), and BESIII (BESIII 15, Ref. [501]); CLEO-c (CLEO 09/+, Ref. [467]) and
BESIII measurements of the D+ → K̄0e+νe mode (BESIII 17, Ref. [502]); and the recent
first measurement of the D0 → K−µ+νµ mode by BESIII, Ref. [503]. There is also a
Belle dataset available in Ref. [504], but it provides results for parameterized form factors
rather than partial widths, which implies that reverse modelling of the q2-dependence of
the form factor would be needed to add them to the fit, which involves an extra source of
systematic uncertainty; it is, furthermore, the measurement with the largest error. Thus,
we will drop it. The CLEO collaboration provides correlation matrices for the systematic
uncertainties across the channels in their two measurements; the latter are, however, not
available for BESIII, and, therefore, we will conservatively treat their systematics with a
100% correlation, following the same prescription as in the HFLAV review [308]. Since
all lattice results have been obtained in the isospin limit, we average over the D0 and
D+ electronic modes. The parameterization of the form factors we use here is the same
as in the lattice-only fit discussed in Sec. 7.2, and we again increase the order of the z
expansion (with respect to FLAG 21) to N+ = N0 = 4. In contrast to FLAG 21, we
now include the short-distance electroweak correction η2EW [466] in the calculation of the
differential decay rate, using ηEW = 1.009 [123]. The fit has χ2/dof ≈ 1.66 and we have
scaled all uncertainties by a factor of

√
χ2/dof ≈ 1.29. The results for the z-expansion

parameters and |Vcs|, as well as their correlation matrix, are given in Tab. 32, and a plot
of the differential decay rates is shown in Fig. 19. For D → πlν, we do not use the lattice
results away from q2 = 0 as discussed in Sec. 7.2. To extract |Vcd|, we instead combine the
average for fDπ+ (0) from ETM 17D and FNAL/MILC 22 with the HFLAV result (144).
Thus, we obtain

Nf = 2 + 1 + 1: |Vcd| = 0.2245(33)(22) [D → πℓν,Ref. [63, 123]], (147)

Nf = 2 + 1 + 1: |Vcs| = 0.9592(50)(96) [D → Kℓν,Ref. [63, 65, 123]], (148)

where the two uncertainties correspond, respectively, to the combined lattice-QCD and
experimental errors, and an estimate of the size of missing long-distance QED corrections,
taken to be 1% following Ref. [123]. Note that FNAL/MILC 22 [123] also determined |Vcd|
from Ds → Kℓν using a BESIII measurement [505], with the result

Nf = 2 + 1 + 1: |Vcd| = 0.258(15)(03) [Ds → Kℓν,Ref. [123]], (149)

where the large uncertainty is dominated by the experimental measurement.
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Figure 19: Our fits to the D → Kℓν differential decay rates used to determine |Vcs|, with
experimental inputs from Refs. [467, 500–503] and lattice inputs from ETM17D [63], HPQCD
21A [65], and FNAL/MILC 22 [123].

D → Kℓν (Nf = 2 + 1 + 1)

values correlation matrix

a+0 0.7896(38) 1. −0.555568 −0.069722 −0.021610 0.587914 0.646372 0.247552 0.795354

a+1 −0.945(51) −0.555568 1. −0.303470 0.102546 −0.014576 0.043616 0.036587 −0.280176

a+2 0.29(49) −0.069722 −0.303470 1. −0.109799 −0.092179 0.107676 0.243102 −0.033821

a+3 0.257(84) −0.021610 0.102546 −0.109799 1. −0.112476 0.104107 0.101692 −0.003737

a00 0.7029(18) 0.587914 −0.014576 −0.092179 −0.112476 1. 0.341851 −0.256955 0.554412

a01 0.748(32) 0.646372 0.043616 0.107676 0.104107 0.341851 1. 0.578012 0.651080

a02 0.11(33) 0.247552 0.036587 0.243102 0.101692 −0.256955 0.578012 1. 0.279081

|Vcs| 0.9592(50) 0.795354 −0.280176 −0.033821 −0.003737 0.554412 0.651080 0.279081 1.

Table 32: Coefficients for the N+ = N0 = 4 z-expansion simultaneous fit of the D → K
form factors f+ and f0 and |Vcs| to the D → Kℓν differential decay rates and the ETM 17D,
HPQCD 21A, and FNAL/MILC 22 lattice results. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.1.
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For Λc → Λℓν, there are new experimental results for the electronic and muonic
branching fractions from BESIII, published in 2022 and 2023 [506, 507]. In addition,
the world average of the Λc lifetime has been updated in the 2024 Review of Particle
Physics to τΛc

= (202.6 ± 1.0) × 10−15 s, following a new precise measurement by Belle
II [508]. Using these results together with the lattice-QCD predictions of Meinel 16 for
Γ(Λc → Λℓν)/|Vcs|2 [490], and including the factor of η2EW (not done in Ref. [490]), we
obtain

Nf = 2 + 1: |Vcs| = 0.929(24)(16)(2)(9) [Λc → Λℓν,Ref. [490]], (150)

where the uncertainties are from the lattice calculation, from the Λc → Λℓν branching
fractions, from the Λc lifetime, and from the missing long-distance QED corrections,
respectively.

In Fig. 20, we summarize the results for |Vcd| and |Vcs| from leptonic and semileptonic
decays, and compare them to determinations from neutrino scattering (for |Vcd| only) and
global fits assuming CKM unitarity (see [225, 396]). For both |Vcd| and |Vcs|, the errors
in the direct determinations from leptonic and semileptonic decays are approximately one
order of magnitude larger than the indirect determination from CKM unitarity.

In order to provide final estimates, we average the available results from the different
processes separately for each value of Nf and obtain

Nf = 2 + 1 + 1:

{
|Vcd| = 0.2229(64)

|Vcs| = 0.9667(96)
[FLAG average, Refs. [20, 43, 65, 123]] , (151)

Nf = 2 + 1:

{
|Vcd| = 0.2165(49)

|Vcs| = 0.973(14)
[FLAG average, Refs. [28, 29, 59–62, 64, 66, 490]] ,

(152)

where the errors include both theoretical and experimental uncertainties, and scale factors
equal to

√
χ2/dof of 1.88 and 1.26 have been included for |Vcd|Nf=2+1+1 and |Vcs|Nf=2+1,

respectively. These averages also appear in Fig. 20, and are compatible with the values
from the CKM global fit based on unitarity [396] within at most 1.5σ. The slight increases
in the uncertainties of the Nf = 2 + 1 + 1 averages compared to FLAG 21 are due to
the inclusion of QED systematic uncertainties (treated as 100% correlated between the
different processes) and the scale factors. The large scale factor for |Vcd|Nf=2+1+1 is caused
by the Ds → Kℓν result that has large uncertainty but also a considerably higher central
value. Removing this result would change the average to |Vcd|Nf=2+1+1 = 0.2214(44).

Using the lattice determinations of |Vcd| and |Vcs| in Eqs. (151), (152) and |Vcb| ≈ 0.04,
we can test the unitarity of the second row of the CKM matrix. We obtain

Nf = 2 + 1 + 1: |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = −0.01(2)
[FLAG average, Refs. [20, 43, 65, 123]], (153)

Nf = 2 + 1: |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.00(3)

[FLAG average, Refs. [28, 29, 59–62, 64, 66, 490]]. (154)
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Figure 20: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods
[Eqs. (142), (143), (145), (146), (147), (148), (149), (150), (151), (152)] with a nonlattice
determination from neutrino scattering (for |Vcd| only) [225] and with the Standard-Model
predictions from a global fit assuming CKM unitarity [396].
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8 Bottom-hadron decays and mixings

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, A. Vaquero

Exclusive (semi)leptonic decays and mixing processes of B(s) mesons play a crucial
role in flavour physics. In particular, they contain important information for the investi-
gation of the b−d unitarity triangle in the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
and provide ideal probes of physics beyond the Standard Model. The charged-current
decay channels B+ → l+νl and B

0 → π−l+νl, where l+ is a charged lepton with νl being
the corresponding neutrino, are essential in extracting the CKM matrix element |Vub|.
Similarly, the B to D(∗) semileptonic transitions can be used to determine |Vcb|. Flavour-
changing neutral-current (FCNC) processes, such as B → K(∗)ℓ+ℓ− and Bd(s) → ℓ+ℓ−,
occur only beyond the tree level in weak interactions and are suppressed in the Standard
Model. Therefore, these processes could be sensitive to new physics, since heavy par-
ticles can contribute to the loop diagrams. FCNC processes are also suitable channels
for the extraction of the CKM matrix elements involving the top quark, which appears
in loop contributions. The decays B → D(∗)ℓν and B → K(∗)ℓℓ can also be used to
test lepton flavour universality by comparing results for ℓ = e, µ and τ . In particular,
anomalies have been seen in the ratios R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)ℓν)ℓ=e,µ
and R(K(∗)) = B(B → K(∗)µµ)/B(B → K(∗)ee), although the latter are no longer sta-
tistically significant. In addition, the neutral Bd(s)-meson mixings are FCNC processes
and are dominated by the 1-loop “box” diagrams containing the top quark and the W
bosons. Thus, using the experimentally measured neutral B0

d(s)-meson oscillation frequen-
cies, ∆Md(s), and the theoretical calculations for the relevant hadronic mixing matrix
elements, one can obtain |Vtd| and |Vts| in the Standard Model.

At the Large Hadron Collider, decays of b quarks can also be probed with Λb and other
bottom baryons, which can provide complementary constraints on physics beyond the
Standard Model. The most important processes are the charged-current decays Λb → pℓν̄
and Λb → Λcℓν̄, and the neutral-current decay Λb → Λℓ+ℓ−.

Accommodating the light quarks and the b quark simultaneously in lattice-QCD
computations is a challenging endeavour. To incorporate the pion and the b hadrons
with their physical masses, the simulations have to be performed using the lattice size
L̂ = L/a ∼ O(102), where a is the lattice spacing and L is the physical (dimensionful) box
size. The most ambitious calculations are now using such volumes; however, many ensem-
bles are smaller. Therefore, in addition to employing chiral perturbation theory for the
extrapolations in the light-quark mass, current lattice calculations for quantities involving
b hadrons often make use of effective theories that allow one to expand in inverse powers of
mb. In this regard, two general approaches are widely adopted. On the one hand, effective
field theories such as Heavy-Quark Effective Theory (HQET) and Nonrelativistic QCD
(NRQCD) can be directly implemented in numerical computations. On the other hand,
a relativistic quark action can be improved à la Symanzik to suppress cutoff errors, and
then re-interpreted in a manner that is suitable for heavy-quark physics calculations. This
latter strategy is often referred to as the method of the Relativistic Heavy-Quark Action
(RHQA). The utilization of such effective theories inevitably introduces systematic un-
certainties that are not present in light-quark calculations. These uncertainties can arise
from the truncation of the expansion in constructing the effective theories (as in HQET
and NRQCD), or from more intricate cutoff effects (as in NRQCD and RHQA). They can
also be introduced through more complicated renormalization procedures, which often
lead to significant systematic effects in matching the lattice operators to their continuum
counterparts. For instance, due to the use of different actions for the heavy and the light
quarks, it is more difficult to construct absolutely normalized bottom-light currents.

Complementary to the above “effective theory approaches”, another popular method is
to simulate the heavy and the light quarks using the same (typically Symanzik-improved)
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lattice action at several values of the heavy-quark mass mh with amh < 1 and mh < mb.
This enables one to employ HQET-inspired relations to extrapolate the computed quanti-
ties to the physical bmass. When combined with results obtained in the static heavy-quark
limit, this approach can be rendered into an interpolation, instead of extrapolation, in
mh. The discretization errors are the main source of the systematic effects in this method,
and very small lattice spacings are needed to keep such errors under control.

In recent years, it has also been possible to perform lattice simulations at very fine
lattice spacings and treat heavy quarks as fully relativistic fermions without resorting to
effective field theories. Such simulations are, of course, very demanding in computing
resources.

Because of the challenge described above, efforts to obtain reliable, accurate lattice-
QCD results for the physics of the b quark have been enormous. These efforts include
significant theoretical progress in formulating QCD with heavy quarks on the lattice. This
aspect is briefly reviewed in Appendix A.1.3 of FLAG 19 [4].

In this section, we summarize the results of the B-meson leptonic decay constants,
the neutral B-mixing parameters, and the semileptonic form factors of B mesons and Λb
baryons, from lattice QCD. To focus on the calculations that have strong phenomeno-
logical impact, we limit the review to results based on modern simulations containing
dynamical fermions with reasonably light pion masses (below approximately 500 MeV).

For heavy-meson decay constants and mixing parameters, estimates of the quantity
δ(amin) described in Sec. 2.1.2 are provided, where possible, for all computations entering
the final FLAG averages or ranges. For heavy-hadron semileptonic-decay form factors,
implementing this data-driven continuum-limit criterion was found to be not feasible.
The problem is that these quantities are functions of the momentum transfer in addition
to the other lattice parameters, and many calculations are based on global fits whose
reconstruction was not possible.

Following our review of B(s)-meson leptonic decay constants, the neutral B-meson mix-
ing parameters, and semileptonic form factors, we then interpret our results within the
context of the Standard Model. We combine our best-determined values of the hadronic
matrix elements with the most recent experimentally-measured branching fractions to ob-
tain |Vub| and |Vcb|, and compare these results to those obtained from inclusive semilep-
tonic B decays.

8.1 Leptonic decay constants fB and fBs

The B- and Bs-meson decay constants are crucial inputs for extracting information from
leptonic B decays. Charged B mesons can decay to a lepton-neutrino final state through
the charged-current weak interaction. On the other hand, neutral Bd(s) mesons can decay
to a charged-lepton pair via a FCNC process.

In the Standard Model, the decay rate for B+
(s) → ℓ+νℓ is described by a formula

identical to Eq. (124), with D(s) replaced by B(s), fD(s)
replaced by fB(s)

, and the relevant
CKM matrix element Vcq replaced by Vbq,

Γ(B(s) → ℓνℓ) =
mB(s)

8π
G2
F f

2
B(s)
|Vbq|2m2

ℓ

(
1− m2

ℓ

m2
B(s)

)2

. (155)

The only two-body charged-current B-meson decay that has been observed so far is
B+ → τ+ντ , which has been measured by the Belle and Babar collaborations [509, 510].
Both collaborations have reported results with errors around 20%. These measurements
can be used to extract |Vub| when combined with lattice-QCD predictions of the corre-
sponding decay constant, but the experimental uncertainties currently preclude a precise
determination.
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Neutral Bd(s)-meson decays to a charged-lepton pair Bd(s) → ℓ+ℓ− is a FCNC process,
and can only occur at 1-loop in the Standard Model. Hence these processes are expected
to be rare, and are sensitive to physics beyond the Standard Model. The corresponding
expression for the branching fraction has the form

B(Bq → ℓ+ℓ−) = τBq

G2
F

π
Y

(
αs

4π sin2 ΘW

)2

mBqf
2
Bq
|V ∗
tbVtq|2m2

ℓ

√
1− 4

m2
ℓ

m2
Bq

, (156)

where the light quark q = s or d, τBq is the mean meson lifetime, and the function Y
includes NLO QCD and electro-weak corrections that depend on the strong coupling αs
and the weak mixing angle ΘW [378, 511]. Evidence for the Bs → µ+µ− decay was
first observed by the LHCb [512] and CMS collaborations, and a combined analysis was
presented in 2014 in Ref. [513]. In 2020, the ATLAS [514], CMS [515] and LHCb [516]
collaborations reported their measurements from a preliminary combined analysis as [517]

B(B → µ+µ−) < 1.9× 10−10 at 95% CL,

B(Bs → µ+µ−) = (2.69+0.37
−0.35)× 10−9, (157)

which are compatible with the Standard Model predictions within approximately 2 stan-
dard deviations [518]. More recently, updated observations have been reported by the
LHCb collaboration [519] and the CMS collaboration [520], but these results do not im-
prove on the precision of the combined analysis.43 We note that the errors of these results
are currently too large to enable a precise determination of |Vtd| and |Vts|.

The related radiative leptonic decay, Bs → µ+µ−γ, is another FCNC process that is
sensitive to new physics and is expected to occur at a comparable rate to Bs → µ+µ−.
Recent searches for this decay by the LHCb collaboration found an upper limit of [519, 522]

B(Bs → µ+µ−γ) < 2.0× 10−9 at 95% CL, (158)

in the kinematic region mµµ > 4.9 GeV. The dominant hadronic contributions are pa-
rameterized by local form factors and by nonlocal resonance contributions, which have
been estimated using light-cone sum rules [523], QCD-inspired models [524, 525], and from
models of the transition form factors based on lattice calculations of the Ds meson, assum-
ing vector-meson dominance [526]. The first lattice calculation of the local form factors
were reported in [527]. The form factors provide a reasonable estimate of the decay rate
for large di-muon invariant mass, q2 > (4.15GeV)2, where long-distance contributions
are expected to be subdominant. Improved determinations of the branching fraction at
lower di-muon invariant masses requires a systematic and quantitative treatment of the
resonance region.

The rare leptonic B+ → ℓ+νℓγ decay is proportional to |Vub|2 and has been constrained
by the CLEO [528], BaBar [529], and Belle Collaborations [530, 531]. The most stringent
constraint, in the region Eγ > 1 GeV, is [531]

B(B+ → ℓ+νℓγ) < 3.0× 10−6 at 90% CL. (159)

This branching fraction can be expressed in terms of form factors that are yet to be
directly determined on the lattice but have been modelled using QCD sum rules and
dispersive approaches combined with an expansion in ΛQCD/mB and ΛQCD/Eγ [532]. At
leading order in this expansion, the branching fraction depends only on the light-cone
distribution amplitude of the B meson. At present, this channel is primarily viewed
as providing experimental constraints on the light-cone distribution amplitude. Direct

43The PDG quotes the branching fraction B(B0 → µ+µ−) < 1.5× 10−10 at 90% CL [274]. Ref. [521] obtains
B(B0 → µ+µ−) = (0.56± 70)× 10−10 using a correlated global analysis.
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calculations of this distribution amplitude from lattice QCD are now feasible with recent
theoretical developments [533, 534] and, in combination with experimental data, would
provide a novel method for the determination of |Vub|2.

The decay constants fBq
(with q = u, d, s) parameterize the matrix elements of the

corresponding axial-vector currents Aµbq = b̄γµγ5q analogously to the definition of fDq in
Sec. 7.1:

⟨0|Aµ|Bq(p)⟩ = ipµBq
fBq

. (160)

For heavy-light mesons, it is convenient to define and analyse the quantity

ΦBq
≡ fBq

√
mBq

, (161)

which approaches a constant (up to logarithmic corrections) in the mBq → ∞ limit,
because of heavy-quark symmetry. In the following discussion, we denote lattice data
for Φ, and the corresponding decay constant f , obtained at a heavy-quark mass mh and
light valence-quark mass mℓ as Φhℓ and fhl, to differentiate them from the corresponding
quantities at the physical b and light-quark masses.

The SU(3)-breaking ratio fBs/fB is of phenomenological interest, because many sys-
tematic effects can be partially reduced in lattice-QCD calculations of this ratio. The
discretization errors, heavy-quark-mass tuning effects, and renormalization/matching er-
rors may all be partially reduced.

This SU(3)-breaking ratio is, however, still sensitive to the chiral extrapolation. Pro-
vided the chiral extrapolation is under control, one can then adopt fBs

/fB as an input in
extracting phenomenologically-interesting quantities. In addition, it often happens to be
easier to obtain lattice results for fBs with smaller errors than direct calculations of fB .
Therefore, one can combine the Bs-meson decay constant with the SU(3)-breaking ratio
to calculate fB . Such a strategy can lead to better precision in the computation of the
B-meson decay constant, and has been adopted by the ETM [36, 73] and the HPQCD col-
laborations [70]. An alternative strategy to the direct calculation of fBs , used in Ref. [75],
is to obtain the Bs-meson decay constant by combining the Ds-meson decay constant
with the ratio fBs

/fDs
.

It is clear that the decay constants for charged and neutral B mesons play different
roles in flavour-physics phenomenology. Knowledge of the B+-meson decay constant fB+

is essential for extracting |Vub| from leptonic B+ decays. The neutral B-meson decay
constants fB0 and fBs are inputs to searches for new physics in rare leptonic B0 decays.
In view of this, it is desirable to include isospin-breaking effects in lattice computations
for these quantities and to provide lattice results for both fB+ and fB0 . With the high
precision of recent lattice calculations, isospin splittings for B-meson decay constants can
be significant, and will play an important role in the foreseeable future.

A few collaborations have reported fB+ and fB0 separately by taking into account
strong isospin effects in the valence sector, and estimated the corrections from electromag-
netism [20, 60, 67, 72]. The Nf = 2+1+1 strong isospin-breaking effect was computed in
HPQCD 13 [67] (see Tab. 33 in this subsection). However, since only unitary points (with
equal sea- and valence-quark masses) were considered in HPQCD 13 [67], this procedure
only correctly accounts for the effect from the valence-quark masses, while introducing a
spurious sea-quark contribution. The decay constants fB+ and fB0 are also separately
reported in FNAL/MILC 17 [20] by taking into account the strong-isospin effect. The
FNAL/MILC results were obtained by keeping the averaged light sea-quark mass fixed
when varying the quark masses in their analysis procedure. Their finding indicates that
the strong isospin-breaking effects, fB+ − fB ∼ 0.5 MeV, could be smaller than those
suggested by previous computations. One would have to take into account QED effects in
the B-meson leptonic decay rates to properly use these results for extracting phenomeno-
logically relevant information.44 Currently, errors on the experimental measurements of

44See Ref. [283] for a strategy that has been proposed to account for QED effects.
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these decay rates are still very large. In this review, we will therefore concentrate on the
isospin-averaged result fB and the Bs-meson decay constant, as well as the SU(3)-breaking
ratio fBs

/fB .
The status of lattice-QCD computations for B-meson decay constants and the SU(3)-

breaking ratio, using gauge-field ensembles with light dynamical fermions, is summarized
in Tabs. 33 and 34. Figs. 21 and 22 contain the graphical presentation of the collected
results and our averages. Most results in these tables and plots have been reviewed in
detail in FLAG 19 [4] and in FLAG 21 [5]. Here, we describe the new results that have
appeared since January 2021.

We also review the continuum-limit quantity, δ(amin), described in Sec. 2. We estimate,
where possible, δ(amin) for results entering the FLAG averages of fB , fBs , and fBs/fB , but
we do not use δ(amin) for averaging. We include estimates of δ(amin) for those calculations
that explicitly provide the relevant data in the manuscript.

As lattice calculations of leptonic decays have become statistically more precise, re-
sults are often dominated by systematic uncertainties. The continuum extrapolation is
frequently the largest source of systematic uncertainty for lattice calculations of heavy
quarks, for which the heavy-quark discretization can introduce effects of the O(am)n,
and a more quantitative measure of discretization effects is a useful guide to the quality
of the continuum extrapolation. For the lattice calculations of leptonic decay constants
of bottom hadrons that appear in this review, the continuum-limit quantity should be
interpreted with caution, because many final results are quoted from combined chiral-
continuum extrapolations and, typically, more recent computations do not quote numer-
ical values for the leptonic decay constants at the finest lattice spacings. Moreover, the
finest ensembles may not be at, or close to, the physical pion mass. Thus, we generally
quote our estimations of δ(amin) to one significant figure because the natural size of the
uncertainty on δ(amin) is O(1).
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Figure 21: Decay constants of the B and Bs mesons. The values are taken from Tab. 33 (the
fB entry for FNAL/MILC 11 represents fB+). The significance of the colours is explained in
Sec. 2. The black squares and grey bands indicate our averages in Eqs. (162), (165), (168),
(163), (166) and (169).

There have been no new Nf = 2 calculations of fB , fBs , or fBs/fB . Therefore, our
averages for these quantities stay the same as those in FLAG 21 [5]. Our estimates for
the continuum-limit quantity δ(amin) are δ(amin) = 0.01 for fBs

in Ref. [73]. Data do not
permit estimates of the continuum-limit quantity for fB and fBs

/fB from Ref. [73], but
discretization effects are generally small. From Ref. [74] we obtain δ(amin) = 0.6 for fB ,
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fB+ fB0 fB fBs

Frezzotti 24 [527] 2+1+1 P ⋆ ⋆ ⋆ ⋆ ✓ − − − 224.5(5.0)

FNAL/MILC 17 [20] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 189.4(1.4) 190.5(1.3) 189.9(1.4) 230.7(1.2)

HPQCD 17A [68] 2+1+1 A ◦ ⋆ ⋆ ◦ ✓ − − 196(6) 236(7)

ETM 16B [36] 2+1+1 A ⋆ ◦ ◦ ◦ ✓ − − 193(6) 229(5)

ETM 13E [535] 2+1+1 C ⋆ ◦ ◦ ◦ ✓ − − 196(9) 235(9)

HPQCD 13 [67] 2+1+1 A ◦ ⋆ ⋆ ◦ ✓ 184(4) 188(4) 186(4) 224(5)

RBC/UKQCD 14 [72] 2+1 A ◦ ◦ ◦ ◦ ✓ 195.6(14.9) 199.5(12.6) − 235.4(12.2)

RBC/UKQCD 14A [71] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 219(31) 264(37)

RBC/UKQCD 13A [536] 2+1 C ◦ ◦ ◦ ◦ ✓ − − 191(6)⋄stat 233(5)⋄stat

HPQCD 12 [70] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 191(9) 228(10)

HPQCD 12 [70] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 189(4)△ −
HPQCD 11A [69] 2+1 A ⋆ ◦ ⋆ ⋆ ✓ − − − 225(4)∇

FNAL/MILC 11 [60] 2+1 A ◦ ◦ ⋆ ◦ ✓ 197(9) − − 242(10)

HPQCD 09 [78] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 190(13)• 231(15)•

Balasubramamian 19† [75] 2 A ⋆ ⋆ ⋆ ◦ ✓ − − − 215(10)(2)(
+2
−5)

ALPHA 14 [74] 2 A ⋆ ⋆ ⋆ ⋆ ✓ − − 186(13) 224(14)

ALPHA 13 [537] 2 C ⋆ ⋆ ⋆ ⋆ ✓ − − 187(12)(2) 224(13)

ETM 13B, 13C‡ [73, 538] 2 A ⋆ ◦ ⋆ ◦ ✓ − − 189(8) 228(8)

ALPHA 12A [539] 2 C ⋆ ⋆ ⋆ ⋆ ✓ − − 193(9)(4) 219(12)

ETM 12B [540] 2 C ⋆ ◦ ⋆ ◦ ✓ − − 197(10) 234(6)

ALPHA 11 [541] 2 C ⋆ ◦ ⋆ ⋆ ✓ − − 174(11)(2) −
ETM 11A [272] 2 A ⋆ ◦ ⋆ ◦ ✓ − − 195(12) 232(10)

ETM 09D [542] 2 A ⋆ ◦ ◦ ◦ ✓ − − 194(16) 235(12)

⋄Statistical errors only.
△Obtained by combining fBs from HPQCD 11A with fBs/fB calculated in this work.
∇This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio mℓ/ms ≈ 0.2.
•This result uses an old determination of r1 = 0.321(5) fm from Ref. [120] that has since been superseded.
‡Obtained by combining fDs , updated in this work, with fBs/fDs , calculated in this work.
‡Update of ETM 11A and 12B.

Table 33: Decay constants of the B, B+, B0 and Bs mesons (in MeV). Here fB stands
for the mean value of fB+ and fB0 , extrapolated (or interpolated) in the mass of the light
valence-quark to the physical value of mud.

δ(amin) = 0.3 for fBs
, and δ(amin) = 0.3 for fBs

/fB . Finally, δ(amin) = 2.6 for fBs
in

[75].
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fBs/fB+ fBs/fB0 fBs/fB

FNAL/MILC 17 [20] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 1.2180(49) 1.2109(41) −
HPQCD 17A [68] 2+1+1 A ◦ ⋆ ⋆ ◦ ✓ − − 1.207(7)

ETM 16B [36] 2+1+1 A ⋆ ◦ ◦ ◦ ✓ − − 1.184(25)

ETM 13E [535] 2+1+1 C ⋆ ◦ ◦ ◦ ✓ − − 1.201(25)

HPQCD 13 [67] 2+1+1 A ◦ ⋆ ⋆ ◦ ✓ 1.217(8) 1.194(7) 1.205(7)

QCDSF/UKQCD/CSSM 22 [543] 2+1 C ⋆ ⋆ ◦ ◦ ✓ − − 1.159(15)(
+76
−71)

RBC/UKQCD 18A [76] 2+1 P ⋆ ⋆ ⋆ ⋆ ✓ − − 1.1949(60)(
+95
−175)

RBC/UKQCD 14 [72] 2+1 A ◦ ◦ ◦ ◦ ✓ 1.223(71) 1.197(50) −
RBC/UKQCD 14A [71] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 1.193(48)

RBC/UKQCD 13A [536] 2+1 C ◦ ◦ ◦ ◦ ✓ − − 1.20(2)⋄stat

HPQCD 12 [70] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 1.188(18)

FNAL/MILC 11 [60] 2+1 A ◦ ◦ ⋆ ◦ ✓ 1.229(26) − −
RBC/UKQCD 10C [544] 2+1 A ■ ■ ■ ◦ ✓ − − 1.15(12)

HPQCD 09 [78] 2+1 A ◦ ◦ ◦ ◦ ✓ − − 1.226(26)

ALPHA 14 [74] 2 A ⋆ ⋆ ⋆ ⋆ ✓ − − 1.203(65)

ALPHA 13 [537] 2 C ⋆ ⋆ ⋆ ⋆ ✓ − − 1.195(61)(20)

ETM 13B, 13C† [73, 538] 2 A ⋆ ◦ ⋆ ◦ ✓ − − 1.206(24)

ALPHA 12A [539] 2 C ⋆ ⋆ ⋆ ⋆ ✓ − − 1.13(6)

ETM 12B [540] 2 C ⋆ ◦ ⋆ ◦ ✓ − − 1.19(5)

ETM 11A [272] 2 A ◦ ◦ ⋆ ◦ ✓ − − 1.19(5)

⋄Statistical errors only.
†Update of ETM 11A and 12B.

Table 34: Ratios of decay constants of the B and Bs mesons (for details see Tab. 33).

Our averages of the Nf = 2 results are:

Nf = 2 : fB = 188(7) MeV Refs. [73, 74], (162)

Nf = 2 : fBs = 225.3(6.6) MeV Refs. [73–75], (163)

Nf = 2 :
fBs

fB
= 1.206(0.023) Refs. [73, 74]. (164)

Two new Nf = 2+ 1 calculations of fBs/fB were presented in conference proceedings
after the publication of FLAG 21 [5]. Only one of these calculations, Ref. [543], provides a
preliminary quantitative result. In Tab. 34, this result is labelled QCDSF/UKQCD/CSSM
22 [543]. The second work, Ref. [545], is described in the text below, but not listed in
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Figure 22: Ratio of the decay constants of the B and Bs mesons. The values are taken from
Tab. 34. Results labelled as FNAL/MILC 17 1 and FNAL/MILC 17 2 correspond to those
for fBs/fB0 and fBs/fB+ reported in FNAL/MILC 17. The significance of the colours is
explained in Sec. 2. The black squares and grey bands indicate our averages in Eqs. (164),
(167), and (170).

Tab. 34.
In QCDSF/UKQCD/CSSM 22 [543] the QCDSF/UKQCD/CSSM collaboration pre-

sented the ratio of decay constants, fBs
/fB , using Nf = 2 + 1 dynamical ensembles

generated using nonperturbatively O(a)-improved clover-Wilson fermions. Four lattice
spacings, of a = 0.082, 0.074, 0.068, and 0.059 fm, were used, with pion masses ranging
from 155 to 468 MeV, and lattice sizes between 2.37 and 4.35 fm. The light-quark masses
were tuned using the QCDSF procedure [546], for fixing the light- and strange-quark
masses. Quark masses were chosen to keep the value of the SU(3) flavour-singlet mass,
m = (2mℓ + ms)/3, constant. Heavy quarks were simulated with a relativistic heavy-
quark (RHQ) action, with bare-quark masses chosen to keep the SU(3) flavour-singlet
mass, X2

B = (2MBℓ
+MBs)/3, constant. The bare parameters of the RHQ action were

chosen to ensure that the masses and hyperfine splitting of the XB and XB∗ mesons
reproduce the properties of the physical, spin-averaged XB and XB∗ [547].

The chiral extrapolation was performed using both linear and quadratic terms in
(M2

π/M
2
X − 1) and assuming that the SU(3) flavour breaking does not depend on the lat-

tice spacing. The reported value for the ratio of decay constants assumes that the renor-
malization parameters for light- and strange-quark currents are approximately equal, but
this is only true near the SU(3)-symmetric point. Effects of the order of 1-2% are expected
near the physical point and calculations of the relevant parameters on near-physical en-
sembles are underway. Tests of O(a2) discretization effects indicate little dependence and
the final results are quoted from the subset of ensembles with mπL > 4 and assuming no
dependence on a2. Tests of heavy-quark mistuning effects indicate that the ratio of decay
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constants are minimally affected.
The RBC/UKQCD collaboration described ongoing efforts to calculate pseudoscalar

and vector heavy-meson decay constants in Ref. [545], using Nf = 2+1 dynamical ensem-
bles generated using Domain Wall Fermions (DWF). Four lattice spacings, of a = 0.11,
0.083, 0.071, and 0.063 fm were used, with pion masses ranging from 267 to 433 MeV,
and lattice sizes between 2.0 and 3.4 fm. Light and strange quarks were simulated with
the Shamir DWF discretization and charm quarks were simulated with Möbius DWF ac-
tion. These discretizations correspond to two different choices for the DWF kernel. The
Möbius DWF are loosely equivalent to Shamir DWF at twice the extension in the fifth
dimensions [12]. Ref. [545] presents a preliminary analysis with a two-step procedure. The
first step corrects for strange-quark-mass mistunings and the second applies NLO SU(2)
heavy-meson chiral perturbation theory to carry out a chiral-continuum extrapolation us-
ing various fit Ansätze to enable a full systematic error analysis. This analysis is ongoing
at time of publication.

The results of Refs. [543] and [545] have not been published and therefore neither cal-
culation is included in our average. Thus, our averages remain the same as in FLAG 21 [5],

Nf = 2 + 1 : fB = 192.0(4.3) MeV Refs. [60, 69–72], (165)

Nf = 2 + 1 : fBs
= 228.4(3.7) MeV Refs. [60, 69–72], (166)

Nf = 2 + 1 :
fBs

fB
= 1.201(0.016) Refs. [60, 70–72, 76]. (167)

Our estimates for the continuum-limit quantity δ(amin) for the results entering the
FLAG averages for the Nf = 2 + 1 bottom-hadron leptonic decay constants, and their
ratio, are: δ(amin) = 5.6 and δ(amin) = 7.4 for fBs

and fB , respectively, in Ref. [60];
δ(amin) = 1.5 for fB in Ref. [69]; δ(amin) = 0.01 and δ(amin) = 0.6 for fBs and fB ,
respectively, in Ref. [70]; δ(amin) = 1.9 and δ(amin) = 2.3 for fBs and fB , respectively,
in Ref. [71]; and δ(amin) = 1.7 for fBs

in Ref. [72]. For fBs
/fB we obtain approximately

δ(amin) = 0.4 for [60], approximately 2 for [70] and [71], 3 for [72], and around 0.5 for [76].
No new Nf = 2+ 1+ 1 calculations of fB and fBs

/fB have appeared since FLAG 21.
There has been one new calculation of fB(s)

in Ref. [527], labelled Frezzotti 24 in Tab. 33.
As part of the determination of the form factors for the radiative leptonic decay

Bs → µ+µ−γ, the decay constant fBs
was determined in Ref. [527]. This work used

ensembles with Nf = 2 + 1 + 1 clover-Wilson twisted-mass fermions at maximal twist.
Four lattice spacings, ranging from 0.057 to 0.091 fm, were included and pion masses
spanned a range from 137 to 175 MeV. The heavy-strange meson was simulated using
clover-Wilson twisted-mass fermions at a range of heavy-strange masses, extrapolated up
to the physical Bs mass. Ref. [527] determined fHs from both two-point functions and the
spatial part of the axial hadronic tensor to better constrain the continuum limit because
these determinations differ only by discretization effects. The results from both methods
were simultaneously extrapolated to the continuum limit at fixed values of the heavy-
strange meson mass MHs , with six different fit variations for each of the five values of
MHs . The results of each fit were combined using the Akaike Information Criterion [548]
and the corresponding continuum decay constants were then extrapolated to the physical
Bs mass. The extrapolation in the heavy-strange mass was carried out using a fit form
guided by HQET, with modifications to account for the anomalous dimension of the axial
current in HQET and and the matching between QCD and HQET.

Ref. [527] has not been published at the time of publication of this review. Therefore,
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our averages for fB , fB(s)
and fBs

/fB remain the same as in FLAG 21 [5],

Nf = 2 + 1 + 1 : fB = 190.0(1.3) MeV Refs. [20, 36, 67, 68], (168)

Nf = 2 + 1 + 1 : fBs = 230.3(1.3) MeV Refs. [20, 36, 67, 68], (169)

Nf = 2 + 1 + 1 :
fBs

fB
= 1.209(0.005) Refs. [20, 36, 67, 68]. (170)

The data reported in the calculations that appear in these averages do not permit
estimates of δ(amin).

The PDG presented averages for the Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice-QCD
determinations of the isospin-averaged fB , fBs and fBs/fB in 2024 [274]. The Nf = 2+1
and Nf = 2 + 1 + 1 lattice-computation results used in Ref. [274] are identical to those
included in our current work, and the averages quoted in Ref. [274] are those determined
in [4] and [5].

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model through 1-loop box diagrams
to lowest order in the electroweak theory, similar to those for short-distance effects in
neutral kaon mixing. The effective Hamiltonian is given by

H∆B=2,SM
eff =

G2
FM

2
W

16π2
(F0

dQd1 + F0
sQs1) + h.c. , (171)

with
Qq1 =

[
b̄γµ(1− γ5)q

] [
b̄γµ(1− γ5)q

]
, (172)

where q = d or s. The short-distance function F0
q in Eq. (171) is much simpler compared

to the kaon mixing case due to the hierarchy in the CKM matrix elements. Here, only
one term is relevant,

F0
q = λ2tqS0(xt) (173)

where
λtq = V ∗

tqVtb, (174)

and where S0(xt) is an Inami-Lim function with xt = m2
t/M

2
W , which describes the basic

electroweak loop contributions without QCD [378].
The transition amplitude for B0

q with q = d or s can be written as

⟨B̄0
q |H∆B=2

eff |B0
q ⟩ =

G2
FM

2
W

16π2

[
λ2tqS0(xt)η2B

]
×
(
ḡ(µ)2

4π

)−γ0/(2β0)

exp

{∫ ḡ(µ)

0

dg

(
γ(g)

β(g)
+

γ0
β0g

)}
× ⟨B̄0

q |QqR(µ)|B0
q ⟩ + h.c. , (175)

where QqR(µ) is the renormalized four-fermion operator (usually in the NDR scheme of
MS). The running coupling ḡ, the β-function β(g), and the anomalous dimension of the
four-quark operator γ(g) are defined in Eqs. (95) and (96). The product of µ-dependent
terms on the second line of Eq. (175) is, of course, µ-independent (up to truncation errors
arising from the use of perturbation theory). The explicit expression for the short-distance
QCD correction factor η2B (calculated to NLO) can be found in Ref. [371].

For historical reasons the B-meson-mixing matrix elements are often parameterized in
terms of bag parameters defined as

BBq (µ) =

〈
B̄0
q |QqR(µ)|B0

q

〉
8
3f

2
Bq
m2
Bq

. (176)
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The renormalization-group-independent (RGI) B parameter B̂ is defined as in the case of
the kaon, and expressed to 2-loop order as

B̂Bq
=

(
ḡ(µ)2

4π

)−γ0/(2β0){
1 +

ḡ(µ)2

(4π)2

[
β1γ0 − β0γ1

2β2
0

]}
BBq

(µ) , (177)

with β0, β1, γ0, and γ1 defined in Eq. (97). Note, as Eq. (175) is evaluated above the
bottom threshold (mb < µ < mt), the active number of flavours here is Nf = 5.

Nonzero transition amplitudes result in a mass difference between the CP eigenstates
of the neutral B-meson system. Writing the mass difference for a B0

q meson as ∆mq, its
Standard Model prediction is

∆mq =
G2
Fm

2
WmBq

6π2
|λtq|2S0(xt)η2Bf

2
Bq
B̂Bq , (178)

where λtq is defined in Eq. (174). Experimentally, the mass difference is determined from
the oscillation frequency of the CP eigenstates. The frequencies are measured precisely
with an error of less than a percent. Many different experiments have measured ∆md,
but the current average [225] is dominated by the LHCb experiment. For ∆ms the exper-
imental average is again dominated by results from LHCb [225] and the precision reached
is about one per mille. With these experimental results and lattice-QCD calculations of
f2Bq

B̂Bq
, λtq can be determined. In lattice-QCD calculations the flavour SU(3)-breaking

ratio

ξ2 =
f2Bs

BBs

f2Bd
BBd

(179)

can be obtained more precisely than the individual Bq-mixing matrix elements because
statistical and systematic errors cancel in part. From ξ2, the ratio |Vtd/Vts| can be deter-
mined and used to constrain the apex of the CKM triangle.

Neutral B-meson mixing, being loop-induced in the Standard Model, is also a sensitive
probe of new physics. The most general ∆B = 2 effective Hamiltonian that describes
contributions to B-meson mixing in the Standard Model and beyond is given in terms of
five local four-fermion operators:

H∆B=2
eff,BSM =

∑
q=d,s

5∑
i=1

CiQqi , (180)

where Q1 is defined in Eq. (172) and where

Qq2 =
[
b̄(1− γ5)q

] [
b̄(1− γ5)q

]
, Qq3 =

[
b̄α(1− γ5)qβ

] [
b̄β(1− γ5)qα

]
,

Qq4 =
[
b̄(1− γ5)q

] [
b̄(1 + γ5)q

]
, Qq5 =

[
b̄α(1− γ5)qβ

] [
b̄β(1 + γ5)q

α
]
, (181)

with the superscripts α, β denoting colour indices, which are shown only when they are
contracted across the two bilinears. There are three other basis operators in the ∆B = 2
effective Hamiltonian. When evaluated in QCD, however, they give identical matrix el-
ements to the ones already listed due to parity invariance in QCD. The short-distance
Wilson coefficients Ci depend on the underlying theory and can be calculated perturba-
tively. In the Standard Model only matrix elements of Qq1 contribute to ∆mq, while all
operators do, for example, for general SUSY extensions of the Standard Model [444]. The
matrix elements or bag parameters for the non-SM operators are also useful to estimate
the width difference ∆Γq between the CP eigenstates of the neutral B meson in the Stan-
dard Model, where combinations of matrix elements of Qq1, Qq2, and Qq3 contribute to ∆Γq
at O(1/mb) [549, 550].

In this section, we report on results from lattice-QCD calculations for the neutral B-

meson mixing parameters B̂Bd
, B̂Bs

, fBd

√
B̂Bd

, fBs

√
B̂Bs

and the SU(3)-breaking ratios
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BBs
/BBd

and ξ defined in Eqs. (176), (177), and (179). The results are summarized in
Tabs. 35 and 36 and in Figs. 23 and 24. Additional details about the underlying simu-
lations and systematic error estimates are given in Appendix C.5.2. Some collaborations

do not provide the RGI quantities B̂Bq
, but quote instead BB(µ)

MS,NDR. In such cases,
we convert the results using Eq. (177) to the RGI quantities quoted in Tab. 35 with a
brief description for each case. More detailed descriptions for these cases are provided
in FLAG13 [2]. We do not provide the B-meson-matrix elements of the other operators
Q2−5 in this report. They have been calculated in Ref. [73] for the Nf = 2 case and in
Refs. [79, 551] for Nf = 2 + 1.

Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

ch
ir
al
ex
tr
ap
ol
at
io
n

fin
it
e
vo
lu
m
e

re
no
rm

al
iz
at
io
n/
m
at
ch
in
g

he
av
y-
qu
ar
k
tr
ea
tm

en
t

fBd

√
B̂Bd fBs

√
B̂Bs B̂Bd B̂Bs

HPQCD 19A [77]2+1+1A◦ ◦ ⋆◦✓ 210.6(5.5) 256.1(5.7) 1.222(61) 1.232(53)

FNAL/MILC 16 [79] 2+1 A⋆◦ ⋆◦✓ 227.7(9.5) 274.6(8.4) 1.38(12)(6)⊙1.443(88)(48)⊙

RBC/UKQCD 14A [71] 2+1 A◦ ◦ ◦ ◦✓ 240(15)(33)290(09)(40)1.17(11)(24) 1.22(06)(19)

FNAL/MILC 11A [551] 2+1 C⋆◦ ⋆◦✓ 250(23)† 291(18)† − −
HPQCD 09 [78] 2+1 A◦ ◦∇◦ ◦✓ 216(15)∗ 266(18)∗ 1.27(10)∗ 1.33(6)∗

HPQCD 06A [552] 2+1 A■ ■ ⋆◦✓ − 281(21) − 1.17(17)

ETM 13B [73] 2 A⋆◦ ◦⋆✓ 216(6)(8) 262(6)(8) 1.30(5)(3) 1.32(5)(2)

ETM 12A, 12B [540, 553] 2 C⋆◦ ◦⋆✓ − − 1.32(8)⋄ 1.36(8)⋄

⊙ PDG averages of decay constant fB0 and fBs [204] are used to obtain these values.
† Reported f2

BB at µ = mb is converted to RGI by multiplying the 2-loop factor 1.517.
∇ While wrong-spin contributions are not included in the HMrSχPT fits, the effect is expected to be

small for these quantities (see description in FLAG 13 [2]).
∗ This result uses an old determination of r1 = 0.321(5) fm from Ref. [120] that has since been superseded,

which however has only a small effect in the total error budget (see description in FLAG 13 [2]) .
⋄ Reported B at µ = mb = 4.35 GeV is converted to RGI by multiplying the 2-loop factor 1.521.

Table 35: Neutral B- and Bs-meson mixing matrix elements (in MeV) and bag parameters.

Let us mention that our averages here have no updates from the previous review
[5]. The new addition to this subsection is that we review a measure of continuum-limit
quality δ(amin) for each result that is included in the average. We used this quantity for
the continuum-limit criterion for heavy-quark related quantities in FLAG 13 [2]. This time
we only quote the value for information and we do not use it when calculating averages.

There are no new results for Nf = 2 reported after FLAG 16 [3]. In this category, one
work (ETM 13B) [73] passes the quality criteria. A description of this work can be found
in FLAG 13 [2] where it did not enter the average as it had not appeared in a journal.
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Figure 23: Neutral B- and Bs-meson-mixing matrix elements and bag parameters [values in
Tab. 35 and Eqs. (182), (185), (188), (183), (186), (189)].
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ξ BBs/BBd

HPQCD 19A [77] 2+1+1 A ◦ ◦ ⋆ ◦ ✓ 1.216(16) 1.008(25)

RBC/UKQCD 18A [76] 2+1 P ⋆ ⋆ ⋆ ⋆ ✓ 1.1939(67)(+95
−177) 0.9984(45)(+80

−63)

FNAL/MILC 16 [79] 2+1 A ⋆ ◦ ⋆ ◦ ✓ 1.206(18) 1.033(31)(26)⊙

RBC/UKQCD 14A [71] 2+1 A ◦ ◦ ◦ ◦ ✓ 1.208(41)(52) 1.028(60)(49)

FNAL/MILC 12 [554] 2+1 A ◦ ◦ ⋆ ◦ ✓ 1.268(63) 1.06(11)

RBC/UKQCD 10C [544] 2+1 A ■ ■ ■ ◦ ✓ 1.13(12) −
HPQCD 09 [78] 2+1 A ◦ ◦∇ ◦ ◦ ✓ 1.258(33) 1.05(7)

ETM 13B [73] 2 A ⋆ ◦ ◦ ⋆ ✓ 1.225(16)(14)(22) 1.007(15)(14)
ETM 12A, 12B [540, 553] 2 C ⋆ ◦ ◦ ⋆ ✓ 1.21(6) 1.03(2)

⊙ PDG average of the ratio of decay constants fBs/fB0 [204] is used to obtain the value.
∇ Wrong-spin contributions are not included in the HMrSχPT fits. As the effect may not be negligible,

these results are excluded from the average (see description in FLAG 13 [2]).

Table 36: Results for SU(3)-breaking ratios of neutral Bd- and Bs-meson-mixing matrix
elements and bag parameters.
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Figure 24: The SU(3)-breaking quantities ξ and BBs/BBd
[values in Tab. 36 and Eqs. (184),

(187), (190)].

This is the only result available for Nf = 2, so we quote their values as our estimates

fBd

√
B̂bd = 216(10)MeV fBs

√
B̂Bs = 262(10)MeV Ref. [73], (182)

Nf = 2 : B̂Bd
= 1.30(6) B̂Bs

= 1.32(5) Ref. [73], (183)

ξ = 1.225(31) BBs
/BBd

= 1.007(21) Ref. [73]. (184)

The continuum-limit measure, δ(amin), cannot be estimated for the ETM 13B results
for B̂Bd

because the relevant continuum-limit information is not provided. For the other

quantities of ETM 13B, δ(amin) ≃ 0.1 (B̂Bd
), 2 (ξ) and 0.7 (BBs

/BBd
).

ForNf = 2+1 the results that enter our averages forNf = 2+1 are FNAL/MILC 16 [79],
which had been included in the averages at FLAG 19 [4], RBC/UKQCD 14A [71], included
in the averages at FLAG 16 [3], and HPQCD 09 [78] for which a description is available
in FLAG 13 [2]. The work in RBC/UKQCD 18A [76] on the flavour SU(3)-breaking
ratios, whose description can be found in FLAG 21 [5], has not been published yet and
therefore do not enter into the averages. Thus, the averages for Nf = 2+1 are unchanged:

Nf = 2 + 1 :

fBd

√
B̂Bd

= 225(9)MeV fBs

√
B̂Bs

= 274(8)MeV Refs. [71, 78, 79], (185)

B̂Bd
= 1.30(10) B̂Bs

= 1.35(6) Refs. [71, 78, 79], (186)

ξ = 1.206(17) BBs
/BBd

= 1.032(38) Refs. [71, 79]. (187)

Here all the above equations have not been changed from FLAG 19. The averages were
obtained using the nested averaging scheme described in Sec. 2.3.2, due to a nested cor-
relation structure among the results. Details are discussed in the FLAG 19 report [4].
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We estimate δ(amin) ≃ 2 for both B̂Bs
and B̂Bd

of FNAL/MILC 16. Data are not
available in FNAL/MILC 16 to estimate δ(amin) for the ratio of the bag parameters. Since

the fBs

√
B̂Bs

, fBd

√
B̂Bd

and ξ are quantities derived using PDG estimates of the decay

constants and their ratio, we do not provide an estimate of δ(amin) of these quantities.

For RBC/UKQCD 14A, δ(amin) ≃ 0.7 (fBd

√
B̂Bd

), 1.3 (fBs

√
B̂Bs

), 0.3 (ξ), 0.3 (B̂Bd
),

0.4 (B̂Bs
) and 0 (BBs

/BBd
). For HPQCD 09, δ(amin) ≃ 0.8 (fBd

√
B̂Bd

), 3 (fBs

√
B̂Bs

),

0.3 (ξ), at most 1 (B̂Bd
), 0.8 (B̂Bs

) and 1 (BBs
/BBd

).
We note that, for Nf = 2 + 1, there is an on-going study involving the JLQCD and

RBC/UKQCD collaborations, with initial results reported in the Lattice 2021 proceed-
ings [555]. These results utilize coarse lattices at the physical point from RBC/UKQCD
along with very fine lattices from JLQCD (up to a−1 = 4.5 GeV) with unphysical pion
masses, both using domain-wall fermions.

The only result available for Nf = 2 + 1 + 1 is HPQCD 19A [77], which uses MILC
collaboration’s HISQ ensembles and NRQCD for the b quark. A detailed description can
be found in the previous review [5]. We quote their values as the FLAG estimates

Nf = 2 + 1 + 1:

fBd

√
B̂bd = 210.6(5.5) MeV fBs

√
B̂Bs = 256.1(5.7) MeV Ref. [77], (188)

B̂Bd
= 1.222(61) B̂Bs = 1.232(53) Ref. [77], (189)

ξ = 1.216(16) BBs/BBd
= 1.008(25) Ref. [77]. (190)

We estimate δ(amin) ≃ 0.1 for B̂Bs
, 1 for BBs

/BBd
and at most 1 for B̂Bd

. The other
quantities are derived ones using the estimates of decay constants in FNAL/MILC 17.

We note that the above results with the same Nf (e.g., those in Eqs. (188-190)) are all
correlated with each other, due to the use of the same gauge-field ensembles for different
quantities. The results are also correlated with the averages obtained in Sec. 8.1 and
shown in Eqs. (162)–(164) for Nf = 2, Eqs. (165)–(167) for Nf = 2 + 1 and Eqs. (168)–
(170) for Nf = 2+1+1. This is because the calculations of B-meson decay constants and
mixing quantities are performed on the same (or on similar) sets of ensembles, and results
obtained by a given collaboration use the same actions and setups. These correlations
must be considered when using our averages as inputs to unitarity triangle (UT) fits. For

this reason, if one were for example to estimate fBs

√
B̂s from the separate averages of

fBs
(Eq. (166)) and B̂s (Eq. (186)) for Nf = 2 + 1, one would obtain a value about one

standard deviation below the one quoted above in Eq. (185). While these two estimates
lead to compatible results, giving us confidence that all uncertainties have been properly
addressed, we do not recommend combining averages this way, as many correlations would
have to be taken into account to properly assess the errors. We recommend instead
using the numbers quoted above. In the future, as more independent calculations enter
the averages, correlations between the lattice-QCD inputs to UT fits will become less
significant.

8.3 Semileptonic form factors for B decays to light flavours

The Standard Model differential rate for the decay B(s) → Pℓν involving a quark-level
b→ u transition is given, at leading order in the weak interaction, by a formula analogous
to the one for D decays in Eq. (133), but with D → B(s) and the relevant CKM matrix
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element |Vcq| → |Vub|:

dΓ(B(s) → Pℓν)

dq2
=
G2
F |ηEW|2|Vub|2

24π3

(q2 −m2
ℓ)

2
√
E2
P −m2

P

q4m2
B(s)

×
[(

1 +
m2
ℓ

2q2

)
m2
B(s)

(E2
P −m2

P )|f+(q2)|2

+
3m2

ℓ

8q2
(m2

B(s)
−m2

P )
2|f0(q2)|2

]
. (191)

Again, for ℓ = e, µ the contribution from the scalar form factor f0 can be neglected, and
one has a similar expression to Eq. (135), which, in principle, allows for a direct extraction
of |Vub| by matching theoretical predictions to experimental data. However, while for D
(or K) decays the entire physical range 0 ≤ q2 ≤ q2max can be covered with moderate
momenta accessible to lattice simulations, in B → πℓν decays one has q2max ∼ 26 GeV2

and only part of the full kinematic range is reachable. As a consequence, obtaining |Vub|
from B → πℓν is more complicated than obtaining |Vcd(s)| from semileptonic D-meson
decays.

In practice, lattice computations are restricted to large values of the momentum trans-
fer q2 (see Sec. 7.2) where statistical and momentum-dependent discretization errors can
be controlled, which in existing calculations roughly cover the upper third of the kinemat-
ically allowed q2 range.45 Since, on the other hand, the decay rate is suppressed by phase
space at large q2, most of the semileptonic B → π events are observed in experiment at
lower values of q2, leading to more accurate experimental results for the binned differential
rate in that region.46 It is, therefore, a challenge to find a window of intermediate values
of q2 at which both the experimental and lattice results can be reliably evaluated.

State-of-the-art determinations of CKM matrix elements, say, |Vub|, are obtained from
joint fits to lattice and experimental results, keeping the relative normalization |Vub|2 as
a free parameter. This requires, in particular, that both experimental and lattice data for
the q2-dependence be parameterized by fitting data to specific ansätze, with the ultimate
aim of minimizing the systematic uncertainties involved. This plays a key role in assessing
the systematic uncertainties of CKM determinations, and will be discussed extensively in
this section. A detailed discussion of the parameterization of form factors as a function
of q2 can be found in Appendix B.2.

8.3.1 Form factors for B → πℓν

The semileptonic decay process B → πℓν enables the determination of the CKM matrix
element |Vub| within the Standard Model via Eq. (191). Early results for B → πℓν form
factors came from the HPQCD [557] and FNAL/MILC [558] collaborations (HPQCD 06
and FNAL/MILC 08A).

Our 2016 review featured a significantly extended calculation of B → πℓν from
FNAL/MILC [124] (FNAL/MILC 15) and a new computation from RBC/UKQCD [125]
(RBC/UKQCD 15). In 2022, the JLQCD collaboration published another new calculation
using Möbius Domain Wall fermions – JLQCD 22 [126]. FNAL/MILC and RBC/UKQCD
continue working on further new calculations of the B → π form factors and have reported
on their progress at the annual Lattice conferences and the 2020 Asia-Pacific Symposium

45The variance of hadron correlation functions at nonzero three-momentum is dominated at large Euclidean
times by zero-momentum multiparticle states [556]; therefore the noise-to-signal grows more rapidly than for
the vanishing three-momentum case.

46Upcoming data from Belle II are expected to significantly improve the precision of experimental results,
in particular, for larger values of q2.
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for Lattice Field Theory. The results are preliminary or blinded, so not yet ready for in-
clusion in this review. FNAL/MILC is using Nf = 2+1+1 HISQ ensembles with a ≈ 0.15,
0.12, 0.088 fm, 0.057 fm, with Goldstone-pion mass down to its physical value [559, 560].
The RBC/UKQCD Collaborations have added a new Möbius-domain-wall-fermion en-
semble with a ≈ 0.07 fm and mπ ≈ 230 MeV to their analysis [561]. In addition, HPQCD
using MILC ensembles had published the first Nf = 2 + 1 + 1 results for the B → πℓν
scalar form factor, working at zero recoil (q2 = q2max) and pion masses down to the phys-
ical value [562]; this adds to previous reports on ongoing work to upgrade their 2006
computation [563, 564]. Since this latter result has no immediate impact on current |Vub|
determinations, which come from the vector-form-factor-dominated decay channels into
light leptons, we will from now on concentrate on the Nf = 2 + 1 determinations of the
q2-dependence of B → π form factors.

Both the HPQCD 06 and the FNAL/MILC 15 computations of B → πℓν ampli-
tudes use ensembles of gauge configurations with Nf = 2 + 1 flavours of rooted stag-
gered quarks produced by the MILC collaboration; however, FNAL/MILC 15 makes
a much more extensive use of the currently available ensembles, both in terms of lat-
tice spacings and light-quark masses. HPQCD 06 has results at two values of the lat-
tice spacing (a ≈ 0.12, 0.09 fm), while FNAL/MILC 15 employs four values (a ≈
0.12, 0.09, 0.06, 0.045 fm). Lattice-discretization effects are estimated within heavy-
meson rooted staggered chiral perturbation theory (HMrSχPT) in the FNAL/MILC 15
computation, while HPQCD 06 quotes the results at a ≈ 0.12 fm as central values and
uses the a ≈ 0.09 fm results to quote an uncertainty. The relative scale is fixed in both
cases through the quark-antiquark potential-derived ratio r1/a. HPQCD 06 set the ab-
solute scale through the Υ 2S–1S splitting, while FNAL/MILC 15 uses a combination of
fπ and the same Υ splitting, as described in Ref. [60]. The spatial extent of the lattices
employed by HPQCD 06 is L ≃ 2.4 fm, save for the lightest-mass point (at a ≈ 0.09 fm)
for which L ≃ 2.9 fm. FNAL/MILC 15, on the other hand, uses extents up to L ≃ 5.8 fm,
in order to allow for light-pion masses while keeping finite-volume effects under control.

Indeed, while in the HPQCD 06 work the lightest RMS pion mass is 400 MeV, the
FNAL/MILC 15 work includes pions as light as 165 MeV—in both cases the bound
mπL ≳ 3.8 is kept. Other than the qualitatively different range of MILC ensembles used
in the two computations, the main difference between HPQCD 06 and FNAL/MILC 15 lies
in the treatment of heavy quarks. HPQCD 06 uses the NRQCD formalism, with a 1-loop
matching of the relevant currents to the ones in the relativistic theory. FNAL/MILC 15
employs the clover action with the Fermilab interpretation, with a mostly-nonperturbative
renormalization of the relevant currents, within which the overall renormalization factor
of the heavy-light current is written as a product of the square roots of the renormal-
ization factors of the light-light and heavy-heavy temporal vector currents (which are
determined nonperturbatively) and a residual factor that is computed using 1-loop per-
turbation theory. (See Tab. 37; full details about the computations are provided in tables
in Appendix C.5.3.)

The RBC/UKQCD 15 computation is based on Nf = 2 + 1 DWF ensembles at two
values of the lattice spacing (a ≈ 0.12, 0.09 fm), and pion masses in a narrow interval
ranging from slightly above 400 MeV to slightly below 300 MeV, keeping mπL ≳ 4.
The scale is set using the Ω− baryon mass. Discretization effects coming from the light
sector are estimated in the 1% ballpark using HMχPT supplemented with effective higher-
order interactions to describe cutoff effects. The b quark is treated using the Columbia
RHQ action, with a mostly nonperturbative renormalization of the relevant currents.
Discretization effects coming from the heavy sector are estimated with power-counting
arguments to be below 2%. The collaboration has also reported on progress toward an
improved calculation that adds a third, finer lattice spacing [565].

The JLQCD 22 calculation is using Möbius Domain Wall fermions, including for the
heavy quark, with a ≈ 0.08, 0.055, and 0.044 fm and pion masses down to 230 MeV.
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The relative scales are set using the gradient-flow time t
1/2
0 /a, with the absolute scale

t
1/2
0 taken from Ref. [115]. All ensembles have mπL ≳ 4.0. The bare heavy-quark masses
satisfy amQ < 0.7 and reach from the charm mass up to 2.44 times the charm mass.
The form factors are extrapolated linearly in 1/mQ to the bottom mass. For the lower
range of the quark masses, the vector current is renormalized using a factor ZVqq obtained
from position-space current-current correlators. For heavier quark masses,

√
ZVQQ

ZVqq
is

used, where ZVQQ
is the renormalization factor of the flavour-conserving temporal vector

current, determined using charge conservation. This corresponds to mostly nonperturba-
tive renormalization with tree-level residual matching factors, but the residual matching
factors are expected to be close to 1 and approach this value exactly in the continuum
limit. We therefore assign a ◦ rating for renormalization.

Given the large kinematical range available in the B → π transition, chiral extrapola-
tions are an important source of systematic uncertainty: apart from the eventual need to
reach physical pion masses in the extrapolation, the applicability of χPT is not guaran-
teed for large values of the pion energy Eπ. Indeed, in all computations Eπ reaches values
in the 1 GeV ballpark, and chiral-extrapolation systematics is the dominant source of
errors. FNAL/MILC uses SU(2) NLO HMrSχPT for the continuum-chiral extrapolation,
supplemented by NNLO analytic terms and hard-pion χPT terms [486];47 systematic un-
certainties are estimated through an extensive study of the effects of varying the specific
fit ansatz and/or data range. RBC/UKQCD and JLQCD use SU(2) hard-pion HMχPT
to perform their combined continuum-chiral extrapolations, and obtain estimates for sys-
tematic uncertainties by varying the ansätze and ranges used in fits. HPQCD performs
chiral extrapolations using HMrSχPT formulae, and estimates systematic uncertainties
by comparing the result with the ones from fits to a linear behaviour in the light-quark
mass, continuum HMχPT, and partially quenched HMrSχPT formulae (including also
data with different sea and valence light-quark masses).

FNAL/MILC 15, RBC/UKQCD 15, and JLQCD 22 describe the q2-dependence of f+
and f0 by applying a BCL parameterization to the form factors extrapolated to the con-
tinuum limit, within the range of values of q2 covered by data. (A discussion of the various
parameterizations can be found in Appendix B.2.) RBC/UKQCD 15 and JLQCD 22 gen-
erate synthetic data for the form factors at some values of q2 (evenly spaced in z) from
the continuous function of q2 obtained from the joint chiral-continuum extrapolation,
which are then used as input for the fits. After having checked that the kinematical
constraint f+(0) = f0(0) is satisfied within errors by the extrapolation to q2 = 0 of the
results of separate fits, this constraint is imposed to improve fit quality. In the case of
FNAL/MILC 15, rather than producing synthetic data a functional method is used to
extract the z-parameterization directly from the fit functions employed in the continuum-
chiral extrapolation. In the case of HPQCD 06, the parameterization of the q2-dependence
of form factors is somewhat intertwined with chiral extrapolations: a set of fiducial values

{E(n)
π } is fixed for each value of the light-quark mass, and f+,0 are interpolated to each

of the E
(n)
π ; chiral extrapolations are then performed at fixed Eπ (i.e., mπ and q2 are var-

ied subject to Eπ=constant). The interpolation is performed using a Ball-Zwicky (BZ)
ansatz [566]. The q2-dependence of the resulting form factors in the chiral limit is then de-
scribed by means of a BZ ansatz, which is cross-checked against Becirevic-Kaidalov (BK)
[567], Richard Hill (RH) [568], and Boyd-Grinstein-Lebed (BGL) [569] parameterizations
(see Appendix B.2), finding agreement within the quoted uncertainties. Unfortunately,
the correlation matrix for the values of the form factors at different q2 is not provided,
which severely limits the possibilities of combining them with other computations into a
global z-parameterization.

47It is important to stress the finding in Ref. [484] that the factorization of chiral logs in hard-pion χPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use
to model the mass dependence of form factors can thus be questioned.
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JLQCD 22 [126] 2+1 A ⋆ ◦ ⋆ ◦ ✓ BCL
FNAL/MILC 15 [124] 2+1 A ⋆ ◦ ⋆ ◦ ✓ BCL
RBC/UKQCD 15[125] 2+1 A ◦ ◦ ◦ ◦ ✓ BCL
HPQCD 06 [557] 2+1 A ◦ ◦ ◦ ◦ ✓ n/a

Table 37: Results for the B → πℓν semileptonic form factor.

The different ways in which the current results are presented do not allow a straight-
forward averaging procedure. RBC/UKQCD 15 only provides synthetic values of f+ and
f0 at a few values of q2 as an illustration of their results, and FNAL/MILC 15 does not
quote synthetic values at all. In both cases, full results for BCL z-parameterizations de-
fined by Eq. (527) are quoted. In the case of HPQCD 06, unfortunately, a fit to a BCL
z-parameterization is not possible, as discussed above.

In order to combine these form factor calculations, we start from sets of synthetic
data for several q2 values. HPQCD 06, RBC/UKQCD 15, and JLQCD 22 directly pro-
vide this information; FNAL/MILC 15 present only fits to a BCL z-parameterization
from which we can easily generate an equivalent set of form factor values. It is impor-
tant to note that in both the RBC/UKQCD 15 and JLQCD 22 synthetic data and the
FNAL/MILC z-parameterization fits the kinematic constraint at q2 = 0 is automatically
included (in the FNAL/MILC 15 case the constraint is manifest in an exact degeneracy
of the (a+n , a

0
n) covariance matrix). Due to these considerations, in our opinion, the most

accurate procedure is to perform a simultaneous fit to all synthetic data for the vector
and scalar form factors. Unfortunately, the absence of information on the correlation in
the HPQCD 06 result between the vector and scalar form factors even at a single q2 point
makes it impossible to include consistently this calculation in the overall fit. In fact, the
HPQCD 06 and FNAL/MILC 15 statistical uncertainties are highly correlated (because
they are based on overlapping subsets of MILC Nf = 2+1 ensembles) and, without knowl-
edge of the f+−f0 correlation we are unable to construct the HPQCD 06-FNAL/MILC 15
off-diagonal entries of the overall covariance matrix.

In conclusion, we will present as our best result a combined vector and scalar form
factor fit to the FNAL/MILC 15, RBC/UKQCD 15, and JLQCD 22 results that we treat
as completely uncorrelated.

The resulting data set is then fitted to the BCL parameterization in Eqs. (527) and
(528). We assess the systematic uncertainty due to truncating the series expansion by
considering fits to different orders in z. In Fig. 25 (left), we show (1 − q2/m2

B∗)f+(q
2)

and f0(q
2) versus z; Fig. 25 (right) shows the full form factors versus q2. The fit has

χ2/dof = 43.6/12 with N+ = N0 = 3. The poor quality of the fit is caused by tensions
between the results from the different collaborations; in particular in the slopes of f0,
which are very constrained due to strong correlations between data points. We have
therefore rescaled the uncertainties of the z parameters by

√
χ2/dof = 1.9. We point out
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B → π (Nf = 2 + 1)

Central Values Correlation Matrix

a+0 0.423 (21) 1 −0.00466 −0.0749 0.402 0.0920

a+1 −0.507 (93) −0.00466 1 0.498 −0.0556 0.659

a+2 −0.75 (34) −0.0749 0.498 1 −0.152 0.677

a00 0.561 (24) 0.402 −0.0556 −0.152 1 −0.548
a01 −1.42 (11) 0.0920 0.659 0.677 −0.548 1

Table 38: Coefficients and correlation matrix for the N+ = N0 = 3 z-expansion fit of the
B → π form factors f+ and f0. The coefficient a02 is fixed by the f+(q

2 = 0) = f0(q
2 = 0)

constraint. The chi-square per degree of freedom is χ2/dof = 43.6/12 and the errors on the
z-parameters have been rescaled by

√
χ2/dof = 1.9. The lattice calculations that enter this

fit are taken from FNAL/MILC 15 [124], RBC/UKQCD 15 [125] and JLQCD 22 [126]. The
parameterizations are defined in Eqs. (527) and (528). The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.2.

that tensions in the form factors, especially in f0, might be an artifact associated with the
basis of form factors employed to take the continuum limit, as explained in Appendix B.2.
The outcome of the five-parameter N+ = N0 = 3 BCL fit to the FNAL/MILC 15,
RBC/UKQCD 15, and JLQCD 22 calculations is shown in Tab. 38.

The fit shown in Tab. 38 can therefore be used as the averaged FLAG result for the
lattice-computed form factor f+(q

2). The coefficient a+3 can be obtained from the values
for a+0 –a

+
2 using Eq. (526). The coefficient a02 can be obtained from all other coefficients

imposing the f+(q
2 = 0) = f0(q

2 = 0) constraint. We emphasize that future lattice-
QCD calculations of semileptonic form factors should publish their full statistical and
systematic correlation matrices to enable others to use the data. It is also preferable to
present a set of synthetic form-factor data equivalent to the z-fit results, since this allows
for an independent analysis that avoids further assumptions about the compatibility of
the procedures to arrive at a given z-parameterization.48 It is also preferable to present
covariance/correlation matrices with enough significant digits to calculate correctly all
their eigenvalues.

8.3.2 Form factors for B → ρℓν

Another process sensitive to |Vub| is B → ρℓν, with experimental data available from
Babar, Belle, and Belle II [138, 141, 570]. Early lattice calculations of the B → ρℓν form
factors were done in the quenched approximation and assumed the ρ resonance to be stable
under the strong interaction [571, 572]. A proper treatment of the ρ final state requires
a lattice calculation of the B → ππℓν (P wave) form factors as a function of both q2 and
ππ invariant mass using the Lellouch-Lüscher finite-volume method [573–583], followed
by analytic continuation to the ρ resonance pole. Early lattice results for the B → ππℓν
P -wave vector form factor at mπ ≈ 320 MeV were reported in Refs. [584, 585].

48Note that generating synthetic data is a trivial task, but less so is choosing the number of required points
and the q2 values that lead to an optimal description of the form factors.
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Figure 25: The form factors f+(q
2) and f0(q

2) for B → πℓν plotted versus z (left panel) and
q2 (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N+ = N0 = 3 BCL fit (five
parameters).

8.3.3 Form factors for Bs → Kℓν

Similar to B → πℓν, measurements of Bs → Kℓν decay rates enable determinations of
the CKM matrix element |Vub| within the Standard Model via Eq. (191). From the lattice
point of view, the two channels are very similar. As a matter of fact, Bs → Kℓν is actually
somewhat simpler, in that the kaon mass region is easily accessed by all simulations making
the systematic uncertainties related to chiral extrapolation smaller. Lattice calculations
of the Bs → K form factors are available from HPQCD 14 [127], RBC/UKQCD [125, 128]
(RBC/UKQCD 15 and RBC/UKQCD 23), and FNAL/MILC 19 [586].

The HPQCD 14 computation uses ensembles of gauge configurations with Nf = 2+ 1
flavours of asqtad rooted staggered quarks produced by the MILC collaboration at two
values of the lattice spacing (a ≈ 0.12, 0.09 fm), for three and two different sea-pion
masses, respectively, down to a value of 260 MeV. The b quark is treated within the
NRQCD formalism, with a 1-loop matching of the relevant currents to the ones in the
relativistic theory, omitting terms of O(αsΛQCD/mb). The HISQ action is used for the
valence s quark. The continuum-chiral extrapolation is combined with the description of
the q2-dependence of the form factors into a modified z-expansion (cf. Appendix B.2) that
formally coincides in the continuum with the BCL ansatz. The dependence of form factors
on the pion energy and quark masses is fitted to a 1-loop ansatz inspired by hard-pion
χPT [486], that factorizes out the chiral logarithms describing soft physics.

The FNAL/MILC computation (FNAL/MILC 19) coincides with HPQCD 14 in using
ensembles of gauge configurations with Nf = 2 + 1 flavours of asqtad rooted staggered
quarks produced by the MILC collaboration, but only one ensemble is shared, and a
different valence regularization is employed; we will thus treat the two results as fully
independent from the statistics point of view. FNAL/MILC 19 uses three values of the
lattice spacing (a ≈ 0.12, 0.09, 0.06 fm); only one value of the sea pion mass and the
volume is available at the extreme values of the lattice spacing, while four different masses
and volumes are considered at a = 0.09 fm. Heavy quarks are treated within the Fermi-
lab approach. HMrSχPT expansion is used at next-to-leading order in SU(2) and leading
order in 1/MB , including next-to-next-to-leading-order (NNLO) analytic and generic dis-
cretization terms, to perform continuum-chiral extrapolations. Hard kaons are assumed
to decouple, i.e., their effect is reabsorbed in the SU(2) LECs. Continuum- and chiral-
extrapolated values of the form factors are fitted to a z-parametrization imposing the
kinematical constraint f+(0) = f0(0). See Tab. 39 and the tables in Appendix C.5.3 for
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RBC/UKQCD 23∗ [128] 2+1 A ⋆ ◦ ⋆ ◦ ✓ BGL§

FNAL/MILC 19 [586] 2+1 A ⋆ ◦ ⋆ ◦ ✓ BCL
RBC/UKQCD 15 [125] 2+1 A ◦ ◦ ◦ ◦ ✓ BCL

HPQCD 14 [127] 2+1 A ◦ ◦ ◦ ◦ ✓ BCL†

∗ Supersedes RBC/UKQCD 15.
§ generalized as discussed in Ref. [587].
† Results from modified z-expansion.

Table 39: Summary of lattice calculations of the Bs → Kℓν semileptonic form factors.

full details.
The RBC/UKQCD 15 computation [125] had been published together with the B →

πℓν computation discussed in Sec. 8.3.1, all technical details being practically identical.
The RBC/UKQCD 23 computation [128] (which considers Bs → Kℓν only) differs from
RBC/UKQCD 15 by the addition of one new ensemble with a third, finer lattice spacing
that also has a lower pion mass than the other ensembles, updated scale setting and
updated tuning of ms and of the RHQ parameters, and a change of the form-factor basis
in which the chiral-continuum extrapolation is performed (previously: f∥ and f⊥, now: f+
and f0). RBC/UKQCD 23 [128] furthermore uses a new method to perform extrapolations
of the form factors to the full q2 range with unitarity bounds, taking into account that
the dispersive integral ranges only of an arc of the unit circle instead of the full circle
[587, 588]. However, we do not use these extrapolations in performing our average and
instead use the synthetic data points provided in RBC/UKQCD 23 [128]. This allows users
of our average to impose their own dispersive bounds in phenomenological applications if
desired, since such bounds should be imposed only once.

In order to combine the results for the q2-dependence of the form factors from the three
collaborations, we will follow a similar approach to the one adopted above for B → πℓν,
and produce synthetic data from the preferred fits quoted in the papers (or use the
synthetic data provided in the paper), to obtain a dataset to which a joint fit can be
performed. Note that the kinematic constraint at q2 = 0 is included in all three cases;
we will impose it in our fit as well, since the synthetic data will implicitly depend on
that fitting choice. However, it is worth mentioning that the systematic uncertainty of
the resulting extrapolated value f+(0) = f0(0) can be fairly large, the main reason being
the required long extrapolation from the high-q2 region covered by lattice data. While
we stress that the average far away from the high-q2 region has to be used carefully, it
is possible that increasing the number of z coefficients beyond what is sufficient for a
good description of the lattice data and using unitarity constraints to control the size of
additional terms, might yield fits with a more stable extrapolation at very low q2. We
plan to include said unitarity analysis into the next edition of the FLAG review. It is,
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Bs → K (Nf = 2 + 1)

Central Values Correlation Matrix

a+0 0.370(21) 1. 0.2781 −0.3169 −0.3576 0.6130 0.3421 0.2826

a+1 −0.68(10) 0.2781 1. 0.3672 0.1117 0.4733 0.8487 0.8141

a+2 0.55(48) −0.3169 0.3672 1. 0.8195 0.3323 0.6614 0.6838

a+3 2.11(83) −0.3576 0.1117 0.8195 1. 0.2350 0.4482 0.4877

a00 0.234(10) 0.6130 0.4733 0.3323 0.2350 1. 0.6544 0.5189

a01 0.135(86) 0.3421 0.8487 0.6614 0.4482 0.6544 1. 0.9440

a02 0.20(35) 0.2826 0.8141 0.6838 0.4877 0.5189 0.9440 1.

Table 40: Coefficients and correlation matrix for the N+ = N0 = 4 z-expansion of the
Bs → K form factors f+ and f0. The coefficient a03 is fixed by the f+(q

2 = 0) = f0(q
2 = 0)

constraint. The chi-square per degree of freedom is χ2/dof = 3.82 and the errors on the
z-parameters have been rescaled by

√
χ2/dof = 1.95. The form factors can be reconstructed

using parameterization and inputs given in Appendix B.3.3.

however, important to emphasize that joint fits with experimental data, where the latter
accurately map the q2 region, are expected to be safe.

Our fits employ a BCL ansatz with t+ = (MB +Mπ)
2 and t0 = t+ −

√
t+(t+ − t−),

with t− = (MBs
−MK)2. Our pole factors will contain a single pole in both the vec-

tor and scalar channels, for which we take the mass values MB∗ = 5.32465 GeV and
MB∗(0+) = 5.68 GeV.49 The constraint f+(0) = f0(0) is imposed by expressing the coef-
ficient b0N0−1 in terms of all others. The outcome of the seven-parameter N+ = N0 = 4
BCL fit, which we quote as our preferred result, is shown in Tab. 40. The fit has a
chi-square per degree of freedom χ2/dof = 3.82. Following the PDG recommendation,
we rescale the whole covariance matrix by χ2/dof: the errors on the z-parameters are
increased by

√
χ2/dof = 1.95 and the correlation matrix is unaffected. The parameters

shown in Tab. 40 provide the averaged FLAG results for the lattice-computed form factors
f+(q

2) and f0(q
2). The coefficient a+4 can be obtained from the values for a+0 –a

+
3 using

Eq. (526). The fit is illustrated in Fig. 26.50 As can be seen in Fig. 26, the large value
of χ2/dof is caused by a significant tension between the lattice results from the differ-
ent collaborations for f0. Compared to the FLAG 21 fit that used RBC/UKQCD 15,
the tension has increased as the RBC/UKQCD results for f0 have shifted upward. The
tension indicates that the uncertainties have been underestimated in at least some of the
calculations. One possible, at least partial, explanation was offered by the authors of
RBC/UKQCD 23 [128], who found that the results for f0 shift upward when performing
the chiral/continuum extrapolation directly for f0 and f+ rather than f∥ and f⊥ as was
done in RBC/UKQCD 15 and FNAL/MILC 19. Using f0 and f+ is argued to be the bet-
ter choice because these form factors have definite JP quantum numbers for the bound
states producing poles in q2, and the chiral-continuum extrapolation fit functions include
these poles. More details on the problems associated with taking the chiral/continuum

49These are the values used in the FNAL/MILC 19 determination, while HPQCD 14 and
RBC/UKQCD 15 use MB∗(0+) = 5.6794(10) GeV and MB∗(0+) = 5.63 GeV, respectively. They also em-
ploy different values of t+ and t0 than employed here, which again coincide with FNAL/MILC 19’s choice.

50Note that in FLAG 19 [4] we had adopted the threshold t+ = (MBs +MK)2 rather than t+ = (MB+Mπ)
2.

This change impacted the z-range which the physical q2 interval maps onto. We also point out that, in the
FLAG 19 version of Fig. 26, the three synthetic f0 data points from HPQCD were plotted incorrectly, but this
did not affect the fit.
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Figure 26: The form factors f+(q
2) and f0(q

2) for Bs → Kℓν plotted versus z (left panel) and
q2 (right panel). In the left plot, we remove the Blaschke factors. See text for a discussion
of the data sets. The grey and salmon bands display our preferred N+ = N0 = 4 BCL fit
(seven parameters).

extrapolation in the f∥ and f⊥ basis can be found in Appendix B.2.
A number of new calculations of the Bs → K form factors are underway. The JLQCD

collaboration is using a fully-relativistic approach with Möbius domain-wall fermions [589].
FNAL/MILC is pursuing two new calculations with HISQ light quarks, one of which uses
Fermilab b quarks [590] and the other uses HISQ b quarks [591].

We will conclude by pointing out progress in the application of the npHQET method to
the extraction of semileptonic form factors, reported for Bs → K transitions in Ref. [592],
which extends the work of Ref. [593]. This is a methodological study based on CLS Nf = 2
ensembles at two different values of the lattice spacing and pion masses, and full 1/mb

corrections are incorporated within the npHQET framework. Emphasis is on the role
of excited states in the extraction of the bare form factors, which are shown to pose an
impediment to reaching precisions better than a few percent.

8.3.4 Form factors for rare and radiative B-semileptonic decays to
light flavours

Lattice-QCD input is also available for some exclusive semileptonic decay channels involv-
ing neutral-current b → q transitions at the quark level, where q = d, s. Being forbidden
at tree level in the SM, these processes allow for stringent tests of potential new physics;
simple examples are B → K∗γ, B → K(∗)ℓ+ℓ−, or B → πℓ+ℓ− where the B meson (and
therefore the light meson in the final state) can be either neutral or charged.

The corresponding SM effective weak Hamiltonian is considerably more complicated
than the one for the tree-level processes discussed above: after integrating out the top
quark and the W boson, as many as ten dimension-six operators formed by the product
of two hadronic currents or one hadronic and one leptonic current appear.51 Three of
the latter, coming from penguin and box diagrams, dominate at short distances and
have matrix elements that, up to small QED corrections, are given entirely in terms of
B → (π,K,K∗) form factors. The matrix elements of the remaining seven operators can
be expressed, up to power corrections whose size is still unclear, in terms of form factors,
decay constants and light-cone distribution amplitudes (for the π, K, K∗ and B mesons)
by employing OPE arguments (at large di-lepton invariant mass) [595, 596] and results
from QCD factorization (at small di-lepton invariant mass) [597]. In conclusion, the most

51See, e.g., Ref. [594] and references therein.
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HPQCD 22 [487] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ BCL
FNAL/MILC 15D [131] 2+1 A ⋆ ◦ ⋆ ◦ ✓ BCL
HPQCD 13E [130] 2+1 A ◦ ◦ ◦ ◦ ✓ BCL

Table 41: Summary of lattice calculations of the B → K semileptonic form factors.

important contributions to all of these decays are expected to come from matrix elements
of current operators (vector, tensor, and axial-vector) between one-hadron states, which
in turn can be parameterized in terms of a number of form factors (see Ref. [598] for a
complete description).

In channels with pseudoscalar mesons in the final state, the level of sophistication of
lattice calculations is similar to the B → π case. Early calculations of the vector, scalar,
and tensor form factors for B → Kℓ+ℓ− by HPQCD 13E [130] and FNAL/MILC 15D
[131] were performed with Nf = 2 + 1 flavours and EFT-based heavy-quark actions.
FNAL/MILC 15E also determined the form factors for B → πℓ+ℓ− [129]. Recently,
HPQCD completed a new calculation of the B → K form factors with Nf = 2 + 1 + 1
flavours and HISQ b quarks (HPQCD 22) [487]. In the following, we present an average
of the two Nf = 2+ 1 calculations and a comparison with HPQCD’s new Nf = 2+ 1 + 1
results. Details of the calculations are provided in Tab. 41 and in Appendix C.5.4.

The Nf = 2 + 1 calculations both employ MILC asqtad ensembles. HPQCD 13E
[599] and FNAL/MILC 15D [600] have also companion papers in which they calculate the
Standard Model predictions for the differential branching fractions and other observables
and compare to experiment. The HPQCD computation employs NRQCD b quarks and
HISQ valence light quarks, and parameterizes the form factors over the full kinematic
range using a model-independent z-expansion as in Appendix B.2, including the covariance
matrix of the fit coefficients. In the case of the (separate) FNAL/MILC computations,
both of them use Fermilab b quarks and asqtad light quarks, and a BCL z-parameterization
of the form factors.

FNAL/MILC 15E [129] includes results for the tensor form factor for B → πℓ+ℓ− not
included in previous publications on the vector and scalar form factors (FNAL/MILC 15)
[124]. Nineteen ensembles from four lattice spacings are used to control continuum and
chiral extrapolations. The results for Nz = 4 z-expansion of the tensor form factor and
its correlations with the expansions for the vector and scalar form factors presented in
Table II of Ref. [129], which we consider the FLAG estimate, are shown in Tab. 42. Partial
decay widths for decay into light leptons or τ+τ− are presented as a function of q2. The
former is compared with results from LHCb [601], while the latter is a prediction.

The averaging of the HPQCD 13E and FNAL/MILC 15D Nf = 2 + 1 results for the
B → K form factors is similar to our treatment of the B → π and Bs → K form factors.
In this case, even though the statistical uncertainties are partially correlated because of
some overlap between the adopted sets of MILC ensembles, we choose to treat the two
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B → π (Nf = 2 + 1)

Central Values Correlation Matrix

aT0 0.393(17) 1.000 0.400 0.204 0.166

aT1 −0.65(23) 0.400 1.000 0.862 0.806

aT2 −0.6(1.5) 0.204 0.862 1.000 0.989

aT3 0.1(2.8) 0.166 0.806 0.989 1.000

Table 42: Coefficients and correlation matrix for the NT = 4 z-expansion of the B → π form
factor fT . Results taken from Table II of Ref. [129].

calculations as independent. The reason is that, in B → K, statistical uncertainties are
subdominant and cannot be easily extracted from the results presented by HPQCD 13E
and FNAL/MILC 15D. Both collaborations provide only the outcome of a simultaneous
z-fit to the vector, scalar and tensor form factors, that we use to generate appropriate
synthetic data. We then impose the kinematic constraint f+(q

2 = 0) = f0(q
2 = 0) and

fit to a (N+ = N0 = NT = 3) BCL parameterization. The functional forms of the
form factors that we use are identical to those adopted in Ref. [600].52 The results of
the fit are presented in Tab. 43. The fit is illustrated in Fig. 27. Note that the average
for the fT form factor appears to prefer the FNAL/MILC 15D synthetic data. This
happens because we perform a correlated fit of the three form factors simultaneously (both
FNAL/MILC 15D and HPQCD 13E present covariance matrices that include correlations
between all form factors). We checked that the average for the fT form factor, obtained
neglecting correlations with f0 and f+, is a little lower and lies in between the two data
sets. There is still a noticeable tension between the FNAL/MILC 15D and HPQCD 13E
data for the tensor form factor; indeed, a standalone fit to these data results in χ2

red =
7.2/3 = 2.4, while a similar standalone joint fit to f+ and f0 has χ2

red = 9.2/7 = 1.3.
Finally, the global fit that is shown in the figure has χ2

red = 18.6/10 = 1.86.
The new Nf = 2+ 1+ 1 HPQCD 22 calculation of the B → K form factors [487] uses

the HISQ action for all quarks including the b quark, which allows the determination of
the vector- and axial-vector-current renormalization factors using Ward identities. The
tensor current is renormalized using RI-SMOM. The calculation is performed for multiple
lighter-than-physical values of the heavy-quark mass and six different lattice spacings
down to 0.044 fm; at the finest lattice spacing, the heavy-light pseudoscalar mass reaches
approximately 0.94MB,phys. Three of the eight ensembles used have an approximately
physical pion mass. The form factors in the physical limit are extracted from a modified
BCL z-expansion fit with terms incorporating dependence on the heavy-quark mass, light
and strange-quark masses, lattice spacing, and cover the entire q2 range. The paper [487]
includes supplemental files with the form-factor parameters and a Python code that can
be used to reconstruct the form factors. The form factors are shown in Fig. 27 with the
dark-shaded bands and are seen to be consistent with our average of the older Nf = 2+1
results. The Nf = 2 + 1 + 1 form factors are substantially more precise at low q2 and
somewhat less precise at high q2. Standard-Model predictions B → Kℓ+ℓ− and B → Kνν̄
using these form factors are presented in a separate paper [603].

Lattice computations of form factors in channels with a vector meson in the final
state face extra challenges with respect to the case of a pseudoscalar meson: the state is
unstable, and the extraction of the relevant matrix element from correlation functions is

52Note in particular that not much is known about the sub-threshold poles for the scalar form factor.
FNAL/MILC 15D includes one pole at the B∗

s0 mass as taken from the calculation in Ref. [602].
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Figure 27: The B → K form factors f+(q
2), f0(q

2) and fT (q
2) plotted versus z (left panels)

and q2 (right panels). In the plots as a function of z, we remove the Blaschke factors. See text
for a discussion of the data sets. The light-shaded grey, salmon and blue bands display our
preferred N+ = N0 = NT = 3 BCL fit (eight parameters) to the Nf = 2 + 1 lattice results.
The dark-shaded grey, salmon and blue bands display the Nf = 2+ 1+ 1 HPQCD 22 results
[487].
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B → K (Nf = 2 + 1)

Central Values Correlation Matrix

a+0 0.471 (14) 1 0.513 0.128 0.773 0.594 0.613 0.267 0.118

a+1 −0.74 (16) 0.513 1 0.668 0.795 0.966 0.212 0.396 0.263

a+2 0.32 (71) 0.128 0.668 1 0.632 0.768 −0.104 0.0440 0.187

a00 0.301 (10) 0.773 0.795 0.632 1 0.864 0.393 0.244 0.200

a01 0.40 (15) 0.594 0.966 0.768 0.864 1 0.235 0.333 0.253

aT0 0.455 (21) 0.613 0.212 −0.104 0.393 0.235 1 0.711 0.608

aT1 −1.00 (31) 0.267 0.396 0.0440 0.244 0.333 0.711 1 0.903

aT2 −0.9 (1.3) 0.118 0.263 0.187 0.200 0.253 0.608 0.903 1

Table 43: Coefficients and correlation matrix for the N+ = N0 = NT = 3 z-expansion of
the B → K form factors f+, f0 and fT for Nf = 2 + 1. The coefficient a02 is fixed by the
f+(q

2 = 0) = f0(q
2 = 0) constraint. The chi-square per degree of freedom is χ2/dof = 1.86

and the errors on the z-parameters have been rescaled by
√
χ2/dof = 1.36. The form factors

can be reconstructed using parameterization and inputs given in Appendix B.3.4.

significantly more complicated; χPT cannot be used as a guide to extrapolate results at
unphysically-heavy pion masses to the chiral limit. While field-theory procedures to take
resonance effects into account are available [573–583], they have not yet been implemented
in the available computations of B → K∗ and similar form factors, which therefore suffer
from uncontrolled systematic errors (however, new calculations using these procedures are
underway [585]).53

As a consequence of the complexity of the problem, the level of maturity of these
computations is significantly below the one present for pseudoscalar form factors. There-
fore, we only provide a short guide to the existing results. Horgan et al. have obtained
the seven form factors governing B → K∗ℓ+ℓ− (as well as those for Bs → ϕ ℓ+ℓ− and
for the charged-current decay Bs → K∗ℓν) in Ref. [604] using NRQCD b quarks and
asqtad staggered light quarks. In this work, they use a modified z-expansion to simul-
taneously extrapolate to the physical light-quark masses and fit the q2-dependence. As
discussed above, the unstable nature of the vector mesons was not taken into account.
Horgan et al. use their form-factor results to calculate the differential branching fractions
and angular distributions and discuss the implications for phenomenology in a compan-
ion paper [605]. An update of the form factor fits that enforces endpoint relations and
also provides the full correlation matrices can be found in Ref. [606]. Finally, prelimi-
nary results on B → K∗ℓ+ℓ− and Bs → ϕℓ+ℓ− by RBC/UKQCD have been reported in
Refs. [607–609].

8.4 Semileptonic form factors for B(s) → D(s)ℓν and B(s) → D∗
(s)ℓν

The semileptonic processes B(s) → D(s)ℓν and B(s) → D∗
(s)ℓν have been studied exten-

sively by experimentalists and theorists over the years. They allow for the determination
of the CKM matrix element |Vcb|, an extremely important parameter of the Standard
Model. The matrix element Vcb appears in many quantities that serve as inputs to CKM
unitarity-triangle analyses and reducing its uncertainties is of paramount importance. For

53In cases such as B → D∗ transitions, that will be discussed below, this is much less of a practical problem
due to the very narrow nature of the resonance.
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example, when ϵK , the measure of indirect CP violation in the neutral kaon system, is
written in terms of the parameters ρ and η that specify the apex of the unitarity triangle,
a factor of |Vcb|4 multiplies the dominant term. As a result, the errors coming from |Vcb|
(and not those from BK) are now the dominant uncertainty in the Standard Model (SM)
prediction for this quantity.

8.4.1 B(s) → D(s) decays

The decay rate for B → Dℓν can be parameterized in terms of vector and scalar form
factors in the same way as, e.g., B → πℓν (see Sec. 8.3). The quantities directly studied
are the form factors h± defined by

⟨D(pD)|ic̄γµb|B(pB)⟩√
mDmB

= h+(w)(vB + vD)µ + h−(w)(vB − vD)µ , (192)

which are related to the standard vector and scalar form factors by

f+(q
2) =

1 + r

2
√
r

[
h+(w)−

1− r
1 + r

h−(w)

]
≡ 1 + r

2
√
r
G(q2), (193)

f0(q
2) =

√
r

[
1 + w

1 + r
h+(w) +

1− w
1− r h−(w)

]
, (194)

where r = mD/mB , q
2 = (pB − pD)2, vµA = pµA/mA (A = D,B) are the four-velocities of

the heavy mesons and w = vB · vD = (m2
B +m2

D − q2)/(2mBmD).
The differential decay rate can then be written as

dΓB−→D0ℓ−ν̄

dw
=
G2

Fm
3
D

48π3
(mB +mD)

2(w2 − 1)3/2|ηEW|2|Vcb|2|G(w)|2, (195)

where ηEW = 1.0066 is the 1-loop electroweak correction [466]. This formula does not
include terms that are proportional to the lepton mass squared, which can be neglected
for ℓ = e, µ.

Until recently, most unquenched lattice calculations for B → Dℓν decays focused
on the form factor at zero recoil GB→D(1), which can then be combined with exper-
imental input to extract |Vcb|. The main reasons for concentrating on the zero-recoil
point are that (i) the decay rate then depends on a single form factor, and (ii) there
are no O(ΛQCD/mQ) contributions due to Luke’s theorem [610]. Since HQET sets
limmQ→∞ GB→D(1) = 1 [611–613], high precision calculations of GB→D(1) are possi-
ble [614–616]. The application of these HQET developments to lattice calculations leads
to a better control of the systematic errors, especially at zero recoil [617, 618]. In partic-
ular, the zero-recoil form factor can be computed via a double ratio in which most of the
current renormalization cancels and heavy-quark discretization errors are suppressed by
an additional power of ΛQCD/mQ [619].

Early computations of the form factors for B → Dℓν decays include Nf = 2+1 results
by FNAL/MILC 04A and FNAL/MILC 13B [622, 623] for GB→D(1) and the Nf = 2 study
by Atoui et al. [624], that in addition to providing GB→D(1) explored the w > 1 region.
This latter work also provided the first results for Bs → Dsℓν amplitudes, again including
information about the momentum-transfer dependence. In 2014 and 2015, full results for
B → Dℓν at w ≥ 1 were published by FNAL/MILC 15C [132] and HPQCD 15 [133].
These works also provided full results for the scalar form factor, allowing analysis of the
decay with a final-state τ . In FLAG 19 [4], we included new results for Bs → Dsℓν form
factors over the full kinematic range for Nf = 2+ 1 from HPQCD (HPQCD 17 [620] and
Ref. [625]). Recently, HPQCD published new calculations of the Bs → Ds form factors
in the full kinematic range [134] (HPQCD 19), now using MILC’s HISQ Nf = 2 + 1 + 1
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w = 1 form factor / ratio

HPQCD 15, HPQCD 17[133, 620] 2+1 A ◦ ◦ ◦ ◦ ✓ GB→D(1) 1.035(40)

FNAL/MILC 15C [132] 2+1 A ⋆ ◦ ⋆ ◦ ✓ GB→D(1) 1.054(4)(8)

HPQCD 19 [134] 2+1+1 A ⋆ ◦ ⋆ ⋆ ✓ GBs→Ds(1) 1.071(37)

HPQCD 15, HPQCD 17[133, 620] 2+1 A ◦ ◦ ◦ ◦ ✓ GBs→Ds(1) 1.068(40)

FNAL/MILC 21 [136] 2+1 A ⋆ ◦ ⋆ ◦ ✓ FB→D∗
(1) 0.909(17)

JLQCD 23 [137] 2+1 A ⋆ ◦ ⋆ ◦ ✓ FB→D∗
(1) 0.887 (14)

HPQCD 23 [135] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ FB→D∗
(1) 0.903(14)

HPQCD 23 [135] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ FBs→D∗
s (1) 0.8970(92)

HPQCD 15, HPQCD 17[133, 620] 2+1 A ◦ ◦ ◦ ◦ ✓ GBs→Ds(1) 1.068(40)

HPQCD 20B [621] 2+1+1 A ⋆ ◦ ⋆ ⋆ ✓ n/a n/a

HPQCD 15, HPQCD 17[133, 620] 2+1 A ◦ ◦ ◦ ◦ ✓ R(D) 0.300(8)

FNAL/MILC 15C [132] 2+1 A ⋆ ◦ ⋆ ◦ ✓ R(D) 0.299(11)

FNAL/MILC 21 [136] 2+1 A ⋆ ◦ ⋆ ◦ ✓ R(D∗) 0.265(13)

JLQCD 23 [137] 2+1 A ⋆ ◦ ⋆ ◦ ✓ R(D∗) 0.252(22)

HPQCD 23 [135] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ R(D∗) 0.273(15)

HPQCD 23 [135] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ R(D∗
s ) 0.266(9)

∗ The rationale for assigning a ◦rating is discussed in the text.

Table 44: Lattice results for mesonic processes involving b → c transitions. The form factor
G is defined in Eqs. (192, 193), the form factor F is defined in Eqs. (202, 212), and the ratios
R are defined in Eq. (222). Note that the results for FB→D∗

(1), FBs→D∗
s (1), R(D∗) and

R(D∗
s) have been obtained using the results of the BGL fits described in the text and do not

necessarily coincide with the results presented by the individual collaborations.
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ensembles and using the HISQ action also for the b quark, reaching up to mb = 4mc

(unrenormalized mass) in their finest ensemble.54 This calculation has recently been used
by LHCb to determine |Vcb| [626, 627], as discussed further in Sec. 8.9.

In the discussion below, we mainly concentrate on the latest generation of results,
which allows for an extraction of |Vcb| that incorporates information about the q2-dependence
of the decay rate (cf. Sec. 8.9).

We will first discuss theNf = 2+1 computations ofB → Dℓν by FNAL/MILC 15C and
HPQCD 15, both based on MILC asqtad ensembles. Full details about all the computa-
tions are provided in Tab. 44 and in the tables in Appendix C.5.5.

The FNAL/MILC 15C study [132] employs ensembles at four values of the lattice
spacing ranging between approximately 0.045 fm and 0.12 fm, and several values of the
light-quark mass corresponding to pions with RMS masses ranging between 260 MeV and
670 MeV (with just one ensemble with MRMS

π ≃ 330 MeV at the finest lattice spacing).
The b and c quarks are treated using the Fermilab approach.

The hadronic form factor relevant for experiment, G(w), is then obtained from the
relation G(w) =

√
4rf+(q

2)/(1 + r). The form factors are obtained from double ratios
of three-point functions in which the flavour-conserving current renormalization factors
cancel. The remaining matching factor to the flavour-changing normalized current is
estimated with 1-loop lattice perturbation theory. In order to obtain h±(w), a joint
continuum-chiral fit is performed to an ansatz that contains the light-quark mass and
lattice-spacing dependence predicted by next-to-leading order HMrSχPT, and the leading
dependence on mc predicted by the heavy-quark expansion (1/m2

c for h+ and 1/mc for
h−). The w-dependence, which allows for an interpolation in w, is given by analytic
terms up to (1−w)2, as well as a contribution from the logarithm proportional to g2D∗Dπ.
The total resulting systematic error, determined as a function of w and quoted at the
representative point w = 1.16 as 1.2% for f+ and 1.1% for f0, dominates the final error
budget for the form factors. After f+ and f0 have been determined as functions of w
within the interval of values of q2 covered by the computation, synthetic data points are
generated to be subsequently fitted to a z-expansion of the BGL form, cf. Sec. 8.3, with
pole factors set to unity. This in turn enables one to determine |Vcb| from a joint fit of
this z-expansion and experimental data. The value of the zero-recoil form factor resulting
from the z-expansion is

GB→D(1) = 1.054(4)stat(8)sys . (196)

The HPQCD computations HPQCD 15 and HPQCD 17 [133, 620] use ensembles at
two values of the lattice spacing, a = 0.09, 0.12 fm, and two and three values of light-
quark masses, respectively. The b quark is treated using NRQCD, while for the c quark
the HISQ action is used. The form factors studied, extracted from suitable three-point
functions, are

⟨D(s)(pD(s)
)|V 0|B(s)⟩ =

√
2MB(s)

f
(s)
∥ , ⟨D(s)(pD(s)

)|V k|B(s)⟩ =
√
2MB(s)

pkD(s)
f
(s)
⊥ ,

(197)
where Vµ is the relevant vector current and the B(s) rest frame is chosen. The standard

54The ratio showed here is the ratio between the bare masses, which are inputs of the lattice action. The
ratio between the renormalized masses of the quarks is usually very different from the ratio of bare masses. In
order to tune the bare heavy-quark masses so they result in physical values of the renormalized quark masses,
one normally tries to find out the value of the bare mass that results in a heavy meson with the right physical
mass.
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vector and scalar form factors are retrieved as

f
(s)
+ =

1√
2MB(s)

[
f
(s)
∥ + (MB(s)

− ED(s)
)f

(s)
⊥

]
, (198)

f
(s)
0 =

√
2MB(s)

M2
B(s)
−M2

D(s)

[
(MB(s)

− ED(s)
)f

(s)
∥ + (M2

B(s)
− E2

D(s)
)f

(s)
⊥

]
. (199)

The currents in the effective theory are matched at 1-loop to their continuum counterparts.
Results for the form factors are then fitted to a modified BCL z-expansion ansatz [569],
that takes into account simultaneously the lattice spacing, light-quark masses, and q2-
dependence. For the mass dependence, NLO chiral logarithms are included, in the form
obtained in hard-pion χPT (see footnote 41). As in the case of the FNAL/MILC 15C com-
putation, once f+ and f0 have been determined as functions of q2, |Vcb| can be determined
from a joint fit of this z-expansion and experimental data. The papers quote for the zero-
recoil vector form factor the result

GB→D(1) = 1.035(40) GBs→Ds(1) = 1.068(40) . (200)

The HPQCD 15 and FNAL/MILC 15C results for B → D differ by less than half a
standard deviation (assuming they are uncorrelated, which they are not as some of the
ensembles are common) primarily because of lower precision of the former result. The
HPQCD 15 central value is smaller by 1.8 of the FNAL/MILC 15C standard deviations
than the FNAL/MILC 15C value. The dominant source of errors in the |Vcb| determination
by HPQCD 15 are discretization effects and the systematic uncertainty associated with
the perturbative matching.

In order to combine the form-factor determination of HPQCD 15 and the one of
FNAL/MILC 15C into a lattice average, we proceed in a similar way as with B → πℓν
and Bs → Kℓν above. FNAL/MILC 15C quotes synthetic values for each form factor
at three values of w (or, alternatively, q2) with a full correlation matrix, which we take
directly as input. In the case of HPQCD 15, we use their preferred modified z-expansion
parameterization to produce synthetic values of the form factors at five different values
of q2 (three for f+ and two for f0). This leaves us with a total of six (five) data points
in the kinematical range w ∈ [1.00, 1.11] for the form factor f+ (f0). As in the case of
B → πℓν, we conservatively assume a 100% correlation of statistical uncertainties between
HPQCD 15 and FNAL/MILC 15C. We then fit this data set to a BCL ansatz, using t+ =
(MB0 +MD±)2 ≃ 51.12 GeV2 and t0 = (MB0 +MD±)(

√
MB0 −√MD±)2 ≃ 6.19 GeV2.

In our fits, pole factors have been set to unity, i.e., we do not take into account the
effect of sub-threshold poles, which is then implicitly absorbed into the series coefficients.
The reason for this is our imperfect knowledge of the relevant resonance spectrum in this
channel, which does not allow us to decide the precise number of poles needed.55 This, in
turn, implies that unitarity bounds do not rigorously apply, which has to be taken into
account when interpreting the results (cf. Appendix B.2).

With a procedure similar to what we adopted for the B → π and Bs → K cases, we
impose the kinematic constraint at q2 = 0 by expressing the a0N0−1 coefficient in the z-
expansion of f0 in terms of all the other coefficients. As mentioned above, FNAL/MILC 15C
provides synthetic data for f+ and f0 including correlations; HPQCD 15 presents the
result of simultaneous z-fits to the two form factors including all correlations, thus en-
abling us to generate a complete set of synthetic data for f+ and f0. Since both calcu-
lations are based on MILC ensembles, we then reconstruct the off-diagonal HPQCD 15-
FNAL/MILC 15C entries of the covariance matrix by conservatively assuming that sta-

55As noted above, this is the same approach adopted by FNAL/MILC 15C in their fits to a BGL ansatz.
HPQCD 15, meanwhile, uses one single pole in the pole factors that enter their modified z-expansion, using
their spectral studies to fix the value of the relevant resonance masses.
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B → D (Nf = 2 + 1)

ain Central Values Correlation Matrix

a+0 0.896 (10) 1 0.423 −0.231 0.958 0.596

a+1 −7.94 (20) 0.423 1 0.325 0.498 0.919

a+2 51.4 (3.2) −0.231 0.325 1 −0.146 0.317

a00 0.7821 (81) 0.958 0.498 −0.146 1 0.593

a01 −3.28 (20) 0.596 0.919 0.317 0.593 1

Table 45: Coefficients and correlation matrix for the N+ = N0 = 3 z-expansion of the
B → D form factors f+ and f0. The chi-square per degree of freedom is χ2/dof = 4.6/6 =
0.77. The lattice calculations that enter this fit are taken from FNAL/MILC 15C [132] and
HPQCD 15 [133]. The form factors can be reconstructed using parameterization and inputs
given in Appendix B.3.5.
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Figure 28: The form factors f+(q
2) and f0(q

2) for B → Dℓν plotted versus z (left panel)
and q2 (right panel). See text for a discussion of the data sets. The grey and salmon bands
display our preferred N+ = N0 = 3 BCL fit (five parameters).

tistical uncertainties are 100% correlated. The FNAL/MILC 15C (HPQCD 15) statis-
tical error is 58% (31%) of the total error for every f+ value, and 64% (49%) for every
f0 one. Using this information we can easily build the off-diagonal block of the over-
all covariance matrix (e.g., the covariance between [f+(q

2
1)]FNAL and [f0(q

2
2)]HPQCD is

(δ[f+(q
2
1)]FNAL × 0.58) (δ[f0(q

2
2)]HPQCD × 0.49), where δf is the total error).

For our central value, we choose an N+ = N0 = 3 BCL fit, shown in Tab. 45.
The coefficient a+3 can be obtained from the values for a+0 –a

+
2 using Eq. (526). We find

χ2/dof = 4.6/6 = 0.77. The fit, which is dominated by the FNAL/MILC 15C calculation,
is illustrated in Fig. 28.

Let us finally discuss the most recent results for Bs → Ds form factors, obtained by the
HPQCD collaboration using MILC’s Nf = 2+1+1 ensembles in Ref. [134] (HPQCD 19).
Three values of the lattice spacing are used, including a very fine ensemble at a ≃ 0.044 fm;
the pion mass is kept fixed at around 300 MeV, and in addition at the coarser a ≃ 0.09 fm
lattice an ensemble with the physical pion mass is included. The scalar current needs
no renormalization because of the Partial Conservation of the Vector Current (PCVC)
relation, while the vector current is nonperturbatively normalized by imposing a condition
based on the PCVC relation at zero recoil. Heavy quarks are treated in a fully relativistic
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Bs → Ds (Nf = 2 + 1 + 1)

ain Central Values Correlation Matrix

a00 0.666(12) 1 0.62004 0.03149 1 0.03973 0.00122

a01 −0.26(25) 0.62004 1 0.36842 0.62004 0.12945 0.00002

a02 −0.1(1.8) 0.03149 0.36842 1 0.03149 0.22854 −0.00168
a+0 −0.075(12) 1 0.62004 0.03149 1 0.03973 0.00122

a+1 −3.24(45) 0.03973 0.12945 0.22854 0.03973 1 0.11086

a+2 0.7(2.0) 0.00122 0.00002 −0.00168 0.00122 0.11086 1

Table 46: Coefficients and correlation matrix for the z-expansion of the Bs → Ds form factors
f+ and f0. These results are a reproduction of Table VIII of Ref. [134] (HPQCD 19). The
form factors can be reconstructed using parameterization and inputs given in Appendix B.3.6.

fashion through the use of the HISQ regularization, employing bare values of the quark
mass up to amh = 0.8 for the extrapolation to the physical b point.

Results for the form factors are fitted to a modified z-expansion ansatz, based on a
BCL ansatz with a Blaschke factor containing one sub-threshold pole, tuned to reproduce
the lattice-spacing and heavy-quark-mass-dependent mass of the corresponding resonance.
The final error budget is equally dominated by statistics and the combined effect of the
continuum and heavy quark mass extrapolations, which correspond to 1.1% and 1.2%
uncertainties, respectively, for the scalar form factor at zero recoil. The total uncertainty
of the latter is thus below 2%, which remains true in the whole q2 range. The uncertainty
of f+ is somewhat larger, starting at around 2% at q2 = 0 and increasing up to around
3.5% at zero recoil.

One important matter of concern with this computation is the use of the a ≃ 0.044 fm
ensemble with periodic boundary conditions, which suffers from severe topology freezing.
Other than possible implications for statistical uncertainties, the lack of topology fluc-
tuations are expected to significantly enhance finite-volume effects, which are no longer
exponential in mπL, but become power-like in the spatial volume. The authors neglect
the impact of finite-volume effects in the computation, with a twofold argument: for the
two coarser lattice spacings, the impact of pion-mass-related corrections on the heavy-
meson states involved is presumably negligible; and, for the finest ensemble, the estimate
of finite-volume effects on the Ds decay constant obtained in Ref. [180] turns out to be
very small, a result which is presumed to extend to form factors. It is however unclear
whether the latter argument would really hold, since the computation in Ref. [180] does
show that the expected effect is heavily observable-dependent, reaching, e.g., more than
1% for fD. We have, therefore, concluded that our standard criteria for finite-volume
effects cannot be applied at the finest lattice spacing, and opted to assign ◦ rating to
them.

We thus proceed to quote the final result of HPQCD 19 as the FLAG estimate for the
Nf = 2 + 1 + 1 Bs → Ds form factors. The preferred fit is a constrained BCL form with
the imposition of the kinematical constraint f+(0) = f0(0), carried through z2 for f0 and
z3 for f+. Both form factors contain just one sub-threshold pole, to which the masses
MB∗

c
= 6.329 GeV and MBc0

= 6.704 GeV, respectively, have been assigned. The fit
parameters and covariance matrix, quoted in Table VIII of Ref. [134], are reproduced in
Tab. 46.

There are ongoing efforts in these channels from several collaborations. The JLQCD
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collaboration is working on a B → D analysis at nonzero recoil using the domain-wall
action for heavy and light quarks [628]. The FNAL/MILC collaborations are working on
two parallel calculations of the form factors of the B(s) → D(s) channels sharing the same
light-quark action, but with different heavy-quark actions [591].

8.4.2 B(s) → D∗
(s) decays

The community has been focusing on the decays with final vector states, B(s) → D∗
(s),

because of increasing availability of high-quality experimental data. The decay rate for
B → D∗ℓν involves a spin-1 hadron in the final-state whose vector and axial-vector current
matrix elements require the introduction of four form factors:

⟨D∗|Vµ|B⟩√
mBmD∗

= hV (w)εµναβϵ
∗νvαD∗v

β
B , (201)

⟨D∗|Aµ|B⟩
i
√
mBmD∗

= hA1(w)(1 + w)ϵ∗µ − hA2(w)ϵ
∗ · vBvBµ − hA3(w)ϵ

∗ · vBvD∗µ. (202)

where w = vB · vD(∗) = (m2
B + m2

D∗ − q2)/(2mBmD∗). As has become customary, we
further express the four form factors hV,A1,A2,A3 in terms of the form factors g, f , F1 and
F2 as follows (see, for instance, Eq. (31) of Ref. [135]):

g =
hV

mB
√
r
, (203)

f = mB

√
r(1 + w)hA1

, (204)

F1 = m2
B

√
r(1 + w)

[
(w − r)hA1 − (w − 1)(rhA2 + hA3)

]
, (205)

F2 =
1√
r

[
(1 + w)hA1 + (rw − 1)hA2 + (r − w)hA3

]
. (206)

One can then write the differential decay rate as [629, 630]

dΓB̄→D∗ℓν̄

dwdcvdcldχ
=
η2EW3mBmD∗

4(4π)4

√
w2 − 1(1− 2wr + r2)G2

F |Vcb|2

×
[
(1− cl)2s2vH2

+ + (1 + cl)
2s2vH

2
− + 4s2l c

2
vH

2
0 − 2s2l s

2
v cos(2χ)H+H−

− 4sl(1− cl)svcv cosχH+H0 + 4sl(1 + cl)svcv cosχH−H0

]
, (207)

where cv ≡ cos θv, sv ≡ sin θv, cl ≡ cos θl, sl ≡ sin θl. The angles θv, θl and χ parameterize
the kinematics of the three-body final state (see, for instance, Fig. 3 of Ref. [144]). The
helicity amplitudes H±,0 have simple expressions in terms of the form factors g, f and F1

(see, for instance, Eq. (13) of Ref. [144]):

H0 =
F1√
q2

, (208)

H± = f ∓mBmD∗
√
w2 − 1 g . (209)

For the calculation of the ratio of the semileptonic rates in the τ and ℓ = e, µ channels, it
is necessary to consider the differential dΓ/dw decay rate for nonzero lepton mass:56

dΓB̄→D∗ℓν̄

dw
= |Vcb|2G2

F η
2
EW

m3
B

48π3
r2
√
w2 − 1

(
1− m2

l

q2

)2

×
[(

1 +
m2
l

2q2

)
q2

m2
B

(H2
+ +H2

− +m2
BH

2
0 ) +

3

2
r2
m2
B

q2
m2
l (w

2 − 1)F 2
2

]
. (210)

56This formula can be found, for instance, in Eq. (7) of Ref. [136]. Note that in Ref. [136] the normalizations
of the helicity amplitudes H±,0 differ from those adopted here.
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In the limit of vanishing lepton mass, Eq. (210) reduces to

dΓB−→D0∗ℓ−ν̄

dw
=
G2

Fm
3
D∗

4π3
(mB −mD∗)2(w2 − 1)1/2|ηEW|2|Vcb|2χ(w)|F(w)|2 . (211)

The function χ(w) in Eq. (211) depends on the recoil w and the meson masses, and reduces
to unity at zero recoil [594]. In particular, the normalization factor χ(w) [594] is defined
in such a way that at zero recoil

F(1) = hA1(1) =
f(1)

2
√
mBmD∗

. (212)

Unquenched lattice calculations for B → D∗ℓν decays have focused on the form factors
at zero recoil FB→D∗

(1) until a few years ago (see, for instance, FNAL/MILC 08 [631],
FNAL/MILC 14 [632], HPQCD 17B [633, 634]); these can then be combined with exper-
imental input to extract |Vcb|. The situation mirrors that of the channel B → Dℓν: at
the zero-recoil point a single form factor is enough to calculate the decay rate and Luke’s
theorem [610] guarantees the absence of O(ΛQCD/mQ) corrections. By heavy-quark sym-
metry, limmQ→∞ FB→D∗

(1) = 1 [611–613], since in that limit there is no distinction
between heavy quarks. The calculation of higher-order corrections to this value has been
systematically addressed in several publications [614–616, 635], and also applied to lattice
calculations [617, 618]. On the lattice, the zero recoil form factor of this channel can
also be computed via a double ratio, cancelling most of the current renormalization and
suppressing heavy-quark discretization errors by an additional power of ΛQCD/mQ [636].
The situation has dramatically improved recently, and now data away from the zero-recoil
region is available from several sources. For that reason, we mainly concentrate on the
latest generation of results in the discussion below, which allows for an extraction of |Vcb|
that incorporates information about the q2-dependence of the decay rate (cf. Sec. 8.9).

Extraction of the form factors away from the zero-recoil point is quite challenging. The
polarization of the D∗ plays a key role in the correlation functions, as shown in Eq. (202).
One can build the following double ratio:

RA1
(p) =

⟨D∗(p, ε⊥)|c̄γ⊥γ5b|B(0)⟩ ⟨B(0)|b̄γ⊥γ5c|D∗(p, ε⊥)⟩
⟨D∗(0)|c̄γ4c|D∗(0)⟩ ⟨B(0)|b̄γ4b|B(0)⟩ ∝ |hA1

(w)|2, (213)

which is proportional to |hA1
(w)|2, as long as the D∗ is transversally polarized (the spatial

components of ε⊥ are perpendicular to p) and parallel to the axial current, which displays
only spatial components (γ⊥ is parallel to the spatial components of ε⊥). At zero recoil,
Eq. (213) greatly simplifies to give

RA1(0) = |hA1(1)|2. (214)

Hence, an alternative to directly computing Eq. (213) is to evaluate Eq. (214), and then
compute the following ratio

QA1 =
⟨D∗(p, ε⊥)|c̄γ⊥γ5b|B(0)⟩
⟨D∗(0, ε)|c̄γjγ5b|B(0))⟩ , (215)

which gives hA1
(w)/hA1

(1) times extra factors that must be removed. Other form factors
can be extracted by considering other polarizations and components of the axial current
in Eq. (202), as well as the vector current. Normally, all the form factors are referenced
to hA1

(w), therefore any systematics associated to the extraction of hA1
(w) are carried

over to the remaining form factors.
Currently, there are two Nf = 2 + 1 calculations of the B → D∗ℓν form factors. One

comes from the FNAL/MILC collaborations [136] (FNAL/MILC 21). It uses 15 MILC
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Nf = 2 + 1 ensembles generated with asqtad staggered quarks in the sea. The bottom
and charm quarks are simulated using the clover action with the Fermilab interpretation,
and they are tuned to their physical masses by using the Ds and the Bs mesons as
references. This implies that the renormalization cannot be fully nonperturbative. The
collaboration employs a clever scheme that computes ratios where the largest component
of the renormalization factors cancels out, leaving a small component that is computed
perturbatively. The MILC ensembles employed span five lattice spacings, ranging from
a ≈ 0.15 fm to a ≈ 0.045 fm, and as many as five values of the light-quark masses per
ensemble (though just one at the finest lattice spacing). Results are then extrapolated to
the physical, continuum/chiral, limit employing staggered, heavy-light meson χPT.

The D∗ meson is not a stable particle in QCD and decays predominantly into a D
plus a pion. Nevertheless, heavy-light meson χPT can be applied to extrapolate lattice
simulation results for the B → D∗ℓν form factor to the physical light-quark mass. The
D∗ width is quite narrow, 0.083(2) MeV for the D∗±(2010) and less than 2.1 MeV for
the D∗0(2007) [274], making this system much more stable and long lived than the ρ or
the K∗ systems. Therefore it is appropriate to consider the D∗ as a stable particle on
the lattice, at the current level of precision. The fact that the D∗ − D mass difference
is close to the pion mass leads to the well-known “cusp” in RA1

just above the physical
pion mass [636–638]. This cusp makes the chiral extrapolation sensitive to values used in
the χPT formulas for the D∗Dπ coupling gD∗Dπ. In order to take this sensitivity into
account, the FNAL/MILC collaboration includes this coupling in their fits as an input
prior gD∗Dπ = 0.53± 0.08, but they do not analyze the impact of such a prior in the final
result. By looking at their previous calculation at zero recoil [632] (FNAL/MILC 14),
which used the same ensembles and statistics, we estimate a subpercent increase in the
total uncertainty for hA1

(1).
The final result presented in Ref. [136] (FNAL/MILC 21) is provided as synthetic data

points for the four form factors in the HQET basis, {hA1
, hA2

, hA3
, hV }, at three different

values of the recoil parameter, and a full covariance matrix. The result at zero recoil is

Nf = 2 + 1: FB→D∗
(1) = 0.909(17) [FNAL/MILC 21 [136]] (216)

making up a total error of 1.9%.The largest systematic uncertainty comes from discretiza-
tion errors followed by effects of higher-order corrections in the chiral perturbation theory
ansatz.

The JLQCD collaboration has published the other Nf = 2+1 study of the B → D∗ℓν
form factors away from the zero recoil point – JLQCD 23 [137]. Their calculation is based
on nine Nf = 2+1 Möbius domain-wall ensembles, using the same action for the valence,
heavy quarks b and c. The ensembles cover three different lattice spacings, starting from
0.080 fm down to 0.044 fm, and several pion masses ranging from ∼ 230 MeV to ∼ 500
MeV. The charm-quark mass is always physical, whereas the largest value of the bottom-
quark mass reached is ≈ 3mc (unrenormalized mass) in their finest ensemble. Each
ensemble features at least 3 different values of the bottom-quark mass, but in the coarsest
ensemble only mQ ≈ 1.5mc is reached. In terms of lattice units, the bottom-quark mass
never exceeds amQ ≲ 0.7, and the final result does not significantly change if only data
with amQ ≲ 0.5 (or equivalently mQ ≲ 2.0mc) is employed. The three-point functions
leading to the form factors are evaluated for four source-sink separations to eliminate
excited states, to properly control the excited-states contamination, and also the effects
of possible topological freezing are carefully analyzed to rule out finite-volume effects.
The renormalization scheme employed to renormalize the axial and vector currents is
equivalent to a mostly nonperturbative renormalization scheme at tree level. However,
the properties of the Domain-Wall action establish that ZA ≈ ZV at finite lattice spacing.
Hence, we expect large cancellations of renormalization factors in ratios like Eq. (213).
Also, discretization errors in the coefficients are expected to behave better than O(a) for
the same reason.
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Physical data is obtained after performing combined chiral-continuum and heavy-
quark-mass extrapolations, which employs an approximate estimator for the covariance
matrix, due to the low statistics of the input data and the large number of parameters
involved (heavy- and light-quark masses, and lattice spacings). The ansatz for the ex-
trapolation is motivated by heavy-light meson χPT and HQET, and the collaboration
uses the same value for the D∗Dπ coupling gD∗Dπ as the FNAL/MILC collaboration,
gD∗Dπ = 0.53 ± 0.08, but instead of including it as a prior in the fit, they estimate the
systematics associated to the coupling by shifting the central value by ±σ. The uncer-
tainty arising from this choice is not provided, although it is explicitly stated that it is
small.

The collaboration provides three synthetic data points per form factor in the BGL
basis, {g, f, F1, F2} as their final result of their extrapolation, along with a full covariance
matrix. The result at zero recoil is not directly provided, but their BGL fit results in the
following value,

Nf = 2 + 1: FB→D∗
(1) = 0.887(14) [JLQCD 23 [137]]. (217)

For Nf = 2 + 1 + 1 there is only one calculation away from the zero-recoil point,
by the HPQCD collaboration [135] – HPQCD 23. They use five MILC HISQ ensembles
and the HISQ action for both the light and the heavy quarks, reaching up to mb = 4mc

(unrenormalized mass) in their finest ensemble. The lattice spacings range from 0.090 fm
down to 0.044 fm, and the pion masses are physical in two of the ensembles, whereas the
rest use values mπ ≈ 320 MeV. They calculate the form factors for three or four bare
values of the heavy-quark mass, depending on the ensemble, topping at amQ ≤ 0.8. For
the three-point functions, three different source-sink separations are evaluated, and the
currents are renormalized nonperturbatively using the PCAC/PCVC relations and, for
the tensor current, the RI-SMOM scheme. The renormalization factors are interpolated
for some correlators in one of the coarsest ensembles, and they are estimated for the
finest ensemble with a physical pion mass, adding a conservative 1% error. As in previous
analyses of HPQCD with a similar setup, the impact of fixing the topological charge in
the finest ensembles is not discussed; nonetheless, it has been pointed out that the impact
on the form factors of MILC ensembles with nonequilibrated topological charge is below
0.1% [123]. An important difference of this analysis from the Nf = 2 + 1 ones is the
inclusion of twisted boundary conditions to reach larger values of the recoil parameter.
As a result, HPQCD 23 offers data in the whole recoil range, as opposed to the other
analyses, which are limited to the range w ∈ [1.0, 1.2]. The constraint between the form
factors at maximum recoil then is naturally satisfied with great precision without any
need to impose it. This feature also allows them to include higher powers of (w − 1)
in the chiral-continuum extrapolation to model the recoil parameter dependence. Using
BGL-inspired priors, the collaboration includes terms up to (w − 1)10, steming from a z
expansion up to z4.

HPQCD 23 provides five synthetic data points per form factor, of which only three
are completely independent, in the HQET basis, along with the full covariance matrix.
The zero-recoil value of the decay amplitude is

Nf = 2 + 1 + 1: FB→D∗
(1) = 0.903(14) [HPQCD 23 [135]] , (218)

in agreement with the value from FNAL/MILC 21, but with a slightly smaller total error,
1.6%. The largest systematic uncertainty comes from the treatment of the heavy quark.

We use synthetic data points provided by FNAL/MILC 21 [136], JLQCD 23 [137], and
HPQCD 23 [135] to fit the form factors g, f , F1, and F2 using a BGL parameterization.
We adopt the same outer functions, poles, and z definition as in Sec. 5.1 of Ref. [136]. In
particular, we impose the kinematic constraints at zero and maximal recoil (see Eqs.(72,
73) of Ref. [136]) by eliminating the coefficients aF1

0 and aF2
0 . We also do not adopt

159



0.0

0.1

0.2

0.3

0.4

0.5

1.00 1.10 1.20 1.30 1.40 1.50

F G LA 2024I I
FNAL/MILC 21 (Nf = 2 + 1)

JLQCD 23 (Nf = 2 + 1)
average (Nf = 2 + 1)

HPQCD 23 (Nf = 2 + 1 + 1)
average (Nf = 2 + 1 + 1)

g
B
→
D

∗

w

3.0

4.0

5.0

6.0

7.0

8.0

1.00 1.10 1.20 1.30 1.40 1.50

F G LA 2024I I

FNAL/MILC 21 (Nf = 2 + 1)
JLQCD 23 (Nf = 2 + 1)

average (Nf = 2 + 1)
HPQCD 23 (Nf = 2 + 1 + 1)

average (Nf = 2 + 1 + 1)

f
B
→
D

∗

w

7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0

1.00 1.10 1.20 1.30 1.40 1.50

F G LA 2024I I

FNAL/MILC 21 (Nf = 2 + 1)
JLQCD 23 (Nf = 2 + 1)

average (Nf = 2 + 1)
HPQCD 23 (Nf = 2 + 1 + 1)

average (Nf = 2 + 1 + 1)

F
B
→
D

∗
1

w

0.5

1.0

1.5

2.0

2.5

3.0

1.00 1.10 1.20 1.30 1.40 1.50

F G LA 2024I I

FNAL/MILC 21 (Nf = 2 + 1)
JLQCD 23 (Nf = 2 + 1)

average (Nf = 2 + 1)
HPQCD 23 (Nf = 2 + 1 + 1)

average (Nf = 2 + 1 + 1)

F
B
→
D

∗
2

w

Figure 29: The form factors g, f , F1 and F2 for B → D∗ℓν as a function of w. The red (blue)
band displays our preferred (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2) BGL fit (eight parameters) to
Nf = 2+ 1 (2+ 1+ 1) lattice data. The constraints at zero and maximum recoil are imposed
exactly. No use of unitarity constraints and priors has been made.

priors for any of the coefficients and do not impose unitarity constraints. We found that
a fit with (Ng, Nf , NF1

, NF2
) = (2, 3, 3, 2) provides an adequate description of the lattice

data.57 The results of the fits are presented in Tab. 47 and in Fig. 29. The two Nf = 2+1
calculations of FNAL/MILC 21 [136] and JLQCD 23 [137] are quite compatible and the
combined fit yields χ2

min/dof = 15.0/16. We present the fit result for the Nf = 2 + 1 + 1
calculation of JLQCD 23 [137] in order to allow for a direct comparison between the
coefficients of the Nf = 2 + 1 and Nf = 2 + 1 + 1 fits. For completeness, we present the
result for FB→D∗

(1) as extracted from the fits in Tab. 47:

Nf = 2 + 1: FB→D∗
(1) = 0.894(10) [FLAG average, Refs. [136, 137]] (219)

Nf = 2 + 1 + 1: FB→D∗
(1) = 0.899(14) [FLAG average, Refs. [135]]. (220)

Calculations in the Bs → D∗
s channel are relatively recent. The first calculations at

zero recoil were done by the HPQCD collaboration in 2017 and 2019 [634, 639] (HPQCD 17B
and HPQCD 19B). In 2021, the same collaboration published the first study of the form
factors of this channel at nonzero recoil [640] (HPQCD 21B), using four Nf = 2 + 1 + 1
MILC ensembles and the HISQ regularization for both sea and valence quarks, including
the b quark. The lattice spacings range from 0.090 fm to 0.044 fm, and one of the coarsest

57Adequate in the sense that the coefficients do not change much when adding more terms in the z expan-
sion, but any extra coefficient becomes unphysically large with equally large errors. Hence, our choice is the
maximum number of coefficients that can be reasonably determined with the given data without including
extra information, like unitarity constraints.
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Figure 30: The form factors g, f , F1, and F2 for Bs → D∗
sℓν as a function of w. The blue

band displays our preferred (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2) BGL fit (eight parameters) to
Nf = 2+1+1 lattice data. The constraints at zero and maximum recoil are imposed exactly.
No use of unitarity constraints and priors has been made.

ensembles features a physical pion mass, whereas the rest are generated with mπ ≈ 320
MeV. Correlators are generated for each ensemble at three/four values of the bare-quark
mass, never exceeding amQ ≤ 0.8, and the maximum heavy-quark mass simulated is
mQ ≈ 4mc (nonrenormalized). Momentum is injected using twisted boundary conditions,
which allows them to calculate the form factors directly at large values of the recoil param-
eter. This calculation was recently superseded by a combined study of the B(s) → D∗

(s)

channels by HPQCD 23 [135], adding one more ensemble and increasing statistics. The
details have already been outlined earlier in this section. Five points of synthetic data are
provided per form factor in the HQET basis, of which only three are independent. The
full covariance matrix is also provided. We adopt a BGL parameterization of the g, f ,
F1, and F2 form factors (defined in exact analogy to the B → D∗ case), in which all outer
functions and poles are identical to the B → D∗ case (we take the Bs and D∗

s masses
from Ref. [205]). The results of a (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2) BGL fit are presented
in table 48 and Fig. 30. The result for FBs→D∗

s (1) as extracted from the fits in Tab. 48:

Nf = 2 + 1 + 1: FBs→D∗
s (1) = 0.8972(92) [FLAG average, Refs. [135]]. (221)

There are still ongoing efforts on both the B → D∗ and the Bs → D∗
s channels, and

we can expect improvements in the coming years. The FNAL/MILC collaborations are
working in two different calculations in parallel for B → D∗, mainly differing on the
heavy-quark action: one calculation uses Fermilab heavy quarks, whereas the other uses
the HISQ action for the c and the b quarks. Both calculations employ the HISQ action
for the light sector [591]. The LANL-SWME collaboration is working on a different

161



B → D∗ (Nf = 2 + 1)

coeff Central Values Correlation Matrix

a
g
0 0.03132(93) 1 0.1331 0.1786 0.03800 0.006578 0.06997 0.1061 0.03250

a
g
1 -0.057(26) 0.1331 1 0.001304 0.2425 0.1505 0.1342 0.1966 0.2331

a
f
0 0.01208(14) 0.1786 0.001304 1 -0.02370 0.09098 0.04710 0.1573 0.1161

a
f
1 0.0135(72) 0.03800 0.2425 -0.02370 1 -0.3968 0.6172 -0.01165 0.5136

a
f
2 -0.08(27) 0.006578 0.1505 0.09098 -0.3968 1 -0.2518 0.1880 -0.05661

a
F1
1 -0.0032(18) 0.06997 0.1342 0.04710 0.6172 -0.2518 1 -0.1105 0.6653

a
F1
2 -0.014(25) 0.1061 0.1966 0.1573 -0.01165 0.1880 -0.1105 1 0.5974

a
F2
1 -0.188(44) 0.03250 0.2331 0.1161 0.5136 -0.05661 0.6653 0.5974 1

B → D∗ (Nf = 2 + 1 + 1)

coeff Central Values Correlation Matrix

a
g
0 0.0313(24) 1 −0.2881 0.03326 0.005143 −0.003518 −0.0003942 −0.001025 0.003804

a
g
1 −0.132(98) −0.2881 1 0.01495 0.02987 0.02563 0.02484 −0.02985 −0.009483

a
f
0 0.01214(19) 0.03326 0.01495 1 0.001692 −0.01134 −0.1117 −0.01767 −0.03966

a
f
1 0.009(16) 0.005143 0.02987 0.001692 1 −0.3074 0.1676 0.05497 0.2621

a
f
2 −0.29(56) −0.003518 0.02563 −0.01134 −0.3074 1 −0.01802 0.1236 0.1412

a
F1
1 −0.0092(47) −0.0003942 0.02484 −0.1117 0.1676 −0.01802 1 −0.4098 0.01588

a
F1
2 −0.03(12) −0.001025 −0.02985 −0.01767 0.05497 0.1236 −0.4098 1 0.8568

a
F2
1 −0.26(14) 0.003804 −0.009483 −0.03966 0.2621 0.1412 0.01588 0.8568 1

Table 47: Coefficients and correlation matrix for the (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2) BGL fit
to the B → D∗ form factors g, f , F1, and F2 for Nf = 2 + 1 and Nf = 2 + 1 + 1. The form
factors can be reconstructed using parameterization and inputs given in Appendix B.3.7.

Bs → D∗
s (Nf = 2 + 1 + 1)

coeff Central Values Correlation Matrix

a
g
0 0.02014(95) 1 −0.4283 0.04426 0.002476 −0.01136 −0.001803 −0.009667 −0.006326

a
g
1 −0.031(39) −0.4283 1 0.01871 0.01076 0.02903 0.04063 −0.03435 −0.007384

a
f
0 0.005675(59) 0.04426 0.01871 1 −0.09446 0.08079 −0.09292 0.02436 0.02441

a
f
1 0.0146(59) 0.002476 0.01076 −0.09446 1 −0.6784 0.1714 −0.08797 0.03112

a
f
2 −0.23(24) −0.01136 0.02903 0.08079 −0.6784 1 −0.1764 0.1529 0.08188

a
F1
1 −0.0004(16) −0.001803 0.04063 −0.09292 0.1714 −0.1764 1 −0.7279 −0.3342

a
F1
2 −0.038(46) −0.009667 −0.03435 0.02436 −0.08797 0.1529 −0.7279 1 0.8368

a
F2
1 −0.134(50) −0.006326 −0.007384 0.02441 0.03112 0.08188 −0.3342 0.8368 1

Table 48: Coefficients and correlation matrix for the (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2) BGL fit
to the Bs → D∗

s form factors g, f , F1, and F2 for Nf = 2 + 1 + 1. The form factors can be
reconstructed using parameterization and inputs given in Appendix B.3.8.

calculation, using MILC HISQ ensembles and the Oktay-Kronfeld action for the heavy
sector [641].

8.4.3 Lepton-flavour-universality ratios R(D(∗)) and R(D
(∗)
s )

The availability of results for the scalar form factor f0 for B → Dℓν amplitudes allows
us to study interesting observables that involve the decay in the τ channel. One such
quantity is the ratio

R(D
(∗)
(s)) =

B(B → D
(∗)
(s)τν)

B(B → D
(∗)
(s)ℓν)

with ℓ = e, µ , (222)

which, in the Standard Model, depends only on the form factors and hadron and lepton
masses. Indeed, the recent availability of experimental results for R(D) has made this
quantity particularly relevant in the search for possible physics beyond the Standard
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Model. The most recent HFLAV average reads (see Ref. [148] and the Moriond 2024
update):

R(D)exp = 0.342(26) . (223)

Using the FLAG average of the B → D form factors discussed above and presented
in Table 45, we find R(D)FLAG

lat = 0.2938(38). The ratio R(D) requires the integral of the
branching ratios for ℓ = e, µ, τ over the whole phase space. Since lattice simulations are
sensitive mostly to relatively large q2 values, lattice-only calculations of R(D) rely on the
extrapolation of the form factors to low q2 and are especially sensitive to the choice of
parameterization. In order to estimate this source of systematics, we repeated the fit using
the parameterization adopted by HPQCD in Ref. [133]. The main difference with respect
to our default paremeterization is the inclusion of Blaschke factors for the form factors
f+ and f0 located at M+ = MB∗

c
= 6.330(9) GeV and M0 = 6.420(9) GeV; additionally,

the parameter t0 is set to (mB − mD)
2. Using five coefficients (a+1,2,3 and a01,2 with a03

fixed by the f+(q
2 = 0) = f0(q

2 = 0) condition) we find R(D)HPQCD
lat = 0.3009(38) which

deviates from R(D)FLAG
lat by 1.4 σ. To take this potential source of systematic uncertainty

into account we rescale accordingly the uncertainty of our default fit and obtain:

Nf = 2 + 1: R(D)lat = 0.2938(54) [FLAG average, Refs. [132, 133]]. (224)

This result is about 1.5σ lower than the current experimental average [148] for this quan-
tity. It has to be stressed that achieving this level of precision critically depends on the
reliability with which the low-q2 region is controlled by the parameterizations of the form
factors.

HPQCD 17 also computes values for R(Ds), the analog of R(D) with both heavy-light
mesons containing a strange quark. The earlier calculation using NRQCD b quarks gives

Nf = 2 + 1: R(Ds)lat = 0.301(6) [620]. (225)

The newer calculation with HISQ b quarks, HPQCD 19, yields the somewhat more precise
value

Nf = 2 + 1 + 1: R(Ds)lat = 0.2987(46) [134]. (226)

A similar ratio R(D∗) can be considered for B → D∗ transitions. As a matter of fact,
the experimental value of R(D∗) is significantly more precise than the one of R(D). The
most recent HFLAV average reads (see Ref. [148] and the Moriond 2024 update):

R(D∗)exp = 0.287(12) . (227)

The recent developments in decays with vector products have yielded a variety of new
lattice results for this LFU ratio. For Nf = 2 + 1 in the sea, the Fermilab lattice and
MILC collaborations (FNAL/MILC 21) report the value

Nf = 2 + 1: R(D∗)lat = 0.265(13) [136], (228)

which is around 1.5σ lower than the current experimental average [148].
The JLQCD collaboration has obtained the following value (JLQCD 23)

Nf = 2 + 1: R(D∗)lat = 0.252(22) [137] . (229)

Their result is compatible with the FNAL/MILC 21 value, but it increases the tension
with the experimental average up to 1.6σ, in spite of the larger error.
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The HPQCD collaboration has also computed this ratio using Nf = 2 + 1 + 1 config-
urations, obtaining (HPQCD 23)

Nf = 2 + 1 + 1: R(D∗)lat = 0.273(15) [135], (230)

which is closer to the current HFLAV average, but still lower by 1.3σ.
Using the results of the Nf = 2 + 1 (FNAL/MILC 21 and JLQCD 23) [136, 137] and

Nf = 2+ 1+ 1 (HPQCD 23) [135] fits summarized in Tab. 47, we calculate the following
values for the ratio R(D∗):

Nf = 2 + 1: R(D∗)lat = 0.2582(51) [FLAG average, Refs. [136, 137]], (231)

Nf = 2 + 1 + 1: R(D∗)lat = 0.275(15) [FLAG average, Ref. [135]]. (232)

The HPQCD 23 analysis also covered the Bs → D∗
s channel, and for the first time a

result for the R(D∗
s) ratio is provided

Nf = 2 + 1: R(D∗
s)lat = 0.266(9) [135]. (233)

Using the results of the Nf = 2 + 1 + 1 HPQCD 23 [135] fits summarized in Tab. 48, we
calculate the following values for the ratio R(D∗

s):

Nf = 2 + 1 + 1: R(D∗
s)lat = 0.2637(69) [FLAG average, Ref. [135]]. (234)

8.4.4 Fragmentation fraction ratio fs/fd

Another area of immediate interest in searches for physics beyond the Standard Model is
the measurement of Bs → µ+µ− decays, recently studied at the LHC. One of the inputs
required by the LHCb analysis is the ratio of Bq meson (q = d, s) fragmentation fractions
fs/fd, where fq is the probability that a q quark hadronizes into a Bq. This ratio can
be measured by writing it as a product of ratios that involve experimentally measurable

quantities, cf. Refs. [642, 643]. One of the factors is the ratio f
(s)
0 (M2

π)/f
(d)
0 (M2

K) of
scalar form factors for the corresponding semileptonic meson decay, which is where lattice
input becomes useful.

A dedicated Nf = 2 + 1 study, FNAL/MILC 12C [644] addresses the ratios of scalar

form factors f
(q)
0 (q2),58 and quotes:

f
(s)
0 (M2

π)/f
(d)
0 (M2

K) = 1.046(44)(15), f
(s)
0 (M2

π)/f
(d)
0 (M2

π) = 1.054(47)(17), (235)

where the first error is statistical and the second systematic. The more recent results from
HPQCD 17 [620] are:

f
(s)
0 (M2

π)/f
(d)
0 (M2

K) = 1.000(62), f
(s)
0 (M2

π)/f
(d)
0 (M2

π) = 1.006(62). (236)

Results from both groups lead to fragmentation fraction ratios fs/fd that are consistent
with LHCb’s measurements via other methods [643].

8.5 Semileptonic form factors for Bc → (ηc, J/ψ)ℓν decays

In a recent publication, HPQCD 20B [621] provided the first full determination of Bc →
J/ψ form factors, extending earlier preliminary work that also coveredBc → ηc, Refs. [645,
646]. While the latter employed both NRQCD and HISQ actions for the valence b quark,
and the HISQ action for the c quark, in HPQCD 20B the HISQ action is used throughout
for all flavours. The setup is the same as for the Bs → Ds computation discussed above,

58This work also provided a value for R(D), now superseded by FNAL/MILC 15C [132].
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HPQCD 19; we refer to the entries for the latter paper in summary tables for details. The
flavour-singlet nature of the final state means that there are contributions to the relevant
three-point functions from disconnected Wick contractions, which are not discussed in the
paper.

Both the J/ψ and the ηc are unstable resonances, and the correct approach on the
lattice would involve treating the J/ψ and the ηc as such. However, as in the case of the
D∗ meson, their widths are very narrow (93(2) keV for the J/ψ and 30.5(5) keV for the
ηc). Hence, we can consider them as stable particles on the lattice.

In the J/ψ case, since the hadron in the final state has vector quantum numbers, the
description of the hadronic amplitude requires four independent form factors, which in
Ref. [621] have been chosen as

⟨J/ψ(p′, λ)|c̄γµb|B−
c (p)⟩ =

2iV (q2)

MBc
+MJ/ψ

εµνρσϵ∗ν(p
′, λ)p′ρpσ ,

⟨J/ψ(p′, λ)|c̄γµγ5b|B−
c (p)⟩ =2MJ/ψA0(q

2)
ϵ∗(p′, λ) · q

q2
qµ

+ (MBc
+MJ/ψ)A1(q

2)
[
ϵ∗µ(p′, λ)− ϵ∗(p′, λ) · q

q2
qµ
]

−A2(q
2)

ϵ∗(p′, λ) · q
MBc

+MJ/ψ

[
pµ + p′µ −

M2
Bc
−M2

J/ψ

q2
qµ
]
,

(237)

where ϵµ is the polarization vector of the J/ψ state. The computed form factors are
fitted to a z-parameterization-inspired ansatz, where coefficients are modified to model
the lattice-spacing and the heavy- and light-mass dependences, for a total of 280 fit
parameters. In the continuum and at physical kinematics only 16 parameters survive, as
each form factor is parameterized by an expression of the form

F (q2) =
1

P (q2)

3∑
n=0

anz
n , (238)

where the pole factor is given by

P (q2) =
∏
k

z(q2,M2
k ) , (239)

with {Mk} a different set of pole energies below the BD∗ threshold for each set of JP

quantum numbers, taken from a mixture of experimental results, lattice determinations,
and model estimates. The values used (in GeV) are

0− : 6.275, 6.872, 7.25;

1− : 6.335, 6.926, 7.02, 7.28;

1+ : 6.745, 6.75, 7.15, 7.15.

(240)

The outcome of the fit, that we quote as a FLAG estimate, is

a0 a1 a2 a3
V 0.1057(55) −0.746(92) 0.10(98) 0.006(1.000)
A0 0.1006(37) −0.731(72) 0.30(90) −0.02(1.00)
A1 0.0553(19) −0.266(40) 0.31(70) 0.11(99)
A2 0.0511(91) −0.22(19) −0.36(82) −0.05(1.00)
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The correlation matrix for the coefficients is provided in Tables XIX–XXVII of Ref. [621].
Using these form factors, the following Standard-Model prediction for the lepton-flavour
ratio R(J/ψ) is obtained:

R(J/ψ)lat =
Γ(B+

c → J/ψ τ+ντ )

Γ(B+
c → J/ψ µ+νµ)

= 0.2582(38) , Nf = 2 + 1 + 1 [647]. (241)

8.6 Semileptonic form factors for Λb → (p,Λ
(∗)
c )ℓν̄ decays

The b → cℓν̄ and b → uℓν̄ transitions can also be probed in decays of Λb baryons. With
the LHCb experiment, the final state of Λb → pµν̄ is easier to identify than that of
B → πµν̄ [648], and the first determination of |Vub|/|Vcb| at the Large Hadron Collider
was performed using a ratio of Λb → pµν̄ and Λb → Λcµν̄ decay rates [649] (cf. Sec. 8.10).

The amplitudes of the decays Λb → pℓν̄ and Λb → Λcℓν̄ receive contributions from
both the vector and the axial-vector components of the current in the matrix elements
⟨p|ūγµ(1− γ5)b|Λb⟩ and ⟨Λc|c̄γµ(1− γ5)b|Λb⟩. The matrix elements split into three form
factors f+, f0, f⊥ mediated by the vector component of the current, and another three
form factors g+, g0, g⊥ mediated by the axial-vector component—see, e.g., Ref. [489] for
a complete description. Given the sensitivity to all Dirac structures, measurements of
the baryonic decay rates also provides useful complementary constraints on right-handed
couplings beyond the Standard Model [649].

To date, only one unquenched lattice-QCD computation of the Λb → p and Λb → Λc
form factors with physical heavy-quark masses has been published: Detmold 15 [494].
This computation uses RBC/UKQCD Nf = 2+1 DWF ensembles, and treats the b and c
quarks within the Columbia RHQ approach. The renormalization of the currents is carried
out using a mostly nonperturbative method, with residual matching factors computed
at one loop. Two values of the lattice spacing (a ≈ 0.11, 0.085 fm) are considered,
with the absolute scale set from the Υ(2S)–Υ(1S) splitting. Sea-pion masses lie in a
narrow interval ranging from slightly above 400 MeV to slightly below 300 MeV, keeping
mπL ≳ 4; however, lighter pion masses are considered in the valence DWF action for
the u, d quarks. The lowest valence-valence pion mass is 227(3) MeV, which leads to a
■ rating of finite-volume effects. Results for the form factors are obtained from suitable
three-point functions, and fitted to a modified z-expansion ansatz that combines the q2-
dependence with the chiral and continuum extrapolations. The main results of the paper
are the predictions (errors are statistical and systematic, respectively)

ζpµν̄(15GeV2) ≡ 1

|Vub|2
∫ q2max

15 GeV2

dΓ(Λb → pµ−ν̄µ)
dq2

dq2 = 12.31(76)(77) ps−1 , (242)

ζΛcµν̄(7GeV2) ≡ 1

|Vcb|2
∫ q2max

7 GeV2

dΓ(Λb → Λcµ
−ν̄µ)

dq2
dq2 = 8.37(16)(34) ps−1 , (243)

ζpµν̄(15GeV2)

ζΛcµν̄(7GeV2)
= 1.471(95)(109) , (244)

which are the input for the LHCb analysis. Predictions for the total rates in all possible
lepton channels, as well as for ratios similar to R(D) (cf. Sec. 8.4) between the τ and
light-lepton channels are also available, in particular,

R(Λc) =
Γ(Λb → Λc τ

−ν̄τ )
Γ(Λb → Λc µ−ν̄µ)

= 0.3328(74)(70). (245)

Datta 2017 [650] additionally includes results for the Λb → Λc tensor form factors h+,

h⊥, h̃+, h̃⊥, based on the same lattice computation as Detmold 15 [494]. The main focus
of Datta 2017 is the phenomenology of the Λb → Λcτντ decay and how it can be used to
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constrain contributions from beyond the Standard Model physics. Unlike in the case of
the vector and axial-vector currents, the residual matching factors of the tensor currents
are set to their tree-level value. While the matching systematic uncertainty is augmented
to take this fact into account, the procedure implies that the tensor current retains an
uncanceled logarithmic divergence at O(αs).

Progress with next-generation lattice calculations of the Λb → p and Λb → Λc form
factors was reported in Ref. [651].

Recently, first lattice calculations have also been completed for Λb semileptonic de-
cays to negative-parity baryons in the final state. Such calculations are substantially
more challenging and have not yet reached the same level of precision. Meinel 21 [652],
which was updated in Meinel 21B [498], considers the decays Λb → Λ∗

c(2595)ℓν̄ and
Λb → Λ∗

c(2625)ℓν̄, where the Λ∗
c(2595) and Λ∗

c(2625) are the lightest charm baryons with

isospin 0 and JP = 1
2

−
and JP = 3

2

−
, respectively. These decay modes may eventually

provide new opportunities to test lepton-flavour universality at the LHC, but are also very
interesting from a theoretical point of view. The lattice results for the form factors may
help tighten dispersive constraints in global analyses of b → c semileptonic decays [653],
and may provide new insights into the internal structure of the negative-parity heavy
baryons and their description in heavy-quark-effective-theory [654, 655]. The Λ∗

c(2595)
and Λ∗

c(2625) are very narrow resonances decaying through the strong interaction into
Λcππ. The strong decays are neglected in Meinel 21 and Meinel 21B [498, 652]. The
calculation was performed using the same lattice actions as previously for Λb → Λc, albeit
with newly tuned RHQ parameters. Only three ensembles are used, with a ≈ 0.11, 0.08 fm
and pion masses in the range from approximately 300 to 430 MeV, with valence-quark
masses equal to the sea-quark masses. Chiral-continuum extrapolations linear in m2

π and
a2 are performed, with systematic uncertainties estimated using higher-order fits. Finite-
volume effects and effects associated with the strong decays of the Λ∗

c ’s are not quantified.
The calculation is done in the Λ∗

c rest frame, where the cubic symmetry is sufficient to
avoid mixing with unwanted lower-mass states. As a consequence, the calculation is lim-
ited to a small kinematic region near the zero-recoil point w = 1. On each ensemble,
lattice data were produced for two values of w − 1 of approximately 0.01 and 0.03. The
final results for the form factors are parameterized as linear functions of w − 1 and can
be found in Meinel 21B [498] and associated supplemental files.

8.7 Semileptonic form factors for Λb → Λ(∗)ℓℓ

The decays Λb → Λℓ+ℓ− are mediated by the same underlying b→ sℓ+ℓ− FCNC transi-
tion as, for example, B → Kℓ+ℓ− and B → K∗ℓ+ℓ−, and can therefore provide additional
information on the hints for physics beyond the Standard Model seen in the meson decays.
The Λ baryon in the final state decays through the weak interaction into pπ− (or nπ0),
leading to a wealth of angular observables even for unpolarized Λb. When including the
effects of a nonzero Λb polarization, Λb → Λ(→ pπ−)ℓ+ℓ− decays are characterized by five
angles leading to 34 angular observables [656], which have been measured by LHCb in the
bin q2 ∈ [15, 20] GeV2 [657]. Given that the Λ is stable under the strong interactions, the
Λb → Λ form factors parametrizing the matrix elements of local s̄Γb currents can be cal-
culated on the lattice with high precision using standard methods. Of course, the process
Λb → Λℓ+ℓ− also receives contributions from nonlocal matrix elements of four-quark and
quark-gluon operators in the weak effective Hamiltonian combined with the electromag-
netic current. As with the mesonic b → sℓ+ℓ− decays, these contributions cannot easily
be calculated on the lattice and one relies on other theoretical tools for them, including
the local OPE at high q2 and a light-cone OPE / QCD factorization at low q2.

Following an early calculation with static b quarks [658], Detmold 16 [659] provides
results for all ten relativistic Λb → Λ form factors parametrizing the matrix elements of
the local vector, axial-vector and tensor b → s currents. The lattice setup is identical
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to that used in the 2015 calculation of the Λb → p form factors in Detmold 15 [494],
and similar considerations as in the previous section thus apply. The lattice data cover
the upper 60% of the q2 range, and the form factors are extrapolated to the full q2

range using BCL z-expansion fits. This extrapolation is done simultaneously with the
chiral and continuum extrapolations. The caveat regarding the renormalization of the
tensor currents also applies here. Progress with next-generation lattice calculations of the
Λb → Λ form factors was reported in Ref. [651].

Reference [660] uses the lattice results for the Λb → Λ form factors together with
the experimental results for Λb → Λ(→ pπ−)µ+µ− from LHCb [657, 661] to perform
fits of the b → sµ+µ− Wilson coefficients and of the Λb polarization parameter. Given
the uncertainties (which are still dominated by experiment), the results for the Wilson
coefficients are presently consistent both with the Standard-Model values and with the
deviations seen in global fits that include all mesonic decays [521, 662].

As with the b → c semileptonic form factors, a first lattice calculation, Meinel 2020
[663] (updated in Meinel 21B [498]), was also completed for a b → s transition to a

negative-parity baryon in the final state, in this case the Λ∗(1520) with JP = 3
2

−
(no

calculation has yet been published for the strange JP = 1
2

−
final states, which would be

the broader and even more challenging Λ∗(1405)/Λ∗(1380) [225]). The Λ∗(1520) decays
primarily to pK−/nK̄0, Σπ, and Λππ with a total width of 15.6 ± 1.0 MeV [225] . The
analysis of the lattice data again neglects the strong decays and does not quantify finite-
volume effects, and is again limited to a small kinematic region near q2max. The results of
Meinel 2020 are superseded by Meinel 21B [498], in which the fits to the lattice data were
improved by including exact endpoint relations in the form-factor parametrizations.
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Λb → Λ∗
c(2625) ℓ

−ν̄ℓ Meinel 21B [498] 2+1 A ◦ ◦ ■ ◦ ✓
Λb → Λ∗

c(2595) ℓ
−ν̄ℓ Meinel 21B [498] 2+1 A ◦ ◦ ■ ◦ ✓

Λb → Λ∗
c(2625) ℓ

−ν̄ℓ Meinel 21 [652] 2+1 A ◦ ◦ ■ ◦ ✓
Λb → Λ∗

c(2595) ℓ
−ν̄ℓ Meinel 21 [652] 2+1 A ◦ ◦ ■ ◦ ✓

Λb → Λ∗(1520) ℓ+ℓ− Meinel 21B [498] 2+1 A ◦ ◦ ■ ◦ ✓
Λb → Λ∗(1520) ℓ+ℓ− Meinel 20 [663] 2+1 A ◦ ◦ ■ ◦ ✓
Λb → Λ ℓ+ℓ− Detmold 16 [659] 2+1 A ◦ ◦ ■ ◦ ✓
Λb → p ℓ−ν̄ℓ Detmold 15 [494] 2+1 A ◦ ◦ ■ ◦ ✓
Λb → Λc ℓ

−ν̄ℓ Detmold 15, Datta 17 [494, 650] 2+1 A ◦ ◦ ■ ◦ ✓

Table 49: Summary of computations of bottom-baryon semileptonic form factors (see also
Refs. [658, 664] for calculations with static b quarks). The rationale for the ■ rating of
finite-volume effects in Meinel 20, Meinel 21, and Meinel 21B (despite meeting the ◦ criterion
based on the minimum pion mass) is that the unstable nature of the final-state baryons was
neglected in the analysis.
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8.8 Determination of |Vub|
We now use the lattice-determined Standard Model transition amplitudes for leptonic
(Sec. 8.1) and semileptonic (Sec. 8.3) B-meson decays to obtain exclusive determinations
of the CKM matrix element |Vub|. In this section, we describe the aspect of our work that
involves experimental input for the relevant charged-current exclusive decay processes.
The relevant formulae are Eqs. (155) and (191). Among leptonic channels the only input
comes from B → τντ , since the rates for decays to e and µ have not yet been measured.
In the semileptonic case, we only consider B → πℓν transitions (experimentally measured
for ℓ = e, µ).

We first investigate the determination of |Vub| through the B → τντ transition. The
experimental measurements of the branching fraction of this channel, B(B− → τ−ν̄), have
not been updated since the publication of FLAG 16 [3]. The status of the experimental
results for this branching fraction, summarized in Tab. 50, is unchanged from FLAG 16 [3].
Our corresponding values of |Vub| are unchanged from FLAG 19 [4].

Collaboration Tagging method B(B− → τ−ν̄)× 104

Belle [665] Hadronic 0.72+0.27
−0.25 ± 0.11

Belle [510] Semileptonic 1.25± 0.28± 0.27

BaBar [509] Hadronic 1.83+0.53
−0.49 ± 0.24

BaBar [666] Semileptonic 1.7± 0.8± 0.2

Table 50: Experimental measurements for B(B− → τ−ν̄). The first error on each result is
statistical, while the second error is systematic.

It is obvious that all the measurements listed in Tab. 50 have significance smaller than
5σ, and the large uncertainties are dominated by statistical errors. These measurements
lead to the averages of experimental measurements for B(B− → τ ν̄) [509, 510],

B(B− → τ ν̄)× 104 = 0.91± 0.22 from Belle, (246)

= 1.79± 0.48 from BaBar, (247)

= 1.06± 0.33 average, (248)

where, following our standard procedure, we perform a weighted average and rescale the
uncertainty by the square root of the reduced chi-squared. Note that the Particle Data
Group [274] did not inflate the uncertainty in the calculation of the averaged branching
ratio.

Combining the results in Eqs. (246–248) with the experimental measurements of the
mass of the τ -lepton and the B-meson lifetime and mass we get

|Vub|fB = 0.72± 0.09 MeV from Belle, (249)

= 1.01± 0.14 MeV from BaBar, (250)

= 0.77± 0.12 MeV average, (251)
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which can be used to extract |Vub| using the averages in Eqs. (162), (165) and (168), viz.,

|Vub| = 3.83(14)(48)× 10−3 [B → τντ , Belle], (252)

Nf = 2: |Vub| = 5.37(20)(74)× 10−3 [B → τντ , Babar], (253)

|Vub| = 4.10(15)(64)× 10−3 [B → τντ , average], (254)

|Vub| = 3.75(8)(47)× 10−3 [B → τντ , Belle], (255)

Nf = 2 + 1: |Vub| = 5.26(12)(73)× 10−3 [B → τντ , Babar], (256)

|Vub| = 4.01(9)(63)× 10−3 [B → τντ , average], (257)

|Vub| = 3.79(3)(47)× 10−3 [B → τντ , Belle], (258)

Nf = 2 + 1 + 1: |Vub| = 5.32(4)(74)× 10−3 [B → τντ , Babar], (259)

|Vub| = 4.05(3)(64)× 10−3 [B → τντ , average], (260)

where the first error comes from the uncertainty in fB and the second comes from ex-
periment. The experimental branching fractions do not yet meet the five-sigma discovery
threshold and the relative uncertainties are significantly larger than the radiative elec-
troweak corrections. Therefore, in line with the Particle Data Group [274] and in contrast
to the D(s) decays, we do not include in these results the electroweak corrections.

Let us now turn our attention to semileptonic decays. The experimental value of
|Vub|f+(q2) can be extracted from the measured branching fractions for B0 → π±ℓν or
B± → π0ℓν by applying Eq. (191).59 We then determine |Vub| by performing fits to the
constrained BCL z-parameterization of the form factor f+(q

2) given in Eq. (527). This
can be done in two ways: one option is to perform separate fits to lattice and experimental
results, and extract the value of |Vub| from the ratio of the respective a0 coefficients; a
second option is to perform a simultaneous fit to lattice and experimental data, leaving
their relative normalization |Vub| as a free parameter. We adopt the second strategy,
because it combines the lattice and experimental input in a more efficient way, leading to
a smaller uncertainty on |Vub|.

The available state-of-the-art experimental input consists of five data sets: three un-
tagged measurements by BaBar (6-bin [138] and 12-bin [139]) and Belle [140], all of which
assume isospin symmetry and provide combined B0 → π− and B+ → π0 data; and the
two tagged Belle measurements of B̄0 → π+ (13-bin) and B− → π0 (7-bin) [141]. Includ-
ing all of them, along with the available information about cross-correlations, will allow
us to obtain a meaningful final error estimate.60 The lattice input data set will be that
discussed in Sec. 8.3.

We perform a constrained BCL fit of the vector and scalar form factors (this is nec-
essary in order to take into account the f+(q

2 = 0) = f0(q
2 = 0) constraint) together

with the combined experimental data sets. We find that the error on |Vub| stabilizes
for N+ = N0 = 3. The result of the combined fit is presented in Tab. 51. The fit
has a chi-square per degree of freedom χ2/dof = 116.7/62 = 1.88. Following the PDG
recommendation, we rescale the whole covariance matrix by χ2/dof: the errors on the
z-parameters are increased by

√
χ2/dof = 1.37 and the correlation matrix is unaffected.

The value of |Vub| which we obtain is:

Nf = 2 + 1: |Vub| = (3.61± 0.16)× 10−3

[B → πℓν, FLAG average, Refs. [124–126, 138–141]]. (261)

In Fig. 31, we show both the lattice and experimental data for (1 − q2/m2
B∗)f+(q

2) as

59Since ℓ = e, µ the contribution from the scalar form factor in Eq. (191) is negligible.
60See, e.g., Sec. V.D of Ref. [124] for a detailed discussion.
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B → πℓν (Nf = 2 + 1)

Central Values Correlation Matrix

|Vub| × 103 3.61 (16) 1 −0.812 −0.108 0.128 −0.326 −0.151
a+0 0.425 (15) −0.812 1 −0.188 −0.309 0.409 0.00926

a+1 −0.441 (39) −0.108 −0.188 1 −0.498 −0.0343 0.150

a+2 −0.52 (13) 0.128 −0.309 −0.498 1 −0.190 0.128

a00 0.560 (17) −0.326 0.409 −0.0343 −0.190 1 −0.772
a01 −1.346 (53) −0.151 0.00926 0.150 0.128 −0.772 1

Table 51: Value of |Vub|, coefficients for the N+ = N0 = NT = 3 z-expansion of the
B → π form factors f+ and f0, and their correlation matrix. The chi-square per degree
of freedom is χ2/dof = 116.7/62 = 1.88 and the errors on the fit parameters have been
rescaled by

√
χ2/dof = 1.37. The lattice calculations that enter this fit are taken from

FNAL/MILC 15 [124], RBC/UKQCD 15 [125] and JLQCD 22 [126]. The experimental inputs
are taken from BaBar [138, 139] and Belle [140, 141]. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.2.

a function of z(q2), together with our preferred fit; experimental data has been rescaled
by the resulting value for |Vub|2. It is worth noting the good consistency between the
form-factor shapes from lattice and experimental data. This can be quantified, e.g., by
computing the ratio of the two leading coefficients in the constrained BCL parameteriza-
tion: the fit to lattice form factors yields a+1 /a

+
0 = −1.20(23) (cf. the results presented in

Sec. 8.3.1), while the above lattice+experiment fit yields a+1 /a
+
0 = −1.039(94).

Finally we combine the Nf = 2+1 determinations of |Vub| from B → τν and B → πℓν
in Eqs. (257) and (262) and obtain:

Nf = 2 + 1: |Vub| = (3.63± 0.16)× 10−3

[B → (πℓν, τν), FLAG average,

Refs. [60, 69–72, 124–126, 138–141, 509, 510]]. (262)

Our results are summarized in Tab. 52 and in Fig. 35, where we also show the PDG
inclusive determination |Vub|incl = (4.13±0.12exp±+0.13

−0.14theo
±0.18∆model)×10−3 [274] (the

∆model error has been added in Ref. [274] to account for the spread in results obtained
using different theoretical models).

8.9 Determination of |Vcb|
We now combine the lattice-QCD results for the B → D(∗) form factors with all avail-
able experimental information on B → D(∗)ℓν (ℓ = e, µ) semileptonic decays to obtain
determinations of the CKM matrix element |Vcb| in the Standard Model.

For B → D we perform a joint fit to the available lattice data, i.e., the Nf = 2 + 1
FNAL/MILC 15C [132] and HPQCD 15 [133] calculations discussed in Sec. 8.4, and state-
of-the-art experimental determinations. We combine the Belle measurement [143], which
provides partial integrated decay rates in 10 bins in the recoil parameter w, with the 2010
BaBar data set in Ref. [142], which quotes the value of GB→D(w)ηEW|Vcb| for 10 values
of w.61 The fit is dominated by the more precise Belle data. Given this, and the fact that

61We thank Marcello Rotondo for providing the 10 bins result of the BaBar analysis.
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Figure 31: Lattice and experimental data for fB→π
+ (q2) and fB→π

0 (q2) versus z (left panel)
and q2 (right panel). Experimental data has been rescaled by the value for |Vub| found from
the joint fit. Green symbols denote lattice-QCD points included in the fit, while blue and
indigo points show experimental data divided by the value of |Vub| obtained from the fit. The
grey and orange bands display the preferred N+ = N0 = 3 BCL fit (five z-parameters and
|Vub|).

from |Vub| × 103

FLAG average for Nf = 2 + 1 B → πℓν 3.61(16)
FLAG average for Nf = 2 + 1 B → τν 4.01(64)
FLAG average for Nf = 2 + 1 B → (πℓν, τν) 3.63(16)

FLAG average for Nf = 2 + 1 + 1 B → τν 4.05(64)

PDG 2023 B → Xuℓν 4.13(26)

Table 52: Results for |Vub|. The averages involving B → πℓν and B → τν can be found
in Eqs. (261), (257), (262) and (260); all uncertainties have been added in quadrature. The
inclusive average is taken from PDG [274]. The lattice calculations for the B → π form
factors are taken from Refs. [124–126], for fB at Nf = 2+1 from Refs. [60, 69–72] and for fB
at Nf = 2 + 1 + 1 from Refs. [20, 36, 67, 68].

only partial correlations among systematic uncertainties are to be expected, we will treat
both data sets as uncorrelated.62 The formula for the differential B → Dℓν branching
ratio is given in Eq. (195).

A constrained (N+ = N0 = 3) BCL fit using the same ansatz as for lattice-only data
in Sec. 8.4 yields our average:

Nf = 2 + 1: |Vcb| = 40.0(1.0)× 10−3

[B → Dℓν, FLAG average, Refs. [132, 133, 142, 143]]. (263)

The fit has a chi-square per degree of freedom χ2/dof = 20.0/25 = 0.80. The result of
the full fit, including the correlation matrix between |Vcb| and the BCL coefficients is

62We have checked that results using just one experimental data set are compatible within 1σ. In the case
of BaBar, we have taken into account the introduction of some EW corrections in the data.
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B → Dℓν (Nf = 2 + 1)

Central Values Correlation Matrix

|Vcb| × 103 40.0 (1.0) 1.00 −0.525 −0.339 0.0487 −0.521 −0.433
a+0 0.8946 (94) −0.525 1.00 0.303 −0.351 0.953 0.529

a+1 −8.03 (16) −0.339 0.303 1.00 0.203 0.375 0.876

a+2 50.1 (3.1) 0.0487 −0.351 0.203 1.00 −0.276 0.196

a00 0.7804 (75) −0.521 0.953 0.375 −0.276 1.0 0.502

a01 −3.38 (16) −0.433 0.529 0.876 0.196 0.502 1.0

Table 53: Value of |Vcb|, coefficients for the N+ = N0 z-expansion of the B → D form factors
f+ and f0, and their correlation matrix. The coefficient a02 is fixed by the f+(q

2 = 0) = f0(q
2 =

0) constrain. The chi-square per degree of freedom is χ2/dof = 20.0/25 = 0.80. The lattice
calculations that enter this fit are taken from FNAL/MILC 15C [132] and HPQCD 15 [133].
The experimental inputs are taken from BaBar [142] and Belle [143]. The form factors can
be reconstructed using parameterization and inputs given in Appendix B.3.5.
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Figure 32: Lattice and experimental data for fB→D
+ (q2) and fB→D

0 (q2) versus z (left panel)
and q2 (right panel). Green symbols denote lattice-QCD points included in the fit, while blue
and indigo points show experimental data divided by the value of |Vcb| obtained from the fit.
The grey and orange bands display the preferred N+ = N0 = 3 BCL fit (five z-parameters
and |Vcb|).

presented in Tab. 53 and illustrated in Fig. 32. In passing, we note that, if correlations
between the FNAL/MILC and HPQCD calculations are neglected, the |Vcb| central value
rises to 40.3× 10−3 in nice agreement with the results presented in Ref. [667].

Finally, using the fit results in Tab. 53, we extract a value for R(D) which includes
both lattice and experimental information:

Nf = 2 + 1: R(D)lat+exp = 0.2955(32)

[FLAG average, Refs. [132, 133, 142, 143]]. (264)

Note that we do not need to rescale the uncertainty on R(D)lat+exp because, after the
inclusion of experimental B → Dℓν (ℓ = e, µ) results, the shift in central value caused by
using a different parameterization is negligible (see the discussion above Eq. (224)). For
B → D∗, we perform a joint fit to all available lattice and experimental data. On the
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lattice side, we consider separately the two Nf = 2+1 calculations FNAL/MILC 21 [136]
and JLQCD 23 [137] and the single Nf = 2 + 1 + 1 HPQCD 23 [135] calculation. On
the experimental side, the situation is more complicated because we need to combine the
following results.

• The Belle untagged measurement [144] of the differential B0 → D∗−ℓ+νℓ partial
width.

• The Belle tagged measurement [145] of the normalized differential B → D∗ℓνℓ partial
width (averaged over the B− and B̄0 modes).

• The Belle II tagged measurement [146] of the normalized differential B̄0 → D∗+ℓ−ν̄ℓ
partial width.

• The Belle II tagged branching ratio measurement BR(B̄0 → D∗+ℓ−ν̄ℓ) = (4.922 ±
0.023± 0.220)% [146].

• A modified HFLAV world average for the branching ratio of B̄0 → D∗+ℓ−ν̄ℓ mode
in which the contributions from the Belle untagged [144] (already included in the
differential results we use) and Belle II tagged [147] (superseded by the Belle II
tagged result [146] which we include separately) measurements have been removed.
Using the results from Table 69 of Ref. [148], we calculate BR(B̄0 → D∗+ℓ−ν̄ℓ) =
(5.12± 0.19)% where a PDG rescaling factor 1.36 has been applied.

• The HFLAV world average BR(B− → D∗0ℓ−ν̄ℓ) = (5.58±0.07stat±0.21syst)% [148]
(which is not included in the Belle tagged shape-only measurement).

The theoretical predictions for the differential B → D∗ℓν rate binned over the variables
w, cos θv, cos θl and χ are obtained easily via direct integration of Eq. (210). One small
subtlety is the inclusion of the so-called Coulomb factor (1+απ) for final states involving
two charged particles, i.e., only for BR(B̄0 → D∗+ℓ−ν̄ℓ). Regarding the fit methodology,
we chose not to use any prior nor to impose unitarity constraints on the BGL coefficients.
The Belle untagged analysis [144] presents the data in 10 bins of each kinematical variable;
since the integral over the bins in each of the four distributions are identical, we remove
the last bin in each of the three angular distributions. Moreover, we marginalize over
NB0 , the number of B0 mesons in the data sample, thus properly correlating its impact
over all the distributions and over the electron and muon modes.

The results of this global fit are presented in Tab. 54. The chi-square per degree of
freedom of the two fits are χ2/dof = 216/160 = 1.35 for Nf = 2 + 1 and χ2/dof =
200/148 = 1.35 for Nf = 2+ 1+ 1 (the difference in the degrees of freedom is simply due
to the presence of two sets of lattice synthetic data, each comprised of 12 points, for the
Nf = 2 + 1 case). Note that we have rescaled all the errors by

√
χ2/dof following the

standard PDG recipe. In particular, we find:

Nf = 2 + 1: |Vcb| = 39.23(65)× 10−3

[B → D∗ℓν, FLAG average, Refs. [136, 137, 144–146, 148]] , (265)

Nf = 2 + 1 + 1: |Vcb| = 39.44(89)× 10−3

[B → D∗ℓν, FLAG average, Refs. [135, 144–146, 148]] . (266)

In Fig. 33, we show the form factors obtained from combining lattice and experimental
results. In Fig. 34, we present a comparison of the four normalized differential distributions
extracted from the experimental data, from the individual lattice results and from the
combined lattice plus experiment fit.63 The top (bottom) four panels correspond to
Nf = 2 + 1 (2 + 1 + 1). Direct inspection of these distributions shows quite a good

63For the Belle untagged case [144] we produce the normalized binned distributions by inverting the electron
and muon response matrices and averaging over the leptons. Note that these distributions are presented for
illustrative purpose only.
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B → D∗ (Nf = 2 + 1)

coeff Central Values Correlation Matrix

|Vcb| × 103 39.23(65) 1 −0.3552 −0.1269 −0.6672 −0.3260 0.2331 −0.2412 0.1118 −0.08658

a
g
0 0.03036(72) −0.3552 1 −0.4976 0.3645 −0.0009317 −0.02169 0.1026 −0.02327 −0.09817

a
g
1 −0.083(21) −0.1269 −0.4976 1 0.02961 0.1874 −0.2543 0.08161 −0.03930 0.1177

a
f
0 0.01213(15) −0.6672 0.3645 0.02961 1 −0.08990 0.07897 −0.08767 0.07594 −0.09589

a
f
1 0.0234(64) −0.3260 −0.0009317 0.1874 −0.08990 1 −0.8384 0.4660 −0.2491 0.3552

a
f
2 −0.59(16) 0.2331 −0.02169 −0.2543 0.07897 −0.8384 1 −0.2414 0.07961 −0.2880

a
F1
1 0.00141(97) −0.2412 0.1026 0.08161 −0.08767 0.4660 −0.2414 1 −0.9135 −0.06385

a
F1
2 −0.005(17) 0.1118 −0.02327 −0.03930 0.07594 −0.2491 0.07961 −0.9135 1 0.2820

a
F1
1 −0.093(17) −0.08658 −0.09817 0.1177 −0.09589 0.3552 −0.2880 −0.06385 0.2820 1

B → D∗ (Nf = 2 + 1 + 1)

coeff Central Values Correlation Matrix

|Vcb| × 103 39.44(89) 1 −0.1717 −0.06581 −0.7257 −0.4981 0.4426 −0.2473 0.08156 −0.2155

a
g
0 0.0311(21) −0.1717 1 −0.9267 0.1121 −0.004683 0.1735 0.1230 −0.003372 0.07094

a
g
1 −0.125(75) −0.06581 −0.9267 1 0.09615 0.1018 −0.2899 −0.03844 −0.03789 −0.03009

a
f
0 0.01207(21) −0.7257 0.1121 0.09615 1 0.01430 −0.04137 −0.03342 0.02486 0.07847

a
f
1 0.023(12) −0.4981 −0.004683 0.1018 0.01430 1 −0.9267 0.2522 0.03052 0.3601

a
f
2 −0.55(31) 0.4426 0.1735 −0.2899 −0.04137 −0.9267 1 −0.06981 −0.1655 −0.3503

a
F1
1 0.0016(14) −0.2473 0.1230 −0.03844 −0.03342 0.2522 −0.06981 1 −0.9270 −0.1678

a
F1
2 −0.008(27) 0.08156 −0.003372 −0.03789 0.02486 0.03052 −0.1655 −0.9270 1 0.3148

a
F1
1 −0.090(48) −0.2155 0.07094 −0.03009 0.07847 0.3601 −0.3503 −0.1678 0.3148 1

Table 54: |Vcb|, coefficients and correlation matrix for the (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2)
BGL fit to the B → D∗ form factors g, f , F1 and F2 for Nf = 2+ 1 and Nf = 2+ 1+ 1. The
form factors can be reconstructed using parameterization and inputs given in Appendix B.3.7.

agreement (as already evidenced by the relatively good chi-square per degree of freedom
of the fits) albeit with some tensions in some of the shapes. In particular, the normalized
distributions extracted from Nf = 2 + 1 and Nf = 2 + 1 + 1 results tend to deviate
from the measured ones along similar patterns: deficit at large w, excess at large cos θv,
flatter distribution in cos θℓ. The tensions in the Nf = 2+1+1 are only apparently more
pronounced because of the larger lattice uncertainties.

Finally, using the fit results in Tab. 54, we extract a value for R(D∗) which includes
both lattice and experimental information:

Nf = 2 + 1: R(D∗)lat+exp = 0.2505(11)

[FLAG average, Refs. [136, 137, 144–146, 148]] , (267)

Nf = 2 + 1 + 1: R(D∗)lat+exp = 0.2506(17)

[FLAG average, Refs. [135, 144–146, 148]] . (268)

Before discussing the combination of the above |Vcb| results, we note that the LHCb
Collaboration recently reported the first determination of |Vcb| at the Large Hadron Col-
lider using Bs → D−

s µ
+νµ and Bs → D∗−

s µ+νµ decays [626, 627]. The differential decay
rates, in combination with the Nf = 2 + 1 + 1 HPQCD 19 [134] and HPQCD 19B [639]

lattice results for fBs→Ds
+ and FBs→D∗

s (1), were analyzed using either the CLN or BGL
form-factor parameterizations. The result for |Vcb| from the BGL fit is [627]

Nf = 2 + 1 + 1: |Vcb| = (41.7± 0.8± 0.9± 1.1)× 10−3 [Bs → D(∗)−
s µ+νµ, LHCb] ,

(269)

where the first two uncertainties are the statistical and systematic experimental uncer-
tainties, and the third is due to the external inputs used, including the lattice inputs.

The LHCb analysis used ratios to the reference decay modes B0 → D−µ+νµ and B0 →
D∗−µ+νµ, whose branching fractions are used as input in the form of the Particle Data
Group averages of measurements by other experiments [404]. The result (269) is therefore
correlated with the determinations of |Vcb| from B → D and B → D∗ semileptonic decays.
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Figure 33: The form factors g(q2), f(q2), F1(q
2), and F2(q

2) for B → D∗ℓν plotted as a
function of w. The red (blue) band displays our preferred (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2)
BGL fit (eight parameters) to experimental and Nf = 2 + 1 (2 + 1 + 1) lattice data. The
constraints at zero and maximum recoil are imposed exactly. No use of unitarity constraints
and priors has been made.
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Figure 34: Normalized differential decay rates with respect to the variables w, cos θl, cos θv and
χ. The red (blue) band displays our preferred (Ng, Nf , NF1 , NF2) = (2, 3, 3, 2) BGL fit (eight
parameters) obtained from lattice calculations with (without) the inclusion of experimental
data. The constraints at zero and maximum recoil are imposed exactly. No use of unitarity
constraints and priors has been made. The top and bottom four distributions are obtained
using Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice calculations, respectively.
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from |Vcb| × 103

FLAG average for Nf = 2 + 1 B → D∗ℓν 39.23(65)
FLAG average for Nf = 2 + 1 B → Dℓν 40.0(1.0)
FLAG average for Nf = 2 + 1 B → (D,D∗)ℓν 39.45(56)

FLAG average for Nf = 2 + 1 + 1 B → D∗ℓν 39.44(89)

LHCb result for Nf = 2 + 1 + 1 (BGL) Bs → D
(∗)
s ℓν 41.7(0.8)(0.9)(1.1)

Bordone et al. B → Xcℓν 42.16(51)

Table 55: Results for |Vcb|. The lattice calculations for the B → D form factors at Nf = 2+1
are taken from FNAL/MILC 15 [124], RBC/UKQCD 15 [125] and JLQCD 22 [126]; for the
B → D∗ form factors at Nf = 2 + 1 from FNAL/MILC 21 [136] and JLQCD 23 [137]; for
the B → D∗ form factors at Nf = 2 + 1 + 1 from HPQCD 23 [135]. The LHCb result using

Bs → D
(∗)
s ℓν decays [134, 626, 627, 639], as well as the inclusive average obtained in the

kinetic scheme from Ref. [668] are shown for comparison. In the LHCb result, the first two
uncertainties are the statistical and systematic experimental uncertainties, and the third is
due to the external inputs used, including the lattice inputs.

Given the challenges involved in performing our own fit to the LHCb data, we do not,
at present, include the LHCb results for Bs → D−

s µ
+νµ and Bs → D∗−

s µ+νµ in our
combination of |Vcb|.

We now proceed to combine the two Nf = 2+1 determinations of |Vcb| from exclusive
B → D and B → D∗ semileptonic decays. To this end, we include an estimate the

correlation between the statistical lattice uncertainties on |Vcb|Nf=2+1
B→D (FNAL/MILC and

HPQCD) and |Vcb|Nf=2+1
B→D∗ (FNAL/MILC), because they are based on the same MILC

configurations (albeit on different subsets). An estimate of this correlation is complicated
due to the difficulty of disentangling lattice and experimental sources of uncertainties in
a global BGL fit. Here we follow an approximate procedure which relies on estimating
these correlations by looking at the B → D and B → D∗ form factors at zero recoil,
GB→D(1) and FB→D∗

(1). The inclusion of these correlations has a very small impact on
the average, thus providing an a posteriori justification for this approximate method. We
obtain:

Nf = 2 + 1: |Vcb| = 39.45(56)× 10−3

[B → (D,D∗)ℓν, FLAG average,

Refs. [132, 133, 136, 137, 142–146, 148]]. (270)

Our results are summarized in Tab. 55, which also shows the inclusive determination of
|Vcb| = 42.16(51)× 10−3 [668] for comparison, and are illustrated in Fig. 35.64

64This determination of |Vcb| is also adopted by the PDG [274].
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8.10 Determination of |Vub/Vcb| from Λb decays

In 2015, the LHCb Collaboration reported a measurement of the ratio [649]

RBF(Λb) =

∫ q2max

15 GeV2

dB(Λb → pµ−ν̄µ)
dq2

dq2∫ q2max

7 GeV2

dB(Λb → Λcµ
−ν̄µ)

dq2
dq2

, (271)

which, combined with the lattice QCD prediction from Ref. [494] (Detmold 15) discussed
in Sec. 8.6 yields a determination of |Vub/Vcb|. The LHCb analysis uses the decay Λc →
pKπ to reconstruct the Λc and requires the branching fraction B(Λc → pKπ) of this decay
as an external input. Using the latest world average of B(Λc → pKπ) = (6.28 ± 0.32)%
[225] to update the LHCb measurement gives [308]

RBF(Λb) = (0.92± 0.04± 0.07)× 10−2, (272)

and, combined with the lattice QCD prediction for
ζpµν̄(15GeV2)
ζΛcµν̄(7GeV2)

discussed in Sec. 8.6,

|Vub/Vcb| = 0.079± 0.004 lat. ± 0.004 exp.. (273)

We remind the reader that the lattice calculation for the form factor ratio currently has
a ■ rating; thus we will not use the result in Eq. (273) in the global [Vub, Vcb] fit.

8.11 Determination of |Vub/Vcb| from Bs decays

More recently, LHCb reported the measurements [669]

RBF(Bs, low) =

∫ 7 GeV2

q2min=m
2
µ

dB(Bs → K−µ+νµ)

dq2
dq2

B(Bs → D−
s µ+νµ)

= (1.66± 0.12)× 10−3, (274)

RBF(Bs,high) =

∫ q2max=(mBs−mK)2

7 GeV2

dB(Bs → K−µ+νµ)

dq2
dq2

B(Bs → D−
s µ+νµ)

= (3.25± 0.28)× 10−3, (275)

RBF(Bs, all) =
B(Bs → K−µ+νµ)

B(Bs → D−
s µ+νµ)

= (4.89± 0.33)× 10−3. (276)

Using our average of the Bs → K form factors from lattice QCD as discussed in Sec. 8.3.3,
we obtain the Standard-Model predictions

1

|Vub|2
∫ 7 GeV2

q2min=m
2
µ

dΓ(Bs → K−µ+νµ)

dq2
= (2.51± 0.62) ps−1, (277)

1

|Vub|2
∫ q2max=(mBs−mK)2

7 GeV2

dΓ(Bs → K−µ+νµ)

dq2
= (4.02± 0.51) ps−1, (278)

1

|Vub|2
Γ(Bs → K−µ+νµ) = (6.5± 1.1) ps−1. (279)
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For the denominator, we use the Bs → Ds form factors from Ref. [134] (HPQCD 19),
which yields

1

|Vcb|2
Γ(Bs → D−

s µ
+νµ) = (9.15± 0.37) ps−1. (280)

Since the form factor shape is most reliably constrained by the lattice data only at high-
q2, the most reliable determination of the ratio |Vub/Vcb| is obtained by using LHCb
measurements limited to the high-q2 region. The result which we obtain and which is
used in the combination presented in Sec. 8.12, reads:

|Vub|
|Vcb|

(high) = 0.0861± 0.0057 lat. ± 0.0038 exp. . (281)

For reference, the corresponding CKM ratio obtained at low-q2 and in the whole q2 regions
are, |Vub|/|Vcb|(low) = 0.0779 ± 0.0098 lat. ± 0.0028 exp. and |Vub|/|Vcb|(all) = 0.0828 ±
0.0070 lat. ± 0.0028 exp., respectively.

8.12 Summary: |Vub| and |Vcb|
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Figure 35: Left: Summary of |Vub| determined using: i) the B-meson leptonic decay branching
fraction, B(B− → τ−ν̄), measured at the Belle and BaBar experiments, and our averages for
fB from lattice QCD; and ii) the various measurements of the B → πℓν decay rates by Belle
and BaBar, and our averages for lattice determinations of the relevant vector form factor
f+(q

2). The inclusive result is taken from PDG [274]. Right: Same for determinations of |Vcb|
using semileptonic decays. The inclusive result is taken from Ref. [668].

In Fig. 36, we present a summary of determinations of |Vub| and |Vcb| from B →
(π,D(∗))ℓν, Bs → (K,Ds)ℓν (high q2 only), B → τν and Λb → (p,Λc)ℓν, as well as
the results from inclusive B → Xu,cℓν decays. Currently, the determinations of Vcb from
B → D∗ and B → D decays are quite compatible; however, a sizeable tension involving
the extraction of Vcb from inclusive decays remains. Note that constraints on |Vub/Vcb|
from baryon modes are displayed but, in view of the rating in Tab. 49, are not included in
the global fit. As discussed in Sec. 8.9, experimental inputs used in the extraction of |Vcb|
from Bs → D

(∗)
s ℓν decays [626, 627] given in Eq. (269) are highly correlated with those

entering the global (|Vub|, |Vcb|) fit described in this section. Given these correlations and

180



the challenges in reproducing the LHCb analysis, for the time being we do not include
the result Eq. (269) into the global fit.

In the globlal fit we include an estimate of the correlations between the |Vub| and
|Vcb| determinations from semileptonic B decays. We conservatively assume 100% corre-
lation between the statistical lattice uncertainties on (1) |Vub| (FNAL/MILC), |Vcb|B→D

(FNAL/MILC and HPQCD) and |Vcb|B→D∗ (FNAL/MILC) and (2) |Vub| (JLQCD) and
|Vcb|B→D (JLQCD). Due to the difficulty of disentangling statistical lattice uncertainties
in the three BGL fits for B → (π,D,D∗), we follow the same approximate procedure
described at the end of Sec. 8.9 and estimate the correlations by looking at the zero-recoil
form factors f+(0), FB→D(1) and FB→D∗

(1). The results of the fit are

|Vcb| = 39.46(53)× 10−3 , (282)

|Vub| = 3.60(14)× 10−3 , (283)

p−value = 0.66 , (284)

with a 0.36 correlation coefficient. For reference, the fit without the inclusion of any
correlation between the various lattice calculations yield |Vcb| = 39.50(51)× 10−3, |Vub| =
3.60(13) × 10−3 with a 0.09 correlation coefficient (the latter does not vanish because of
the inclusion of |Vub/Vcb| from Bs → (K,Ds)ℓν decays).

The inclusive determinations read |Vcb|incl = (42.16±0.51)×10−3 [670] and |Vub|incl =
(4.13± 0.12exp ± +0.13

−0.14theo
± 0.18∆model)× 10−3 [274].
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Figure 36: Summary of |Vub| and |Vcb| determinations. The black solid and dashed lines
correspond to 68% and 95% C.L. contours, respectively. The result of the global fit

(which does not include |Vub/Vcb| from baryon modes nor |Vcb| from Bs → D
(∗)
s ℓν) is

(|Vcb|, |Vub|) = (39.46 ± 0.53, 3.60 ± 0.14) × 10−3 with a p-value of 0.66. The lattice and
experimental results that contribute to the various contours are the following. B → πℓν:
lattice (FNAL/MILC 15 [124], RBC/UKQCD 15 [125], and JLQCD 22 [126]) and experi-
ment (BaBar [138, 139] and Belle [140, 141]). B → Dℓν: lattice (FNAL/MILC 15C [132]
and HPQCD 15 [133]) and experiment (BaBar [142] and Belle [143]). B → D∗ℓν: lattice
(FNAL/MILC 21 [136], JLQCD 23 [137], HPQCD 23 [135]) and experiment (Belle [144, 145],
Belle II [146], HFLAV [148]). B → τν: lattice (Nf = 2 + 1 + 1 determination of
fB in Eq. (168) [20, 36, 67, 68]) and experiment (BaBar [510] and Belle [509]). Bs →
Kℓν/Bs → Dsℓν: lattice (HPQCD 14 [127], RBC/UKQCD 23 [128], FNAL/MILC 19 [586],
HPQCD 19 [134]) and experiment (LHCb [669]). Λb → pℓν/Λb → Λcℓν: lattice
(Detmold 15 [494]) and experiment (LHCb [649]). Bs → D∗

sℓν/Bs → Dsℓν: lattice
(HPQCD 19 [134] and HPQCD 19B [639]) and experiment (LHCb [626, 627]). The in-
clusive determinations are taken from Refs. [225, 308, 668] and read (|Vcb|, |Vub|)incl =
(42.16± 0.51, 4.13± 0.26)× 10−3.
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9 The strong coupling αs

Authors : L. Del Debbio, P. Petreczky, S. Sint

9.1 Introduction

The strong coupling αs(µ) = ḡs(µ)
2/(4π) defined at scale µ, is the parameter that deter-

mines the strength of strong interactions in the Standard Model. It plays a key role in
the understanding of QCD and in its application to collider physics, where it is ubiqui-
tous in calculations of physical processes, e.g., at the LHC. For example, the parametric
uncertainty from αs is one of the dominant sources of uncertainty in the Standard Model
predictions for the Higgs boson [671] and top quark cross sections, see, e.g., Ref. [672].
In order to fully exploit the experimental results that will be collected during the high-
luminosity run of the LHC in the near future, it is mandatory to reduce the uncertainty
on αs below 1%. Similarly, high-accuracy determinations of this coupling will help in
understanding the stability of the vacuum of the Standard Model and will yield one of the
essential boundary conditions for completions of the Standard Model at high energies [673–
680]. At this level of precision, it becomes imperative to have a robust understanding of
systematic errors. Lattice simulations are ideally placed to play a central role in this
quest. In the following we try to summarize the main features of the lattice approach in
a way that we hope is understandable by nonexperts. For recent, complementary review
articles, we refer the reader to Refs. [681, 682].

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2s(µ)

4π
, (285)

we should first “measure” a short-distance quantity Q at scale µ either experimentally
or by lattice calculations, and then match it to a perturbative expansion in terms of a
running coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ) + c2αMS(µ)
2 + · · · . (286)

We note that in some cases also a lowest-order constant term, c0, may be present; in
the following, we always assume that such a term has been subtracted on both sides
and absorbed in a re-definition of Q(µ). We distinguish between phenomenological and
lattice determinations of αs, the essential difference being the origin of the values of Q in
Eq. (286). The basis of phenomenological determinations are experimentally measurable
cross sections or decay widths from which Q is defined. These cross sections have to be
sufficiently inclusive and at sufficiently high scales such that perturbation theory can be
applied. Often hadronization corrections have to be used to connect the observed hadronic
cross sections to the perturbative ones. Experimental data at high µ, where perturbation
theory is progressively more precise, usually have increasing experimental errors, not least
due to the very smallness of αs(µ). Hence, it is not easy to find processes that allow one to
follow the µ-dependence of a single Q(µ) over a range where αs(µ) changes significantly
and precision is maintained. Note also that determinations of αs from experimental
data at hadron colliders necessarily require a simultaneous fit of the Parton Distribution
Functions (PDFs) [683], making the whole procedure more complicated and prone to
systematic errors.

In contrast, in lattice gauge theory, one can design Q(µ) Euclidean short-distance
quantities that are not directly related to experimental observables. This allows us to
follow the µ-dependence until the perturbative regime is reached and nonperturbative
“corrections” are negligible. The only experimental input for lattice computations of αs
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are the masses or decay constants of hadrons, which fixes the overall energy scale of the
theory and the quark masses. Therefore, experimental errors are completely negligible
and issues such as hadronization do not occur. We can construct many short-distance
quantities that are easy to calculate nonperturbatively in lattice simulations with small
statistical uncertainties. We can also simulate at parameter values that do not exist
in nature (for example, with unphysical quark masses between bottom and charm) to
help control systematic uncertainties. These features mean that precise results for αs
can be achieved with lattice-gauge-theory computations. Further, as in phenomenological
determinations, the different methods available to determine αs in lattice calculations
with different associated systematic uncertainties enable valuable cross-checks. Practical
limitations are discussed in the next section, but a simple one is worth mentioning here.
Experimental results (and therefore the phenomenological determinations) of course have
all quarks present, while in lattice gauge theories in practice only the lighter ones are
included and one is then forced to use the matching at thresholds, as discussed in the
following subsection.

It is important to keep in mind that the dominant source of uncertainty in most
present day lattice-QCD calculations of αs are from the truncation of continuum/lattice
perturbation theory and from discretization errors. Perturbative truncation errors are
of particular concern because they often cannot easily be estimated from studying the
data itself. Perturbation theory provides an asymptotic series and the size of higher-order
coefficients can sometimes turn out to be larger than suggested by naive expectations
based on power counting from the behaviour of lower-order terms. We note that per-
turbative truncation errors are also the dominant source of uncertainty in several of the
phenomenological determinations of αs.

The various phenomenological approaches to determining the running coupling con-

stant, α
(5)

MS
(MZ) are summarized by the Particle Data Group [225]. The PDG review lists

five categories of phenomenological results used to obtain the running coupling: using
hadronic τ decays, hadronic final states of e+e− annihilation, deep inelastic lepton–nucleon
scattering, electroweak precision data, and high-energy hadron-collider data. Excluding
lattice results, the PDG, in their most recent update [274], quotes the weighted average
as

α
(5)

MS
(MZ) = 0.1175(10) , PDG 2024 [274] (287)

compared to α
(5)

MS
(MZ) = 0.1176(11) of the older PDG 2020 [225]. For a general overview

of the various phenomenological and lattice approaches see, e.g., Ref. [672]. The extraction
of αs from τ data, which is one of the most precise and thus has a large impact on
the nonlattice average in Eq. (287), is especially sensitive to the treatment of higher-
order perturbative terms as well as the treatment of nonperturbative effects. This is

important to keep in mind when comparing our chosen range for α
(5)

MS
(MZ) from lattice

determinations in Eq. (402) with the nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of αs and ΛQCD

Despite the fact that the notion of the QCD coupling is initially a perturbative concept,
the associated Λ-parameter is nonperturbatively defined,

Λ ≡ µφs(ḡs(µ)),

φs(ḡs) = (b0ḡ
2
s)

−b1/(2b20)e−1/(2b0ḡ
2
s) exp

[
−
∫ ḡs

0

dx

(
1

β(x)
+

1

b0x3
− b1
b20x

)]
,

(288)
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provided that β(ḡs) = µ∂ḡs(µ)∂µ is the full renormalization group function in the (mass-

independent) scheme which defines ḡs. The first two coefficients, b0 and b1, in the pertur-
bative expansion

β(x) ∼ −b0x3 − b1x5 + . . . , (289)

are scheme-independent (“universal”) and given by

b0 =
1

(4π)2

(
11− 2

3
Nf

)
, b1 =

1

(4π)4

(
102− 38

3
Nf

)
. (290)

In the MS scheme, the coefficients of the β-function have been calculated up to 5-loop
order, i.e., b2, b3 and b4 are known [241, 684–687].

As a renormalization-group-invariant quantity, the Λ-parameter is µ-independent.
However, it does depend on the renormalization scheme albeit in an exactly computable
way: A perturbative change of the coupling from one mass-independent scheme S to
another (taken here to be the MS scheme) takes the form

g2
MS

(µ) = g2S(µ)(1 + c(1)g g2S(µ) + . . .) , (291)

where c
(i)
g , i ≥ 1 are finite coefficients. Performing this change in the expression for the

Λ-parameter at a large scale µ, so that higher-order terms can be neglected, one obtains
the exact relation between the respective Λ-parameters of the two schemes,

ΛMS = ΛS exp
[
c(1)g /(2b0)

]
. (292)

Note that this exact relation allows us to nonperturbatively define ΛMS, by starting from

any nonperturbatively defined scheme S for which c
(1)
g is known. Given the high-order

knowledge (5-loop by now) of βMS then means that the errors in αMS(mZ) correspond
almost completely with the errors of ΛS . We will therefore mostly discuss them in that
way. Starting from Eq. (288), we have to consider (i) the error of ḡ2S(µ) (denoted as(
∆Λ
Λ

)
∆αS

) and (ii) the truncation error in βS (denoted as
(
∆Λ
Λ

)
trunc

). Concerning (ii),

note that knowledge of c
(nl)
g for the scheme S means that βS is known to nl+1 loop order;

bnl
is known. We thus see that in the region where perturbation theory can be applied,

the following errors of ΛS (or consequently ΛMS) have to be considered(
∆Λ

Λ

)
∆αS

=
∆αS(µ)

8πb0α2
S(µ)

× [1 +O(αS(µ))] , (293)(
∆Λ

Λ

)
trunc

= kαnl

S (µ) +O(αnl+1
S (µ)) , (294)

where the pre-factor k depends on bnl+1 and in typical good schemes such as MS it is
numerically of order one. Statistical and systematic errors such as discretization effects
contribute to ∆αS(µ). In the above we dropped a scheme subscript for the Λ-parameters
because of Eq. (292).

By convention αMS is usually quoted at a scale µ =MZ where the appropriate effective

coupling is the one in the five-flavour theory: α
(5)

MS
(MZ). In order to obtain it from a result

with fewer flavours, one connects effective theories with different number of flavours as
discussed by Bernreuther and Wetzel [688]. For example, one considers the MS scheme,
matches the 3-flavour theory to the four-flavour theory at a scale given by the charm-quark
mass [689–691], runs with the 5-loop β-function [241, 684–687] of the four-flavour theory
to a scale given by the b-quark mass, and there matches to the five-flavour theory, after
which one runs up to µ =MZ with the five-loop β-function. For the matching relation at

185



a given quark threshold we use the mass m⋆ which satisfies m⋆ = m
(Nf )

MS
(m⋆), where m is

the running mass (analogous to the running coupling). Then

ḡ2Nf−1(m⋆) = ḡ2Nf
(m⋆)× [1 + 0× ḡ2Nf

(m⋆) +
∑
n≥2

tn ḡ
2n
Nf

(m⋆)] (295)

with [689, 691, 692]

t2 =
1

(4π2)2
11

72
, (296)

t3 =
1

(4π2)3

[
−82043

27648
ζ3 +

564731

124416
− 2633

31104
(Nf − 1)

]
, (297)

t4 =
1

(4π2)4
[
5.170347− 1.009932(Nf − 1)− 0.021978 (Nf − 1)2

]
, (298)

(where ζ3 is the Riemann zeta-function) provides the matching at the thresholds in the
MS scheme. Often the software packages RunDec [693, 694] or the more recent one,
REvolver [695], are used for quark-threshold matching and running in the MS-scheme.

While t2, t3, t4 are numerically small coefficients, the charm-threshold scale is also
relatively low and so there are nonperturbative uncertainties in the matching procedure,
which are difficult to estimate but which we assume here to be negligible. This is sup-
ported by nonperturbative tests [200], where perturbative decoupling relations in the MS
scheme were shown to quantitatively describe decoupling at the few permille level, down
to the charm-quark region. Obviously there is no perturbative matching formula across
the strange “threshold”; here matching is entirely nonperturbative. Model-dependent ex-
trapolations of ḡ2Nf

from Nf = 0, 2 to Nf = 3 were done in the early days of lattice gauge
theory. We will include these in our listings of results but not in our estimates, since such
extrapolations are based on untestable assumptions.

9.1.2 Overview of the review of αs

We begin by explaining lattice-specific difficulties in Sec. 9.2.1 and the FLAG criteria
designed to assess whether the associated systematic uncertainties can be controlled and
estimated in a reasonable manner. These criteria remain unchanged since the FLAG 19
report, as there has still not been sufficiently broad progress to make them more stringent.
However, in this report we have implemented a systematic scale variation to help assess
systematic errors due to the truncation of the perturbative series. Scale variations are
widely used in phenomenology and its application to lattice determinations has been
advocated in Ref. [681]. We explain the procedure at the end of this introduction and,
where possible, we will quote corresponding results.

We then discuss, in Sec. 9.3 – Sec. 9.9, the various lattice approaches and results from
calculations with Nf = 0, 2, 2+1, and 2+1+1 flavours. For lattice approaches with neither
a new result nor a result passing all FLAG criteria, we refer to the discussion in previous
FLAG reports. In particular, this regards determinations of αs from QCD vertices and
from the eigenvalue spectrum of the Dirac operator.

Since FLAG 21, the strategy of nonperturbative renormalization by decoupling, as
introduced by the ALPHA collaboration in Ref. [696], produced a new result for αs. It is
important to realize that this method shifts the perspective on results for the Λ-parameter
with unphysical flavour numbers, in particular for Nf = 0: Such results can be related to
Nf > 0 results by a nonperturbative matching calculation. We therefore made an effort
to review Nf = 0 results, some of which are now over 20 years old. In particular, we also
included a new section on the gradient-flow (GF) coupling in infinite space-time volume,
even though only results for Nf = 0 exist at the moment.
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After the discussion of the various lattice methods, we proceed, in Sec. 9.10, with the

averages together with our best estimates for α
(5)

MS
. These are currently determined from

three- and four-flavour QCD simulations only, however, with the decoupling result also
relying on the Nf = 0 Λ-parameter as input. Therefore, we discuss results for the Nf = 0
Λ-parameter in some detail, in addition to the physical cases with Nf = 3, 4 and 5, where
the latter is derived from Nf = 3 and 4 results by the standard perturbative evolution
across the bottom-quark threshold.

9.1.3 Additions with respect to the FLAG 21 report

Since the FLAG 21 report there were two new papers on Nf = 3:

Petreczky 20 [81] from heavy-quark current two-point functions (Sec. 9.8).

ALPHA 22 [80] from the decoupling method (Sec. 9.4).

In Nf = 0 QCD, there are a number of additional works:

Bribian 21 [697], from step-scaling with the twisted periodic gradient-flow coupling
(Sec. 9.3).

Hasenfratz 23 [698] and Wong 23 [699] from the GF scheme in infinite volume
(Sec. 9.9)

Chimirri 23 [700] from heavy-quark current two-point functions (Sec. 9.8)

Brambilla 23 [197], from the force between static quarks (Sec. 9.5)

9.2 General issues

9.2.1 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of αs published in peer-reviewed journals,
and that use NNLO or higher-order perturbative expansions, to obtain our final range in
Sec. 9.10. We also, however, introduce further criteria designed to assess the ability to
control important systematics, which we describe here. Some of these criteria, e.g., that
for the continuum extrapolation, are associated with lattice-specific systematics and have
no continuum analogue. Other criteria, e.g., that for the renormalization scale, could in
principle be applied to nonlattice determinations. Expecting that lattice calculations will
continue to improve significantly in the near future, our goal in reviewing the state-of-
the-art here is to be conservative and avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical ampli-
tudes or Euclidean correlation functions which are free from UV and IR divergences and
have a well-defined continuum limit. Examples include the force between static quarks
and two-point functions of quark-bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns obtaining the scale µ in
physical units (GeV), given its value, aµ, in lattice units. Ideally one compares the lattice
result for some hadron mass aMhad with the known experimental result for Mhad to
determine a and thus µ in physical units. Alternatively, convenient intermediate scales
such as

√
t0, w0, r0, r1, [115, 365, 701, 702] can be used if their relation to an experimental

dimensionful observable is established. For more details we refer to Sec. 11 on scale setting
in this FLAG report. The low-energy scale µ needs to be computed at the same lattice
spacings (i.e., the same bare couplings) where Q is determined, at least as long as one
does not use the step-scaling method (see below). This induces a practical difficulty given
present computing resources. In the determination of the low-energy reference scale the
volume needs to be large enough to avoid finite-size effects. On the other hand, in order
for the perturbative expansion of Eq. (286) to be reliable, one has to reach sufficiently high
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values of µ, i.e., short enough distances. To avoid uncontrollable discretization effects the
lattice spacing a has to be accordingly small. This means

L≫ hadron size ∼ Λ−1
QCD and 1/a≫ µ , (299)

(where L is the box size) and therefore

L/a≫ µ/ΛQCD . (300)

The currently available computer power, however, limits L/a, typically to L/a = 32− 96.
Unless one accepts compromises in controlling discretization errors or finite-size effects,
this means one needs to set the scale µ according to

µ≪ L/a× ΛQCD ∼ 10− 30GeV . (301)

(Here ≪ or ≫ means at least one order of magnitude smaller or larger.) Therefore, µ
can be 1 − 3GeV at most. This raises the concern whether the asymptotic perturbative
expansion truncated at 1-loop, 2-loop, or 3-loop in Eq. (286) is sufficiently accurate.
There is a finite-size scaling method, usually called step-scaling method, which solves this
problem by identifying µ = 1/L in the definition of Q(µ), see Sec. 9.3.

For the second step after setting the scale µ in physical units (GeV), one should
compute Q on the lattice, Qlat(a, µ) for several lattice spacings and take the continuum
limit to obtain the left hand side of Eq. (286) as

Q(µ) ≡ lim
a→0
Qlat(a, µ) with µ fixed . (302)

This is necessary to remove the discretization error.
Here it is assumed that the quantity Q has a continuum limit, which is regularization-

independent. The method discussed in Sec. 9.7, which is based on the perturbative expan-
sion of a lattice-regulated, divergent short-distance quantityWlat(a) differs in this respect
and must be treated separately.

In summary, a controlled determination of αs needs to satisfy the following:

1. The determination of αs is based on a comparison of a short-distance quantity Q
at scale µ with a well-defined continuum limit without UV and IR divergences to a
perturbative expansion formula in Eq. (286).

2. The scale µ is large enough so that the perturbative expansion in Eq. (286) is precise
to the order at which it is truncated, i.e., it has good asymptotic convergence.

3. IfQ is defined by physical quantities in infinite volume, one needs to satisfy Eq. (300).

4. Nonuniversal quantities, i.e., quantities that depend on the chosen lattice regular-
ization and do not have a nontrivial continuum limit need a separate discussion, see
Sec. 9.7.

Conditions 2. and 3. give approximate lower and upper bounds for µ respectively. It
is important to see whether there is a window to satisfy 2. and 3. at the same time. If
it exists, it remains to examine whether a particular lattice calculation is done inside the
window or not.

Obviously, an important issue for the reliability of a calculation is whether the scale
µ that can be reached lies in a regime where perturbation theory can be applied with
confidence. However, the value of µ does not provide an unambiguous criterion. For
instance, the Schrödinger Functional, or SF coupling (Sec. 9.3) is conventionally taken at
the scale µ = 1/L, but one could also choose µ = 2/L. Instead of µ we therefore define
an effective αeff . For schemes such as SF (see Sec. 9.3) or qq (see Sec. 9.5) this is directly
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the coupling of the scheme. For other schemes such as the vacuum polarization we use
the perturbative expansion Eq. (286) for the observable Q to define

αeff = Q/c1 . (303)

As mentioned earlier, if there is an αs-independent term it should first be subtracted.
Note that this is nothing but defining an effective, regularization-independent coupling, a
physical renormalization scheme. For ease of notation, here and in what follows we denote
by αs the coupling αMS(µ) that appears in Eq. (286).

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder Rn(Q) = Q−

∑
i≤n ciα

i
s of a truncated perturbative

expression Q ∼∑i≤n ciα
i
s cannot just be estimated as a perturbative error k αn+1

s . The
error is nonperturbative. Often one speaks of “nonperturbative contributions”, but non-
perturbative and perturbative cannot be strictly separated due to the asymptotic nature
of the series (see, e.g., Ref. [703]).

Still, we do have some general ideas concerning the size of nonperturbative effects.
The known ones such as instantons or renormalons decay for large µ like inverse powers
of µ and are thus roughly of the form

exp(−γ/αs) , (304)

with some positive constant γ. Thus we have, loosely speaking,

Q = c1αs + c2α
2
s + . . .+ cnα

n
s +O(αn+1

s ) +O(exp(−γ/αs)) . (305)

For small αs, the exp(−γ/αs) is negligible. Similarly the perturbative estimate for the
magnitude of relative errors in Eq. (305) is small; as an illustration for n = 3 and αs = 0.2
the relative error is ∼ 0.8% (assuming coefficients |cn+1/c1| ∼ 1).

For larger values of αs nonperturbative effects can become significant in Eq. (305). An
instructive example comes from the values obtained from τ decays, for which αs ≈ 0.3.
Here, different applications of perturbation theory (fixed order and contour improved) each
look reasonably asymptotically convergent but the difference does not seem to decrease
much with the order (see, e.g., the contribution by Pich to Ref. [704]; see, however, also
the discussion in Refs. [705, 706]). In addition, nonperturbative terms in the spectral
function may be nonnegligible even after the integration up to mτ (see, e.g., Refs. [707],
[708]). All of this is because αs is not really small.

Since the size of the nonperturbative effects is very hard to estimate one should try
to avoid such regions of the coupling. In a fully controlled computation one would like
to verify the perturbative behaviour by changing αs over a significant range instead of
estimating the errors as ∼ αn+1

s . Some computations try to take nonperturbative power
‘corrections’ to the perturbative series into account by including such terms in a fit to the
µ-dependence. We note that this is a delicate procedure, as a term like, e.g., αs(µ)

3 is
hard to distinguish from a 1/µ2 term when the µ-range is restricted and statistical and
systematic errors are present. We consider it safer to restrict the fit range to the region
where the power corrections are negligible compared to the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination
of αs:

• Renormalization scale

⋆ all data points relevant in the analysis have αeff < 0.2

◦ all data points have αeff < 0.4 and at least one αeff ≤ 0.25

■ otherwise

• Perturbative behaviour
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⋆ verified over a range of a factor 4 change in αnl

eff without power corrections or
alternatively αnl

eff ≤ 1
2∆αeff/(8πb0α

2
eff) is reached

◦ agreement with perturbation theory over a range of a factor (3/2)2 in αnl

eff

possibly fitting with power corrections or alternatively αnl

eff ≤ ∆αeff/(8πb0α
2
eff)

is reached

■ otherwise

Here ∆αeff is the accuracy cited for the determination of αeff and nl is the loop order
to which the connection of αeff to the MS scheme is known. Recall the discussion
around Eqs. (293,294); the β-function of αeff is then known to (nl+1)-loop order.65

• Continuum extrapolation

At a reference point of αeff = 0.3 (or less) we require

⋆ three lattice spacings with µa < 1/2 and full O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and 2-loop O(a) improvement,
or µa ≤ 1/8 and 1-loop O(a) improvement

◦ three lattice spacings with µa < 3/2 reaching down to µa = 1 and full O(a)
improvement,
or three lattice spacings with µa ≤ 1/4 and 1-loop O(a) improvement

■ otherwise

In addition to the above criteria we have looked at scale variations as a general means to
assess perturbative behaviour (cf. subsection below). Continuum extrapolations are often
not the primary concern in determinations of αs. Where appropriate we will evaluate the
new FLAG data-driven criterion, by which the distance of the data to the continuum-
extrapolated value is measured in units of the quoted error. If the observable is Q(a) with
an extrapolated continum value Q(0)±∆Q we look at the size of

δmin =
|Q(0)−Q(amin)|

∆Q
. (306)

Some scepticism is warranted if δmin exceeds 3 or so, although there may be cases where
this can be justified. While we keep the core FLAG criteria unchanged, our general
assessment will be informed by these measures.

We also need to specify what is meant by µ. Here are our choices:

step scaling : µ = 1/L ,

heavy quark-antiquark potential : µ = 2/r ,

observables in position space : µ = 1/|x| ,
observables in momentum space : µ = q ,

moments of heavy-quark currents : µ = 2mc ,

Gradient-Flow (GF) scheme in infinite volume : µ = 1/
√
8t , (307)

where |x| is the Euclidean norm of the four-vector x, q is the magnitude of the momentum,
mc is the heavy-quark mass (in the MS scheme with Nf quarks, including the heavy-
quark flavour) and usually taken around the charm-quark mass. The parameter t denotes
the gradient-flow time. We note again that the above criteria cannot be applied when

65Once one is in the perturbative region with αeff , the error in extracting the Λ-parameter due to the
truncation of perturbation theory scales like α

nl
eff , as discussed around Eq. (294). In order to detect/control

such corrections properly, one needs to change the correction term significantly; we require a factor of four for
a ⋆ and a factor (3/2)2 for a ◦ . An exception to the above is the situation where the correction terms are
small anyway, i.e., α

nl
eff ≈ (∆Λ/Λ)trunc < (∆Λ/Λ)∆α ≈ ∆αeff/(8πb0α

2
eff) is reached.
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regularization-dependent quantities Wlat(a) are used instead of Q(µ). These cases are
specifically discussed in Sec. 9.7.

In principle one should also account for electro-weak radiative corrections. However,
both in the determination of αs at intermediate scales µ and in the running to high scales,
we expect electro-weak effects to be much smaller than the presently reached precision.
Such effects are therefore not further discussed.

The attentive reader will have noticed that bounds such as µa < 3/2 or at least
one value of αeff ≤ 0.25 which we require for a ◦ are not very stringent. There is a
considerable difference between ◦ and ⋆. We have chosen the above bounds, unchanged
since FLAG 16, as not too many current computations would satisfy more stringent ones.
Nevertheless, we believe that the ◦ criteria already give reasonable bases for estimates
of systematic errors. An exception may be Cali 20 [84], which is discussed in detail in
Sec. 9.6.

In anticipation of future changes of the criteria, we expect that we will be able to
tighten our criteria for inclusion in the average, and that many more computations will
reach the present ⋆ rating in one or more categories.

In addition to our explicit criteria, the following effects may influence the precision of
results:

Topology sampling: In principle a good way to improve the quality of determinations
of αs is to push to very small lattice spacings thus enabling large µ. It is known that
the sampling of field space becomes very difficult for the HMC algorithm when the lattice
spacing is small and one has the standard periodic boundary conditions. In practice, for
all known discretizations the topological charge slows down dramatically for a ≈ 0.05 fm
and smaller [117, 153, 156–160]. Open boundary conditions solve the problem [161] but
are not frequently used. Since the effect of the freezing on short-distance observables is
not known, we also do need to pay attention to this issue. Remarks are added in the text
when appropriate.

Quark-mass effects: We assume that effects of the finite masses of the light quarks
(including strange) are negligible in the effective coupling itself where large, perturbative,
µ is considered.

Scale setting: The scale does not need to be very precise, since using the lowest-order
β-function shows that a 3% error in the scale determination corresponds to a ∼ 0.5%
error in αs(MZ). Since the errors of scale determinations are now typically at the 1-2
percent level or better, the corresponding error in αs(MZ) will remain subdominant for
the foreseeable futre.

Other limits/extrapolations: Besides the continuum limit and the infinite-volume ex-
trapolation of hadronic observables, further limits may be required, depending on the
method employed. An obvious case is the large-mass extrapolation in the decoupling
method. While in this case, an effective theory can be deployed to derive plausible fit
functions, this is less clear in other cases. An example is the infinite space-time volume
extrapolation in the GF scheme, which is needed to make contact with the available per-
turbative calculations. One would expect the volume dependence to be quite different
at low and high energies, and there may be a complicated intermediate regime. System-
atic uncertainties are then much harder to quantify and our approach necessarily is on a
case-by-case basis. Data-driven criteria like the new FLAG continuum-limit criterion are
considered, however, these may fail if the data does not sufficiently overlap with the true
(and possibly unknown) asymptotic regime.

9.2.2 Physical scale

Since FLAG 19, a new FLAG working group on scale setting has been established. We
refer to Sec. 11 for definitions and the current status. Note that the error from scale
setting is sub-dominant for current αs determinations.
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A popular scale choice has been the intermediate r0 scale, and its variant r1, which
both derive from the force between static quarks, see Eq. (338). One should bear in mind
that their determination from physical observables also has to be taken into account. The
phenomenological value of r0 was originally determined as r0 ≈ 0.49 fm through potential
models describing quarkonia [701]. Of course the quantity is precisely defined, indepen-
dently of such model considerations. But a lattice computation with the correct sea-quark
content is needed to determine a completely sharp value. When the quark content is not
quite realistic, the value of r0 may depend to some extent on which experimental input is
used to determine (actually define) it.

The latest determinations from two-flavour QCD are r0 = 0.420(14)–0.450(14) fm by
the ETM collaboration [190, 709], using as input fπ and fK and carrying out various
continuum extrapolations. On the other hand, the ALPHA collaboration [710] deter-
mined r0 = 0.503(10) fm with input from fK , and the QCDSF collaboration [711] cites
0.501(10)(11) fm from the mass of the nucleon (no continuum limit). Recent determina-
tions from three-flavour QCD are consistent with r1 = 0.313(3) fm and r0 = 0.472(5) fm
[47, 122, 712]. Due to the uncertainty in these estimates, and as many results are based
directly on r0 to set the scale, we shall often give both the dimensionless number r0ΛMS,
as well as ΛMS. In the cases where no physical r0 scale is given in the original papers or
we convert to the r0 scale, we use the value r0 = 0.472 fm. In case r1ΛMS is given in the
publications, we use r0/r1 = 1.508 [712], to convert, which remains well consistent with
the update [117] neglecting the error on this ratio. In some, mostly early, computations
the string tension,

√
σ was used. We convert to r0 using r20σ = 1.65 − π/12, which has

been shown to be an excellent approximation in the relevant pure gauge theory [713, 714].
The more recent gradient-flow scales t0, w0 are very attractive alternatives to r0, as

their determination is much simpler within a given simulation and most collaborations
quote their values. The main downside are potentially large cutoff effects. We intend
to transition from r0 to t0. In this report we start by reporting Nf = 0 results both
with r0 and with

√
8t0, where we use as conversion factor the central value of

√
8t0/r0 =

0.9435(97) from Dalla Brida 19 [696]. A general discussion of the various scales is given
in the scale-setting section of this FLAG report, cf. Sec. 11.

9.2.3 Studies of truncation errors of perturbation theory

As discussed previously, we have to determine αs in a region where the perturbative
expansion for the β-function, Eq. (289) in the integral Eq. (288), is reliable. In principle
this must be checked, and is difficult to achieve as we need to reach up to a sufficiently high
scale. A recipe routinely used to estimate the size of truncation errors of the perturbative
series is to study the dependence on the renormalization scale of an observable evaluated at
a fixed order in the coupling, as the renormalization scale is varied around some ‘optimal’
scale µ∗, from µ = µ∗/2 to 2µ∗. For examples, see Ref. [681].

Alternatively, or in addition, the renormalization scheme chosen can be varied, which
investigates the perturbative conversion of the chosen scheme to the perturbatively defined
MS scheme and in particular ‘fastest apparent convergence’ when the ‘optimal’ scale is
chosen so that the O(α2

s) coefficient vanishes.
The ALPHA collaboration in Ref. [715] and ALPHA 17 [716], within the SF approach

defined a set of ν-schemes for which the 3-loop (scheme-dependent) coefficient of the β-
function for Nf = 2+1 flavours was computed to be bν2 = −(0.064(27)+1.259(1)ν)/(4π)3.

The standard SF scheme has ν = 0. For comparison, bMS
2 = 0.324/(4π)3. A range of scales

from about 4GeV to 128GeV was investigated. It was found that while the procedure
of varying the scale by a factor 2 up and down gave a correct estimate of the residual
perturbative error for ν ≈ 0 . . . 0.3, for negative values, e.g., ν = −0.5, the estimated
perturbative error is much too small to account for the mismatch in the Λ-parameter of
≈ 8% at αs = 0.15. This mismatch, however, did, as expected, still scale with αnl

s with
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nl = 2. In the schemes with negative ν, the coupling αs has to be quite small for scale
variations of a factor 2 to correctly signal the perturbative errors.

For a systematic study of renormalization-scale variations as a measure of perturbative
truncation errors in various lattice determinations of αs, we implement scale variations
following the proposal in Ref. [681]. Scale variations are commonly used in phenomenology
as a tool to investigate truncations errors. While they cannot give a precise estimate of the
truncation errors, they provide a simple, quantitative test that can be uniformly applied
to all observables. Furthermore, the implementation proposed in Ref. [681] does not rely
on lattice data. The only inputs are the coefficients of the perturbative expansion of αeff ,
so that, in principle, an estimate of the truncation errors can be done before embarking
in a numerical simulation. Here we shall summarize briefly the methodology, provide the
coefficients of the perturbative expansions for the observables of interest in this review,
and compute the corresponding truncation errors.

Methodology The use of scale variations for the determination of the missing higher-
order uncertainties relies on a simple observation, namely that the scale µ that appears
on the left-hand side of Eq. (286) does not need to match the scale at which the running
coupling constant is computed on the right-hand side of the same equation. Eq. (286) can
be rewritten, with the same level of precision, as

Q(µ) = c1αMS(µ
′) +

n∑
k=2

c′k(s)αMS(µ
′)k +O

(
αMS(µ

′)n+1
)
, (s = µ′/µ) . (308)

The coefficients

c′k(s) =
k−1∑
ℓ=0

c′k,ℓ log
ℓ(s) , (309)

for k ≥ 2, are determined from the coefficients ck in Eq. (286) using the recursion

c′k,0 = ck , (310)

c′k,ℓ =
2

ℓ

k−1∑
j=1

j(4π)k−jbk−j−1c
′
j,ℓ−1 , (311)

where bn are the coefficients of the beta function defined in Eq. (289). The dependence
on s, and therefore on the scale µ′, is entirely due to the truncation of the perturbative
expansion. Denoting the truncated series by

Q(n)(µ, µ′) = c1αMS(µ
′) +

n∑
k=2

c′k(s)αMS(µ
′)k , (312)

it is possible to show that the scale-variation procedure described below yields a sensible
estimate of the truncation error

δn =
∣∣∣Q(µ)−Q(n)(µ, µ′)

∣∣∣ , (313)

see, e.g., the discussion in Ref. [717]. Formally,

µ′ ∂
∂µ′Q

(n)(µ, µ′) ∝ αMS(µ
′)n+1 , (314)

showing that scale variations capture the correct size of the truncation error, at least
parametrically.
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Implementation The implementation of the scale variations proceeds as follows.

1. We assume a value for Λ
(3)

MS
, e.g., the current best estimate in FLAG. Given this

value, we compute the corresponding value of αMS(srefµ) (at fixed Nf = 3) where µ
is the scale associated to the observable Q. Typical choices are sref = 1 or sref = s∗,
the latter being the scale of fastest apparent convergence. Similarly, we also compute

the value of α
(5)

MS
(MZ). All these values are computed using the running of the strong

coupling, the value of Λ
(3)

MS
as the unique input, in addition to the MS charm- and

bottom-quark masses at their own scale, m̄
(4)
c (m̄c) and m̄

(5)
b (m̄b), respectively and

mZ .

2. Using Eq. (312), we compute the value Qref of the observable by imposing that it
coincides with its truncated expansion,

Qref = Q(n)(µ, srefµ) , (315)

where srefµ is the scale associated to the observable as shown explicitly in Eq. (286).
By construction, using the value Qref , setting s = sref , and solving Eq. (312), we
recover for αMS(srefµ) the value obtained in step 1. Hence, we interpret Qref as the

value of the observable that yields the value of α
(5)

MS
(MZ) in step 1, when performing

the usual extraction of the strong coupling.

3. We use Eq. (312) again, but this time set s = sref/2, 2sref , to extract αMS(sµ) by
solving

Qref = Q(n)(µ, sµ) . (316)

Because the expansion is truncated, the value obtained here for αMS(sµ) is differ-
ent from the one obtained by running the coupling from the value of αMS(srefµ)
computed in step 2.

4. Using αMS(sµ) as the initial condition, we run the strong coupling constant and

compute α
(5)

MS
(MZ). The difference between this value and the value computed

in step 1 is used as an estimate of the uncertainty due to the truncation of the
perturbative expansion.

Typically scale variations are performed by multiplying and dividing the reference
scale by a factor 2. For some determinations, where the perturbative matching is done at
a few GeV, dividing the scale by a factor of 2 yields a low scale where perturbation theory
is clearly no longer applicable and therefore the scale variation yields an artificially large
error. In these cases, we consider only the variation obtained by multiplying the reference
scale by a factor 2. To be more specific, we define the following quantities.

δ(4)(sref): The renormalization scale srefQ is multiplied and divided by a factor two. We
quote a symmetric error by averaging the difference between the results obtained
with the scales srefQ and 2srefQ, and the difference between the results obtained
with scales sref/2 × Q and srefQ. Note however that in some cases the error is
markedly asymmetric. We will quote the differences as a percentage deviation from
the reference value of αs(mZ).

δ(2)(sref): The renormalization scale is multipied by a factor two only. The error δ(2)(sref)
is simply the difference between the two results obtained with the two scales, again
taken as a percentage deviation from the reference value of αs(mZ).

We also explore two common choices, namely sref = 1 and sref = s∗, the scale of fastest
apparent convergence, i.e., the scale at which c′2(s

∗) = 0.
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Perturbative coefficients The coefficients of the perturbative expansion for the
observables of interest in this review are summarized in Tab. 56. For each observable we
report the number of coefficients that are available for the perturbative expansion, the
scale at which the perturbative matching is done, the list of coefficients and the relevant
references.

Observable nl (loops) Q [GeV] perturbative coefficients References

Step-scaling 2 80 −1.37520970, 0.57120172 [718, 719]

3 1.5 −0.0485502, 0.687447, 0.818808 [720–724]
Potential 2.5 same as line above, Q changed

5.0 same as line above, Q changed

3 2.0 −1.4346, 0.16979, 3.21120 [725]
Vacuum polarization 4.0 [726]

1.3 [84]

− logW11 2 4.4 −0.87811924, 4.20161085 [727, 728]
− logW12/u

6
0 4.4 0.79128076, 3.18658638

HQ r4 2 mc −0.07762325, 0.07957445 [729–731]
HQ r4 2mc same as line above, Q changed
HQ r6 2mc 0.77386542, −0.08560363
HQ r8 2mc 1.08917060, 0.20034888

GF coupling 2 1/
√
8t

1.09778674 + 0.007555192 Nf

−0.98225− 0.069913Nf + 0.001872234N2
f

[365, 732]

Table 56: Summary of the coefficients of the perturbative expansion of the observables dis-
cussed in this review as a power series in αMS. We assume that the observables are normalized
so that c1 = 1 and we only quote the coefficients starting from c2. The coefficients are com-
puted for Nf = 3, unless the explicit dependence on the number of flavours is given. For each
observable, we quote the number of coefficients that are known analytically and the scale
of perturbative matching to the MS scheme. Note that for the GF coupling there are two
coefficients, reported as functions of Nf , over two separate lines.

9.3 αs from Step-Scaling Methods

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (299). It is in principle
independent of the particular boundary conditions used and was first developed with
periodic boundary conditions in a two-dimensional model [733].

The essential idea of the step-scaling strategy is to split the determination of the
running coupling at large µ and of a hadronic scale into two lattice calculations and
connect them by ‘step scaling’. In the former part, we determine the running coupling
constant in a finite-volume scheme in which the renormalization scale is set by the inverse
lattice size µ = 1/L. In this calculation, one takes a high renormalization scale while
keeping the lattice spacing sufficiently small as

µ ≡ 1/L ∼ 10 . . . 100GeV , a/L≪ 1 . (317)

In the latter part, one chooses a certain ḡ2max = ḡ2(1/Lmax), typically such that Lmax is
around 0.5–1 fm. With a common discretization, one then determines Lmax/a and (in a
large volume L ≥ 2–3 fm) a hadronic scale such as a hadron mass,

√
t0/a or r0/a at the

same bare parameters. In this way one gets numbers for, e.g., Lmax/r0 and by changing
the lattice spacing a carries out a continuum-limit extrapolation of that ratio.
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In order to connect ḡ2(1/Lmax) to ḡ
2(µ) at high µ, one determines the change of the

coupling in the continuum limit when the scale changes from L to L/s, where s is a scale
factor, set to s = 2 in most applications. Then, starting from L = Lmax one iteratively
performs k steps to arrive at µ = sk/Lmax. This part of the strategy is called step scaling.
Combining these results yields ḡ2(µ) at µ = sk (r0/Lmax) r

−1
0 , where r0 stands for the

particular chosen hadronic scale.
At present most applications in QCD use Schrödinger functional boundary condi-

tions [384, 734] and we discuss this below in a little more detail. (However, other bound-
ary conditions are also possible, such as twisted periodic boundary conditions for the
gauge fields and the discussion also applies to them.) An important reason is that these
boundary conditions avoid zero modes for the quark fields and quartic modes [735] in
the perturbative expansion in the gauge fields. Furthermore the corresponding renor-
malization scheme is well studied in perturbation theory [719, 736, 737] with the 3-loop
β-function and 2-loop cutoff effects (for the standard Wilson regularization) known.

In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet
boundary conditions at time t = 0 and t = T . These break translation invariance and
permit O(a) counter terms at the boundary through quantum corrections. Therefore, the
leading discretization error is O(a). Improving the lattice action is achieved by adding
counter terms at the boundaries whose coefficients are denoted as ct, c̃t. In practice, these
coefficients are computed with 1-loop or 2-loop perturbative accuracy. A better precision
in this step yields a better control over discretization errors, which is important, as can
be seen, e.g., in Refs. [713, 738].

Also computations with Dirichlet boundary conditions do in principle suffer from the
insufficient change of topology in the HMC algorithm at small lattice spacing. However,
in a small volume the weight of nonzero charge sectors in the path integral is exponen-
tially suppressed [739] and in a Monte Carlo run of typical length very few configurations
with nontrivial topology should appear.66 Considering the issue quantitatively Ref. [740]
finds a strong suppression below L ≈ 0.8 fm. Therefore the lack of topology change of the
HMC is not a serious issue for the high-energy regime in step-scaling studies. However, the
matching to hadronic observables requires volumes where the problem cannot be ignored.
Therefore, Ref. [741] includes a projection to zero topology into the definition of the cou-
pling. A very interesting comparison of the step-scaling approach for a (Q = 0)-projected
coupling and its unprojected version was recently carried out in Ref. [742], with Nf = 0
and twisted periodic boundary conditions for the gauge field. A new parallel-tempering
approach to relate systems with different boundary conditions was used. The results
validate the Q = 0 approach, in that step scaling in large volume (where contributions
from Q ̸= 0 configurations are sizeable) leads, within errors, to indistinguishable results,
once the couplings are properly matched. We note also that a mix of Dirichlet and open
boundary conditions is expected to remove the topology issue entirely [743] and may be
considered in the future.

Apart from the boundary conditions, the very definition of the coupling needs to
be chosen. We briefly discuss in turn, the two schemes used at present, namely, the
‘Schrödinger Functional’ (SF) and ‘Gradient Flow’ (GF) schemes.

The SF scheme is the first one, which was used in step-scaling studies in gauge theories
[384]. Inhomogeneous Dirichlet boundary conditions are imposed in time,

Ak(x)|x0=0 = Ck , Ak(x)|x0=L = C ′
k , (318)

for k = 1, 2, 3. Periodic boundary conditions (up to a phase for the fermion fields) with

66We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.
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period L are imposed in space. The matrices

LCk = idiag
(
η − π/3,−η/2,−η/2 + π/3

)
,

LC ′
k = i diag

(
− (η + π), η/2 + π/3, η/2 + 2π/3

)
,

just depend on the dimensionless parameter η. The coupling ḡSF is obtained from the
η-derivative of the effective action,

⟨∂ηS|η=0⟩ =
12π

ḡ2SF
. (319)

For this scheme, the finite c
(i)
g , Eq. (291), are known for i = 1, 2 [719, 737].

More recently, gradient-flow couplings have been used frequently because of their small
statistical errors at large couplings (in contrast to ḡSF, which has small statistical errors
at small couplings). The gradient flow is introduced as follows [365, 744]. Consider the
flow gauge field Bµ(t, x) with the flow time t, which is a one-parameter deformation of
the bare gauge field Aµ(x), where Bµ(t, x) is the solution to the gradient-flow equation

∂tBµ(t, x) = DνGνµ(t, x) ,

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] , (320)

with initial condition Bµ(0, x) = Aµ(x). The renormalized coupling is defined by [365]

ḡ2GF(µ) = N t2⟨E(t, x)⟩
∣∣
µ=1/

√
8t
, (321)

with N = 16π2/3 +O((a/L)2) and where E(t, x) is the action density given by

E(t, x) =
1

4
Gaµν(t, x)G

a
µν(t, x). (322)

In a finite volume, one needs to specify additional conditions. In order not to introduce
two independent scales one sets

√
8t = cL , (323)

for some fixed number c [745]. Schrödinger functional boundary conditions [746] or twisted
periodic boundary conditions [697, 747, 748] have been employed. Matching of the GF
coupling to the MS-scheme coupling is known to 1-loop for twisted boundary conditions
with zero quark flavours and SU(3) group [748] and to 2-loop with SF boundary conditions
with zero quark flavours [749]. The former is based on a MC evaluation at small couplings
and the latter on numerical stochastic perturbation theory.67

9.3.2 Discussion of computations

In Tab. 57 we give results from various determinations of the Λ-parameter. For a clear
assessment of the Nf -dependence, the last column also shows results that refer to a com-
mon hadronic scale, r0. As discussed above, the renormalization scale can be chosen large
enough such that αs < 0.2 and the perturbative behaviour can be verified. Consequently
only ⋆ is present for these criteria except for early work where the nl = 2 loop correction
to MS was not yet known and we assigned a ■ concerning the renormalization scale.
With dynamical fermions, results for the step-scaling functions are always available for at
least a/L = µa = 1/4, 1/6, 1/8. All calculations have a nonperturbatively O(a) improved

67For a variant of the twisted periodic finite volume scheme the 1-loop matching has been computed analyt-
ically [750].
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scale ΛMS[MeV] r0ΛMS

ALPHA 10A [751] 4 A ⋆ ⋆ ⋆ only running of αs in Fig. 4
Perez 10 [752] 4 C ⋆ ⋆ ◦ only step-scaling function in Fig. 4

ALPHA 17 [85] 2+1 A ⋆ ⋆ ⋆
√
8t0 = 0.415 fm 341(12) 0.816(29)

PACS-CS 09A [86] 2+1 A ⋆ ⋆ ◦ mρ 371(13)(8)(+0
−27)

# 0.888(30)(18)(+0
−65)

†

A ⋆ ⋆ ◦ mρ 345(59)## 0.824(141)†

ALPHA 12∗ [710] 2 A ⋆ ⋆ ⋆ fK 310(20) 0.789(52)

ALPHA 04 [753] 2 A ■ ⋆ ⋆ r0 = 0.5 fm§ 245(16)(16)§ 0.62(2)(2)§

ALPHA 01A [754] 2 A ⋆ ⋆ ⋆ only running of αs in Fig. 5

Bribian 21 [697] 0 A ⋆ ⋆ ⋆ r0 = 0.5fm 249.4(8.0) 0.632(20)
Nada 20 [755] 0 A ⋆ ⋆ ⋆ consistency checks for [756], same gauge configurations
Dalla Brida 19[756] 0 A ⋆ ⋆ ⋆ r0 = 0.5fm 260.5(4.4) 0.660(11)

Ishikawa 17 [748] 0 A ⋆ ⋆ ⋆ r0, [
√
σ] 253(4)(+13

−2 )† 0.606(9)(+31
−5 )+

CP-PACS 04& [738] 0 A ⋆ ⋆ ◦ only tables of g2SF
ALPHA 98†† [757] 0 A ⋆ ⋆ ◦ r0 = 0.5fm 238(19) 0.602(48)

Lüscher 93 [736] 0 A ⋆ ◦ ◦ r0 = 0.5fm 233(23) 0.590(60)§§

# Result with a constant (in a) continuum extrapolation of the combination Lmaxmρ.
† In conversion from ΛMS to r0ΛMS and vice versa, r0 is taken to be 0.472 fm.

## Result with a linear continuum extrapolation in a of the combination Lmaxmρ.
∗ Supersedes ALPHA 04.
§ The Nf = 2 results were based on values for r0/a which have later been found to be too small by [710].

The effect will be of the order of 10–15%, presumably an increase in Λr0. We have taken this into
account by a ■ in the renormalization scale.

& This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well
as the scale setting of ALPHA 98.

†† Uses data of Lüscher 93 and therefore supersedes it.
§§ Converted from αMS(37r

−1
0 ) = 0.1108(25).

+ Also ΛMS/
√
σ = 0.532(8)(+27

−5 ) is quoted.

Table 57: Results for the Λ-parameter from computations using step scaling of the SF-
coupling. Entries without values for Λ computed the running and established perturbative
behaviour at large µ.

action in the bulk. For the discussed boundary O(a) terms this is not so. In most recent
calculations 2-loop O(a) improvement is employed together with at least three lattice
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spacings.68 This means a ⋆ for the continuum extrapolation. In other computations
only 1-loop ct was available and we arrive at ◦ . We note that the discretization errors
in the step-scaling functions of the SF coupling are usually found to be very small, at the
percent level or below. However, the overall desired precision is very high as well, and
the results in CP-PACS 04 [738] show that discretization errors at the below percent level
cannot be taken for granted. In particular with staggered fermions (unimproved except
for boundary terms) few-percent effects are seen in Perez 10 [752].

In the work by PACS-CS 09A [86], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with
the collaboration, the continuum extrapolation linear in a, as given in the second line of
PACS-CS 09A [86] results in Tab. 57. After perturbative conversion from a three-flavour
result to five flavours (see Sec. 9.2.1), they obtain

α
(5)

MS
(MZ) = 0.118(3) . (324)

In Ref. [85], the ALPHA collaboration determined Λ
(3)

MS
combining step scaling in

ḡ2GF in the lower-scale region µhad ≤ µ ≤ µ0, and step scaling in ḡ2SF for higher scales
µ0 ≤ µ ≤ µPT. Both schemes are defined with SF boundary conditions. For ḡ2GF a
projection to the sector of zero topological charge is included, Eq. (322) is restricted to
the magnetic components, and c = 0.3. The scales µhad, µ0, and µPT are defined by
ḡ2GF(µhad) = 11.3, ḡ2SF(µ0) = 2.012, and µPT = 16µ0 which are roughly estimated as

1/Lmax ≡ µhad ≈ 0.2 GeV, µ0 ≈ 4 GeV , µPT ≈ 70 GeV . (325)

Step scaling is carried out with an O(a)-improved Wilson quark action [758] and Lüscher-
Weisz gauge action [759] in the low-scale region and an O(a)-improved Wilson quark
action [760] and Wilson gauge action in the high-energy part. For the step scaling using
steps of L/a → 2L/a, three lattice sizes L/a = 8, 12, 16 were simulated for ḡ2GF and four
lattice sizes L/a = (4, ) 6, 8, 12 for ḡ2SF. The final results do not use the small lattices

given in parenthesis. The parameter Λ
(3)

MS
is then obtained via

Λ
(3)

MS
=

Λ
(3)

MS

µPT︸ ︷︷ ︸
perturbation theory

× µPT

µhad︸ ︷︷ ︸
stepscaling

× µhad

fπK︸ ︷︷ ︸
large volume simulation

× fπK︸︷︷︸
experimental data

, (326)

where the hadronic scale fπK is fπK = 1
3 (2fK + fπ) = 147.6(5) MeV. The first factor on

the right-hand side of Eq. (326) is obtained from αSF(µPT) which is the output from SF
step scaling using Eq. (288) with αSF(µPT) ≈ 0.1 and the 3-loop β-function and the exact
conversion to the MS-scheme. The second factor is essentially obtained from step scaling
in the GF scheme and the measurement of ḡ2SF(µ0) (except for the trivial scaling factor of
16 in the SF running). The third factor is obtained from a measurement of the hadronic
quantity at large volume.

A large-volume simulation is done for three lattice spacings with sufficiently large
volume and reasonable control over the chiral extrapolation so that the scale determination
is precise enough. The step scaling results in both schemes satisfy renormalization criteria,
perturbation theory criteria, and continuum-limit criteria just as previous studies using
step scaling. So we assign green stars for these criteria.

The dependence of Λ, Eq. (288) with 3-loop β-function, on αs and on the chosen
scheme is discussed in [715]. This investigation provides a warning on estimating the
truncation error of perturbative series. Details are explained in Sec. 9.2.3.

68With 2-loop O(a) improvement we here mean ct including the g40 term and c̃t with the g20 term. For gluonic
observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g6a).
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The result for the Λ-parameter is Λ
(3)

MS
= 341(12) MeV, where the dominant error

comes from the error of αSF(µPT) after step scaling in the SF scheme. Using 4-loop
matching at the charm and bottom thresholds and 5-loop running one finally obtains

α
(5)

MS
(MZ) = 0.11852(84) . (327)

Several other results do not have a sufficient number of quark flavours or do not yet
contain the conversion of the scale to physical units (ALPHA 10A [751], Perez 10 [752]).

Thus no value for α
(5)

MS
(MZ) is quoted.

The computation of Ishikawa et al. [748] is based on the gradient-flow coupling with
twisted boundary conditions [747] (TGF coupling) in the pure gauge theory. Again they
use c = 0.3. Step scaling with a scale factor s = 3/2 is employed, covering a large
range of couplings from αs ≈ 0.5 to αs ≈ 0.1 and taking the continuum limit through
global fits to the step-scaling function on L/a = 12, 16, 18 lattices with between 6 and 8
parameters. Systematic errors due to variations of the fit functions are estimated. Two
physical scales are considered: r0/a is taken from [713] and σa2 from [236] and [761].
As the ratio ΛTGF/ΛMS has not yet been computed analytically, Ref. [748] determines
the 1-loop relation between ḡSF and ḡTGF from MC simulations performed in the weak
coupling region and then uses the known ΛSF/ΛMS. Systematic errors due to variations
of the fit functions dominate the overall uncertainty.

Two extensive Nf = 0 step-scaling studies have been carried out in Dalla Brida 19 [756]
and by Nada and Ramos [755]. They use different strategies for the running from mid to
high energies, but use the same gauge configurations and share the running at low energies
and matching to the hadronic scales. These results are therefore correlated. However,
given the comparatively high value for r0ΛMS, it is re-assuring that these conceptually
different approaches yield perfectly compatible results within errors of similar size of
around 1.5% for

√
8t0ΛMS = 0.6227(98), or, alternatively r0ΛMS = 0.660(11).

In Dalla Brida 19 [756] two GF-coupling definitions with SF-boundary conditions are
considered, corresponding to (colour-) magnetic and electric components of the action
density respectively. The coupling definitions include the projection to Q = 0, as was also
done in [85]. The flow-time parameter is set to c = 0.3, and both Zeuthen and Wilson
flow are measured. Lattice sizes range from L/a = 8 to L/a = 48, covering up to a factor
of 3 in lattice spacings for the step-scaling function, where both L/a and 2L/a are needed.
Lattice effects in the step-scaling function are visible but can be extrapolated using global
fits with a2 errors. Some remnant O(a) effects from the boundaries are expected, as
their perturbative cancellation is incomplete. These O(a) contaminations are treated as
a systematic error on the data, following [85], and are found to be subdominant. An
intermediate reference scale µref is defined where α = 0.2, and the scales above and
below are analyzed separately. Again this is similar to [85], except that here GF-coupling
data is available also at high energy scales. The GF β-functions are then obtained by
fitting to the continuum extrapolated data for the step-scaling functions. In addition, a
nonperturbative matching to the standard SF coupling is performed above µref for a range
of couplings covering a factor of 2. The nonperturbative β-function for the SF scheme
can thus be inferred from the GF β-function. It turns out that GF schemes are very
slow to reach the perturbative regime. Particularly the Λ-parameter for the magnetic GF
coupling shows a large slope in α2, which is the parametric uncertainty with known 3-loop
β-function. Also, convincing contact with the 3-loop β-function is barely seen down to
α = 0.08. This is likely to be related to the rather large 3-loop β-function coefficients,
especially for the magnetic GF scheme [749]. In contrast, once the GF couplings are
matched nonperturbatively to the SF scheme the contact to perturbative running can
be safely made. It is also re-assuring that in all cases the extrapolations (linear in α2)
to α = 0 for the Λ-parameters agree very well, and the authors argue in favour of such
extrapolations. Their data confirms that this procedure yields consistent results with the
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SF scheme for ν = 0, where such an extrapolation is not required.
The low-energy regime between µref and a hadronic scale µhad is covered again using

the nonperturbative step-scaling function and the derived β-function. Finally, contact be-
tween µhad and hadronic scales t0 and r0 is established using five lattice spacings covering
a factor up to 2.7. The multitude of cross checks of both continuum limit and perturba-
tive truncation errors make this a study which passes all current FLAG criteria by some
margin. The comparatively high value for r0ΛMS found in this study must therefore be
taken very seriously.

In Nada 20 [755], Nada and Ramos provide further consistency checks of [756] for
scales larger than µref . The step-scaling function for c = 0.2 is constructed in two steps, by
determining first the relation between couplings for c = 0.2 and c = 0.4 at the same L and
then increasing L to 2L keeping the flow time fixed (in units of the lattice spacing), so that
one arrives again at c = 0.2 on the 2L volume. The authors demonstrate that the direct
construction of the step-scaling function for c = 0.2 would require much larger lattices in
order to control the continuum limit at the same level of precision. The consistency with
[756] for the Λ-parameter is therefore a highly nontrivial check on the systematic effects
of the continuum extrapolations. The study obtains results for the Λ-parameter (again
extrapolating to α = 0) with a similar error as in [756] using the low-energy running
and matching to the hadronic scale from that reference. For this reason and since gauge
configurations are shared between both papers, these results are not independent of [756],
so Dalla Brida 19 will be taken as representative for both works.

Since FLAG 21 a new step-scaling result with Nf = 0 has appeared in Bribian 21 [697].
It uses the gradient flow in a volume with twisted periodic boundary conditions for the
gauge field. The volume has two shorter directions by a factor of 3; however, a re-
interpretation as a symmetric physical volume is possible using internal degrees of freedom
of the gauge field. This is a state-of-the-art step-scaling result, the main problem being
the poor perturbative behaviour of the gradient-flow coupling. Since the 3-loop β-function
is not known, the parametric uncertainty in estimates of the Λ-parameter is of O(α) and
is quite large. The problem is by-passed by matching nonperturbatively to the SF scheme,
which leads to stable estimates vs. α2, and the result is

√
t0ΛMS = 0.603(17), or, in units

of the Sommer scale, r0ΛMS = 0.632(20). All FLAG criteria are passed with ⋆, and the
data-driven criterion for the continuum limit is irrelevant in this case.

Scale variations. With a perturbative matching at µ ≈ 80 GeV, we have computed
the change in the determination of αMS(MZ) under scale variations as explained above.
The systematic errors obtained from scale variations are

δ∗(4) = 0.1% , δ(2) = 0.2% δ∗(2) = 0.2% . (328)

Because the perturbative matching is performed at a high-energy scale, the systematic
error obtained from scale variations is negligible.

9.4 The decoupling method

The ALPHA collaboration has proposed and pursued a new strategy to compute the Λ
parameter in QCD with Nf ≥ 3 flavours based on the simultaneous decoupling of Nf ≥ 3
heavy quarks with RGI mass M [696]. We refer to [682] for a pedagogical introduction.
Generically, for large quark mass M , a running coupling in a mass-dependent renormal-
ization scheme

ḡ2(µ,M)(Nf ) = ḡ2(µ)(Nf=0) +O
(
1/Mk

)
(329)

can be represented by the corresponding Nf = 0 coupling, up to power corrections in
1/M . The leading power is usually k = 2, however renormalization schemes in finite
volume may have k = 1, depending on the set-up. For example, this is the case with
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standard SF or open boundary conditions in combination with a standard mass term. In
practice such boundary contributions can be made numerically small by a careful choice of
the scheme’s parameters. In principle, power corrections can be either (µ/M)k or (Λ/M)k.
Fixing µ = µdec, e.g., by prescribing a value for the mass-independent coupling, such that
µdec/Λ = O(1) thus helps to reduce the need for very largeM . Defining ḡ2(µdec,M) = uM
at fixed ḡ2(µdec,M = 0), Eq. (329) translates to a relation between Λ-parameters, which
can be cast in the form,

Λ
(Nf )

MS

µdec
P

 M

µdec

µdec

Λ
(Nf )

MS

 =
Λ
(0)

MS

Λ
(0)
s

φ
(Nf=0)
s (

√
uM) +O(M−k) ,

(330)

with the function φs as defined in Eq. (288), for scheme s and Nf = 0. A crucial

observation is that the function P , which gives the ratios of Λ-parameters Λ
(0)

MS
/Λ

(Nf )

MS
,

can be evaluated perturbatively to a very good approximation [198, 200]. Equation (329)
also implies a relation between the couplings in mass-independent schemes, in the theories
with Nf and zero flavours, respectively. In the MS scheme this relation is analogous to
Eq. (295), [

ḡ
(Nf=0)

MS
(m⋆)

]2
=
[
ḡ
(Nf )

MS
(m⋆)

]2
× C

(
ḡ
(Nf )

MS
(m⋆)

)
, (331)

where the evaluation of the coupling is done at the scale m⋆ = m
(Nf )

MS
(µ = m⋆). This

removes the leading 1-loop correction of O(g2) in the expansion of the function, C(g) =
1 + c2g

4 + O(g6), which is known up to 4-loop order [689–692, 762]. The mass scale

m⋆ is in one-to-one correspondence with the RGI mass M , and g⋆(y) = ḡ
(Nf )

MS
(m⋆) can

thus be considered a function of y ≡ M (Nf )/Λ
(Nf )

MS
. The function P (y) can be evaluated

perturbatively in the MS scheme, as the ratio,

P (y) =
φ
(Nf=0)

MS

(
g⋆(y)

√
C(g⋆(y))

)
φ
(Nf )

MS
(g⋆(y))

. (332)

Note that perturbation theory is only required at the scale set by the heavy-quark mass,
which works better the larger M can be chosen. Given the function P (y), the LHS of
Eq. (330) can be inferred from a Nf = 0 computation of the RHS in the scheme s, if
the argument

√
uM of φ0

s is known (and the ratio ΛMS/Λs for the scheme s). The main
challenge then consists in the computation of the mass-dependent coupling uM for large
masses.

9.4.1 Discussion of computations

To put the decoupling strategy to work, ALPHA 22 [80] uses Nf = 3, so that information
from [85] can be used. Using the massless GF coupling in finite volume from this project,
µdec is defined through ḡ2GF(µdec) = 3.949, and thus known in physical units, µdec =
789(15)MeV. Imposing this condition for lattice sizes between L/a = 12 to L/a = 48, a
corresponding sequence of β-values between 4.302 and 5.174 is obtained (the lattice action
is the same as used by CLS, there for much coarser lattice spacings at β < 3.85). Using the
available information on nonperturbative mass renormalization [246], six values for the
O(a)-improved RGI quark masses are considered at each of these β-values, such that the
ratio z =M/µdec are close to 2, 4, 6, 8, 10, and 12. While great care is taken to implement
nonperturbative O(a) improvement, there is only perturbative 1-loop information on bg,
which parameterizes a mass-dependent rescaling of the bare coupling,

g̃20 = g20(1 + bg(g0)amq), bg(g0) = 0.012×Nfg20 +O(g40).
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Here, mq denotes the subtracted bare quark mass, related to M by a renormalization
factor of O(1) at the relevant lattice spacings. Consistent O(a) improvement requires that
β̃ = 6/g̃20 be kept fixed as the quark mass is varied. The authors of ALPHA 22 here assume
a 100% uncertainty of the perturbative bg-estimate, which is treated as a systematic error
(cf. below). At the chosen quark-mass parameters, the GF coupling with doubled time
extent, T = 2L, is measured. This GFT coupling is used in order to minimize effects from
the time boundaries, which introduce linear effects in 1/M in the decoupling relation, and
also residual lattice effects linear in a. Both of these effects are monitored and found to be
negligible. The continuum limit is then taken, either separately for each z-value, or using
a global fit to all z-values z > 2, which turns out too small to be useful in the large-M limit

(cf. Fig. 9.4.1). The lattice effects are fitted to O(a2), including an [αMS(1/a)]
Γ̂ term, as

expected from Symanzik’s effective theory with RG improvement [763–767]. The global
fit uses the combined arguments from heavy-quark and Symanzik effective theories to
separate the leading-(aM)2 effects with yet another logarithmic correction term. Cuts in
the data are considered for (aM)2 < 0.25 and (aM)2 < 0.16. The continuum-extrapolated
values include a systematic error due to the uncertainty in bg. The fits are repeated for

different choices of Γ̂ and Γ̂′ in intervals constrained by the effective heavy-quark and
Symanzik theories, and the variation is used as an estimate of systematic effects due to
the possible presence of such non-power-like cutoff effects. The continuum extrapolated
GFT coupling defines the starting point for the Nf = 0 running. Before the GF running
can be used, a matching from the GFT to GF scheme is done to high precision in the
Nf = 0 theory. The running in Nf = 0 is taken from Dalla Brida 19 [756] and the results
are then inserted into the Eq. (330), for each of the available M -values. This defines
“effective” Λ-parameters, equal to the asymptotic value up to 1/M2 effects. Taking the
z → ∞ limit (again allowing for a logarithmic correction with exponent Γm) then yields
the final result, with the scale set using

√
t0 from Ref. [114],

Λ
(3)

MS
= 336(10)(6)bg(3)Γm MeV = 336(12) MeV (333)

which translates to αs(mZ) = 0.11823(84). Despite some common elements with ALPHA
17, the authors emphasize that the decoupling method is largely independent, with the
overlap in squared error amounting to 28 percent. This is due to the fact that the error
in ALPHA 17 is dominated by the Nf = 3 step-scaling procedure at high energy, and this
part is completely replaced by the Nf = 0 result by Dalla Brida 19 [756]. ALPHA 22 also
give the covariance matrix between both results which allows for combining both results
with correlations taken into account.

The FLAG criteria are only indirectly applicable; decoupling relies on the step-scaling
analysis withNf = 0 in Dalla Brida 19 [756], which passes all FLAG criteria (cf. Sect. 9.3).
Except for the (well-established, cf. Refs. [198, 200]) perturbative evaluation of the func-
tion P (y), perturbation theory is only applied in the Nf = 0 theory at very high energy,
which yields a ⋆ for perturbative behaviour and renormalization scale. Using the FLAG
criterion for continuum extrapolations (the constraint on values of αeff is not applicable
here) the relevant scale is M , and the continuum extrapolations are based on data cut
at aM < 0.5 or aM < 0.4, which leaves 3–4 values satisfying this cut even at the largest
mass of O(10 GeV). A remaining uncertainty of O(aM) due to a perturbative estimate
of bg is treated as a systematic uncertainty, so that full O(a) improvement is expected
to be realized within the errors. This is confirmed by—now available—nonperturbative
data on bg [768], and we use ⋆ for continuum extrapolations. With these errors the
distance of the extrapolated result is less than one sigma away from the last data point,
i.e., δ(min) ≈ 1 for the data-driven criterion.

Final remark: The decoupling method offers scope for a further error reduction, by
using the result for bg and both, improved scale setting and improved Nf = 0 step-scaling
results.
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Figure 37: The decoupling limit M →∞ in ALPHA 22, Ref. [80].

In Tab. 58 we list the result.
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scale ΛMS[MeV] r0ΛMS

ALPHA 22 [80] 2+1 A ⋆ ⋆ ⋆
√
t0 [114] 336(12) ∗ 0.804(29) ∗

∗ α
(5)

MS
(MZ) = 0.11823(84); r0ΛMS determined using r0 = 0.472 fm

Table 58: Decoupling result.

9.5 αs from the potential at short distances

9.5.1 General considerations

The basic method was introduced in Ref. [769] and developed in Ref. [770]. The force
or potential between an infinitely massive quark and antiquark pair defines an effective
coupling constant via

F (r) =
dV (r)

dr
= CF

αqq(r)

r2
. (334)
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The coupling can be evaluated nonperturbatively from the potential through a numerical
differentiation, see below. In perturbation theory one also defines couplings in different
schemes αV̄ , αV via

V (r) = −CF
αV̄ (r)

r
, or Ṽ (Q) = −CF

αV (Q)

Q2
, (335)

where one fixes the unphysical constant in the potential by limr→∞ V (r) = 0, which is
compatible with fixed-order perturbation theory. Ṽ (Q) is the Fourier transform of V (r).
Nonperturbatively, the subtraction of a constant in the potential introduces an additional
renormalization constant, the value of V (rref) at some distance rref . Perturbatively, it is
believed to entail a renormalon ambiguity. In perturbation theory, the different definitions
are all simply related to each other, and their perturbative expansions are known including
the α4

s, α
4
s logαs and α5

s logαs, α
5
s(logαs)

2 terms [720, 722, 723, 771–777].
The potential V (r) is determined from ratios of Wilson loops, W (r, t), which behave

as

⟨W (r, t)⟩ = |c0|2e−V (r)t +
∑
n ̸=0

|cn|2e−Vn(r)t , (336)

where t is taken as the temporal extension of the loop, r is the spatial one and Vn are
excited-state potentials. To improve the overlap with the ground state, and to suppress
the effects of excited states, t is taken large. Also various additional techniques are used,
such as a variational basis of operators (spatial paths) to help in projecting out the ground
state. Furthermore some lattice-discretization effects can be reduced by averaging over
Wilson loops related by rotational symmetry in the continuum.

In order to reduce discretization errors it is of advantage to define the numerical
derivative giving the force as

F (rI) =
V (r)− V (r − a)

a
, (337)

where rI is chosen so that at tree level the force is the continuum force. F (rI) is then
a ‘tree-level improved’ quantity and similarly the tree-level improved potential can be
defined [778].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform of the
perturbative expansion is then matched to lattice data.

Finally, as was noted in Sec. 9.2.1, a determination of the force can also be used to
determine the scales r0, r1, by defining them from the static force by

r20F (r0) = 1.65 , r21F (r1) = 1 . (338)

9.5.2 Discussion of computations

In Tab. 59, we list results of determinations of r0ΛMS (together with ΛMS using the scale
determination of the authors).

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [770]
and Bali 92 [789] who used αqq, Eq. (334), as explained above, but not in the tree-level
improved form. Rather a phenomenologically determined lattice-artifact correction was
subtracted from the lattice potentials. The comparison with perturbation theory was on
a more qualitative level on the basis of a 2-loop β-function (nl = 1) and a continuum
extrapolation could not be performed as yet. A much more precise computation of αqq

with continuum extrapolation was performed in Refs. [713, 778]. Satisfactory agreement
with perturbation theory was found [778] but the stability of the perturbative prediction
was not considered sufficient to be able to extract a Λ parameter.
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scale ΛMS[MeV] r0ΛMS

Ayala 20 [82] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 338(13) 0.802(31)
TUMQCD 19 [83] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 314+16

−8 0.745(+38
−19)

Takaura 18 [779, 780] 2+1 A ■ ◦ ◦ √
t0 = 0.1465(25)fma 334(10)(+20

−18)
b 0.799(51)+

Bazavov 14 [781] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 315(+18
−12)

d 0.746(+42
−27)

Bazavov 12 [782] 2+1 A ◦† ◦ ◦# r0 = 0.468 fm 295(30) ⋆ 0.70(7)⋆⋆

Karbstein 18 [783] 2 A ◦ ◦ ◦ r0 = 0.420(14) fme 302(16) 0.643(34)
Karbstein 14 [784] 2 A ◦ ◦ ◦ r0 = 0.42 fm 331(21) 0.692(31)

ETM 11C [785] 2 A ◦ ◦ ◦ r0 = 0.42 fm 315(30)§ 0.658(55)

Brambilla 23 [197] 0 A ◦ ◦ ⋆
√
8t0 = 0.9569(66)r0 0.657+23

−28

Husung 20 [786] 0 C ◦ ⋆ ⋆ no quoted value for ΛMS

Husung 17 [787] 0 C ◦ ⋆ ⋆ r0 = 0.50 fm 232(6) 0.590(16)

Brambilla 10 [788] 0 A ◦ ⋆ ◦†† 266(13)+ 0.637(+32
−30)

††

UKQCD 92 [770] 0 A ⋆ ◦++
■

√
σ = 0.44 GeV 256(20) 0.686(54)

Bali 92 [789] 0 A ⋆ ◦++
■

√
σ = 0.44 GeV 247(10) 0.661(27)

a Scale determined from t0 in Ref. [115].

b α
(5)

MS
(MZ) = 0.1179(7)(+13

−12).
c Determination on lattices with mπL = 2.2− 2.6. Scale from r1 [117] as determined from fπ in Ref. [47].
d α

(3)

MS
(1.5GeV) = 0.336(+12

−8 ), α
(5)

MS
(MZ) = 0.1166(+12

−8 ).
e Scale determined from fπ, see [190].
† Since values of αeff within our designated range are used, we assign a ◦ despite values of αeff up to

αeff = 0.5 being used.
# Since values of 2a/r within our designated range are used, we assign a ◦ although only values of

2a/r ≥ 1.14 are used at αeff = 0.3.
⋆ Using results from Ref. [712].

⋆⋆ α
(3)

MS
(1.5GeV) = 0.326(19), α

(5)

MS
(MZ) = 0.1156(+21

−22).
§ Both potential and r0/a are determined on a small (L = 3.2r0) lattice.

†† Uses lattice results of Ref. [713], some of which have very small lattice spacings where according to
more recent investigations a bias due to the freezing of topology may be present.

+ Our conversion using r0 = 0.472 fm.
++ We give a ◦ because only a NLO formula is used and the error bars are very large; our criterion does

not apply well to these very early calculations.

Table 59: Short-distance potential results.

In Brambilla 10 [788] the same quenched lattice results of Ref. [778] were used and a
fit was performed to the continuum potential, instead of the force. Perturbation theory to
nl = 3 loop was used including a resummation of terms α3

s(αs lnαs)
n and α4

s(αs lnαs)
n.

Close agreement with perturbation theory was found when a renormalon subtraction was
performed. Note that the renormalon subtraction introduces a second scale into the
perturbative formula which is absent when the force is considered.
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Bazavov 14 [781] updates Bazavov 12 [782] and modifies this procedure somewhat.
They consider the perturbative expansion for the force. They set µ = 1/r to eliminate
logarithms and then integrate the force to obtain an expression for the potential. The
resulting integration constant is fixed by requiring the perturbative potential to be equal
to the nonperturbative one exactly at a reference distance rref and the two are then
compared at other values of r. As a further check, the force is also used directly.

For the quenched calculation of Brambilla 10 [788] very small lattice spacings, a ∼
0.025 fm, were available from Ref. [778]. For ETM 11C [785], Bazavov 12 [782], Karbstein
14 [784] and Bazavov 14 [781] using dynamical fermions such small lattice spacings are
not yet realized (Bazavov 14 reaches down to a ∼ 0.041 fm). They all use the tree-level
improved potential as described above. We note that the value of ΛMS in physical units
by ETM 11C [785] is based on a value of r0 = 0.42 fm. This is at least 10% smaller than
the large majority of other values of r0. Also the values of r0/a on the finest lattices
in ETM 11C [785] and r1/a for Bazavov 14 [781] come from rather small lattices with
mπL ≈ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [784] reanalyzes the data
of ETM 11C [785] by first estimating the Fourier transform Ṽ (p) of V (r) and then fitting
the perturbative expansion of Ṽ (p) in terms of αMS(p). Of course, the Fourier transform
requires some modelling of the r-dependence of V (r) at short and at large distances.
The authors fit a linearly rising potential at large distances together with string-like
corrections of order r−n and define the potential at large distances by this fit.69 Recall
that for observables in momentum space we take the renormalization scale entering our
criteria as µ = q, Eq. (307). The analysis (as in ETM 11C [785]) is dominated by the data
at the smallest lattice spacing, where a controlled determination of the overall scale is
difficult due to possible finite-size effects. Karbstein 18 [783] is a reanalysis of Karbstein
14 and supersedes it. Some data with a different discretization of the static quark is
added (on the same configurations) and the discrete lattice results for the static potential
in position space are first parameterized by a continuous function, which then allows for
an analytical Fourier transformation to momentum space.

Similarly also for Takaura 18 [779, 780] the momentum space potential Ṽ (Q) is the
central object. Namely, they assume that renormalon/power-law effects are absent in
Ṽ (Q) and only come in through the Fourier transformation. They provide evidence that
renormalon effects (both u = 1/2 and u = 3/2) can be subtracted and arrive at a nonper-
turbative term kΛ3

MS
r2. Two different analyses are carried out with the final result taken

from “Analysis II”. Our numbers including the evaluation of the criteria refer to it. To-
gether with the perturbative 3-loop (including the α4

s logαs term) expression, this term is
fitted to the nonperturbative results for the potential in the region 0.04 fm ≤ r ≤ 0.35 fm,
where 0.04 fm is r = a on the finest lattice. The nonperturbative potential data origi-
nates from JLQCD ensembles (Symanzik-improved gauge action and Möbius domain-wall
quarks) at three lattice spacings with a pion mass around 300 MeV. Since at the maxi-
mal distance in the analysis we find αMS(2/r) = 0.43, the renormalization-scale criterion
yields a ■ . The perturbative behaviour is ◦ because of the high orders in perturbation
theory known. The continuum-limit criterion yields a ◦ .

One of the main issues for all these computations is whether the perturbative running
of the coupling constant has been reached. While for Nf = 0 fermions Brambilla 10
[788] reports agreement with perturbative behaviour at the smallest distances, Husung 17
(which goes to shorter distances) finds relatively large corrections beyond the 3-loop αqq.
For dynamical fermions, Bazavov 12 [782] and Bazavov 14 [781] report good agreement
with perturbation theory after the renormalon is subtracted or eliminated.

A second issue is the coverage of configuration space in some of the simulations, which

69Note that at large distances, where string breaking is known to occur, this is not any more the ground-state
potential defined by Eq. (336).
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use very small lattice spacings with periodic boundary conditions. Affected are the small-
est two lattice spacings of Bazavov 14 [781] where very few tunnelings of the topological
charge occur [117]. With present knowledge, it also seems possible that the older data by
Refs. [713, 778] used by Brambilla 10 [788] are partially obtained with (close to) frozen
topology.

The computation in Husung 17 [787], for Nf = 0 flavours, first determines the coupling
ḡ2qq(r, a) from the force and then performs a continuum extrapolation on lattices down

to a ≈ 0.015 fm, using a step-scaling method at short distances, r/r0<∼ 0.5. Using the
4-loop βqq function this allows r0Λqq to be estimated, which is then converted to the MS
scheme. αeff = αqq ranges from ∼ 0.17 to large values; we give ◦ for renormalization
scale and ⋆ for perturbative behaviour. The range aµ = 2a/r ≈ 0.37–0.14 leads to a
⋆ in the continuum extrapolation. Recently these calculations have been extended in
Husung 20 [786]. A finer lattice spacing of a = 0.01 fm (scale from r0 = 0.5 fm) is reached
and lattice volumes up to L/a = 192 are simulated (in Ref. [787] the smallest lattice
spacing is 0.015 fm). The Wilson action is used despite its significantly larger cutoff effects
compared to Symanzik-improved actions; this avoids unitarity violations, thus allowing
for a clean ground-state extraction via a generalized eigenvalue problem. Open boundary
conditions are used to avoid the topology-freezing problem. Furthermore, new results
for the continuum approach are employed, which determine the cutoff dependence at
O(a2) including the exact coupling-dependent terms, in the asymptotic region where the
Symanzik effective theory is applicable [765]. An ansatz for the remaining higher-order
cutoff effects at O(a4) is propagated as a systematic error to the data, which effectively
discards data for r/a < 3.5. The large-volume step-scaling function with step factor 3/4
is computed and compared to perturbation theory. For αqq > 0.2 there is a noticeable
difference between the 2-loop and 3-loop results. Furthermore, the ultra-soft contributions
at 4-loop level give a significant contribution to the static QQ̄ force. While this study
is for Nf = 0 flavours it does raise the question whether the weak-coupling expansion
for the range of r-values used in present analyses of αs is sufficiently reliable. Around
αqq ≈ 0.21 the differences get smaller but the error increases significantly, mainly due

to the propagated lattice artifacts. The dependence of Λ
nf=0

MS

√
8t0 on α3

qq is very similar
to the one observed in the previous study but no value for its αqq → 0 limit is quoted.
Husung 20 [786] is more pessimistic about the error on the Λ parameter stating the relative
error has to be 5% or larger, while Husung 17 quotes a relative error of 3%.

In 2+1-flavour QCD two new papers appeared on the determination of the strong
coupling constant from the static quark anti-quark potential after the FLAG 19 report
[82, 83]. In TUMQCD 19 [83]70 the 2014 analysis of Bazavov 14 [781] has been extended by
including three finer lattices with lattice spacing a = 0.035, 0.030 and 0.025 fm as well as
lattice results on the free energy of static quark anti-quark pair at nonzero temperature.
On the new fine lattices the effect of freezing topology has been observed, however, it
was verified that this does not affect the potential within the estimated errors [790, 791].
The comparison of the lattice result on the static potential has been performed in the
interval r = [rmin, rmax], with rmax = 0.131, 0.121, 0.098, 0.073 and 0.055 fm. The main
result quoted in the paper is based on the analysis with rmax = 0.073 fm [83]. Since the
new study employs a much wider range in r than the previous one [781] we give it a ⋆
for the perturbative behaviour. Since αeff = αqq varies in the range 0.2–0.4 for the r
values used in the main analysis we give ◦ for the renormalization scale. Several values
of rmin have been used in the analysis, the largest being rmin/a =

√
8 ≃ 2.82, which

corresponds to aµ ≃ 0.71. Therefore, we give a ◦ for continuum extrapolation in this
case. An important difference compared to the previous study [781] is the variation of
the renormalization scale. In Ref. [781] the renormalization scale was varied by a factor
of
√
2 around the nominal value of µ = 1/r, in order to exclude very low scales, for

70The majority of authors are the same as in [781].
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which the running of the strong coupling constant is no longer perturbative. In the new
analysis the renormalization scale was varied by a factor of two. As the result, despite the
extended data set and shorter distances used in the new study the perturbative error did
not decrease [83]. We also note that the scale dependence turned out to be nonmonotonic
in the range µ = 1/(2r)–2/r [83]. The final result reads (“us” stands for “ultra-soft”),

Λ
(Nf=3)

MS
= 314.0± 5.8(stat)± 3.0(lat)± 1.7(scale)+13.4

−1.8 (pert)± 4.0(pert. us) MeV

= 314+16
−08 MeV , (339)

where all errors were combined in quadrature. This is in very good agreement with the
previous determination [781].

The analysis was also applied to the singlet static quark anti-quark free energy at
short distances. At short distances the free energy is expected to be the same as the
static potential. This is verified numerically in the lattice calculations TUMQCD 19 [83]
for rT < 1/4 with T being the temperature. Furthermore, this is confirmed by the
perturbative calculations at T > 0 at NLO [792]. The advantage of using the free energy
is that it gives access to much shorter distances. On the other hand, one has fewer data
points because the condition rT < 1/4 has to be satisfied. The analysis based on the free
energy gives

Λ
(Nf=3)

MS
= 310.9± 11.3(stat)± 3.0(lat)± 1.7(scale)+5.6

−0.8(pert)± 2.1(pert. us) MeV

= 311(13) MeV, (340)

in good agreement with the above result and thus, providing additional confirmation of
it.

The analysis of Ayala 20 [82] uses a subset of data presented in TUMQCD 19 [83] with
the same correction of the lattice effects. For this reason the continuum extrapolation
gets ◦ , too. They match to perturbation theory for 1/r > 2 GeV, which corresponds to
αeff = αqq = 0.2–0.4. Therefore, we give ◦ for the renormalization scale. They verify
the perturbative behaviour in the region 1 GeV < 1/r < 2.9 GeV, which corresponds
to variation of α3

eff by a factor of 3.34. However, the relative error on the final result
has δΛ/Λ ≃ 0.035 which is larger than α3

eff = 0.011. Therefore, we give a ⋆ for the
perturbative behaviour in this case. The final result for the Λ-parameter reads:

Λ
(Nf=3)

MS
= 338± 2(stat)± 8(matching)± 10(pert) MeV = 338(13)MeV . (341)

This is quite different from the above result. This difference is mostly due to the organi-
zation of the perturbative series. The authors use ultra-soft (log) resummation, i.e., they
resum the terms α3+n

s lnn αs to all orders instead of using fixed-order perturbation theory.
They also include what is called the terminant of the perturbative series associated to the
leading renormalon of the force [82]. When they use fixed-order perturbation theory they
obtain very similar results to Refs. [83, 781]. It has been argued that log resummation
cannot be justified since for the distance range available in the lattice studies αs is not
small enough and the logarithmic and nonlogarithmic higher-order terms are of a similar
size [781]. On the other hand, the resummation of ultra-soft logs does not lead to any
anomalous behaviour of the perturbative expansion like large scale dependence or bad
convergence [82].

To obtain the value of Λ
(Nf=3)

MS
from the static potential we combine the results in

Eqs. (339) and (341) using the weighted average with the weight given by the perturbative
error and using the difference in the central value as the error estimate. This leads to

Λ
(Nf=3)

MS
= 330(24) MeV , (342)
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from the static potential determination. In the case of TUMQCD 19, where the pertur-
bative error is very asymmetric we used the larger upper error for the calculation of the
corresponding weight.

A new analysis with Nf = 0 has been presented in Brambilla 23 [197] where gradient
flow is used to study the static force. The use of gradient flow allows an improved deter-
mination of the static force while adding to the problem a new scale, the gradient flow
time τF . The lattice volumes used are 40 × 203, 52 × 263, 60 × 302 and 80 × 403, with
corresponding lattice spacings ranging from 0.06 to 0.03 fm, using the Wilson action. On
the finest lattice an increase in the autocorrelation of the topological charge is observed
and taken into account by increasing the Monte Carlo time in-between measurements.
The reference scale t0, used throughout the analysis, is obtained from a measurement of
the action density by imposing

τF ⟨
1

4
GµνG

µν⟩
∣∣∣∣
τF=t0

= 0.3 . (343)

The static force is computed from the insertion of the chromoelectric field in the expec-
tation value of the Wilson loop,

F (r) = −i lim
T→∞

⟨Tr [Wr×T r̂ · gE(r, t)]⟩
⟨TrWr×T ⟩

, (344)

and tree-level improvement is used to improve the extrapolation to the continuum limit.
The dimensionless product r2F (r) yields the observable used for the extraction of αs.

Results extrapolated to τF = 0 are used for a conventional analysis along the lines
of previous publications using the static force. The fit uses the perturbative expansion
of the force including 3-loop contributions and leading ultrasoft logarithms. Data points
with r/

√
t0 ∈ [0.80, 1.15] are included in the fit, which yields

√
8t0Λ

(Nf=0)

MS
= 0.6353± 0.0032(stat)± 0.0013(AIC) , (345)

where the label AIC refers to the Bayesian procedure for combining results from different
fit ranges based on Akaike’s information criterion, as proposed in Ref. [793]. Note that
the error on this result is still dominated by statistics rather than the systematics related
to the choice of fitting range. The matching scale in these fits is the usual scale µ = 1/r.

Measurements at τF ̸= 0 allow an alternative way to extract the strong coupling
constant by fitting to the perturbative expression for the force at finite flow time. The
latter perturbative expansion is only known at 1-loop, which is used as a correction of the
higher-order result at τF = 0. The best result is obtained by fitting the r-dependence at
fixed values of τF , which yields

√
8t0Λ

(Nf=0)

MS
= 0.629+22

−26 . (346)

The scale of perturbative matching is defined as

µ =
1√

sr2 + 8bτF
. (347)

The uncertainty related to the truncation of the perturbative expansion is estimated by
scale variations, where b = 0 and s is varied by a factor

√
2 in the zero-flow-time part of

the perturbative expansion, while s = 1 and b = 0, 1,−0.5 in the finite-flow-time part.
The central value corresponds to s = 1, b = 0. The error on the result above is dominated
by the s-scale variation. The ratio

√
t0/r0 is computed in Brambilla 23 and allows to

quote a final result in units of r0,

r0Λ
(Nf=0)

MS
= 0.657+23

−28 . (348)
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The continuum extrapolation is based on four lattice spacings. From the data reported
in the figures, we see that for r = 0.7323

√
t0, the effective coupling is below the requested

threshold of 0.03, while the lattice spacing is such that 0.2321 ≤ µa ≤ 0.4916. Therefore,
we can give a ⋆ for the continuum extrapolation. Fits to the perturbative behaviour are
performed for 0.27 ≤ αeff ≤ 0.36 and nℓ = 3 in the perturbative expansion. Hence, αnℓ

eff

changes by a factor of 2.37, which is 5% above the threshold of (3/2)2. We feel in this
case we can award a ◦ for the perturbative behaviour. Finally, given the range of values
for αeff quoted above, we give a ◦ for the renormalization scale.

Scale variations. The perturbative matching for the static potential is done at lower
scales, µ = 1.5, 2.5, 5.0 GeV. We have computed the change in the determination of
αMS(MZ) as explained in Sec. 9.1. The systematic errors depend on the value of the
perturbative matching scale. We obtain

Q = 1.5 GeV

δ(2) = 2.6% δ∗(2) = 2.7% . (349)

The value of δ∗(4) cannot be computed in this case, because the matching scale is
low, already at the boundary of the region where the perturbative expansion can be
trusted.

Q = 2.5 GeV

δ∗(4) = 0.9% , δ(2) = 1.5% δ∗(2) = 1.5% . (350)

Q = 5.0 GeV

δ∗(4) = 0.4% , δ(2) = 0.8% δ∗(2) = 0.8% . (351)

Note that in the last two cases it was possible to compute δ∗(4).

For the larger values of Q, the error obtained from scale variations is very similar to the
error quoted in previous editions of FLAG, where scale variations were not performed
systematically. For Q = 1.5 GeV the error is larger, as expected since the matching of
perturbation theory happens at lower energy.

9.6 αs from the light-quark vacuum polarization in momentum/po-
sition space

9.6.1 General considerations

Except for the calculation Cali 20 [84], where position space is used (see below), the light-
flavour-current two-point function is usually evaluated in momentum space, in terms of
the vacuum-polarization function. Assuming Nf = 3 flavours in the isospin limit, with
flavour nonsinglet currents consisting of up and down quarks, Jaµ (a = 1, . . . , 3), the
momentum representation takes the form

⟨JaµJbν⟩ = δab[(δµνQ
2 −QµQν)Π(1)

J (Q)−QµQνΠ(0)
J (Q)] , (352)

where Qµ is a space-like momentum and Jµ ≡ Vµ for a vector current and Jµ ≡ Aµ for

an axial-vector current.71 Defining ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), the operator product

71For the general mass-nondegenerate case with SU(3) flavour nonsinglet currents see, for example, Ref. [794].
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expansion (OPE) of ΠV/A(Q) is given by

ΠV/A|OPE(Q
2, αs)

= c+ C
V/A
1 (Q2) + CV/Am (Q2)

m̄2(Q)

Q2
+

∑
q=u,d,s

C
V/A
q̄q (Q2)

⟨mq q̄q⟩
Q4

+C
V/A
GG (Q2)

⟨αsGG⟩
Q4

+O(Q−6) , (353)

for large Q2. The perturbative coefficient functions C
V/A
X (Q2) for the operatorsX (X = 1,

q̄q, GG) are given as C
V/A
X (Q2) =

∑
i≥0

(
C
V/A
X

)(i)
αis(Q

2) and m̄ is the running mass of

the mass-degenerate up and down quarks. C
V/A
1 is known including α4

s in a continuum
renormalization scheme such as the MS scheme [795–798]. Nonperturbatively, there are

terms in C
V/A
X that do not have a series expansion in αs. For an example for the unit

operator see Ref. [799]. The term c is Q-independent and divergent in the limit of infinite
ultraviolet cutoff. However the Adler function defined as

D(Q2) ≡ −Q2 dΠ(Q2)

dQ2
, (354)

is a scheme-independent finite quantity, which gives rise to an effective coupling. There-
fore, one can determine the running coupling constant in the MS scheme from the vacuum-
polarization function computed by a lattice-QCD simulation. Of course, there is the choice
whether to use the vector or the axial-vector channel, or both, the canonical choice being
ΠV+A = ΠV + ΠA. While perturbation theory does not distinguish between these chan-
nels, the nonperturbative contributions are different, and the quality of lattice data may
differ, too. For a given choice, the lattice data of the vacuum polarization is fitted with
the perturbative formula Eq. (353) with fit parameter ΛMS parameterizing the running
coupling αMS(Q

2).
While there is no problem in discussing the OPE at the nonperturbative level, the

‘condensates’ such as ⟨αsGG⟩ are ambiguous, since they mix with lower-dimensional op-
erators including the unity operator. Therefore, one should work in the high-Q2 regime
where power corrections are negligible within the given accuracy. Thus setting the renor-
malization scale as µ ≡

√
Q2, one should seek, as always, the window ΛQCD ≪ µ≪ a−1.

9.6.2 Definitions in position space

The two-point current correlation functions in position space contain the same physical
information as in momentum space, but the technical details are sufficiently different to
warrant a separate discussion. The (Euclidean) current-current correlation function for
Jµff ′ (with flavour indices f, f ′) is taken to be either the flavour nondiagonal vector or
axial-vector current, with the Lorentz indices contracted,

CA,V(x) = −
∑
µ

〈
Jµff ′A,V(x)J

µ
f ′fA,V(0)

〉
=

6

π4(x2)3

(
1 +

αs
π

+O(α2)
)
. (355)

In the chiral limit, the perturbative expansion is known to α4
s [800], and is identical

for vector and axial-vector correlators. The only scale is set by the Euclidean distance
µ = 1/|x| and the effective coupling can thus be defined as

αeff(µ = 1/|x|) = π
[
(x2)3(π4/6)CA,V(x)− 1

]
. (356)

As communicated to us by the authors of [84], there is a typo in Eq. (35) of [800]. For
future reference, the numerical coefficients for the 3-loop conversion

αeff(µ) = αMS(µ) + c1α
2
MS

(µ) + c2α
3
MS

(µ) + c3α
4
MS

(µ), (357)
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should read
c1 = −1.4346, c2 = 0.16979, c3 = 3.21120 . (358)

9.6.3 Discussion of computations

Results using this method in momentum space are, to date, only available using overlap
fermions or domain-wall fermions. Cali 20 [84] consider vacuum polarization in position
space using O(a)-improved Wilson fermions. The results are collected in Tab. 60 for
Nf = 2, JLQCD/TWQCD 08C [801] and for Nf = 2 + 1, JLQCD 10 [725], Hudspith
18 [726] and Cali 20 [84].

Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

re
no
rm

al
iz
at
io
n
sc
al
e

p
er
tu
rb
at
iv
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b
eh
av
io
ur

co
nt
in
uu
m

ex
tr
ap
ol
at
io
n

scale ΛMS[MeV] r0ΛMS

Cali 20 [84] 2+1 A ◦ ⋆ ⋆ mΥ
§ 342(17) 0.818(41)a

Hudspith 18 [726] 2+1 P ◦ ◦ ■ mΩ
⋆ 337(40) 0.806(96)b

Hudspith 15 [802] 2+1 C ◦ ◦ ■ mΩ
⋆ 300(24)+ 0.717(58)

JLQCD 10 [725] 2+1 A ■ ■ ■ r0 = 0.472 fm 247(5)† 0.591(12)

JLQCD/TWQCD 08C [801] 2 A ◦ ■ ■ r0 = 0.49 fm 234(9)(+16
−0 ) 0.581(22)(+40

−0 )

§ via t0/a
2, still unpublished. We use r0 = 0.472 fm

⋆ Determined in [12].
a Evaluates to α

(5)

MS
(MZ) = 0.11864(114)

In conversion to r0Λ we used r0 = 0.472 fm.
b α

(5)

MS
(MZ) = 0.1181(27)(+8

−22). ΛMS determined by us from α
(3)

MS
(2GeV) = 0.2961(185). In conversion to r0Λ

we used r0 = 0.472 fm.
+ Determined by us from α

(3)

MS
(2 GeV) = 0.279(11). Evaluates to α

(5)

MS
(MZ) = 0.1155(18).

† α
(5)

MS
(MZ) = 0.1118(3)(+16

−17).

Table 60: Results from the vaccum polarization in both momentum and position space.

We first discuss the results of JLQCD/TWQCD 08C [801] and JLQCD 10 [725]. The
fit to Eq. (353) is done with the 4-loop relation between the running coupling and ΛMS.
It is found that without introducing fit parameters for condensate contributions, the
momentum scale where the perturbative formula gives good agreement with the lattice
results is very narrow, aQ ≃ 0.8–1.0. When fit parameters for condensate contributions
are included the perturbative formula gives good agreement with the lattice results for
the extended range aQ ≃ 0.6–1.0. Since there is only a single lattice spacing a ≈ 0.11 fm
there is a ■ for the continuum limit. The renormalization scale µ is in the range of Q =
1.6–2 GeV. Approximating αeff ≈ αMS(Q), we estimate that αeff = 0.25–0.30 for Nf = 2
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and αeff = 0.29–0.33 for Nf = 2+1. Thus we give a ◦ and ■ for Nf = 2 and Nf = 2+1,
respectively, for the renormalization scale and a ■ for the perturbative behaviour.

A further investigation of this method was initiated in Hudspith 15 [802] and com-
pleted by Hudspith 18 [726] (see also [803]) based on domain-wall fermion configurations
at three lattice spacings, a−1 = 1.78, 2.38, 3.15 GeV, with three different light-quark
masses on the two coarser lattices and one on the fine lattice. An extensive discussion
of condensates, using continuum finite-energy sum rules was employed to estimate where
their contributions might be negligible. It was found that even up to terms of O((1/Q2)8)
(a higher order than depicted in Eq. (353) but with constant coefficients) no single con-
densate dominates and apparent convergence was poor for low Q2 due to cancellations
between contributions of similar size with alternating signs. (See, e.g., the list given by
Hudspith 15 [802].) Choosing Q2 to be at least ∼ 3.8GeV2 mitigated the problem, but
then the coarsest lattice had to be discarded, due to large lattice artefacts. So this gives
a ■ for continuum extrapolation. With the higher Q2 the quark-mass dependence of the
results was negligible, so ensembles with different quark masses were averaged over. A
range of Q2 from 3.8–16 GeV2 gives αeff = 0.31–0.22, so there is a ◦ for the renormaliza-
tion scale. The value of α3

eff reaches ∆αeff/(8πb0αeff) and thus gives a ◦ for perturbative
behaviour. In Hudspith 15 [802] (superseded by Hudspith 18 [726]) about a 20% difference
in ΠV (Q

2) was seen between the two lattice spacings and a result is quoted only for the
smaller a.

9.6.4 Vacuum polarization in position space

Cali 20 [84] evaluate the light-current two-point function in position space. The two-
point functions for the nonperturbatively renormalized (nonsinglet) flavour currents is
computed for distances |x| between 0.1 and 0.25 fm and extrapolated to the chiral limit.
The available CLS configurations are used for this work, with lattice spacings between
0.039 and 0.086 fm. Despite fully nonperturbative renormalization and O(a) improve-
ment, the remaining O(a2) effects, as measured by O(4) symmetry violations, are very
large, even after subtraction of tree-level lattice effects. Therefore the authors performed
a numerical stochastic perturbation theory (NSPT) simulation in order to determine the
lattice artifacts at O(g2). Only after subtraction of these effects the constrained contin-
uum extrapolations from three different lattice directions to the same continuum limit
are characterized by reasonable χ2-values, so the feasibility of the study crucially de-
pends on this step. Interestingly, there is no subtraction performed of nonperturbative
effects. For instance, chiral symmetry breaking would manifest itself in a difference be-
tween the vector and the axial-vector two-point functions, and is invisible to perturbation
theory, where these two-point functions are known to α4

s [800]. According to the authors,
phenomenological estimates suggest that a difference of 1.5% between the continuum cor-
relators would occur around 0.3 fm and this difference would not be resolvable by their
lattice data. Equality within their errors is confirmed for shorter distances. We note,
however, that chiral symmetry breaking effects are but one class of nonperturbative ef-
fects, and their smallness does not allow for the conclusion that such effects are generally
small. In fact, the need for explicit subtractions in momentum space analyses may lead
one to suspect that such effects are not negligible at the available distance scales. For the

determination of Λ
Nf=3

MS
the authors limit the range of distances to 0.13–0.19 fm, where

αeff ∈ [0.2354, 0.3075] (private communication by the authors). These effective couplings
are converted to MS couplings at the same scales µ = 1/|x| by solving Eq. (357) numer-
ically. Central values for the Λ-parameter thus obtained are in the range 325–370 MeV
(using the β-function at 5-loop order) and a weighted average yields the quoted result
342(17) MeV, where the average emphasizes the data around |x| = 0.16 fm, or µ =
1.3 GeV.

Applying the FLAG criteria the range of lattice spacings yields ⋆ for the contin-
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uum extrapolation. However, the FLAG criterion implicitly assumes that the remain-
ing cutoff effects after nonperturbative O(a) improvement are small, which is not the
case here. Some hypercubic lattice artefacts are still rather large even after 1-loop sub-
traction, but these are not used for the analysis. As for the renormalization scale, the
lowest effective coupling entering the analysis is 0.235 < 0.25, so we give ◦ . As for
perturbative behaviour, for the range of couplings in the above interval α3

eff changes by
(0.308/0.235)3 ≈ 2.2, marginally reaching (3/2)2 = 2.25. The errors ∆αeff after contin-
uum and chiral extrapolations are 4–6% (private communication by the authors) and the
induced uncertainty in Λ is comfortably above 2α3

eff, which gives a ⋆ according to FLAG
criteria.

Although the current FLAG criteria are formally passed by this result, the quoted
error of 5% for Λ seems very optimistic. We have performed a simple test, converting to
the MS scheme by inverting Eq. (357) perturbatively (instead of solving the fixed-order
equation numerically). The differences between the couplings are of order α5

s and thus
indicative of the sensitivity to perturbative truncation errors. The resulting Λ-parameter
estimates are now in the range 409–468 MeV, i.e., ca. 15–30% larger than before. While
the difference between both estimates decreases proportionally to the expected α3

eff, an
extraction of the Λ-parameter in this energy range is a priori affected by systematic
uncertainties corresponding to such differences. The FLAG criterion might fail to capture
this, e.g., if the assumption of an O(1) coefficient for the asymptotic α3

eff behaviour is not
correct. Some indication for a problematic behaviour is indeed seen when perturbatively
inverting Eq. (357) to order α3

s. The resulting MS couplings are then closer to the values
used in Cali 20, although the difference is formally O(α4

s) rather than O(α5
s).

Scale variations. Using scale variations to determine the systematic error due to
the truncation of the perturbative series only makes sense when the extrapolation of the
observable to the continuum limit is under control. Therefore, we apply our common
procedure only to the results in Cali 20 [84]. Using Q ≈ 1.3 GeV as the typical scale set
by the inverse of the distance, yields

δ∗(4) = 1.0% , δ(2) = 11.6% δ∗(2) = 0.6% . (359)

The discrepancy between the variation around Q, δ(2) = 11.6%, and the variation around
the scale of fastest apparent convergence, δ∗(2) = 0.6%, is due to the large value of the
factor s∗ref = 2.72. As a consequence the scale of fastest apparent convergence is artificially
large compared to the actual scale where the lattice observables is computed. The large
value of δ(2), obtained for sref = 1, shows that the scale of the lattice observable is too
low to keep the systematic errors under control.

9.7 αs from observables at the lattice spacing scale

9.7.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice
spacing ∼ 1/a and then determine its relationship to αMS via a perturbative expansion.

This is epitomized by the strategy of the HPQCD collaboration [727, 804], discussed
here for illustration, which computes and then fits to a variety of short-distance quantities

Y =

nmax∑
n=1

cnα
n
V′(q∗) . (360)

The quantity Y is taken as the logarithm of small Wilson loops (including some nonpla-
nar ones), Creutz ratios, ‘tadpole-improved’ Wilson loops and the tadpole-improved or
‘boosted’ bare coupling (O(20) quantities in total). The perturbative coefficients cn (each
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depending on the choice of Y ) are known to n = 3 with additional coefficients up to nmax

being fitted numerically. The running coupling αV′ is related to αV from the static-quark
potential (see Sec. 9.5).72

The coupling constant is fixed at a scale q∗ = d/a. The latter is chosen as the mean
value of ln q with the one-gluon loop as measure [728, 805]. (Thus a different result for d
is found for every short-distance quantity.) A rough estimate yields d ≈ π, and in general
the renormalization scale is always found to lie in this region.

For example, for the Wilson loop Wmn ≡ ⟨W (ma, na)⟩ we have

ln

(
Wmn

u
2(m+n)
0

)
= c1αV′(q∗) + c2α

2
V′(q∗) + c3α

3
V′(q∗) + · · · , (361)

for the tadpole-improved version, where c1, c2 , . . . are the appropriate perturbative coeffi-

cients and u0 =W
1/4
11 . Substituting the nonperturbative simulation value in the left hand

side, we can determine αV′(q∗), at the scale q∗. Note that one finds empirically that per-
turbation theory for these tadpole-improved quantities have smaller cn coefficients and
so the series has a faster apparent convergence compared to the case without tadpole
improvement.

Using the β-function in the V′ scheme, results can be run to a reference value, chosen
as α0 ≡ αV′(q0), q0 = 7.5GeV. This is then converted perturbatively to the continuum
MS scheme

αMS(q0) = α0 + d1α
2
0 + d2α

3
0 + · · · , (362)

where d1, d2 are known 1-and 2-loop coefficients.
Other collaborations have focused more on the bare ‘boosted’ coupling constant and

directly determined its relationship to αMS. Specifically, the boosted coupling is defined
by

αP(1/a) =
1

4π

g20
u40

, (363)

again determined at a scale ∼ 1/a. As discussed previously, since the plaquette expec-
tation value in the boosted coupling contains the tadpole-diagram contributions to all
orders, which are dominant contributions in perturbation theory, there is an expecta-
tion that the perturbation theory using the boosted coupling has smaller perturbative
coefficients [728], and hence smaller perturbative errors.

9.7.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by
a continuum extrapolation. As mentioned previously, in this respect the present method
differs in principle from those in which αs is determined from physical observables. In the
general case, the numerical results of the lattice simulations at a value of µ fixed in physical
units can be extrapolated to the continuum limit, and the result can be analyzed as to
whether it shows perturbative running as a function of µ in the continuum. For observables
at the cutoff-scale (q∗ = d/a), discretization effects cannot easily be separated out from
perturbation theory, as the scale for the coupling comes from the lattice spacing. Therefore
the restriction aµ ≪ 1 (the ‘continuum-extrapolation’ criterion) is not applicable here.
Discretization errors of order a2 are, however, present. Since a ∼ exp(−1/(2b0g20)) ∼
exp(−1/(8πb0α(q∗)), these errors now appear as power corrections to the perturbative
running, and have to be taken into account in the study of the perturbative behaviour,

72αV′ is defined by ΛV′ = ΛV and bV
′

i = bVi for i = 0, 1, 2 but bV
′

i = 0 for i ≥ 3.
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which is to be verified by changing a. One thus usually fits with power corrections in this
method.

In order to keep a symmetry with the ‘continuum-extrapolation’ criterion for physical
observables and to remember that discretization errors are, of course, relevant, we replace
it here by one for the lattice spacings used:

• Lattice spacings

⋆ 3 or more lattice spacings, at least 2 points below a = 0.1 fm

◦ 2 lattice spacings, at least 1 point below a = 0.1 fm

■ otherwise

9.7.3 Discussion of computations

Note that due to µ ∼ 1/a being relatively large the results easily have a ⋆ or ◦ in the
rating on renormalization scale.

The work of El-Khadra 92 [813] employs a 1-loop formula to relate α
(0)

MS
(π/a) to the

boosted coupling for three lattice spacings a−1 = 1.15, 1.78, 2.43GeV. (The lattice spac-

ing is determined from the charmonium 1S-1P splitting.) They obtain Λ
(0)

MS
= 234MeV,

corresponding to αeff = α
(0)

MS
(π/a) ≈ 0.15–0.2. The work of Aoki 94 [810] calculates α

(2)
V

and α
(2)

MS
for a single lattice spacing a−1 ∼ 2GeV, again determined from charmonium

1S-1P splitting in two-flavour QCD. Using 1-loop perturbation theory with boosted cou-

pling, they obtain α
(2)
V = 0.169 and α

(2)

MS
= 0.142. Davies 94 [809] gives a determination

of αV from the expansion

− lnW11 ≡
4π

3
α
(Nf )
V (3.41/a)× [1− (1.185 + 0.070Nf )α

(Nf )
V ] , (364)

neglecting higher-order terms. They compute the Υ spectrum in Nf = 0, 2 QCD for
single lattice spacings at a−1 = 2.57, 2.47GeV and obtain αV(3.41/a) ≃ 0.15, 0.18,

respectively. Extrapolating the inverse coupling linearly in Nf , a value of α
(3)
V (8.3GeV) =

0.196(3) is obtained. SESAM 99 [807] follows a similar strategy, again for a single lattice

spacing. They linearly extrapolated results for 1/α
(0)
V , 1/α

(2)
V at a fixed scale of 9GeV to

give α
(3)
V , which is then perturbatively converted to α

(3)

MS
. This finally gave α

(5)

MS
(MZ) =

0.1118(17). Wingate 95 [808] also follows this method. With the scale determined from
the charmonium 1S-1P splitting for single lattice spacings in Nf = 0, 2 giving a−1 ≃
1.80GeV for Nf = 0 and a−1 ≃ 1.66GeV for Nf = 2, they obtain α

(0)
V (3.41/a) ≃ 0.15 and

α
(2)
V ≃ 0.18, respectively. Extrapolating the inverse coupling linearly in Nf , they obtain

α
(3)
V (6.48GeV) = 0.194(17).
The QCDSF/UKQCD collaboration, QCDSF/UKQCD 05 [806], [814–816], use the

2-loop relation (re-written here in terms of α)

1

αMS(µ)
=

1

αP(1/a)
+ 4π(2b0 ln aµ− tP1 ) + (4π)2(2b1 ln aµ− tP2 )αP(1/a) , (365)

where tP1 and tP2 are known. (A 2-loop relation corresponds to a 3-loop lattice β-function.)
This was used to directly compute αMS, and the scale was chosen so that the O(α0

P) term
vanishes, i.e.,

µ∗ =
1

a
exp [tP1 /(2b0)] ≈

{
2.63/a Nf = 0
1.4/a Nf = 2

. (366)

The method is to first compute αP(1/a) and from this, using Eq. (365) to find αMS(µ
∗).

The RG equation, Eq. (288), then determines µ∗/ΛMS and hence using Eq. (366) leads to
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scale ΛMS[MeV] r0ΛMS

HPQCD 10a§ [15] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)

HPQCD 08Aa [727] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)

Maltman 08a [87] 2+1 A ◦ ◦ ⋆ r1 = 0.318 fm 352(17)† 0.841(40)

HPQCD 05Aa [804] 2+1 A ◦ ◦ ◦ r1
†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05[806] 2 A ⋆ ■ ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [807] 2 A ◦ ■ ■ cc̄(1S-1P)

Wingate 95d [808] 2 A ⋆ ■ ■ cc̄(1S-1P)
Davies 94e [809] 2 A ⋆ ■ ■ Υ

Aoki 94f [810] 2 A ⋆ ■ ■ cc̄(1S-1P)

Kitazawa 16 [811] 0 A ⋆ ⋆ ⋆ w0 260(5)j 0.621(11)j

FlowQCD 15 [812] 0 P ⋆ ⋆ ⋆ w0.4
i 258(6)i 0.618(11)i

QCDSF/UKQCD 05[806] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [807] 0 A ⋆ ■ ■ cc̄(1S-1P)

Wingate 95d [808] 0 A ⋆ ■ ■ cc̄(1S-1P)
Davies 94e [809] 0 A ⋆ ■ ■ Υ

El-Khadra 92g [813] 0 A ⋆ ■ ◦ cc̄(1S-1P) 234(10) 0.560(24)h

a The numbers for Λ have been converted from the values for α
(5)
s (MZ).

§ α
(3)

MS
(5 GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c-, b-quark

masses, supersedes HPQCD 08A.
† α

(5)

MS
(MZ) = 0.1192(11).

⋆ α
(3)
V (7.5GeV) = 0.2120(28), α

(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion
to r0ΛMS, r0 is taken to be 0.472 fm.

⋆⋆ α
(3)
V (7.5GeV) = 0.2082(40), α

(5)

MS
(MZ) = 0.1170(12).

b This supersedes Refs. [814–816]. α
(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values

for r0/a which have later been found to be too small [710]. The effect will be of the order of 10–15%,
presumably an increase in Λr0.

c α
(5)

MS
(MZ) = 0.1118(17).

d α
(3)
V (6.48GeV) = 0.194(7) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.107(5).

e α
(3)
P (8.2GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.115(2).

f Estimated α
(5)

MS
(MZ) = 0.108(5)(4).

g This early computation violates our requirement that scheme conversions are done at the 2-loop level.
Λ

(4)

MS
= 160(+47

−37)MeV, α
(4)

MS
(5GeV) = 0.174(12). We converted this number to give α

(5)

MS
(MZ) = 0.106(4).

h We used r0 = 0.472 fm to convert to r0ΛMS.
i Reference scale w0.4 where wx is defined by t∂t[t

2⟨E(t)⟩]
∣∣
t=w2

x
= x in terms of the action density E(t) at

positive flow time t [812]. Our conversion to r0 scale using [812] r0/w0.4 = 2.587(45) and r0 = 0.472 fm.
j Our conversion from w0ΛMS = 0.2154(12) to r0 scale using r0/w0 = (r0/w0.4) · (w0.4/w0) = 2.885(50)

with the factors cited by the collaboration [812] and with r0 = 0.472 fm.

Table 61: Wilson loop results. Some early results for Nf = 0, 2 did not determine ΛMS.
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the result for r0ΛMS. This avoids giving the scale in MeV until the end. In the Nf = 0
case seven lattice spacings were used [713], giving a range µ∗/ΛMS ≈ 24–72 (or a−1 ≈
2–7 GeV) and αeff = αMS(µ

∗) ≈ 0.15–0.10. Neglecting higher-order perturbative terms
(see discussion after Eq. (367) below) in Eq. (365) this is sufficient to allow a continuum
extrapolation of r0ΛMS. A similar computation for Nf = 2 by QCDSF/UKQCD 05 [806]
gave µ∗/ΛMS ≈ 12–17 (or roughly a−1 ≈ 2–3 GeV) and αeff = αMS(µ

∗) ≈ 0.20–0.18. The
Nf = 2 results of QCDSF/UKQCD 05 [806] are affected by an uncertainty which was not
known at the time of publication: It has been realized that the values of r0/a of Ref. [806]
were significantly too low [710]. As this effect is expected to depend on a, it influences
the perturbative behaviour leading us to assign a ■ for that criterion.

Results for theNf = 0 Λ-parameter by FlowQCD 15 [812], later updated and published
in Kitazawa 16 [811], are obtained following the same strategy, cf. Eqs. (365), (366), except
that the scale r0 is replaced by the gradient flow scale w0, leading to a determination
of w0ΛMS. The continuum limit is estimated by extrapolating the data at six lattice
spacings linearly in a2. The data range used is µ∗/ΛMS ≈ 50–120 (or a−1 ≈ 5–11 GeV)
and αMS(µ

∗) ≈ 0.12–0.095. Since a very small value of αMS is reached, there is a ⋆ in the
perturbative behaviour. Note that our conversion to the common r0 scale unfortunately
leads to a significant increase of the error of the Λ parameter compared to using w0

directly [817]. Again we note that the results of QCDSF/UKQCD 05 [806] (Nf = 0)
and Kitazawa 16 [811] may be affected by frozen topology as they have lattice spacings
significantly below a = 0.05 fm. Kitazawa 16 [811] investigate this by evaluating w0/a in
a fixed topology and estimate any effect at about ∼ 1%.

The work of HPQCD 05A [804] (which supersedes the original work [818]) uses three
lattice spacings a−1 ≈ 1.2, 1.6, 2.3GeV for 2 + 1 flavour QCD. Typically the renormal-
ization scale q ≈ π/a ≈ 3.50–7.10 GeV, corresponding to αV′ ≈ 0.22–0.28.

In the later update HPQCD 08A [727] twelve data sets (with six lattice spacings) are
now used reaching up to a−1 ≈ 4.4GeV, corresponding to αV′ ≈ 0.18. The values used
for the scale r1 were further updated in HPQCD 10 [15]. Maltman 08 [87] uses most of
the same lattice ensembles as HPQCD 08A [727], but not the one at the smallest lattice
spacing, a ≈ 0.045 fm. Maltman 08 [87] also considers a much smaller set of quantities
(three versus 22) that are less sensitive to condensates. They also use different strategies
for evaluating the condensates and for the perturbative expansion, and a slightly different
value for the scale r1. The central values of the final results from Maltman 08 [87] and
HPQCD 08A [727] differ by 0.0009 (which would be decreased to 0.0007 taking into
account a reduction of 0.0002 in the value of the r1 scale used by Maltman 08 [87]).

As mentioned before, the perturbative coefficients are computed through 3-loop or-
der [819], while the higher-order perturbative coefficients cn with nmax ≥ n > 3 (with
nmax = 10) are numerically fitted using the lattice-simulation data for the lattice spacings
with the help of Bayesian methods. It turns out that corrections in Eq. (361) are of order
|ci/c1|αi = 5–15% and 3–10% for i = 2, 3, respectively. The inclusion of a fourth-order
term is necessary to obtain a good fit to the data, and leads to a shift of the result by 1–2
sigma. For all but one of the 22 quantities, central values of |c4/c1| ≈ 2–4 were found,
with errors from the fits of ≈ 2. It should be pointed out that the description of lattice
results for the short-distance quantities does not require Bayesian priors, once the term
proportional to c4 is included [87]. We also stress that different short-distance quantities
have quite different nonperturbative contributions [820]. Hence the fact that different
observables lead to consistent αs values is a nontrivial check of the approach.

An important source of uncertainty is the truncation of perturbation theory. In
HPQCD 08A [727], HPQCD 10 [15] it is estimated to be about 0.4% of αMS(MZ). In
FLAG 13 we included a rather detailed discussion of the issue with the result that we pre-
fer for the time being a more conservative error based on the above estimate |c4/c1| = 2.
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From Eq. (360) this gives an estimate of the uncertainty in αeff of

∆αeff(µ1) =

∣∣∣∣c4c1
∣∣∣∣α4

eff(µ1) , (367)

at the scale µ1 where αeff is computed from the Wilson loops. This can be used with a
variation in Λ at lowest order of perturbation theory and also applied to αs evolved to a
different scale µ2,

73

∆Λ

Λ
=

1

8πb0αs

∆αs
αs

,
∆αs(µ2)

∆αs(µ1)
=
α2
s(µ2)

α2
s(µ1)

. (368)

With µ2 =MZ and αs(µ1) = 0.2 (a typical value extracted from Wilson loops in HPQCD
10 [15], HPQCD 08A [727] at µ = 5GeV) we have

∆αMS(mZ) = 0.0012 , (369)

which we shall later use as the typical perturbative uncertainty of the method with 2 + 1
fermions.

Table 61 summarizes the results. Within the errors of 3–5% Nf = 3 determinations of
r0Λ nicely agree.

Scale variations. As discussed above, the short-distance observables are fitted to a
perturbative expansion where the higher-order coefficients are actual parameters in the fit.
Here instead we follow the exact same procedure introduced for all the observables, and we
describe the observables using only the known perturbative coefficients. For illustration,
we report the result of the scale variations for two observables, namely the simple 1 × 1
plaquette and the 2×1 Wilson loop. The perturbative coefficients are reported in Tab. 56
and the typical scale is µ ≈ 2.4/a ≈ 4.4 GeV. With these values we obtain the following
results.

− logW11

δ∗(4) = 2.8% , δ(2) = 3.3% δ∗(2) = 2.5% . (370)

− logW112/u
6
0

δ∗(4) = 3.5% , δ(2) = 3.2% δ∗(2) = 3.1% . (371)

This analysis suggests a systematic error around 3% for these kind of analyses on the
available ensembles.

9.8 αs from heavy-quark current two-point functions

9.8.1 General considerations

The method has been introduced in HPQCD 08, Ref. [244], and updated in HPQCD 10,
Ref. [15], see also Ref. [821]. In addition there is a 2+1+1-flavour result, HPQCD 14A
[18].

The basic observable is constructed from a current,

J(x) = iamcψc(x)γ5ψc′(x) , (372)

73From Eq. (295) we see that at low order in PT the coupling αs is continuous and differentiable across the
mass thresholds (at the same scale). Therefore to leading order αs and ∆αs are independent of Nf .
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of two mass-degenerate heavy-valence quarks, c, c′, usually taken to be at or around the
charm-quark mass. The pre-factor mc denotes the bare mass of the quark. When the
lattice discretization respects chiral symmetry, J(x) is a renormalization group invari-
ant local field, i.e., it requires no renormalization. Staggered fermions and twisted-mass
fermions have such a residual chiral symmetry. The (Euclidean) time-slice correlation
function

G(x0) = a6
∑
x⃗

⟨J†(x)J(0)⟩ , (373)

(J†(x) = iamcψc′(x)γ5ψc(x)) has a ∼ x−3
0 singularity at short distances and moments

Gn = a

T/2−a∑
x0=−(T/2−a)

xn0 G(x0) (374)

are nonvanishing for even n and furthermore finite for n ≥ 4 in the a→ 0 limit. Here T is
the time extent of the lattice. The moments are dominated by contributions at x0 of order
1/mc. For large mass mc these are short distances and the moments become increasingly
perturbative for decreasing n. Denoting the lowest-order perturbation theory moments

by G
(0)
n , one defines the normalized moments

Rn =

 G4/G
(0)
4 for n = 4 ,

amηc

2amc

(
Gn

G
(0)
n

)1/(n−4)

for n ≥ 6 ,
(375)

of even order n. Note that Eq. (372) contains the variable (bare) heavy-quark mass mc.

The normalization G
(0)
n is introduced to help in reducing lattice artifacts. In addition,

one can also define moments with different normalizations,

R̃n = 2Rn/mηc for n ≥ 6 . (376)

While R̃n also remains renormalization-group invariant, it now also has a scale which
might introduce an additional ambiguity [30].

The normalized moments can then be parameterized in terms of functions

Rn ≡
{

r4(αs(µ)) for n = 4 ,
mηc

2m̄c(µm)rn(αs(µ)) for n ≥ 6 ,
(377)

with m̄c(µm) being the renormalized heavy-quark mass. The scale µm at which the heavy-
quark mass is defined could be different from the scale µ at which αs is defined [822]. The
HPQCD collaboration, however, used the choice µ = µm = 3mc(µ). This ensures that the
renormalization scale is never too small. The reduced moments rn have a perturbative
expansion

rn = 1 + rn,1αs + rn,2α
2
s + rn,3α

3
s + . . . , (378)

where the written terms rn,i(µ/m̄c(µ)), i ≤ 3 are known for low n from Refs. [729, 823–
826]. In practice, the expansion is performed in the MS scheme. Matching nonperturbative
lattice results for the moments to the perturbative expansion, one determines an approx-
imation to αMS(µ) as well as m̄c(µ). With the lattice spacing (scale) determined from
some extra physical input, this calibrates µ. As usual suitable pseudoscalar masses deter-
mine the bare-quark masses, here in particular the charm-quark mass, and then through
Eq. (377) the renormalized charm-quark mass.
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A difficulty with this approach is that large masses are needed to enter the perturbative
domain. Lattice artifacts can then be sizeable and have a complicated form. The ratios
in Eq. (375) use the tree-level lattice results in the usual way for normalization. This
results in unity as the leading term in Eq. (378), suppressing some of the kinematical
lattice artifacts. We note that in contrast to, e.g., the definition of αqq, here the cutoff
effects are of order akαs, while there the tree-level term defines αs and therefore the cutoff
effects after tree-level improvement are of order akα2

s. To obtain the continuum results
for the moments it is important to perform fits with high powers of a. This implies many
fit parameters. To deal with this problem the HPQCD collaboration used Bayesian fits
of their lattice results. More recent analyses of the moments, however, did not rely on
Bayesian fits [30, 31, 81, 230].

Finite-size effects (FSE) due to the omission of |x0| > T/2 in Eq. (374) grow with n
as (mηcT/2)

n exp (−mηcT/2). In practice, however, since the (lower) moments are short-
distance dominated, the FSE are expected to be small at the present level of precision.
Possible exception could be the ratio R8/R10, where the finite-volume effects could be
significant as discussed below.

Moments of correlation functions of the quark’s electromagnetic current can also be ob-
tained from experimental data for e+e− annihilation [827, 828]. This enables a nonlattice
determination of αs using a similar analysis method. In particular, the same contin-
uum perturbation-theory computation enters both the lattice and the phenomenological
determinations.

9.8.2 Discussion of computations

The determination of the strong coupling constant from the moments of quarkonium
correlators by HPQCD collaboration have been discussed in detail in the FLAG 16 and
19 reports. Therefore, we only give the summary of these determinations in Table 62.
There were no new determinations of the strong coupling constant in 2+1 flavour QCD
by other groups since the FLAG 21 report. The only new development was that Petreczky
20 [81] is now published and therefore this determination enters the FLAG average. The
determinations of αs by Maezawa 16, JLQCD16, Petreczky 19 and Boito 20 have been
discussed in detail in the FLAG 21 report, so we do not discuss them here again and only
give the summary of these determinations in Table 62. We will only discuss the results of
Petreczky 20 [81] here.

Petreczky 20 is based on the same lattice data as Petreczky 19 [31]. Here the pseudo-
scalar correlation functions have been computed using HISQ ensembles from HotQCD
Collaboration [117] for physical strange-quark mass and light-quark masses correspond-
ing to the pion mass of 160 MeV in the continuum limit, and lattice spacings a−1 =
1.81, 2.07, 2.39, 2.67, 3.01, 3.28, 4.00 and 4.89 GeV. Additional calculations have been
performed for light-quark mass corresponding to the pion mass of 300 MeV and lattice
spacings a−1 = 2.39, 4.89, 5.58, 6.62 and 7.85 GeV using the gauge configurations from
the study of QCD equation of state at high temperatures [790]. No significant light-quark-
mass dependence of heavy pseudo-scalar correlators have been observed [31]. Therefore,
the results for the two light-quark masses have been combined into a single analysis.
Calculations have been performed at four values of the heavy-quark mass equal to the
physical charm-quark mass, one and half times the charm-quark mass, two times the
charm-quark mass and three times the charm-quark mass. In this study random-colour
wall sources which greatly reduced the statistical errors were used. In fact, the statistical
errors on the moments were completely negligible compared to other sources of errors.
The strong coupling constant was extracted from R4 [81]. To obtain the continuum limit
the lattice-spacing dependence of the results of R4 at different quark masses was fitted
simultaneously in a similar manner as in the HPQCD 10 and HPQCD 14 analyses, but
without using Bayesian priors. In extracting αs several choices of the renormalization
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scale ΛMS[MeV] r0ΛMS

HPQCD 14A [18] 2+1+1 A ◦ ⋆ ◦ w0 = 0.1715(9) fma 294(11)bc 0.703(26)

Petreczky 20 [81] 2+1 A ◦ ◦ ⋆ r1 = 0.3106(18) fm 332(17)h 0.792(41)g

Boito 20 [829] 2+1 A ■ ■ ◦ mc(mc) = 1.28(2) GeV 328(30)h 0.785(72)
Petrezcky 19, mh=mc [31] 2+1 A ■ ■ ⋆ r1 = 0.3106(18) fmg 314(10) 0.751(24)g

Petrezcky 19, mh
mc

=1.5 [31] 2+1 A ■ ■ ◦ r1 = 0.3106(18) fmg 310(10) 0.742(24)g

Maezawa 16 [230] 2+1 A ■ ■ ◦ r1 = 0.3106(18) fmd 309(10)e 0.739(24)e

JLQCD 16 [30] 2+1 A ■ ◦ ◦ √
t0 = 0.1465(25) fm 331(38)f 0.792(89)f

HPQCD 10 [15] 2+1 A ◦ ⋆ ◦ r1 = 0.3133(23) fm† 338(10)⋆ 0.809(25)

HPQCD 08B [244] 2+1 A ■ ■ ■ r1 = 0.321(5) fm† 325(18)+ 0.777(42)

a Scale determined in [42] using fπ.
b α

(4)

MS
(5GeV) = 0.2128(25), α

(5)

MS
(MZ) = 0.11822(74).

c We evaluated Λ
(4)

MS
from α

(4)

MS
. We also used r0 = 0.472 fm.

d Scale is determined from fπ .
e α

(3)

MS
(mc = 1.267GeV) = 0.3697(85), α

(5)

MS
(MZ) = 0.11622(84). Our conversion with r0 = 0.472 fm.

f We evaluated Λ
(3)

MS
from the given α

(4)

MS
(3GeV) = 0.2528(127). α

(5)

MS
(MZ) = 0.1177(26). We also used

r0 = 0.472 fm to convert.
g We used r0 = 0.472 fm to convert.
h We back-engineered from α

(5)

MS
(MZ) = 0.1177(20). We used r0 = 0.472 fm to convert.

⋆ α
(3)

MS
(5GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1183(7).

† Scale is determined from Υ mass splitting.
+ We evaluated Λ

(3)

MS
from the given α

(4)

MS
(3GeV) = 0.251(6). α

(5)

MS
(MZ) = 0.1174(12).

Table 62: Heavy-quark current two-point function results. Note that all analysis using 2 + 1
flavour simulations perturbatively add a dynamical charm quark. Partially they then quote
results in four-flavour QCD, which we converted back to Nf = 3, corresponding to the non-
perturbative sea quark content.

scale µ in the range 2/3mh–3mh have been considered. The perturbative truncation error
was estimated by varying the coefficient of the unknown 4-loop term in Eq. (378) between
−1.6r3 and +1.6r3. However, the uncertainty of the results due to the scale variation was
larger than the estimated perturbative truncation error. The final error of the result

Λ
Nf=3

MS
= 331(17) MeV comes mostly from the scale variation [81]. Since there are three

lattice spacing available with aµ < 0.5 we give ⋆ for continuum extrapolation. Because
αeff = 0.22−0.38 we give ◦ for the renormalization scale. Finally, since (∆Λ/Λ)∆α > α2

eff

for the smallest αeff value we give ◦ for the perturbative behaviour. In addition to R4

Petreczky 20 also considered using R6/R8 and R8/R10 for the αs determination. It was
pointed out that the lattice spacing dependence of R6/R8 is quite subtle and therefore
reliable continuum extrapolations for this ratio are not possible for mh ≥ 2mc [81]. For
mh = mc and 1.5mc the ratio R6/R8 leads to αs values that are consistent with the ones
from R4. Furthermore, it was argued that finite-volume effects in the case of R8/R10 are
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large for mh = mc and therefore the corresponding data are not suitable for extracting
αs. This observation may explain why the central values of αs extracted from R8/R10

in some previous studies were systematically lower [31, 230, 244]. On the other hand for
mh ≥ 1.5mc the finite-volume effects are sufficiently small in the continuum extrapolated
results if some small-volume lattice data are excluded from the analysis [81]. The αs
obtained from R8/R10 with mh ≥ 1.5mc were consistent with the ones obtained from R4.

Aside from the final results for αs(mZ) obtained by matching with perturbation theory,
it is interesting to make a comparison of the short distance quantities in the continuum
limit Rn which are available from HPQCD 08 [244], JLQCD 16 [30], Maezawa 16 [230],
Petreczky 19 [31] and Petreczky 20 [81] (all using 2 + 1 flavours). This comparison is
shown in Tab. 63. The results are in quite good agreement with each other. For future

HPQCD 08 HPQCD 10 Maezawa 16 JLQCD 16 Petreczky 19 Petreczky 20

R4 1.272(5) 1.282(4) 1.265(7) - 1.279(4) 1.278(2)
R6 1.528(11) 1.527(4) 1.520(4) 1.509(7) 1.521(3) 1.522(2)
R8 1.370(10) 1.373(3) 1.367(8) 1.359(4) 1.369(3) 1.368(3)
R10 1.304(9) 1.304(2) 1.302(8) 1.297(4) 1.311(7) 1.301(3)

R6/R8 1.113(2) - 1.114(2) 1.111(2) 1.1092(6) 1.10895(32)
R8/R10 1.049(2) - 1.0495(7) 1.0481(9) 1.0485(8) -

Table 63: Moments and the ratios of the moments from Nf = 3 simulations at the charm-
quark mass.

studies it is of course interesting to check agreement of these numbers before turning to
the more involved determination of αs.

While there have been no new determinations of αs from the moments of the heavy-
quark current two-point functions in 2+1+1 flavour or 2+1 flavour QCD since the FLAG
21 report, this method has been scrutinized in quneched QCD (Nf = 0) in three conference
proceedings [700, 830, 831]. In these works the Wilson gauge action was used for several
values of the lattices spacings, down to lattice spacing of a = 0.01 fm, which is 2.5
times smaller than the smallest lattice spacing used in 2+1 flavour QCD. The box size
was sufficiently large for the heavy-quark current two-point functions, namely L = 2 fm
was used. In the temporal direction open boundary conditions have been used, and the
extent in the time direction was 6 fm. For heavy-quark twisted-mass fermion formulation
was used at the maximal twist. Five different heavy-quark masses have been used in
these studies, namely 0.77Mc, 1.16Mc, 1.55Mc, 2.32Mc and 3.48Mc, with Mc being
the physical charm-quark mass [700, 830, 831]. The continuum extrapolation of R4 has

been performed and from it the value of Λ
Nf=0

MS
was obtained for different heavy-quark

masses and different choices of µ. It turned out, however, that the results obtained for
different heavy-quark masses and values of µ are not consistent with each other and often
are not compatible with the value determined from step scaling [756]. It was argued
that this is due to the log-enhanced discretization errors in R4, i.e., discretization errors
that are proportional to a2 log(amc) [831], and that reliable continuum extrapolation
of R4 is not possible for this lattice setup. A practical way to circument this problem
was also proposed in Ref. [831] and relies on considering a special combination of R4

evaluated at two heavy-quark masses. The ratios R6/R8 and R8/R10 do not have log-

enhanced discretization effects [700, 831] and therefore, can be used to obtain Λ
Nf=0

MS
.

Such an analysis was performed in Ref. [700]. Here to deal with perturbative error it was

assumed that Λ
Nf=0

MS

√
8t0 obtained at different renormalization scales µ is linear in α2

s(µ)
as expected from 3-loop perturbative calculations. Performing linear extrapolations in
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α2
s(µ) the final values of Λ

Nf=0

MS

√
8t0 have been obtained. The corresponding results for

the Λ-parameter agree with the result of the step-scaling analysis but have much larger
errors, and thus are not competitive [700].

Scale variations. Moments of heavy-quark correlators are computed at scales that
are set by the mass of the charm quark. We compute scale variations for the moments r4,
r6 and r8 at different values of the matching scale.

HQ r4, Q = mc

δ(2) = 2.7% δ∗(2) = 2.8% . (379)

HQ r4, Q = 2mc

δ∗(4) = 1.2% , δ(2) = 1.5% δ∗(2) = 1.6% . (380)

HQ r6, Q = 2mc

δ(2) = 2.3% δ∗(2) = 1.2% . (381)

HQ r8, Q = 2mc

δ(2) = 2.8% δ∗(2) = 4.8% . (382)

We note here that the errors from the scale variations are in the same ballpark as previous
estimates published in FLAG reviews. The moment r4 computed at the scale Q = 2mc

happens to have a systematic error in the range 1− 2%.

9.9 Gradient flow schemes

9.9.1 General considerations

The gradient flow [365, 744] (cf. the paragraph around Eq. (320) for the basic equations)
allows for the definition of many new observables, both in pure gauge theory and QCD,
which are gauge invariant and automatically renormalized after the standard QCD renor-
malizations of parameters and composite fields have been carried out. This has been
established perturbatively to all orders in Ref. [832] and confirmed up to 2-loop level
in practical calculations [732]. It is generally assumed to be valid beyond perturbation
theory and many simulation results corroborate this assumption.

The gradient flow comes with the flow-time parameter, t, which has dimensions of
length squared and thus introduces a new energy scale which is, by analogy with the
diffusion equation, naturally identified as µ = 1/

√
8t (in four dimensions). The most

widely used observable is the action density at finite flow time,

E(t, x) = −1

2
tr{Gµν(t, x)Gµν(x)} . (383)

Its expectation value has a perturbative expansion starting at O(α), which gives rise to
the definition of the coupling in the GF scheme,

αGF(µ) ≡
ḡ2GF(µ)

4π
=

4πt2

3
⟨E(t, x)⟩ (384)

and is known to 3-loop order,

αGF(µ = 1/
√
8t) = αMS(µ) + k1αMS(µ)

2 + k2αMS(µ)
3 + . . . (385)
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with k1 and k2 computed in Refs. [365] and [732], respectively (cf. Tab. 56). Note that the
GF coupling directly relates to the scale t0; its definition is equivalent to ḡ2GF(1/

√
8t0) =

15.8. With the flow time setting the renormalization scale, the β-function is readily
obtained during the numerical integration of the flow equation, by also tracking the flow-
time derivative of ⟨E(t, x)⟩,

βGF(ḡGF) = −2t
d

dt
ḡGF(1/

√
8t) , (386)

and the 3-loop β-function coefficient b2 is known. In the pure gauge theory is is given by

bGF
2 = −1.90395(4)/(4π)3, (Nf = 0). (387)

This is almost three times larger in magnitude than in the MS scheme and of opposite
sign. One naturally worries about higher-order corrections being large, too. As a result,
making contact with perturbation theory requires very small couplings. To quantify the
problem, we have done the following exercises (all for Nf = 0): First one may evaluate the
difference in

√
8tΛGF obtained by integrating the perturbative β-function at 2- vs. 3-loop

order from zero coupling to a reference value ḡ2GF(1/
√
8t) = 1.2, which corresponds to the

smallest coupling reached in the works discussed below. We find that this difference is
about 11 percent, again about three times larger than with the MS scheme. In order to
vary the scale we convert to the MS scheme,

αGF(µ) = αMS(sµ) + k1(s)αMS(sµ)
2 + k2(s)αMS(sµ)

3 +O(α4
MS

), (388)

where the s-dependence of the coefficients is given as

k1(s)− k1(1) = 8πb0 ln(s), k2(s)− k2(1) = 32π2b1 ln(s) + k1(s)
2 − k1(1)2. (389)

In order to obtain the MS coupling in terms of the reference coupling one needs to invert
Eq. (388), which we do either perturbatively or numerically for the truncated equation.
We then compute, √

8tΛMS = s× φMS

(
ḡMS(s/

√
8t)
)
, (390)

for scale factors s = 1/2, 1, 2, using the 5-loop β-function in the MS scheme. We find that
the resulting variation in the Λ-parameter depends on how the MS-coupling is obtained:
With perturbative inversion, the variation is plus 7.5 and minus 4 percent, with numerical
inversion, one obtains plus 2.5 and plus 3.3 percent, i.e., even monotony is lost. The
central values for s = 1 differ by 5 percent. As an alternative, we consider the scale factor
s∗ = 0.534 which implies k1(s

∗) = 0. Varying by a factor two around s∗ one finds that the
difference in central values reduces to 1.3 percent, and the Λ-parameter changes by minus
6 percent and plus 4 percent for perturbative inversion, and by plus 9.7% and minus 2.7%
for numerical inversion.

We conclude that at this reference coupling a determination of the Λ-parameter to
better than five percent seems impossible.

9.9.2 Discussion of computations

A determination of the β-function directly from the flow-time dependence of the GF
coupling requires a controlled infinite-volume extrapolation. This was first suggested in
Ref. [833], where the strategy was applied to a BSM model. Since then, two works have ap-
plied this scheme to the pure gauge theory (QCD withNf = 0), namely Hasenfratz 23 [698]
and Wong 23 [699], in a proceedings contribution. We mainly discuss Hasenfratz 23 who
provide more details: the data produced for the GF coupling ranges from 15.8 down to
1.2, lattice sizes vary between L/a = 20 and L/a = 48, depending on the β-value, and
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periodic boundary conditions are imposed on the gauge field. Wong 23 do have data for
larger lattices up to L/a = 64 and even L/a = 80, 96 at selected bare couplings. The data
for both ḡ2GF and βGF are extrapolated to the infinite-volume limit at fixed lattice spacing,
assuming corrections ∝ (a/L)4, with Wong 23 also allowing for a subleading (a/L)6 term.
Then the continuum limit is taken for a2/t-values in the range 0.25–0.5, corresponding to
aµ-values in the range 0.177–0.25, and a somewhat wider range in Wong 23. The contin-
uum extrapolation data for the β-function at fixed GF coupling are shown in plots. For
Hasenfratz 23 these extrapolations look fine and would pass any reasonable data-driven
criterion. Wong 23 only show the extrapolation at the largest GF coupling which looks
fine, too. Hence we give ⋆ for the continuum extrapolation and also for renormalization
scale, given that αeff reaches down to below 0.1. Regarding the formal FLAG criterion for
perturbative behaviour, Hasenfratz 23 give an overall error of 0.6% for αGF. Using this
error we have, at the smallest couplings reached, αnl

eff = (0.1)2 < 0.006 × 2.85 = 0.017,
which satisfies the criterion comfortably. This warrants a ⋆ for Hasenfratz 23. For Wong
23 the accuracy of αGF is not given but they quote a per-mille accuracy for the beta func-
tion at ḡ2GF = 15.8; we assign a ◦ , which assumes their coupling data is perhaps a factor
2 but still less than a factor 3− 4 more accurate relative to the 0.6% of Hasenfratz 23.

Unfortunately, the formal FLAG criteria do not capture the anomalously bad be-
haviour of the GF scheme. As discussed above, even at αeff = 0.1 the estimate of the
Λ-parameter is ambiguous at the level of about 5 percent.

Contact to perturbation theory is not really established, as the obtained β-function
seems to show a slope that is different from the perturbative expectation. Imposing
perturbative asymptotics and evaluating the integral over the beta function numerically
leads to the estimate

√
8t0ΛMS = 0.622(10). Wong 23 obtain an even smaller error,√

8t0ΛMS = 0.632(7).74 Note that both values are in agreement with each other and
with Dalla Brida 19 (who obtained 0.623(10)) and would lend support to the high central
value compared to older results in the literature. Despite this consistency, the claimed
high accuracy seems at odds with the bad perturbative behaviour of this scheme.

Regarding the infinite-volume limit, the main problem is the lack of guidance from
theory regarding the fit ansatz. With Nf = 0 and in the hadronic regime, one may expect
an exponential approach to the infinite-volume limit ∝ exp(−mGL), with mG the 0++

glueball mass. At high energies one is necessarily in small volumes where hadrons cannot
form, and leading effects∝ (a/L)4 are used as a plausible ansatz by both groups of authors.
However, there is an intermediate regime where the situation is quite unclear, and even
at high energies, once the volume is large enough to contain hadrons, the large-volume
asymptotics should be expected to change. The situation may be even more complicated
in full QCD, where massless pions are expected at low energies. Chiral perturbation
theory may help but only as long as pions are relevant degrees of freedom.

Note that boundary conditions should not matter in the infinite-volume limit, so
that any of the GF finite-volume couplings that have been used in step-scaling stud-
ies (cf. Sec. 9.3) could be used to improve our understanding of it. In fact, the first
discussion can be found in Ref. [743], there with open-SF boundary conditions. In Dalla
Brida 19, two different finite-volume schemes are considered which should both converge
to the infinite-volume GF scheme.

In step-scaling studies, the gradient-flow scale is fixed in units of L to a constant
c =
√
8t/L, with typical values around c = 0.3. This means that the β-function cannot be

obtained directly and a detour via the step-scaling function is used in practice [756] Since
the schemes are defined in a finite volume, c becomes an integral part of the scheme defini-
tion as do the boundary conditions (SF, twisted periodic, etc.). In particular, the pertur-
bative 2-loop result in Eq. (385) cannot be used. For Nf = 0 and twisted periodic bound-
ary conditions there is a 1-loop computation [750] while for Nf = 0 and SF boundary con-

74Wong 23 write t0ΛMS, instead of
√
8t0ΛMS, which we interpret as a typo.
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ditions there is a 2-loop result obtained using a stochastic perturbative approach [749]. As
in infinite volume, the perturbative behaviour of the finite-volume gradient-flow schemes
is quite bad [756]. This problem was circumvented in Refs. [697, 748, 756] by matching
nonperturbatively to the SF scheme, in order to benefit from its good perturbative be-
haviour. The option of such a matching is also mentioned in Hasenfratz 23 where it is left
to future work.

In Tab. 64 we list these results.
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scale
√
8t0ΛMS r0ΛMS

∗

Hasenfratz 23 [698] 0 A ⋆ ⋆ ⋆
√
t0 0.622(10) 0.659(11)

Wong 23 [699] 0 C ⋆ ◦ ⋆
√
t0 0.632(7) 0.670(8)

∗ r0ΛMS determined by us using
√
8t0/r0 = 0.9435(97) from Dalla Brida 19 [756] without propagating the

error.

Table 64: Results for the GF scheme in infinite volume.

Scale variations. As discussed in the general considerations of the previous subsec-
tion, the matching with perturbation theory is performed for ḡ2GF(1/

√
8t) = 1.2. The

corresponding energy scale µ = 1/
√
8t is not given in the publications, preventing us from

using the generic procedure that we used for the majority of the observables. Instead, we
defined an alternative procedure to estimate the effect of scale variations directly on the
ratio of Λ-parameters, as discussed in Sec. 9.9.1.

9.10 Summary

Having reviewed the individual computations, we are now in a position to discuss the
overall result. We first look at the current results of the Λ-parameter for QCD with Nf =
0, 2, 3, 4 flavours in units of the scale r0 (and

√
8t0 for Nf = 0). These results are directly

obtained from lattice simulations of QCD with givenNf . For the Λ-parameter withNf = 0
we present a more in depth discussion. As emphasized in our last report, even though
Nf = 0 is unphysical, the Λ-parameter enters into the decoupling result, which is one of the

most accurate lattice determinations of α
(5)

MS
(mZ). Fortunately, this has motivated several

collaborations to help clarify the situation, which is characterized by many historical
results, with a large spread of central values, that are mutually incompatible due to
the smallness of some error estimates. We have decided to estimate ranges for different
methods and give a corresponding FLAG estimate.

Then we discuss the central αMS(mZ) results in five-flavour QCD. We give ranges for
each sub-group discussed previously, and give a final FLAG average as well as an overall
average together with the current PDG nonlattice numbers. In the end, we return to the
Λ-parameter; for Nf = 3, 4, 5 we derive their values from the FLAG estimate of αMS(mZ).

We end with an outlook and some concluding remarks.
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9.10.1 Ranges for [r0ΛMS]
(Nf ) and Λ

(Nf )

MS

In the present situation, we give ranges for [r0ΛMS]
(Nf ) and ΛMS, discussing their deter-

mination case by case. We include results with Nf < 3 because it is interesting to see
the Nf -dependence of the connection of low- and high-energy QCD. This aids our un-
derstanding of the field theory and helps in finding possible ways to tackle it beyond the
lattice approach. It is also of interest in providing an impression on the size of the vacuum-
polarization effects of quarks, in particular with an eye on the still difficult-to-treat heavier
charm and bottom quarks. Most importantly, however, the decoupling strategy described
in subsection 9.4 means that Λ-parameters at different Nf can be connected by a non-
perturbative matching computation. Thus, even results at unphysical flavour numbers,
in particular Nf = 0, may enter results for the physically interesting case. Rather than
phasing out results for “unphysical flavour numbers”, continued scrutiny by FLAG will
be necessary. Having said this, we emphasize that results for [r0ΛMS]

(0) and [r0ΛMS]
(2)

are not meant to be used directly for phenomenology.
For the ranges we obtain:

[r0ΛMS]
(4) = 0.70(3) , (391)

[r0ΛMS]
(3) = 0.809(23) , (392)

[r0ΛMS]
(2) = 0.79(+ 5

−15) , (393)

[r0ΛMS]
(0) = 0.647(11) . (394)

No change has occurred since FLAG 21 for Nf = 2, 4, so we refer to the respective
discussions in earlier FLAG reports.

For Nf = 2 + 1, we take as a central value the weighted average of ALPHA 22
[80], Petreczky 20 [81], Cali 20 [84], Ayala 20 [82], TUMQCD 19 [83], ALPHA 17 [85],
HPQCD 10 [15], PACS-CS 09A [86] and Maltman 08 [87], and arrive at our range,

[r0ΛMS]
(3) = 0.809(23) , (395)

where the error is the one from the weighted average of those results, which are statistics-
dominated, namely PACS-CS 09A, ALPHA 17 and ALPHA 22, and the known correlation
between the latter two is taken into account. This is to be compared with the much smaller
error of 0.010, as obtained from the weighted average. There is good agreement with all
2+1 results without red tags. In physical units, using r0 = 0.472 fm and neglecting its
error, we get

Λ
(3)

MS
= 338(10)MeV , (396)

whereas the error of the straight weighted average is around 4MeV.
For Nf = 0 there are now 10 results which pass the FLAG criteria, four of which

are new since FLAG 21. Instead of averaging individual results we will group them by
method, produce pre-ranges and a final estimate for the range from combining the pre-
ranges. There are four different methods used:

• Step scaling: Combining Dalla Brida 19 with Bribian 21, Ishikawa 17 (with sym-
metrized larger error) and ALPHA 98 in a weighted average, we obtain

[r0ΛMS]
(0) = 0.648(11) . (397)

Leaving out Ishikawa 17 with its asymmetric error, this would change to 0.651(11).
For the error we take the statistics-dominated one from Dalla Brida 19.

• Static potential/force: We combine Brambilla 10 with Brambilla 23 (both with
symmetrized error, using the larger ones) in a weighted average,

[r0ΛMS]
(0) = 0.648(28) , (398)
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Figure 38: r0ΛMS estimates for Nf = 0 flavours. As discussed in the text, we group the results
by method and estimate pre-ranges. Only full green squares are used in our final ranges, pale
green squares indicate that the computations were not published or superseded by later more
complete ones.

where we use the error of the newer result for our estimate of the range.

• There are two new determinations with the GF scheme in infinite volume and con-
tinuous β-function, by Wong 23 and Hasenfratz 23. We use the central value of
the published paper by Hasenfratz 23 and include a perturbative uncertainty of five
percent as discussed in Sec. 9.9, and obtain,

[r0ΛMS]
(0) = 0.659(33) . (399)

• Wilson loops: There are two results which are, due to their tiny errors, causing
the tension noticed in our previous FLAG report. We performed a scale-variation
analysis, similar to the one explained in Sec. 9.9 for the GF scheme. Variations
around the scale of fastest apparent convergence (cf. Sec. 9.2.3) result in changes
of up to 13 percent even at the finest available lattice spacings. Another way to
look at the data is to note that both works perform continuum extrapolations of the
Λ-parameter assuming an a2-behaviour. On the other hand, there is a parametric
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uncertainty of O(α2
P (1/a)) which is neglected. If included as a second term in a fit,

the error gets much larger, and central values tend to increase. Stopping short of
changing central values, we take the (unweighted) average central value and include
a symmetric range of ±7 percent as perturbative uncertainty,

[r0ΛMS]
(0) = 0.618(43) . (400)

With these pre-ranges we perform a weighted average to obtain the central value, and
then take the statistics-dominated Dalla Brida 19 step-scaling error as our estimate of the
range,

[r0ΛMS]
(0) = 0.647(11) ⇒ [

√
8t0ΛMS]

(0) = 0.610(10) . (401)

All results are shown in Fig. 39 and the Nf = 0 results, with our pre-range by method
are shown in Fig. 38.

9.10.2 Our range for α
(5)

MS

We now turn to the status of the essential result for phenomenology, α
(5)

MS
(MZ). We only

consider lattice results with Nf = 3 or Nf = 4 sea quarks. Converting a Λ-parameter

to α
(5)

MS
(MZ) involves the perturbative matching of the coupling across the charm- and

bottom-quark thresholds, which is available up to 4-loop order [689, 690]. Note that
perturbative matching at 4-loops is consistent with using the β-function at 5-loop order,
which is also available in the MS scheme [686, 840]. One then needs the Z-boson mass
and the charm- and bottom-quark masses as additional input. For definiteness, we use
mZ = 91.1876 GeV, and, for the MS quark masses at their own scale,mc = 1.275(13) GeV
and mb = 4.203(11) GeV [5]. Fortunately, the exact choices are almost irrelevant at the
current accuracy: A change in the charm-quark mass by one percent shifts the value of
αs(mZ) by 3 × 10−5, and the effect for the bottom-quark mass is even smaller. This
is down by over a factor of 20 compared to the current best total errors on αs. The
combined perturbative uncertainty of decoupling across both the charm- and the bottom-
quark threshold is around 25×10−5, if one takes the difference between 3-loop and 5-loop
order as estimate, as was done, for example, in ALPHA 17 [85]. Even this generous
estimate is still a factor 2–3 below the best total errors. Incidentally we also note that
perturbative decoupling has been tested nonperturbatively [200]. It was found that the
decoupling of a heavy quark in gluonic observables (such as the ones used to define αeff),
is well described by perturbation theory. Even for the charm quark the nonperturbative
effects are expected to be at the few per-mille level. This result justifies the use of Nf = 3

QCD to obtain α
(5)

MS
(MZ), and it motivated the development of the decoupling method

used in ALPHA 22 [80].
As can be seen from the tables and figures, several computations satisfy the FLAG

criteria for inclusion in the FLAG average. Since FLAG 21 the contribution by Pe-
treczky 20 [81] has been published and is now included in the average and there is the
first result from the decoupling method by the ALPHA collaboration, ALPHA 22 [80].

We now explain the determination of our range. We only include those results without
a red tag and that are published in a refereed journal.

A general issue with most determinations of αMS, both lattice and nonlattice, is that
they are dominated by perturbative truncation errors, which are difficult to estimate.
Further, all results discussed here except for those of Secs. 9.3, 9.7, 9.4 are based on
extractions of αMS that are largely influenced by data with αeff ≥ 0.3. At smaller αs
the momentum scale µ quickly gets at or above a−1. We have included computations
using aµ up to 1.5 and αeff up to 0.4, but one would ideally like to be significantly
below that. Accordingly, we choose to not simply perform weighted averages with the
individual errors estimated by each group. Rather, we use our own more conservative
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Figure 39: r0ΛMS estimates for Nf = 0, 2, 3, 4 flavours. Full green squares are used in our
final ranges, pale green squares also indicate that there are no red squares in the colour coding
but the computations were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour coding.

estimates of the perturbative truncation errors in the weighted average. In order to
improve our assessment we have also performed scale variations as is commonly done in

phenomenology. In Tab. 66, we provide a summary of the variations in α
(5)

MS
(MZ) obtained
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α
MS

(MZ) Remark Tab.

ALPHA 17 [85] 2+1 A ⋆ ⋆ ⋆ 0.11852( 84) step scaling 57
PACS-CS 09A [86] 2+1 A ⋆ ⋆ ◦ 0.11800(300) step scaling 57

pre-range (average) 0.11848( 81)

AlPHA 22 [80] 2+1 A ⋆ ⋆ ⋆ 0.11823(84) decoupling Nf = 3 to Nf = 0 & step scaling 58

pre-range (average) 0.11823(84)

Ayala 20 [82] 2+1 A ◦ ⋆ ◦ 0.11836(88) Q-Q̄ potential 59

TUMQCD 19 [83] 2+1 A ◦ ⋆ ◦ 0.11671(+110
−57 ) Q-Q̄ potential (and free energy) 59

Takaura 18 [779, 780] 2+1 A ■ ◦ ◦ 0.11790(70)(+130
−120) Q-Q̄ potential 59

Bazavov 14 [781] 2+1 A ◦ ⋆ ◦ 0.11660(100) Q-Q̄ potential 59

Bazavov 12 [782] 2+1 A ◦ ◦ ◦ 0.11560(+210
−220) Q-Q̄ potential 59

pre-range with estimated pert. error 0.11782(165)

Cali 20 [84] 2+1 A ◦ ⋆ ⋆ 0.11863(114) vacuum pol. (position space) 60

Hudspith 18 [726] 2+1 P ◦ ⋆ ■ 0.11810(270)( +80
−220) vacuum polarization 60

JLQCD 10 [725] 2+1 A ■ ◦ ■ 0.11180(30)(+160
−170) vacuum polarization 60

pre-range with estimated pert. error 0.11863(360)

HPQCD 10 [15] 2+1 A ◦ ⋆ ⋆ 0.11840( 60) Wilson loops 61
Maltman 08 [87] 2+1 A ◦ ◦ ⋆ 0.11920(110) Wilson loops 61

pre-range with estimated pert. error 0.11871(128)

Petreczky 20 [81] 2+1 A ◦ ◦ ⋆ 0.11773(119) heavy current two points 62
Boito 20 [829, 834] 2+1 A ■ ■ ◦ 0.1177(20) use published lattice data 62
Petreczky 19 [31] 2+1 A ■ ■ ⋆ 0.1159(12) heavy current two points 62
JLQCD 16 [30] 2+1 A ■ ◦ ◦ 0.11770(260) heavy current two points 62
Maezawa 16 [230] 2+1 A ■ ■ ◦ 0.11622( 84) heavy current two points 62
HPQCD 14A [18] 2+1+1 A ◦ ⋆ ◦ 0.11822( 74) heavy current two points 62
HPQCD 10 [15] 2+1 A ◦ ⋆ ◦ 0.11830( 70) heavy current two points 62
HPQCD 08B [244] 2+1 A ■ ■ ■ 0.11740(120) heavy current two points 62

pre-range with estimated pert. error 0.11818(119)

Zafeiropoulos 19 [835] 2+1 A ■ ■ ■ 0.1172(11) gluon-ghost vertex 66 in [5]
ETM 13D [836] 2+1+1 A ◦ ◦ ■ 0.11960(40)(80)(60) gluon-ghost vertex 66 in [5]
ETM 12C [837] 2+1+1 A ◦ ◦ ■ 0.12000(140) gluon-ghost vertex 66 in [5]

ETM 11D [838] 2+1+1 A ◦ ◦ ■ 0.11980(90)(50)( +0
−50) gluon-ghost vertex 66 in [5]

Nakayama 18 [839] 2+1 A ⋆ ◦ ■ 0.12260(360) Dirac eigenvalues 67 in [5]

Table 65: Results for αMS(MZ). Different methods are listed separately and they are combined
to a pre-range when computations are available without any ■ . The FLAG estimate is given
by 0.11833(67), where the error is the statistics-dominated error of the combined decoupling
and step-scaling results.

from the procedure explained in Sec. 9.1 and suggested in Ref. [681].
In the following we first obtain separate estimates for αs from each of the six methods

with results that pass the FLAG criteria: step scaling, decoupling, the heavy-quark po-
tential, Wilson loops, heavy-quark current two-point functions and vacuum polarization.
In a second step we combine them to obtain the overall FLAG estimate. All results are
collected in Tab. 65.

• Step scaling
The step-scaling computations of PACS-CS 09A [86] and ALPHA 17 [85] reach
energies around the Z-mass where perturbative uncertainties in the three-flavour
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Observable loops Q [GeV] δ∗(4)[%] δ(2)[%] δ∗(2)[%] Refs.

Step scaling 2 80 0.1 0.2 0.2 [718, 719]

3 1.5 2.6 2.7 [720–724]
Potential 2.5 0.9 1.5 1.5

5.0 0.4 0.8 0.8

Vacuum polarization 3 1.3 1.0 11.6 0.6 [84]

− logW11 2 4.4 2.8 3.3 2.5 [727, 728]
− logW12/u

6
0 4.4 3.5 3.2 3.1

HQ r4 2 mc 2.7 2.8 [729–731]
HQ r4 2mc 1.2 1.5 1.6
HQ r6 2mc 2.3 1.2
HQ r8 2mc 2.8 4.8

Table 66: Summary of the results of scale variations. We report results for those observables
for which we could use the common procedure introduced earlier.

theory are negligible. We form a weighted average of the two results and obtain
αMS = 0.11848(81), where the error is dominated by the statistical error from the
simulations.

• Decoupling
There is a single result which has been discussed in Sec. 9.4. The result is αMS =
0.11823(84) with a statistics-dominated error.

• Static-quark potential computations
Brambilla 10 [788], ETM 11C [785] and Bazavov 12 [782] give evidence that they have
reached distances where perturbation theory can be used. However, in addition to Λ,
a scale is introduced into the perturbative prediction by the process of subtracting
the renormalon contribution. This subtraction is avoided in Bazavov 14 [781] by
using the force and again agreement with perturbative running is reported. Husung
17 [787] (unpublished) studied the reliability of perturbation theory in the pure gauge
theory with lattice spacings down to 0.015 fm and found that at weak coupling there
is a downwards trend in the Λ-parameter with a slope ∆Λ/Λ ≈ 9α3

s. The downward
trend is broadly confirmed in Husung 20 [786] albeit with larger errors.

Bazavov 14 [781] satisfies all of the criteria to enter the FLAG average for αs but
has been superseded by TUMQCD 19 [83]. Moreover, there is another study, Ayala
20 [82] who use the very same data as TUMQCD 19, but treat perturbation theory
differently, resulting in a rather different central value. This shows that perturbative

truncation errors are the main source of errors. We combine the results for Λ
Nf=3

MS
from both groups as a weighted average (with the larger upward error of TUMQCD
19) and take the difference of the central values as the uncertainty of the average.

We obtain Λ
Nf=3

MS
= 330(24) MeV, which translates to αs(mZ) = 0.11782(165). This

uncertainty of 1.4 percent is in line with estimates from scale variations.

• Small Wilson loops
Here the situation is unchanged since FLAG 16. In the determination of αs from
observables at the lattice spacing scale, there is an interplay of higher-order pertur-
bative terms and lattice artifacts. In HPQCD 05A [804], HPQCD 08A [727] and
Maltman 08 [87] both lattice artifacts (which are power corrections in this approach)
and higher-order perturbative terms are fitted. We note that Maltman 08 [87] and
HPQCD 08A [727] analyze largely the same data set but use different versions of the
perturbative expansion and treatments of nonperturbative terms. After adjusting
for the slightly different lattice scales used, the values of αMS(MZ) differ by 0.0004
to 0.0008 for the three quantities considered. In fact the largest of these differences
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(0.0008) comes from a tadpole-improved loop, which is expected to be best behaved
perturbatively. We therefore replace the perturbative-truncation errors from [87]
and [15] with our estimate of the perturbative uncertainty Eq. (369). Taking the
perturbative errors to be 100% correlated between the results, we obtain for the
weighted average αMS = 0.11871(128). We note that this assessment, taken over
from FLAG 21, seems optimistic in the light of the uncertainty induced by scale
variations, which are at the level of three percent for the plaquette and rectangle
Wilson loops. One may expect that simultaneous consideration of many quantities
stabilizes the estimates as do terms of higher order in α. It would be interesting to
see a new study of this kind, possibly with a different action. We may have to revise
our range in the future.

• Heavy-quark current two-point functions
Further computations with small errors are HPQCD 10 [15] and HPQCD 14A [18],
where correlation functions of heavy valence quarks are used to construct short-
distance quantities. Due to the large quark masses needed to reach the region of
small coupling, considerable discretization errors are present, see Fig. 30 of FLAG 16.
These are treated by fits to the perturbative running (a 5-loop running αMS with a
fitted 5-loop coefficient in the β-function is used) with high-order terms in a double
expansion in a2Λ2 and a2m2

c supplemented by priors which limit the size of the
coefficients. The priors play an especially important role in these fits given the much
larger number of fit parameters than data points. We note, however, that the size
of the coefficients does not prevent high-order terms from contributing significantly,
since the data includes values of amc that are rather close to one.

From a physics perspective it seems natural to use the renormalization scale set by
the charm-quark mass; however, this implies αeff ≃ 0.38, which is the reason why
JLQCD 16, Petreczky 19 [31] and Boito 20 [829] do not pass the FLAG criteria. Still
some valuable insight can be gained from these works. While Petreczky 19/Petreczky
20 share the same lattice data for heavy quark masses in the range mh = mc–4mc

they use a different strategy for continuum extrapolations and a different treatment
of perturbative uncertainties. Petreczky 19 [31] perform continuum extrapolation
separately for each value of the valence-quark mass, while Petreczky 20 rely on joint
continuum extrapolations of the lattice data at different heavy-quark masses, similar
to the analysis of HPQCD, but without Bayesian priors. It is concluded that reliable
continuum extrapolations for mh ≥ 2mc require a joint fit to the data. This limits
the eligible αs determinations in Petreczky 19 [31] tomh = mc and 1.5mc, for which,
however, the FLAG criteria are not satisfied. There is also a difference in the choice
of renormalization scale between both analyses: Petreczky 19 [31] uses µ = mh,
while Petreczky 20 [81] considers several choices of µ in the range µ = 2/3mh–3mh,
which leads to larger perturbative uncertainties in the determination of αs [81].
Boito 20 [829] use published continuum extrapolated lattice results for mh = mc

and performs their own extraction of αs. Limiting the choice of mh to the charm-
quark mass means that the FLAG criteria are not met (αeff ≃ 0.38). However,
their analysis gives valuable insight into the perturbative error. In addition to the
renormalization scale µ, Boito 20 also vary the renormalization scale µm at which the
charm-quark mass is defined. The corresponding result αs(MZ) = 0.1177(20) agrees
well with previous lattice determination but has a larger error, which is dominated
by the perturbative uncertainty due to the variation of both scales.

Since the FLAG 21 report the results of Petreczky 20 have been published and pass
all FLAG criteria there are now three determinations of αs from the heavy-quark
current two-point functions that satisfy all the FLAG criteria and enter the FLAG
average: αMS(MZ) = 0.11773(119) from Petreczky 20 [81], αMS(MZ) = 0.11822(74)
from HPQCD 14 [18] and αMS(MZ) = 0.11830(70) from HPQCD 10 [15]. All three
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determinations agree well with each other within errors. Since these determinations
are uncorrelated we take the weighted average of these results as an estimate for the
strong coupling constants from the heavy-quark current two-point functions. The
analysis in Petreczky 20 does not use Bayesian priors and considers five different
choices of the renormalization scale, while HPQCD 10 and HPQCD 14 analyses
use µ = 3mc. Therefore, the error of Petreczky 20 can be considered to be more
conservative and we take it as the range for αMS(mZ). With this we arrive at
αMS(MZ) = 0.11818(119) from the method of the heavy-quark current two-point
functions. Comparing with the scale variations, the perturbative uncertainty is
estimated to be 1-2 percent so a one percent range is roughly in line.

• Light-quark vacuum polarization
Cali 20 [84] use the light-quark current two-point functions in position space, eval-
uated on a subset of CLS configurations for lattice spacings in the range 0.038–
0.076 fm, and for Euclidean distances 0.13–0.19 fm, corresponding to renormalization
scales µ = 1–1.5 GeV. Both flavour-nonsinglet vector and axial-vector currents are
considered and their difference is shown to vanish within errors. After continuum
and chiral limits are taken, the effective coupling from the axial-vector two-point
function is converted at 3-loop order to αMS(µ). The authors do this by numerical
solution for αMS and then perform a weighted average of the Λ-parameter estimates

for the available energy range, which yields Λ
Nf=3

MS
= 342(17) MeV. Note that this

is the first calculation in the vacuum polarization category that passes the current
FLAG criteria. Yet the renormalization scales are rather low and one might suspect
that other nonperturbative (i.e., non-chiral-symmetry breaking) effects may still be
sizeable. Our main issue is a rather optimistic estimate of perturbative truncation
errors, based only on the variation of the Λ-parameter from the range of effective
couplings considered. If the solution for the MS coupling is done by series expan-
sion in αeff, the differences in αMS, formally of order α5

eff, are still large at the
scales considered. Hence, as a measure of the systematic uncertainty we take the

difference 409 − 355 MeV between Λ
Nf=3

MS
estimates at µ = 1.5 GeV as a proxy

for the total error, i.e., Λ
Nf=3

MS
= 342(54) MeV, which translates to our pre-range,

αs(mZ) = 0.11863(360), from vacuuum polarization. Looking at scale variation it
appears that these are of O(10) percent if the scale is identified as done by the
authors. The scale is simply too low for perturbation theory. It is an interest-
ing observation that a variation around the scale of fastest apparent convergence,
cf. Sec. 9.2.3, yields much smaller ambiguities of the order of one percent. A re-
analyisis of the data might be warranted.

• Other methods
Computations using other methods do not qualify for an average yet, predominantly
due to a lacking ◦ in the continuum extrapolation.

We form the average in two steps, due to the known correlation between ALPHA 17
and ALPHA 22. We thus first combine these two results by combining the respective
Λ-parameters and then obtain αs(mZ) = 0.11836(69). Next we combine with the step-

scaling result by PACS CS-09A, and get α
(5)

MS
(mZ) = 0.11834(67). This average is in-

teresting as it combines the three results where the error is dominated by statistics. A
weighted average with the remaining pre-ranges yields the central value, we quote as the
new FLAG estimate,

α
(5)

MS
(MZ) = 0.11833(67) = 0.1183(7) . (402)

where we have used the above statistics-dominated error as our range, rather than the
25 percent smaller error from the weighted average. All central values are remarkably
consistent, as can also be seen in Figure 40.
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9.10.3 Conclusions

With the present results our range for the strong coupling is (repeating Eq. (402))

α
(5)

MS
(MZ) = 0.1183(7) Refs. [15, 18, 80–87],

and the associated Λ-parameters

Λ
(5)

MS
= 213(8) MeV Refs. [15, 18, 80–87], (403)

Λ
(4)

MS
= 295(10) MeV Refs. [15, 18, 80–87], (404)

Λ
(3)

MS
= 338(10) MeV Refs. [15, 18, 80–87], (405)

Compared with FLAG 21, the central values have only moved slightly and the errors
have been reduced by ca. 15-20 percent. Overall we find excellent agreement between
all published results that pass the FLAG criteria. The error for the reference value
αMS(MZ) has reached the level of 0.6 percent, and, as we emphasize again, dominated by
the statistical errors originating from the stochastic process inherent in lattice simulations.
The same cannot be said about nonlattice determinations, for which PDG 24 quote the

value α
(5)

MS
(MZ) = 0.1175(10). Combining FLAG and PDG nonlattice estimates, we

obtain

α
(5)

MS
(MZ) = 0.1181(7) , FLAG 24 + PDG 24, (406)

where we assign the error of the FLAG estimate as our range. In Fig. 40, we have collected
and summarized the results that go into the FLAG estimate and the PDG 23 average. The
agreement with nonlattice results is very good. Despite our conversative error estimate
the FLAG lattice estimate has an error that is 30% smaller than the PDG 23 nonlattice
result. Compared to high-energy experiments, lattice QCD has the advantage that the
complicated transition between hadronic and quark and gluon degrees of freedom never
needs to be dealt with explicitly. All hadronic input quantities are very well measured
properties of hadrons, such as their masses and decay widths. We would like to encourage
experimentalists and phenomenologists at collider experiments to make use of the FLAG
lattice estimate. The higher accuracy and precision, with improvements still possible
and expected in the near future, may help our understanding of other important physics
aspects at the LHC and in other experiments. Currently, many experiments attempt their
own determination of αs, and the spread of the results is then taken as indication of the
size of systematic effects. While this provides valuable information, one may ask whether
one can learn more from the data about the origin of the systematic uncertainties, by
using the precise lattice result for αs as input for the analysis. This may clarify where
tensions or inconsistencies arise and help our understanding of nonperturbative effects,
e.g., in hadronization processes, or in some corners of parameter space. There is also the
theoretical possibility that QCD does not provide the full picture of the strong interactions.
While experimental data would be affected by any new physics, lattice QCD, by design,
excludes such effects. Hence, any inconsistencies encountered in the analysis might also
point to such new effects.

We finish by commenting on perspectives for the future. This edition of the FLAG
report has seen the first result from the decoupling strategy, which complements the step-
scaling result. In fact, the decoupling result also relies on the step-scaling technique,
however, here it is applied in the Nf = 0 theory and therefore technically simpler, and
with different systematics. The nice agreement between Nf = 3 step-scaling and decou-
pling results is therefore a very strong consistency check. Of course, further results with
different schemes and systematics would be very welcome. For step scaling with Nf = 0,
Dalla Brida 19 have used two different finite-volume schemes with SF boundary condtions,
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and there is now a new result by Bribian 21 with twisted periodic b.c.’s. There are also
results with the GF scheme in infinite volume, where the β-function can be measured
directly, by Hasenfratz 23 and Wong 23. In some sense, the case of Nf = 0 flavours is
more difficult than full QCD, in that the asymptotic regime is often harder to reach. Of
course, part of the problem lies in the smallness of statistical errors, which means that
even moderate systematic errors easily stand out. In particular, in GF schemes, both
in finite and infinite volume, the parametric uncertainties in the Λ-parameter of order
αnl , Eq. (294), can be still quite large at the largest scales reached while showing the
expected asymptotic behaviour ∝ αnl over a wide range. Rather than assigning a large
systematic uncertainty at the highest scale reached, one might be inclined to allow for an
extrapolation in αnl , together with a data-driven criterion to assess its quality. We will
reconsider this issue in the next edition of the FLAG report.

Finally we emphasize the importance that errors remain dominated by statistics. Only
in this case a probabilistic interpretation is obvious. This is currently not the case for
the majority of lattice calculations, the exception being the step-scaling and decoupling
approaches. For those determinations, further improvements will require access to higher
energy scales, for instance, by implementing some elements of the step-scaling approach.

238



0.110 0.115 0.120 0.125
Nakayama 18
ETM 11D
ETM 12C
ETM 13D
Zafeiropoulos 19
HPQCD 08B
HPQCD 10
HPQCD 14A
JLQCD 16
Maezawa 16
Petreczky 19
Boito 20
Petreczky 20
HPQCD 05A
HPQCD 08A
Maltman 08
HPQCD 10
JLQCD 10
Hudspith 18
Cali 20
Bazavov 12
Bazavov 14
Takaura 18
TUMQCD 19
Ayala 20
ALPHA 22
PACS-CS 09A
ALPHA 17
FLAG estimate

0.110 0.115 0.120 0.125
tau-decays & low 

 bound states
PDF Fits

+  jets & shapes
hadron colliders
electroweak

PDG 23 nonlattice average

heavy current two points
Wilson loops

-  potential
step scaling
vacuum polarization
decoupling

FLAG estimate

FLAG + PDG 23 nonlattice

Figure 40: α
(5)

MS
(MZ), the coupling constant in the MS scheme at the Z-boson mass. Top:

lattice results, pre-ranges from different calculation methods, and final average. Bottom:
Comparison of the lattice pre-ranges and average with the nonlattice ranges and average.
The first PDG 23 entry gives the outcome of their analysis excluding lattice results. At the
very top we display the weighted average of PDG 23 nonlattice and FLAG lattice estimates,
with the error taken from the FLAG estimate (statistics dominated), see Sec. 9.10.3.
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10 Nucleon matrix elements

Authors: S. Collins, R. Gupta, A. Nicholson, H. Wittig

A large number of experiments testing the Standard Model (SM) and searching for
physics Beyond the Standard Model (BSM) involve either free nucleons (proton and neu-
tron beams) or the scattering of electrons, muons, neutrinos and dark matter off nuclear
targets. Necessary ingredients in the analysis of the experimental results are the matrix
elements of various probes (fundamental currents or operators in a low-energy effective
theory) between nucleon or nuclear states. The goal of lattice-QCD calculations in this
context is to provide high-precision predictions of these matrix elements, the simplest of
which give the nucleon charges and form factors. Determinations of the charges, the first
Mellin moments of parton distribution functions, are the most mature and in this review
we update results for twelve quantities, the isovector and flavour-diagonal axial vector,
scalar and tensor charges, given in the two previous FLAG reports in 2019 and 2021 [4, 5].
In this edition in Sec. 10.5, we also add a review of the second Mellin moments for the
vector, axial and tensor currents that give the momentum fraction, the helicity moment
and the transversity moment as a sufficient number of calculations have been performed
and the results are considered robust.

Other quantities that are not being reviewed but for which significant progress has
been made in the last five years are the nucleon axial vector and electromagnetic form
factors [841–855] and parton distribution functions from matrix elements of nonlocal op-
erators [856–860]. The more challenging calculations of nuclear matrix elements that are
needed, for example, to calculate the cross-sections of neutrinos or dark matter scattering
off nuclear targets, are proceeding along three paths. The first is based on direct eval-
uations of matrix elements calculated with initial and final states consisting of multiple
nucleons [861, 862]. The second proceeds by matching few-nucleon observables computed
in lattice QCD to nuclear effective field theories and extrapolating in the mass number A,
while the third strategy uses the HAL QCD method [863] or the direct method [864] to
extract nuclear forces and currents from lattice calculations as input for ab initio many-
body methods. We expect future FLAG reviews to include results on these quantities
once a sufficient level of control over all the systematics is reached.

10.1 Isovector and flavour-diagonal charges of the nucleon

The simplest nucleon matrix elements are composed of local quark-bilinear operators,
qiΓαqj , where Γα can be any of the sixteen Dirac matrices. In this report, we consider
two types of flavour structures: (a) when i = u and j = d. These uΓαd operators
arise in W± mediated weak interactions such as in neutron or pion decay. We restrict
the discussion to the matrix elements of the axial-vector (A), scalar (S) and tensor (T )
currents, which give the isovector charges, gu−dA,S,T .

75 (b) When i = j for j ∈ {u, d, s}, there
is no change of flavour, e.g., in processes mediated via the electromagnetic or weak neutral
interaction or dark matter. These γ or Z0 or possible dark matter mediated processes
couple to all flavours with their corresponding charges. Since these probes interact with
nucleons within nuclear targets, one has to include the effects of QCD (to go from the
couplings defined at the quark and gluon level to those for nucleons) and nuclear forces
in order to make contact with experiments. The isovector and flavour-diagonal charges,
given by the matrix elements of the corresponding operators calculated between nucleon
states, are these nucleon level couplings. Here we review results for the light and strange
flavours, guA,S,T , g

d
A,S,T , and g

s
A,S,T and the isovector charges gu−dA,S,T .

75In the isospin-symmetric limit ⟨p|ūΓd|n⟩ = ⟨p|ūΓu − d̄Γd|p⟩ = ⟨n|d̄Γd − ūΓu|n⟩ for nucleon and proton
states |p⟩ and |n⟩, respectively. The latter two (equivalent) isovector matrix elements are computed on the
lattice.
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The isovector and flavour-diagonal operators also arise in BSM theories due to the
exchange of novel force carriers or as effective interactions due to loop effects. The as-
sociated couplings are defined at the energy scale ΛBSM, while lattice-QCD calculations
of matrix elements are carried out at a hadronic scale, µ, of a few GeV. The tool for
connecting the couplings at the two scales is the renormalization group. Since the opera-
tors of interest are composed of quark fields (and more generally also of gluon fields), the
predominant change in the corresponding couplings under a scale transformation is due to
QCD. To define the operators and their couplings at the hadronic scale µ, one constructs
renormalized operators, whose matrix elements are finite in the continuum limit. This
requires calculating both multiplicative renormalization factors, including the anomalous
dimensions and finite terms, and the mixing with other operators. We discuss the details
of the renormalization factors needed for each of the six operators reviewed in this report
in Sec. 10.1.3.

Once renormalized operators are defined, the nucleon matrix elements of interest are
extracted using expectation values of two-point and three-point correlation functions il-
lustrated in Fig. 41, where the latter can have both quark-line connected and disconnected
contributions. In order to isolate the ground-state matrix element, these correlation func-
tions are analyzed using their spectral decomposition. The current practice is to fit the
n-point correlation functions (or ratios involving three- and two-point functions) including
contributions from one or two excited states. In some cases, such as axial and vector op-
erators, Ward identities provide relations between correlation functions, or ground-state
matrix elements, or facilitate the calculation of renormalization factors. It is important
to ensure that all such Ward identities are satisfied in lattice calculations, especially
as in the case of axial form factors where they provide checks of whether excited-state
contamination has been removed in obtaining matrix elements within ground-state nucle-
ons [92, 852, 865].

The ideal situation occurs if the time separation τ between the nucleon source and
sink positions, and the distance of the operator-insertion time from the source and the
sink, t and τ − t, respectively, are large enough such that the contribution of all excited
states is negligible. In the limit of large τ , the ratio of noise to signal in the nucleon
two- and three-point correlation functions grows exponentially as e(MN− 3

2Mπ)τ [465, 866],
whereMN andMπ are the masses of the nucleon and the pion, respectively. Therefore, in
particular at small pion masses, maintaining reasonable errors for large τ is challenging,
with most current calculations limited to τ ≲ 1.5 fm. In addition, the mass gap between
the ground and excited (including multi-particle) states is smaller than in the meson sector
and at these separations, excited-state effects can be significant. The approach commonly
taken is to first obtain results with high statistics at multiple values of τ , using the
methods described in Sec. 10.1.1. Then, as mentioned above, excited-state contamination
is removed by fitting the data using a fit form involving one or two excited states. The
different strategies that have been employed to minimize excited-state contamination are
discussed in Sec. 10.1.2.

Usually, the quark-connected part of the three-point function (corresponding to the
plot in the centre of Fig. 41) is computed via the so-called “sequential propagator method”,
which uses the product of two quark propagators between the positions of the initial and
the final nucleons as a source term for another inversion of the lattice Dirac operator. This
implies that the position of the sink timeslice is fixed at some chosen value. Varying the
value of the source-sink separation τ then requires the calculation of another sequential
propagator.

The evaluation of quark-disconnected contributions is computationally more challeng-
ing as the disconnected loop (which contains the operator insertion, as illustrated in
Fig. 41 right) is needed at all points on a particular timeslice or, in general, over the
whole lattice. The quark loop is computed stochastically and then correlated with the
nucleon two-point function before averaging this three-point function over the ensemble
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Figure 41: The two- and three-point correlation functions (illustrated by Feynman diagrams)
that need to be calculated to extract the ground-state nucleon matrix elements. (Left) the
nucleon two-point function. (Middle) the connected three-point function with source-sink
separation τ and operator-insertion time slice t. (Right) the quark-disconnected three-point
function with operator insertion at t.

of gauge configurations. The associated statistical error, therefore, is a combination of
that due to the stochastic evaluation (on each configuration) and that from the gauge
average. The number of stochastic sources employed on each configuration is, typically,
optimized to reduce the overall error for a given computational cost. The statistical errors
of the connected contributions, in contrast, usually come only from the ensemble average
since they are often evaluated exactly on each configuration, for a small number of source
positions. If these positions are well-separated in space and time, then each measure-
ment is statistically independent. The methodology applied for these calculations and the
variance reduction techniques are summarized in Sec. 10.1.1. By construction, arbitrary
values of τ across the entire temporal extent of the lattice can be realized when comput-
ing the quark-disconnected contribution, since the source-sink separation is determined
by the part of the diagram that corresponds to the two-point nucleon correlator. However,
in practice, statistical fluctuations of both the connected and disconnected contributions
increase sharply, so that the signal is lost in the statistical noise for τ ≳ 1.5 fm.

The lattice calculation is performed for a given number of quark flavours and at a
number of values of the lattice spacing a, the pion mass Mπ, and the lattice size, rep-
resented by MπL. The results need to be extrapolated to the physical point defined by
a = 0, Mπ = 135 MeV and MπL → ∞. This is done by fitting the data simultaneously
in these three variables using a theoretically motivated ansatz. The ansätze used and the
fitting strategy are described in Sec. 10.1.4.

The procedure for rating the various calculations and the criteria specific to this chap-
ter are discussed in Sec. 10.2, which also includes a brief description of how the final
averages are constructed. The physics motivation for computing the isovector charges,
gu−dA,S,T , and the review of the lattice results are presented in Sec. 10.3. This is followed by

a discussion of the relevance of the flavour-diagonal charges, gu,d,sA,S,T , and a presentation of
the lattice results in Sec. 10.4.

10.1.1 Technical aspects of the calculations of nucleon matrix elements

The calculation of n-point functions needed to extract nucleon matrix elements requires
making four essential choices. The first involves choosing between the suite of back-
ground gauge field ensembles one has access to. The range of lattice parameters should
be large enough to facilitate the extrapolation to the continuum and infinite-volume lim-
its, and, ideally, the evaluation at the physical pion mass taken to be Mπ = 135 MeV.
Such ensembles have been generated with a variety of discretization schemes for the
gauge and fermion actions that have different levels of improvement and preservation
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of continuum symmetries. The actions employed at present include (i) Wilson gauge
with nonperturbatively improved Sheikholeslami-Wohlert fermions (nonperturbatively im-
proved clover fermions) [711, 867–872], (ii) Iwasaki gauge with nonperturbatively im-
proved clover fermions [849, 873], (iii) Iwasaki gauge with twisted-mass fermions with a
clover term [874–878], (iv) tadpole Symanzik improved gauge with highly improved stag-
gered quarks (HISQ) [88, 99, 100, 879–884], (v) Iwasaki gauge with domain-wall fermions
(DW) [92, 104, 885–889] and (vi) Iwasaki gauge with overlap fermions [890–892]. For
details of the lattice actions, see the glossary in the Appendix A.1 of FLAG 19 [4].

The second choice is of the valence-quark action. Here there are two choices, to
maintain a unitary formulation by choosing exactly the same action as is used in the
generation of gauge configurations or to choose a different action and tune the quark
masses to match the pseudoscalar meson spectrum in the two theories. Such mixed-
action formulations are nonunitary but are expected to have the same continuum limit as
QCD. The reason for choosing a mixed-action approach is expediency. For example, the
generation of 2+1+1 flavour HISQ and 2+1 flavour DW ensembles with physical quark
masses has been possible even at the coarse lattice spacing of a = 0.15 fm and there are
indications that cut-off effects are reasonably small. These ensembles have been analyzed
using clover-improved Wilson fermions, DW and overlap fermions since the construction
of baryon correlation functions with definite spin and parity is much simpler compared to
staggered fermions.

The third choice is the combination of the algorithm for inverting the Dirac matrix and
variance reduction techniques. Efficient inversion and variance reduction techniques are
needed for the calculation of nucleon correlation functions with high precision because the
signal-to-noise ratio degrades exponentially as e(

3
2Mπ−MN )τ with the source-sink separa-

tion τ . Thus, the number of measurements needed for high precision is much larger than
in the meson sector. Commonly used inversion algorithms include the multigrid [893] and
the deflation-accelerated Krylov solvers [894], which can handle linear systems with large
condition numbers very efficiently, thereby enabling calculations of correlation functions
at the physical pion mass.

The sampling of the path integral is limited by the number Nconf of gauge config-
urations generated. One requires sufficiently large Nconf such that the phase space (for
example, different topological sectors) has been adequately sampled and all the correlation
functions satisfy the expected lattice symmetries such as C, P , T , momentum and transla-
tion invariance. Thus, one needs gauge field generation algorithms that give decorrelated
large-volume configurations cost-effectively. On such large lattices, to reduce errors one
can exploit the fact that the volume is large enough to allow multiple measurements of
nucleon correlation functions that are essentially statistically independent. Two other
common variance reduction techniques that reduce the cost of multiple measurements
on each configuration are: the truncated solver with bias correction method [895] and
deflation of the Dirac matrix for the low-lying modes followed by sloppy solution with
bias correction for the residual matrix consisting predominately of the high-frequency
modes [895, 896].

A number of other variance reduction methods are also being used and developed.
These include deflation with hierarchical probing for disconnected diagrams [897, 898],
the coherent source sequential propagator method [899, 900], low-mode averaging [901,
902], the hopping-parameter expansion [903, 904] and partitioning [905] (also known as
dilution [906]).

The final choice is of the interpolating operator used to create and annihilate the
nucleon state, and of the operator used to calculate the matrix element. Along with the
choice of the interpolating operator (or operators if a variational method is used) one also
chooses a “smearing” of the source used to construct the quark propagator. By tuning the
width of the smearing, one can optimize the spatial extent of the nucleon interpolating
operator to reduce the overlap with the excited states. Two common smearing algorithms
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that are equally performant are Gaussian (Wuppertal) [907] and Jacobi [908] smearing.
Specific smearing techniques for hadrons boosted to (large) nonzero momentum have also
been designed [556, 909, 910].

Having made all the above choices, for which a reasonable recipe exists, one calculates
a statistical sample of correlation functions from which the desired ground-state nucleon
matrix element is extracted. Excited states, unfortunately, contribute significantly to nu-
cleon correlation functions in present studies. To remove their contributions, calculations
are performed with multiple source-sink separations τ and fits are made to the correlation
functions using their spectral decomposition as discussed in the next section.

10.1.2 Controlling excited-state contamination

Nucleon matrix elements are determined from a combination of two- and three-point
correlation functions. To be more specific, let Bα(x⃗, t) denote an interpolating operator
for the nucleon. Placing the initial state at time slice t = 0, the two-point correlation
function of a nucleon with momentum p⃗ reads

C2(p⃗; τ) =
∑
x⃗,y⃗

eip⃗ · (x⃗−y⃗) Pβα
〈
Bα(x⃗, τ)B

β
(y⃗, 0)

〉
, (407)

where the projector P selects the polarization, and α, β denote Dirac indices. The three-
point function of two nucleons and a quark-bilinear operator OΓ is defined as

CΓ
3 (q⃗; t, τ) =

∑
x⃗,y⃗,z⃗

eip⃗
′ · (x⃗−z⃗) e−ip⃗ · (y⃗−z⃗) Pβα

〈
Bα(x⃗, τ)OΓ(z⃗, t)B

β
(y⃗, 0)

〉
, (408)

where p⃗, p⃗ ′ denote the momenta of the nucleons at the source and sink, respectively, and
q⃗ ≡ p⃗ ′− p⃗ is the momentum transfer. The bilinear operator is inserted at time slice t, and
τ denotes the source-sink separation. The corresponding quark-line diagrams for both C2

and CΓ
3 , in terms of the nonperturbative quark propagators, D−1(y, x) where D denotes

the lattice Dirac operator, are shown in Fig. 41.
The framework for the analysis of excited-state contamination is based on spectral

decomposition. After inserting complete sets of eigenstates of the transfer matrix, the
expressions for the correlators C2 and CΓ

3 read

C2(p⃗; τ) =
1

L3

∑
n

Pβα ⟨Ω|Bα|n⟩⟨n|B
β |Ω⟩ e−Enτ , (409)

CΓ
3 (q⃗; t, τ) =

1

L3

∑
n,m

Pβα ⟨Ω|Bα|n⟩ ⟨n|OΓ|m⟩ ⟨m|B
β |Ω⟩ e−En(τ−t) e−Emt, (410)

where |Ω⟩ denotes the vacuum state, and En represents the energy of the nth eigenstate |n⟩
in the nucleon channel. Here we restrict the discussion to vanishing momentum transfer,
i.e., the forward limit q⃗ = 0, and label the ground state by n = 0. The matrix element
of interest gΓ ≡ ⟨0|OΓ|0⟩ can, for instance, be obtained from the asymptotic behaviour of
the ratio

RΓ(t, τ) ≡
CΓ

3 (q⃗ = 0; t, τ)

C2(p⃗ = 0; τ)

t,(τ−t)→∞−→ gΓ +O(e−∆t, e−∆(τ−t), e−∆τ ), (411)

where ∆ ≡ E1 − E0 denotes the energy gap between the ground state and the first
excitation. We also assume that the bilinear operator OΓ is appropriately renormalized
(see Sec. 10.1.3).

Excited states with the same quantum numbers as the nucleon include resonances such
as a Roper-like state with a mass of about 1.5GeV, or multi-particle states consisting of a
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nucleon and one or more pions [911, 912]. The latter can provide significant contributions
to the two- and three-point correlators in Eqs. (407) and (408) or their ratios (411) as the
pion mass approaches its physical value. Ignoring the interactions between the individual
hadrons, one can easily identify the lowest-lying multi-particle states: they include the
Nππ state with all three particles at rest at ∼ 1.2GeV, as well as Nπ states with both
hadrons having nonzero and opposite momentum. Depending on the spatial box size L in
physical units (with the smallest nonzero momentum equal to 2π/L), there may be a dense
spectrum of Nπ states before the first nucleon resonance is encountered. Corrections to
nucleon correlation functions due to the pion continuum have been studied using chiral
effective theory [911–914] and Lüscher’s finite-volume quantization condition [915].

The well-known noise problem of baryonic correlation functions implies that the long-
distance regime, t, (τ − t) → ∞, where the correlators are dominated by the ground
state, is difficult to reach. Current lattice calculations of baryonic three-point functions
are typically confined to source-sink separations of τ ≲ 1.5 fm, despite the availability of
efficient noise reduction methods. In view of the dense excitation spectrum encountered
in the nucleon channel, one has to demonstrate that the contributions from excited states
are sufficiently suppressed to guarantee an unbiased determination of nucleon matrix
elements. There are several strategies to address this problem:

• Multi-state fits to correlator ratios or individual two- and three-point functions;

• Three-point correlation functions summed over the operator-insertion time t;

• Increasing the projection of the interpolator Bα onto the ground state.

The first of the above methods includes excited state contributions explicitly when fitting
to the spectral decomposition of the correlation functions, Eqs. (409, 410) or, alternatively,
their ratio (see Eq. (411)). In its simplest form, the resulting expression for RΓ includes
the contributions from the first excited state, i.e.,

RΓ(t, τ) = gΓ + c01 e
−∆t + c10 e

−∆(τ−t) + c11 e
−∆τ + . . . , (412)

where c01, c10, c11 and ∆ are treated as additional parameters when fitting RΓ(t, τ) si-
multaneously over intervals in the source-sink separation τ and the operator-insertion
timeslice t. Multi-exponential fits become more difficult to stabilize for a growing num-
ber of excited states, since an increasing number of free parameters must be sufficiently
constrained by the data. Therefore, a high level of comparable statistical precision over
several source-sink separations is required. One common way to address this issue is to
introduce Bayesian constraints, as described in [916]. Alternatively, one may try to reduce
the number of free parameters, for instance, by determining the energy gap ∆ from nu-
cleon two-point function and/or using a common gap for several different nucleon matrix
elements [917].

Ignoring the explicit contributions from excited states and fitting RΓ(t, τ) to a constant
in t for fixed τ amounts to applying what is called the “plateau method”. The name
derives from the ideal situation that sufficiently large source-sink separations τ can be
realized, which would cause RΓ(t, τ) to exhibit a plateau in t independent of τ . The
ability to control excited-state contamination is rather limited in this approach, since the
only option is to check for consistency in the estimate of the plateau as τ is varied. In
view of the exponential degradation of the statistical signal for increasing τ , such stability
checks are difficult to perform reliably.

Summed operator insertions, originally proposed in Ref. [918], have also emerged as a
widely used method to address the problem of excited-state contamination. One way to
implement this method [919, 920] proceeds by summing RΓ(t, τ) over the insertion time
t, resulting in the correlator ratio SΓ(τ),

SΓ(τ) ≡
τ−a∑
t=a

RΓ(t, τ). (413)
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The asymptotic behaviour of SΓ(τ), including sub-leading terms, for large source-sink
separations τ can be easily derived from the spectral decomposition of the correlators and
is given by [921]

SΓ(τ)
τ≫1/∆−→ KΓ + (τ − a) gΓ + (τ − a) e−∆τdΓ + e−∆τfΓ + . . . , (414)

where KΓ is a constant, and the coefficients dΓ and fΓ contain linear combinations of
transition matrix elements involving the ground and first excited states. Thus, the matrix
element of interest gΓ is obtained from the linear slope of SΓ(τ) with respect to the source-
sink separation τ . While the leading corrections from excited states e−∆τ are smaller than
those of the original ratio RΓ(t, τ) (see Eq. (411)), extracting the slope from a linear fit to
SΓ(τ) typically results in relatively large statistical errors. In principle, one could include
the contributions from excited states explicitly in the expression for SΓ(τ). However, in
practice it is often difficult to constrain an enlarged set of parameters reliably, in particular
if one cannot afford to determine SΓ(τ) except for a handful of source-sink separations.

The original summed operator-insertion technique described in Refs. [907, 918, 922,
923] avoids the explicit summation over the operator-insertion time t at every fixed value
of τ . Instead, one replaces one of the quark propagators that appear in the representation
of the two-point correlation function C2(t) by a “sequential” propagator, according to

D−1(y, x)→ D−1
Γ (y, x) =

∑
z

D−1(y, z)ΓD−1(z, x). (415)

In this expression, the position z ≡ (z⃗, t) of the insertion of the quark-bilinear operator
is implicitly summed over, by inverting the lattice Dirac operator D on the source field
ΓD−1(z, x). While this gives access to all source-sink separations 0 ≤ τ ≤ T , where T
is the temporal extent of the lattice, the resulting correlator also contains contact terms,
as well as contributions from τ < t < T that must be controlled. This method has been
adopted recently by the CalLat collaboration in their calculation of the isovector axial
charge [88, 883].76

As in the case of explicitly summing over the operator-insertion time, the matrix
element of interest is determined from the slope of the summed correlator. For instance,
in Ref. [88], the axial charge was determined from the summed three-point correlation
function, by fitting to its asymptotic behaviour [924] including sub-leading terms.

In practice, one often uses several methods simultaneously, e.g., multi-state fits and
the summation method based on Eq. (414), in order to check the robustness of the result.
All of the approaches for controlling excited-state contributions proceed by fitting data
obtained in a finite interval in τ to a function that describes the approach to the asymptotic
behaviour derived from the spectral decomposition. Obviously, the accessible values of τ
must be large enough so that the model function provides a good representation of the
data that enter such a fit. It is then reasonable to impose a lower threshold on τ above
which the fit model is deemed reliable. We will return to this issue when explaining our
quality criteria in Sec. 10.2.

The third method for controlling excited-state contamination aims at optimizing the
projection onto the ground state in the two-point and three-point correlation functions
[870, 900, 927, 928]. The RQCD collaboration has chosen to optimize the parameters in
the Gaussian smearing procedure, so that the overlap of the nucleon interpolating operator
onto the ground state is maximized [870]. In this way it may be possible to use shorter
source-sink separations without incurring a bias due to excited states.

The variational method, originally designed to provide detailed information on energy
levels of the ground and excited states in a given channel [929–932], has also been adapted

76In Ref. [924] it is shown that the method can be linked to the Feynman-Hellmann theorem. A direct
implementation of the Feynman-Hellmann theorem by means of a modification of the lattice action is discussed
and applied in Refs. [925, 926].
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to the determination of hadron-to-hadron transition elements [921]. In the case of nucleon
matrix elements, the authors of Ref. [927] have employed a basis of operators to construct
interpolators that couple to individual eigenstates in the nucleon channel. The method
has produced promising results when applied to calculations of the axial and other forward
matrix elements at a fixed value of the pion mass [900, 927, 928, 933]. However, a more
comprehensive study aimed at providing an estimate at the physical point has, until now,
not been performed.

The investigation of excited-state effects is an active subfield in calculations of nucleon
matrix elements, and many refinements and extensions have been implemented since the
first edition of the FLAG report. For instance, it has been shown that the previously
observed failure of the axial and pseudoscalar form factors to satisfy the PCAC relation
linking them could be avoided by including the enhanced contribution of Nπ excitations,
either by including additional information on the nucleon excitation spectrum extracted
from the three-point function of the axial current [865], or with guidance from chiral
effective field theory analyses of nucleon three-point functions [852]. Following this, in
Refs. [934, 935] it has been demonstrated that this enhanced Nπ contribution can be
significantly reduced when performing a GEVP analysis with a basis that includes a five-
quark/antiquark interpolator with the quantum numbers of the nucleon in addition to a
three-quark interpolator. For the flavour-diagonal u- and d-quark scalar operators, a χPT
study of excited-state corrections [101] suggests that there is a significant enhancement of
the disconnected contribution, which impacts the calculation of the pion-nucleon sigma
term σπN as discussed in Sec. 10.4.2.

The variety of methods that are employed to address the problem of excited-state
contamination has greatly improved our understanding of and control over excited-state
effects in calculations of nucleon matrix elements. However, there is still room for further
improvement: For instance, dedicated calculations of the excitation spectrum using the
variational method could replace the often rudimentary spectral information gained from
multi-state fits to the two- and three-point functions used primarily for the determina-
tion of the matrix elements. In general, the development of methods to explicitly include
multi-particle states, such as Nπ and Nππ with appropriate momentum configurations,
coupled with the determination of the associated (transition) matrix elements, is needed
to significantly enhance the precision of a variety of nucleon matrix elements. Such ap-
proaches would, to some extent, eliminate the need to extend the source-sink separation
τ into a regime that is currently inaccessible due to the signal-to-noise problem.

Since the ongoing efforts to study excited-state contamination are producing deeper
insights, we have decided to follow a more cautious approach in the assessment of available
calculations of nucleon matrix elements. This is reflected in a modification of the quality
criterion for excited-state contamination that is described and discussed in Sec. 10.2.

10.1.3 Renormalization and Symanzik improvement of local currents

and their matching to a continuum reference scheme such as MS, and the application
of Symanzik improvement to remove O(a) contributions. For the charges, the relevant
operators are the axial (Aµ), tensor (Tµν) and scalar (S) local operators of the form
OΓ = qΓq, with Γ = γµγ5, iσµν and 1, respectively, whose matrix elements are evaluated
in the forward limit. The steps in the renormalization of the 1-link operators, defined in
Section 10.5, used to calculate the second Mellin moments of distribution functions are
similar to those for the charges and we refer readers to Refs. [917, 936].

For the charges, the general form for renormalized operators in the isovector flavour
combination, at a scale µ, reads

OMS
Γ (µ) = ZMS,Latt

O (µa, g2)
[
OΓ(a) + abOmOΓ(a) + acOOimp

Γ (a)
]
+O(a2), (416)
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where ZMS,Latt
O (µa, g2) denotes the multiplicative renormalization factor determined in

the chiral limit, m → 0, and the second and third terms represent all possible quark-
mass-dependent and -independent Symanzik improvement terms, respectively, at O(a).77
The chiral properties of overlap, domain-wall fermions (with improvement up to O(mn

res)
where mres is the residual mass) and twisted-mass fermions (at maximal twist [941, 942])
mean that the O(a)-improvement terms are absent, while for nonperturbatively improved
Sheikholeslami-Wohlert-Wilson (nonperturbatively improved clover) fermions all terms
appear in principle. For the operators of interest here there are several mass-dependent
terms but at most one dimension-four Oimp

Γ ; see, e.g., Refs. [943, 944]. However, the latter
involve external derivatives whose corresponding matrix elements vanish in the forward
limit. Note that no mention is made of staggered fermions as they are not, currently,
widely employed as valence quarks in nucleon matrix element calculations.

In order to illustrate the above remarks we consider the renormalization and improve-
ment of the isovector axial current. This current has no anomalous dimension and hence
the renormalization factor, ZA = ZMS,Latt

A (g2), is independent of the scale. The factor
is usually computed nonperturbatively via the axial Ward identity [945] or the Rome-
Southampton method [383] (see Sec. A.3 of FLAG 19 [4] for details). In some studies,
the ratio with the corresponding vector renormalization factor, ZA/ZV , is determined
for which some of the systematics cancel. In this case, one constructs the combination
ZAgA/(ZV gV ), where ZV gV = 1 and gA and gV are the lattice forward matrix elements,
to arrive at the renormalized axial charge [882]. For domain-wall fermions the ratio is
employed in order to remove O(amres) terms and achieve leading discretization effects
starting at O(a2) [12]. Thus, as mentioned above, O(a)-improvement terms are only
present for nonperturbatively improved clover fermions. For the axial current, Eq. (416)
takes the explicit form,

AMS
µ (µ) = ZMS,Latt

A (g2)
[(

1 + abAmval + 3ab̃Amsea

)
Aµ(a) + acA∂µP (a)

]
+O(a2), (417)

where mval and msea are the average valence- and sea-quark masses derived from the
vector Ward identity [938, 944, 945], and P is the pseudoscalar operator qγ5q. The matrix
element of the derivative term is equivalent to qµ⟨N(p′)|P |N(p)⟩ and hence vanishes in
the forward limit when the momentum transfer qµ = 0. The improvement coefficients

bA and b̃A are known perturbatively for a variety of gauge actions [943, 946, 947] and
nonperturbatively for the tree-level Symanzik-improved gauge action for Nf = 2+1 [948].

Turning to operators for individual quark flavours, these can mix under renormal-
ization and the singlet and nonsinglet renormalization factors can differ. For the axial
current, such mixing occurs for all fermion formulations just like in the continuum, where
the singlet combination acquires an anomalous dimension due to the UA(1) anomaly. The
ratio of singlet to nonsinglet renormalization factors, rO = Zs.

O/Z
n.s.
O forO = A differs from

1 at O(α2
s) in perturbation theory (due to quark loops), suggesting that the mixing is a

small effect. The nonperturbative determinations performed so far find rA ≈ 1 [845, 876],
supporting this. For the tensor current the disconnected diagram vanishes in the contin-
uum due to chirality and consequently on the lattice rT = 1 holds for overlap and DW
fermions (assuming mres = 0 for the latter). For twisted-mass and clover fermions the
mixing is expected to be small with rT = 1 + O(α3

s) [949] and this is confirmed by the
nonperturbative studies of Refs. [878, 950].

The scalar operators for the individual quark flavours, qq, are relevant not only for
the corresponding scalar charges, but also for the sigma terms σq = mq⟨N |qq|N⟩ when

77Here, a(g2) refers to the lattice spacing in the chiral limit, however, lattice simulations are usually carried
out by fixing the value of g2 while varying the quark masses. This means a = a(g̃2) where g̃2 = g2(1 +
bgamq) [937, 938] is the improved coupling that varies with the average sea-quark mass mq. The difference
between the renormalization factors calculated with respect to g2 and g̃2 can effectively be absorbed into the
bO coefficients [939, 940].
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combined with the quark masses mq. For overlap and DW fermions rS = 1, like in
the continuum and all qq renormalize multiplicatively with the isovector ZS . The latter
is equal to the inverse of the mass renormalization and hence mqqq is renormalization
group (RG) invariant. For twisted-mass fermions, through the use of Osterwalder-Seiler
valence fermions, the operators mud(uu+dd) and msss are also invariant [951].78 In con-
trast, the lack of good chiral properties leads to significant mixing between quark flavours
for clover fermions. Nonperturbative determinations via the axial Ward identity [710, 871]
have found the ratio rS to be much larger than the perturbative expectation 1+O(α2

s) [949]

may suggest. While the sum over the quark flavours which appear in the action
∑Nf

q mqqq
is RG invariant, large cancellations between the contributions from individual flavours can
occur when evaluating, e.g., the strange sigma term. Note that for twisted-mass and clover
fermions there is also an additive contribution ∝ a−31 (or ∝ µa−21) to the scalar oper-
ator. This contribution is removed from the nucleon scalar matrix elements by working
with the subtracted current, qq− ⟨qq⟩, where ⟨qq⟩ is the vacuum expectation value of the
current [944].

Symanzik improvement for the singlet currents follows the same pattern as in the
isovector case with O(a) terms only appearing for nonperturbatively improved clover
fermions. For the axial and tensor operators only mass-dependent terms are relevant
in the forward limit while for the scalar there is an additional gluonic operator Oimp

S =
Tr(FµνFµν) with a coefficient of O(αs) in perturbation theory. When constructing the
sigma terms from the quark masses and the scalar operator, the improvement terms remain
and they must be included to remove allO(a) effects for nonperturbatively improved clover
fermions, see Ref. [944] for a discussion.

10.1.4 Extrapolations in a, Mπ and MπL

To obtain physical results that can be used to compare to or make predictions for experi-
ment, all quantities must be extrapolated to the continuum and infinite-volume limits. In
general, either a chiral extrapolation or interpolation must also be made to the physical
pion mass. These extrapolations need to be performed simultaneously since discretization
and finite-volume effects are themselves dependent upon the pion mass. Furthermore, in
practice it is not possible to hold the pion mass fixed while the lattice spacing is varied, as
some variation in a occurs when tuning the quark masses at fixed gauge coupling. Thus,
one performs a simultaneous extrapolation in all three variables using a theoretically
motivated formula of the form,

g(Mπ, a, L) = gphys + δMπ
+ δa + δL , (418)

where gphys is the desired extrapolated result, and δMπ
, δa, δL are the deviations due to

the pion mass, the lattice spacing, and the volume, respectively. Below we outline the
forms for each of these terms.

All observables discussed in this section are dimensionless, therefore the extrapolation
formulae may be parameterized by a set of dimensionless variables:

ϵπ =
Mπ

Λχ
, MπL , ϵa = Λaa . (419)

Here, Λχ ∼ 1 GeV is a chiral symmetry breaking scale, which, for example, can be set to
Λχ = 4πFπ, where Fπ = 92.2 MeV is the pion decay constant, and Λa is a discretization
scale, e.g., Λa = 1

4πw0
, where w0 is a gradient-flow scale [115].

78Note that for twisted-mass fermions the pseudoscalar renormalization factor is the relevant factor for the
scalar operator. The isovector (isosinglet) scalar current in the physical basis becomes the isosinglet (isovector)
pseudoscalar current in the twisted basis. Perturbatively rP = 1+O(α3

s) and nonperturbative determinations
have found rP ≈ 1 [878].
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Effective field theory methods may be used to determine the form of each of these
extrapolations. For the single nucleon charges, Heavy-Baryon χPT (HBχPT) is a common
choice [952, 953], however, other variants, such as unitarized [954] or covariant χPT [955,
956], are also employed. Various formulations of HBχPT exist, including those for two-
and three-flavours, as well as with and without explicit ∆ baryon degrees of freedom.
Two-flavour HBχPT is typically used due to issues with convergence of the three-flavour
theory [873, 957–960]. The convergence properties of all known formulations for baryon
χPT, even at the physical pion mass, have not been well-established.

To O(ϵ2π), the two-flavour chiral expansion for the nucleon charges is known to be of
the form [961],

g = g0 + g1ϵπ + g2ϵ
2
π + g̃2ϵ

2
π ln

(
ϵ2π
)
, (420)

where g1 = 0 for all charges g except gu,dS . The dimensionless coefficients g0,1,2, g̃2 are
assumed to be different for each of the different charges. The coefficients in front of
the logarithms, g̃2, are known functions of the low-energy constants (LECs), and do not
represent new, independent LECs. Mixed-action calculations will have further dependence
upon the mixed valence-sea pion mass, mvs.

Given the potential difficulties with convergence of the chiral expansion, known values
of the g̃2 in terms of LECs are not typically used, but are left as free fit parameters.
Furthermore, many quantities have been found to display mild pion-mass dependence,
such that Taylor expansions, i.e., neglecting logarithms in the above expressions, are also
often employed. The lack of a rigorously established theoretical basis for the extrapolation
in the pion mass thus requires data close to the physical pion mass for obtaining high-
precision extrapolated/interpolated results.

Discretization effects depend upon the lattice action used in a particular calculation,
and their form may be determined using the standard Symanzik power counting. In
general, for an unimproved action, the corrections due to discretization effects δa include
terms of the form,

δa = c1ϵa + c2ϵ
2
a + · · · , (421)

where c1,2 are dimensionless coefficients. Additional terms of the form c̃n (ϵπϵa)
n
, where

n is an integer whose lowest value depends on the combined discretization and chiral
properties, will also appear. Improved actions systematically remove correction terms,
e.g., an O(a)-improved action, combined with a similarly improved operator, will contain
terms in the extrapolation ansatz beginning at ϵ2a (see Sec. 10.1.3).

Finite volume corrections δL may be determined in the usual way from effective field
theory, by replacing loop integrals over continuous momenta with discrete sums. Finite
volume effects therefore introduce no new undetermined parameters to the extrapolation.
For example, at next-to-leading order, and neglecting contributions from intermediate ∆
baryons, the finite-volume corrections for the axial charge in two-flavour HBχPT take the
form [962],

δL ≡ gA(L)− gA(∞) =
8

3
ϵ2π
[
g3A, 0F1 (MπL) + gA, 0F3 (MπL)

]
, (422)

where

F1 (mL) =
∑
n̸=0

[
K0 (mL|n|)−

K1 (mL|n|)
mL|n|

]
,

F3 (mL) = −3

2

∑
n̸=0

K1 (mL|n|)
mL|n| , (423)
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and Kν(z) are the modified Bessel functions of the second kind. Some extrapolations are
performed using the form for asymptotically large MπL,

K0(z)→
e−z√
z
, (424)

and neglecting contributions due to K1. Care must, however, be taken to establish that
these corrections are negligible for all included values ofMπL. The numerical coefficients,
for example, 8/3 in Eq. (422), are often taken to be additional free fit parameters, due to
the question of convergence of the theory discussed above.

Given the lack of knowledge about the convergence of the expansions and the resulting
plethora of possibilities for extrapolation models at differing orders, it is important to
include statistical tests of model selection for a given set of data. Bayesian model averaging
[963] or use of the Akaike Information Criterion [964] are common choices which penalize
over-parameterized models.

10.2 Quality criteria for nucleon matrix elements and averaging
procedure

There are two specific issues that call for a modification and extension of the FLAG qual-
ity criteria listed in Sec. 2. The first concerns the rating of the chiral extrapolation: The
FLAG criteria reflect the ability of χPT to provide accurate descriptions of the pion-mass
dependence of observables. Clearly, this ability is linked to the convergence properties
of χPT in a particular mass range. Quantities extracted from nucleon matrix elements
are extrapolated to the physical pion mass using some variant of baryonic χPT, whose
convergence is not well established as compared to the mesonic sector. Therefore, we have
opted for stricter quality criteria, 200 MeV ≤Mπ,min ≤ 300 MeV, for a green circle in the
chiral extrapolation of nucleon matrix elements, i.e.,

⋆ Mπ,min < 200 MeV with three or more pion masses used in the extrapolation
or two values of Mπ with one lying within 10 MeV of 135 MeV (the physical neutral
pion mass) and the other one below 200 MeV

◦ 200 MeV ≤Mπ,min ≤ 300 MeV with three or more pion masses used in the extrapo-
lation;

or two values of Mπ with Mπ,min < 200 MeV;
or a single value of Mπ lying within 10 MeV of 135MeV (the physical neutral pion

mass)
■ Otherwise

In Sec. 10.1.2 we have discussed that insufficient control over excited-state contribu-
tions, arising from the noise problem in baryonic correlation functions, may lead to a
systematic bias in the determination of nucleon matrix elements. We therefore introduce
an additional criterion that rates the efforts to suppress excited-state contamination in the
final result. As described in Sec. 10.1.2, the applied methodology to control excited-state
contamination is quite diverse. Since a broad consensus on the question which procedures
should be followed has yet to emerge, our criterion is expressed in terms of simulation
parameters that can be straightforwardly extracted on the basis of publications. Further-
more, the criterion must also be readily applicable to a variety of different local operators
whose matrix elements are discussed in this chapter. These requirements are satisfied by
the source-sink separation τ , i.e., the Euclidean distance between the initial and final nu-
cleons. The discussion at the end of Sec. 10.1.2 shows that there is room for improvement
in the ability to control excited-state contamination. Hence, we have reverted to a binary
system, based on the range of source-sink separations of a given calculations. While we do
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not award the highest category—a green star—in this edition, we stress that the adoption
of the modified criterion for excited-state contamination has not led to a situation where
calculations that were previously rated with a green star are now excluded from FLAG
averages. The rating scale concerning control over excited-state contributions is thus

◦ Three or more source-sink separations τ , at least two of which must be above 1.0 fm.
■ Otherwise

We will continue to monitor the situation concerning excited-state contamination and,
if necessary, adapt the criteria further in future editions of the FLAG report.

As explained in Sec. 2, FLAG averages are distinguished by the sea-quark content.
Hence, for a given configuration of the quark sea (i.e., for Nf = 2, 2 + 1, 2 + 1 + 1, or
1 + 1+ 1+ 1), we first identify those calculations that pass the FLAG and the additional
quality criteria defined in this section, i.e., excluding any calculation that has a red tag in
one or more of the categories. We then add statistical and systematic errors in quadrature
and perform a weighted average. If the fit is of bad quality (i.e., if χ2

min/dof > 1), the

errors of the input quantities are scaled by
√
χ2/dof. In the following step, correlations

among different calculations are taken into account in the error estimate by applying
Schmelling’s procedure [203].

10.3 Isovector charges

The axial, scalar and tensor isovector charges are needed to interpret the results of many
experiments and phenomena mediated by weak interactions, including probes of new
physics. The most natural process from which isovector charges can be measured is
neutron beta decay (n → p+e−νe). At the quark level, this process occurs when a down
quark in a neutron transforms into an up quark due to weak interactions, in particular due
to the axial-current interaction. While scalar and tensor currents have not been observed
in nature, effective scalar and tensor interactions arise in the SM due to loop effects.
At the TeV and higher scales, contributions to these three currents could arise due to
new interactions and/or loop effects in BSM theories. These super-weak corrections to
standard weak decays can be probed through high-precision measurements of the neutron
decay distribution by examining deviations from SM predictions as described in Ref. [965].
The lattice-QCD methodology for the calculation of isovector charges is well established,
and the control over statistical and systematic uncertainties has become quite robust since
the first edition of the FLAG report that featured nucleon matrix elements [4].

The axial charge gu−dA is an important parameter that encapsulates the strength of
weak interactions of nucleons. It enters in many analyses of nucleon structure and of
SM and BSM physics. For example, it enters in (i) the extraction of Vud and tests
of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix; (ii) the analysis of
neutrinoless double-beta decay, (iii) neutrino-nucleus quasi-elastic scattering cross-section;
(iv) the rate of proton-proton fusion, the first step in the thermonuclear reaction chains
that power low-mass hydrogen-burning stars like the Sun; (v) solar and reactor neutrino
fluxes; (vi) muon capture rates, etc. Currently the best determination of the ratio of
the axial to the vector charge, gA/gV , comes from measurement of neutron beta decay
using polarized ultracold neutrons by the UCNA collaboration, 1.2772(20) [966, 967],
and by PERKEO II, 1.2761+14

−17 [968]. Note that, in the SM, gV = 1 up to second-order
corrections in isospin breaking [969, 970] as a result of the conservation of the vector
current. The percent-level contributions of radiative corrections discussed in Ref. [971]
will need to be considered once the accuracy of the lattice-QCD calculations reaches that
of gu−dA measured in experiments. The current goal is to calculate it directly with O(1%)
accuracy using lattice QCD.

Isovector scalar or tensor interactions contribute to the helicity-flip parameters, called
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b and B, in the neutron decay distribution. By combining the calculation of the scalar and
tensor charges with the measurements of b and B, one can put constraints on novel scalar
and tensor interactions at the TeV scale as described in Ref. [965]. To optimally bound
such scalar and tensor interactions using measurements of b and B parameters in planned
experiments targeting 10−3 precision [972–974], we need to determine gu−dS and gu−dT at
the 10% level as explained in Refs. [882, 965]. Future higher-precision measurements of b
and B would require correspondingly higher-precision calculations of the matrix elements
to place even more stringent bounds on these couplings at the TeV-scale.

One can estimate gu−dS via the conserved vector current (CVC) relation, gS/gV =
(Mneutron − Mproton)

QCD/(md − mu)
QCD, as done by Gonzalez-Alonso et al. [975]. In

their analysis, they took estimates of the two mass differences on the right-hand side from
the global lattice-QCD data [2] and obtained gu−dS = 1.02(8)(7).

The tensor charge gu−dT can be extracted experimentally from semi-inclusive deep-
inelastic scattering (SIDIS) data [976–979]. A sample of these phenomenological estimates
is shown in Fig. 44, and the noteworthy feature is that the current uncertainty in these
phenomenological estimates is large.

10.3.1 Results for gu−d
A , gu−d

S and gu−d
T

Results for the isovector axial, scalar and tensor charges are presented in Tabs. 67, 68 and
69, respectively. Compared with previous editions of the FLAG report, we have made
two changes: First, we have stopped listing results for isovector charges from simulations
in two-flavour QCD, since no new results have been reported since 2018. Secondly, for
simulations using 2+1 or 2+1+1 flavours of dynamical quarks, we have imposed a cutoff
to focus on results published after 2014. For full listings, including results obtained in
two-flavour QCD [867–870, 872, 874, 876, 878, 984] or published prior to our cutoff date
[879, 885–887, 899, 985–987], we refer to earlier editions of the FLAG report.

For the sake of brevity, only calculations completed after FLAG21 and calculations
that meet the criteria for inclusion in averages are described below. For detailed descrip-
tions of past calculations and those that do not meet the criteria, the reader is again
referred to earlier editions of FLAG. The final results for the scalar and tensor charges,
gu−dS and gu−dT , are presented in the MS-scheme at a reference scale of 2 GeV by all
collaborations.

The 2 + 1-flavour calculation of the scalar and tensor charges by χQCD 21A [97] was
performed using a mixed-action approach with domain-wall fermion gauge configurations
generated by the RBC/UKQCD collaboration and overlap valence quarks. They include
five pion masses ranging from mπ ∼ 140 MeV to 370 MeV, four lattice spacings (a ∼
0.06, 0.08, 0.11, and 0.14 fm), thereby considerably extending the parameter range in
their earlier calculation of the axial charge in χQCD18 [92]. Matrix elements are com-
puted for three to six different valence-quark masses on each ensemble. The extrapolation
to the physical pion mass, continuum and infinite-volume limits is obtained by a global
fit of all data to a partially quenched chiral perturbation theory ansatz. Excited-state
contamination is assessed using three to five sink-source separations and multi-state fits.
Renormalization factors were determined nonperturbatively using the RI/MOM prescrip-
tion.

The NME 21 [93] 2 + 1-flavour calculation utilized seven ensembles of O(a)-improved
Wilson fermions. Three lattice spacings, ranging from a ∼ 0.07 fm to 0.13 fm, several
pion masses, mπ ∼ 165 MeV to 285 MeV, and volumes corresponding to mπL ∼ 3.75
to 6.15 were used. Combined continuum, chiral, and infinite-volume extrapolations were
performed to the physical point using leading-order fit functions. Several fitting strategies
were explored using four to six source-sink separations ranging from 0.7–1.8 fm. Final
results are quoted by averaging results from two of these fitting strategies, in which the
excited-state energy for the three-point function is fixed using two alternative choices of
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gu−d
A

ETM 23 [91] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.245(28)(14)c

PNDME 23a [90] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.292(53)(24)c

CalLat 19 [89] 2+1+1 C ◦ ⋆ ⋆ ⋆ ◦ 1.2642(93)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 1.286(23)

PNDME 18a [884] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.218(25)(30)

CalLat 18 [88] 2+1+1 A ◦ ⋆ ⋆ ⋆ ◦ 1.271(10)(7)

CalLat 17 [883] 2+1+1 P ◦ ⋆ ⋆ ⋆ ◦ 1.278(21)(26)

PNDME 16a [882] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.195(33)(20)

Mainz 24 [96] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.254(19)(15)

PACS 23 [981] 2+1 A ■ ◦ ⋆ ⋆ ◦ 1.264(14)(3)

RQCD 23 [95] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.284(+0.028
−0.027)

QCDSF/UKQCD/CSSM 23 [94] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 1.253(63)(41)d

PACS 22B [982] 2+1 A ■ ◦ ⋆ ⋆ ◦ 1.288(14)(9)

Mainz 22 [983] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.225(39)(25)c

NME 21a [93] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.31(6)(5)

RQCD 19 [852] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.302(45)(73)c

LHPC 19 [853] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 1.265(49)

Mainz 19 [917] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 1.242(25)(+0
−0.030)

PACS 18A [851] 2+1 A ■ ⋆ ⋆ ⋆ ◦ 1.273(24)(5)(9)

PACS 18 [849] 2+1 A ■ ■ ⋆ ⋆ ■ 1.163(75)(14)

χQCD 18 [92] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ 1.254(16)(30)$

JLQCD 18 [892] 2+1 A ■ ◦ ◦ ⋆ ◦ 1.123(28)(29)(90)

a The improvement coefficient in the valence-quark action is set to its tadpole-improved tree-level value.
b The quark action is tree-level improved.
c Determination includes data for nonforward matrix elements.
d Feynman-Hellmann theorem is used to determine the matrix element.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.
$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 67: Overview of results for gu−d
A .

priors. Renormalization is nonperturbative (RI-SMOM) using two strategies.
PACS 22B [982] reports estimates for the scalar and tensor charges, computed on

two ensembles with nonperturbatively improved Wilson quark and Iwasaki gauge action
at a single lattice spacing of 0.085 fm, pion mass near physical value, and two volumes
with mπL ∼ 3.7 and 7.4. Two to four source-sink separations ranging from 0.85–1.36 fm
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gu−d
S

PNDME 23 [90] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.085(50)(103)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 1.35(17)

PNDME 18 [884] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 1.022(80)(60)

PNDME 16 [882] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.97(12)(6)

Mainz 24 [96] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.203(77)(81)

RQCD 23 [95] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 1.11+14
−16

QCDSF/UKQCD/CSSM 23 [94] 2+1 A ⋆ ◦ ⋆ ⋆ ◦d 1.08(21)(03)d

PACS 22B [982] 2+1 A ■ ◦ ⋆ ⋆ ◦ 0.927(83)(22)

NME 21 [93] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.06(9)(6)

χQCD 21A [97] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.94(10)(08)$

RBC/UKQCD 19 [988] 2+1 A ■ ◦ ⋆ ⋆ ■ 0.9(3)

Mainz 19 [917] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 1.13(11)(76)

LHPC 19 [853] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.927(303)

JLQCD 18 [892] 2+1 A ■ ◦ ◦ ⋆ ◦ 0.88(8)(3)(7)

d Feynman-Hellmann theorem is used.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.
$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 68: Overview of results for gu−d
S .

were used to estimate contributions from excited states. They employ the RI-SMOMγµ

renormalization procedure. Due to the use of only a single lattice spacing, this calculation
does not meet the criteria for inclusion in the average. In PACS 23 [981], another ensemble
was considered for the calculation of the axial charge and form factors, which features a
smaller lattice spacing of 0.063 fm, a 10 fm spatial box size and a near-physical pion
mass of 138 MeV. The range of source-sink separations matches the choice in PACS 22B.
The size of discretization effects is estimated by the difference between results at fine and
coarser lattice spacings. Since these results are based on only two lattice spacings, they
do not qualify for an average.

The calculation of all three isovector charges by QCDSF/UKQCD/CSSM 23 [94] used
a Feynman-Hellmann approach to determine matrix elements from derivatives of ener-
gies produced via a variation of the action. These energies were determined from fits to
two-point correlation functions, where a weighted average is taken of the results obtained
when varying the fitting range. The computations utilized the 2 + 1-flavour stout-link
nonperturbative clover action with Wilson-clover valence quarks. Pion masses range from
220–468 MeV, using a flavour-breaking expansion around the flavour SU(3) point to ex-
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gu−d
T

PNDME 23 [90] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.991(21)(10)

ETM 22 [98] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.924(54)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.936(25)

PNDME 18 [884] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.989(32)(10)

PNDME 16 [882] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.987(51)(20)

PNDME 15, 15A [880, 881] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 1.020(76)

Mainz 24 [96] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.993(15)(05)

RQCD 23 [95] 2+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.984+19
−29

QCDSF/UKQCD/CSSM 23 [94] 2+1 A ⋆ ◦ ⋆ ⋆ ◦d 1.010(21)(12)

PACS 22B [982] 2+1 A ■ ◦ ⋆ ⋆ ◦ 1.036(6)(20)

NME 21 [93] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.95(5)(2)

RBC/UKQCD 19 [988] 2+1 A ■ ◦ ⋆ ⋆ ■ 1.04(5)

Mainz 19 [917] 2+1 A ⋆ ◦ ⋆ ⋆ ◦ 0.965(38)(1341)

LHPC 19 [853] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.972(41)

JLQCD 18 [892] 2+1 A ■ ◦ ◦ ⋆ ◦ 1.08(3)(3)(9)

d Feynman-Hellmann theorem is used.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.

Table 69: Overview of results for gu−d
T .

trapolate to physical pion mass. Combined pion-mass, lattice-spacing, and volume ex-
trapolations were performed, using multiple volumes ranging from mπL ∼ 3.2–9, and five
lattice spacings, 0.052–0.082 fm. Only the leading discretization effects and asymptotic
form of the volume extrapolation, Eq. (424), were included. They employ the RI’-MOM
prescription for nonperturbative renormalization.

The calculations of gu−dA , gu−dS and gu−dT published by RQCD 23 [95] and Mainz 24 [96]
are both based on 2+1-flavour ensembles generated by the CLS effort using nonperturba-
tively improved Wilson fermions. The subsets of ensembles used in the two calculations
partly overlap. The 48 ensembles used by RQCD23 [95] span six values of the lattice
spacing, from 0.039–0.098 fm, pion masses from 130 MeV up to 430 MeV, and volumes
corresponding to mπL ∼ 3–6.5. Excited states are controlled using simultaneous two- and
three-state fits of up to four different observables using four time separations, t ≈ 0.7–
1.2 fm, with a number of fit strategies employed. Extrapolations to the physical point were
performed using leading-order chiral expressions for the pion mass, the leading asymptotic
form for finite-volume corrections, and terms up to a2 in the lattice spacing. Renormaliza-
tion uses the nonperturbative RI’-SMOM scheme. In an earlier paper (RQCD19 [852]),
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the Regensburg group computed the axial form factor on a subset of the ensembles that
enter RQCD23. The estimate for gu−dA from an analysis including matrix elements for
nonforward kinematics is also listed in Tab. 67 but has been superseded by the result in
RQCD23.

The Mainz 24 [96] calculation, which supersedes Mainz 19 [917], uses four lattice spac-
ings (a ∼ 0.05 fm to 0.086 fm) from the CLS set of ensembles, pion masses ranging from
∼ 130 MeV to∼ 350 MeV, and volumes corresponding tomπL ∼ 3–5.4. Physical-point ex-
trapolations were performed simultaneously in the lattice spacing, pion mass, and volume.
In Mainz 24, the range of source-sink separations used was enlarged to 0.2–1.4 fm, which
allowed for the inclusion of sub-leading terms in the summation method for improved con-
trol over excited-state effects. Renormalization was performed nonperturbatively using
the RI-SMOM scheme. The Mainz group has also performed a calculation of the axial
form factor (Mainz 22 [983]) on the same set of ensembles, by incorporating the sum-
mation method directly into the z-expansion used to describe the Q2-dependence. The
corresponding estimate for gu−dA from an analysis including nonforward matrix elements
has larger errors than the most recent result [96].

New results for Nf = 2 + 1 + 1 flavours of dynamical fermions have been published
by PNDME [90] and ETM [91, 98]. The mixed-action calculation by PNDME 23 [90],
which supersedes PNDME 18 [884] and PNDME 16 [882], was performed using the MILC
HISQ ensembles, with a clover valence action. As in PNDME 18 [884], the 11 ensembles
used include three pion-mass values, Mπ ∼ 135, 225, 320 MeV, and four lattice spacings,
a ∼ 0.06, 0.09, 0.12, 0.15 fm. Note that four lattice spacings are required to meet the
green star criteria, as this calculation is not fully O(a)-improved. Lattice size ranges
between 3.3 ≲MπL ≲ 5.5. Physical-point extrapolations were performed simultaneously,
keeping only the leading-order terms in the various expansion parameters. For the finite-
volume extrapolation, the asymptotic limit of the χPT prediction, Eq. (424), was used.
PNDME 23 [90] adds a study of sensitivity to excited-state contamination using between
three and five source-sink time separations from 0.72 ≲ τ ≲ 1.68 fm, and several strategies,
including removing Nπ contributions. Renormalization was performed nonperturbatively
using the RI-SMOM scheme.

The ETM collaboration has presented new results for the tensor charge (ETM 22 [98])
and for the axial charge (ETM 23 [91]). Both calculations use three ensembles with 2+1+
1-flavour twisted-mass fermions with close-to-physical pion masses at a = 0.057, 0.069 and
0.080 fm, with volumes corresponding to mπL ∼ 3.6–3.9. These results supersede those
in [980] based on the single ensemble at a = 0.080 fm. To control excited-state effects,
they compared results from the plateau, summation method and two-state fits. After
applying nonperturbative renormalization via the RI’-MOM method supplemented by a
perturbative subtraction of lattice artefacts [989, 990], they perform the extrapolation to
the continuum limit via a fit which is linear in a2.

We now proceed to discussing global averages for the isovector charges. The compila-
tion of results for the axial charge gu−dA , plotted in Fig. 42, shows that the situation has
greatly improved in terms of stability and precision thanks to several new calculations
that have been added since FLAG21. For QCD with Nf = 2 + 1 + 1 dynamical quarks,
the latest calculations by ETM23 [91], PNDME23 [90] and CalLat 19 [89] pass all quality
criteria. Since PNDME and CalLat both use gauge ensembles produced by MILC, we
assume that the quoted errors are 100% correlated, even though the range of pion masses
and lattice spacings explored in Refs. [90] and [88, 89] is not exactly identical. The two
results are fully consistent within errors, which is an improvement, since FLAG21 re-
ported a slight tension between CalLat 19 [89] and PNDME18 [884]. The calculation by
ETM23 [91] uses an independent set of ensembles. Performing a weighted average yields
gu−dA = 1.2633(100) with χ2/dof = 0.30. The result by CalLat dominates the 2 + 1 + 1
weighted average due to its smaller error. Values for δ(amin) for the two Nf = 2 + 1 + 1
calculations that enter the averages vary between 1.0–1.5 (PNDME23: 1.0, CalLat 19:
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Figure 42: Lattice results and FLAG averages for the isovector axial charge gu−d
A 2 + 1 and

2 + 1 + 1 flavour calculations. Also shown is the experimental result as quoted in the PDG
[205].

1.5).
For QCD with Nf = 2+1 dynamical quarks, we compute a weighted average from the

results χQCD 18 [92], NME 21 [93], QCDSF/UKQCD/CSSM23 [94], RQCD23 [95] and
Mainz 24 [96]. Since the calculations by the Mainz group and RQCD were both performed
on ensembles generated by the CLS effort, we treat the results RQCD23 [95] and Mainz 24
[96] as 100% correlated. This yields gu−dA = 1.265(20) with χ2/dof = 0.28. Values for
δ(amin) for the qualified calculations for Nf = 2 + 1 suggest that discretization effects
are under good control (NME21: 0.15, QCDSF/UKQCD/CSSM 23: 0.6, RQCD23: 2.0,
Mainz 24: 2.3). From the information provided in the paper, it is not possible to infer
δ(amin) for χQCD 18.

To summarize, the FLAG averages for the axial charge read

Nf = 2 + 1 + 1 : gu−dA = 1.263(10) Refs. [88–91], (425)

Nf = 2 + 1 : gu−dA = 1.265(20) Refs. [92–96]. (426)

The averages computed for QCD with Nf = 2 + 1 + 1 and Nf = 2 + 1 flavours are in
excellent agreement, with a relative precision of 0.8% and 1.5%, respectively. The average
for 2 + 1 + 1 flavours exhibits a mild tension of 1.25σ with the experimental value of
gu−dA = 1.2756(13) quoted by the PDG. While lattice QCD is able to determine the axial
charge with a total relative uncertainty at the percent level, the experimental result is
more precise by an order of magnitude. We conclude with the remark that there has been
enormous progress in calculating this important benchmark quantity in lattice QCD over
the course of the past 10–15 years, owing to a variety of methods to control excited-state
effects, higher statistical precision, as well as much better control over the extrapolation
to the physical point.
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Turning now to the isovector scalar charge, we note that—in addition to the direct
three-point method—its value can also be determined indirectly via the conserved vector
current (CVC) relation from results for the neutron-proton mass difference [185, 211,
212, 259, 991–995] and the down- and up-quark-mass difference (see Sec. 4.1.3). For
comparison, the compilation in Fig. 43 also shows the indirect determination by Gonzalez-
Alonso et al. [975] obtained using lattice and phenomenological input.

For 2 + 1 + 1 flavours, only PNDME 23 [90], which supersedes PNDME 18 [884] and
PNDME 16 [882], meets all the criteria for inclusion in the average. Consequently we
identify the result from PNDME 23 with the global average.

There are five 2+1-flavour calculations which satisfy all criteria required for inclusion in
the average, i.e., χQCD 21A [97], NME21 [93], QCDSF/UKQCD/CSSM23 [94], RQCD23
[95] and Mainz 24 [96]. The calculations by PACS22B [982] and LHP19 [853] have been
performed at fewer than three lattice spacings and therefore do not meet the criteria.
As in the case of the isovector charge, we assume 100% correlation between the results
reported by Mainz 24 and RQCD23, since the calculations were both performed on the
CLS set of ensembles. Values of δ(amin) for the qualified calculations range from 0.4–2.4
(PNDME 23: 1.6, NME 21: 2.4, RQCD 23: 0.4, Mainz 24: 0.5). It is not possible based on
the information given to determine δ(amin) for χQCD 21 or QCDSF/UKQCD/CSSM 23,
however, in the former calculation it is noted that all data on the finest lattice spacing is
within one sigma of the quoted final result, while for the latter extrapolations performed
without accounting for discretization effects give results within one sigma of the final
quoted result. Thus it is likely that in these cases δ(amin) is within a reasonable range.

The final FLAG values for gu−dS are

Nf = 2 + 1 + 1 : gu−dS = 1.085(114) Ref. [90], (427)

Nf = 2 + 1 : gu−dS = 1.083(69) Refs. [93–97], (428)

so that the total relative error for Nf = 2 + 1 + 1 and 2 + 1 is about 10.5% and 6.4%,
respectively. This implies that the relevant precision target for current experimental
searches for new scalar interactions has been met.

Estimates of the isovector tensor charge are generally at a high level of precision, with
values that are stable over time, as can be seen from the compilation given in Tab. 69
and plotted in Fig. 44. This is a consequence of the smaller statistical fluctuations in the
raw data and the very mild dependence on a, Mπ, and the lattice size MπL. As a result,
the uncertainty due to the various extrapolations is small. Also shown for comparison in
Fig. 44 are phenomenological results using measures of transversity [996–1003].

For Nf = 2 + 1 + 1 flavours, two calculations meet all the criteria for inclusion in
the average: PNDME 23 [90], which supersedes PNDME 18 [884] and PNDME 16 [882],
and ETM 22 [98]. Computational details for PNDME 23 and ETM 22 have already been
described above.

Using Nf = 2 + 1 flavours, four calculations meet all criteria for inclusion in the
average: NME 21[93], QCDSF/UKQCD/CSSM23 [94], RQCD 23 [95], and Mainz 24 [96]
calculation, which supersedes Mainz 19 [917]. Details of these calculations, as well as the
PACS 22B [982] calculation which does not meet all criteria for inclusion in the average,
have been described above. As in the cases of the axial and scalar charge, we assume 100%
correlation between the Mainz 24 and RQCD 23 calculations. Values of δ(amin) for the
qualified calculations range from 0.03–2 (PNDME 23: 2, NME 21: 0.5, RQCD 23: 0.03,
Mainz 24: 0.5). Similarly to the case for gS , it is not possible based on the information
given to determine δ(amin) for χQCD 21 or QCDSF/UKQCD/CSSM 23. However, in the
former calculation it is noted that all data on the finest lattice spacing is within one sigma
of the quoted final result, while for the latter extrapolations performed without accounting
for discretization give results within one sigma of the final quoted result. Thus, it is likely
that in these cases δ(amin) is within a reasonable range.
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Figure 43: Lattice results and FLAG averages for the isovector scalar charge gu−d
S for Nf = 2,

2 + 1, and 2 + 1 + 1 flavour calculations. Also shown is a phenomenological result obtained
using the conserved vector current (CVC) relation [975] (circle).

The final FLAG values for gu−dT are

Nf = 2 + 1 + 1 : gu−dT = 0.981(21) Ref. [90, 98], (429)

Nf = 2 + 1 : gu−dT = 0.993(15) Refs. [93–96], (430)

which implies that the isovector tensor charge is determined at the level of 1.5–2.0%
relative precision.

10.4 Flavour-diagonal charges

Three examples of interactions for which matrix elements of flavour-diagonal operators
(qΓq where Γ defines the Lorentz structure of the bilinear quark operator) are needed are
the neutral-current interactions of neutrinos, elastic scattering of electrons off nuclei, and
the scattering of dark matter off nuclei. In addition, these matrix elements also probe
intrinsic properties of nucleons (the spin, the nucleon sigma term and strangeness content,
and the contribution of the electric dipole moment (EDM) of the quarks to the nucleon
EDM) as explained below. For brevity, all operators are assumed to be appropriately
renormalized as discussed in Sec. 10.1.3.

The matrix elements of the scalar operator qq with flavour q give the rate of change in
the nucleon mass due to nonzero values of the corresponding quark mass. This relationship
is given by the Feynman-Hellmann theorem. The quantities of interest are the nucleon
σ-term, σπN , and the strange and charm content of the nucleon, σs and σc,

σπN = mud⟨N |uu+ dd|N⟩ , (431)

σs = ms⟨N |ss|N⟩ , (432)

σc = mc⟨N |cc|N⟩ . (433)
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Figure 44: Lattice results and FLAG averages for the isovector tensor charge gu−d
T for

Nf = 2, 2+1, and 2+1+1 flavour calculations. Also shown are phenomenological results
using measures of transversity [996–1003] (circles).

Here, mud is the average of the up- and down-quark masses and ms, mc are the strange-
and charm-quark masses. The σπN,s,c give the shift inMN due to nonzero light-, strange-
and charm-quark masses. The same matrix elements are also needed to quantify the spin-
independent interaction of dark matter with nucleons. Note that, while σb and σt are also
phenomenologically interesting, they are unlikely to be calculated on the lattice due to
the expected tiny signal in the matrix elements. In principle, the heavy sigma terms can
be estimated using σu,d,s by exploiting the heavy-quark limit [1004–1006].

The matrix elements of the axial operator qγµγ5q give the contribution ∆q of quarks
of flavour q to the spin of the nucleon:

⟨N |qγµγ5q|N⟩ = gqAuNγµγ5uN ,

gqA ≡ ∆q =

∫ 1

0

dx(∆q(x) + ∆q(x)) . (434)

The charge gqA is thus the contribution of the spin of a quark of flavour q to the spin
of the nucleon. It is also related to the first Mellin moment of the polarized parton
distribution function (PDF) ∆q as shown in the second line in Eq. (434). Measurements
by the European Muon collaboration in 1987 of the spin asymmetry in polarized deep
inelastic scattering showed that the sum of the spins of the quarks contributes less than
half of the total spin of the proton [1007]. To understand this unexpected result, called
the “proton spin crisis”, it is common to start with Ji’s sum rule [1008], which provides a
gauge invariant decomposition of the nucleon’s total spin, as

1

2
=

∑
q=u,d,s,c, ·

(
1

2
∆q + Lq

)
+ Jg , (435)
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where ∆q/2 ≡ gqA/2 is the contribution of the intrinsic spin of a quark with flavour q; Lq
is the orbital angular momentum of that quark; and Jg is the total angular momentum of
the gluons. Thus, to obtain the spin of the proton starting from QCD requires calculating
the contributions of the three terms: the spin and orbital angular momentum of the
quarks, and the angular momentum of the gluons. Lattice-QCD calculations of the various
matrix elements needed to extract the three contributions are underway. An alternate
decomposition of the spin of the proton has been provided by Jaffe and Manohar [1009].
The two formulations differ in the decomposition of the contributions of the quark orbital
angular momentum and of the gluons. The contribution of the quark spin, which is the
subject of this review and given in Eq. (434), is the same in both formulations.

The tensor charges are defined as the matrix elements of the tensor operator qσµνq
with σµν = {γµ, γν}/2:

gqTuNσµνuN = ⟨N |qσµνq|N⟩ . (436)

These flavour-diagonal tensor charges gu,d,s,cT quantify the contributions of the u, d, s, c
quark EDM to the neutron electric dipole moment (nEDM) [880, 1010]. Since particles
can have an EDM only due to P- and T- (or CP- assuming CPT is a good symmetry)
violating interactions, the nEDM is a very sensitive probe of new sources of CP violation
that arise in most extensions of the SM designed to explain nature at the TeV scale. The
current experimental bound on the nEDM is dn < 1.8 × 10−26 e cm [1011, 1012], while
the known CP violation in the SM implies dn < 10−31 e cm [1013]. A nonzero result over
the intervening five orders of magnitude would signal new physics. Planned experiments
aim to reduce the bound to around 10−28 e cm. A discovery or reduction in the bound
from these experiments will put stringent constraints on many BSM theories, provided
the matrix elements of novel CP-violating interactions, of which the quark EDM is one,
are calculated with the required precision.

One can also extract these tensor charges from the zeroth moment of the transver-
sity distributions that are measured in many experiments including Drell-Yan and semi-
inclusive deep inelastic scattering (SIDIS). Of particular importance is the active program
at Jefferson Lab (JLab) to measure them [976, 977]. Transversity distributions describe
the net transverse polarization of quarks in a transversely polarized nucleon. Their ex-
traction from the data taken over a limited range of Q2 and Bjorken x is, however, not
straightforward and requires additional phenomenological modeling. At present, lattice-
QCD estimates of gu,d,sT , presented in the next section, are more accurate than these
phenomenological estimates [996–1003]. Future experiments will significantly improve
the extraction of the transversity distributions. Thus, accurate calculations of the tensor
charges using lattice QCD will continue to help elucidate the structure of the nucleon in
terms of quarks and gluons and provide a benchmark against which phenomenological
estimates utilizing measurements at JLab and other experimental facilities worldwide can
be compared.

The methodology for the calculation of flavour-diagonal charges is well-established.
The major challenges are the much larger statistical errors in the disconnected contri-
butions for the same computational cost and the need for the additional calculations of
the isosinglet renormalization factors. In this report, we present results for the axial and
tensor charges in the same section 10.4.1 since they are mostly calculated together and
because the statistical and systematic uncertainties are similar. The calculation of the
scalar charges can, however, be done in two ways and the results are therefore presented
separately in section 10.4.2.

10.4.1 Results for gu,d,sA and gu,d,sT

A compilation of results for the flavour-diagonal axial (tensor) charges for the proton
is given in Tab. 70 (Tab. 71), and are plotted in Fig. 45. Results for the neutron can
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guA gdA

PNDME 20 [1014] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.790(23)(30) −0.425(15)(30)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.862(17) −0.424(16)

PNDME 18A [99] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.777(25)(30)# −0.438(18)(30)#

Mainz 19A [1015] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ 0.84(3)(4) −0.40(3)(4)

χQCD 18 [92] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ 0.847(18)(32)$ −0.407(16)(18)$

gsA

PNDME 20 [1014] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ −0.053(7)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ −0.0458(73)

PNDME 18A [99] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ −0.053(8)#

Mainz 19A [1015] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ −0.044(4)(5)

χQCD 18 [92] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ −0.035(6)(7)$

JLQCD 18 [892] 2+1 A ■ ◦ ◦ ⋆ ◦ −0.046(26)(9)#

χQCD 15 [889] 2+1 A ■ ◦ ■ ⋆ ◦ −0.0403(44)(78)#

# Assumed that Zn.s.
A = Zs

A.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.
$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 70: Overview of results for gqA.

be obtained by interchanging the u- and d-flavour indices. To keep the report current,
publications from before 2014 that do not satisfy one or more of the FLAG criteria and
the Nf = 2 results have been removed. They can be obtained from the FLAG 19 [4] and
FLAG 21 [5] reports.

There are no new results that qualify for FLAG averages, so the FLAG values for the
proton in the MS scheme at 2 GeV remain the same as in FLAG 19 [4] and FLAG 21 [5].

For gu,d,sA , only the PNDME 18A [99] calculation qualifies for the 2+1+1-flavour theory,
and only the χQCD 18 [92] for 2+1 flavours.

The PNDME 18A [99] results were obtained using the 2+1+1-flavour clover-on-HISQ
formulation. The connected contributions were obtained on 11 HISQ ensembles generated
by the MILC collaboration with a ≈ 0.057, 0.87, 0.12 and 0.15 fm, Mπ ≈ 135, 220 and
320 MeV, and 3.3 < MπL < 5.5. The light disconnected contributions were obtained
on six of these ensembles with the lowest pion mass Mπ ≈ 220 MeV, while the strange
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guT gdT

PNDME 20 [1014] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.783(27)(10) −0.205(10)(10)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.729(22) −0.2075(75)

PNDME 18B [100] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.784(28)(10)# −0.204(11)(10)#

PNDME 16 [882] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.792(42)#& −0.194(14)#&

PNDME 15 [880, 881] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.774(66)# −0.233(28)#

Mainz 19A [1015] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ 0.77(4)(6) −0.19(4)(6)

JLQCD 18 [892] 2+1 A ■ ◦ ◦ ⋆ ◦ 0.85(3)(2)(7) −0.24(2)(0)(2)

gsT

PNDME 20 [1014] 2+1+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ −0.0022(12)

ETM 19 [980] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ −0.00268(58)

PNDME 18B [100] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ −0.0027(16)#

PNDME 15 [880, 881] 2+1+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.008(9)#

Mainz 19A [1015] 2+1 C ⋆ ◦ ⋆ ⋆ ◦ −0.0026(73)(42)

JLQCD 18 [892] 2+1 A ■ ◦ ◦ ⋆ ◦ −0.012(16)(8)

‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional
lattice spacing.

# Assumed that Zn.s.
T = Zs

T .
& Disconnected terms omitted.

Table 71: Overview of results for gqT .

disconnected contributions were obtained on seven ensembles, i.e., including an additional
one at a ≈ 0.087 fm and Mπ ≈ 135 MeV. The excited-state and the chiral-continuum fits
were done separately for the connected and disconnected contributions, which introduces
a systematic that is hypothesied to be small as explained in Ref. [99]. The analysis
of the excited-state contamination, discussed in Sec. 10.1.2, was done using three-state
fits for the connected contribution and two-state fits for the disconnected contributions.
Isovector renormalization factors, calculated on the lattice in the RI-SMOM scheme and
converted to MS, are used for the flavour-diagonal operators, i.e., assuming Zu−dA,S,T =

Zu,d,sA,S,T . The chiral-continuum extrapolation was done keeping the leading correction terms

proportional to M2
π and a, and the leading finite-volume correction in MπL was included

in the analysis of the connected contributions. The continuum-limit criteria, δ(amin), can
only be extracted for gsA from PNDME 18A and is 0.3.
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Figure 45: Lattice results and FLAG averages for gu,d,sA (left) and gu,d,sT (right) for the
Nf = 2 + 1 and 2 + 1 + 1-flavour calculations.

The PNDME 20 [1014] and the more recent conference proceedings, [1016] and [1017],
are updates. They extend the disconnected calculations to eight ensembles, perform fits to
the sum of the connected and disconnected contributions, and also show, through explicit
calculations, that flavour mixing in the calculation of renormalization factors in the RI-
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sMOM scheme is small, and the isovector renormalization factor is a good approximation
for renormalizing flavour-diagonal axial and tensor charges as discussed in Sec. 10.1.3.
These updates are, however, not included in Tab. 71 as they are preliminary.

The ETM 19 [980] results for gu,d,s,cA are from a single ensemble with 2+1+1-flavour
twisted-mass fermions with a clover term at a = 0.0801(4) fm and Mπ = 139.3(7) MeV.
These are not considered for the averages as they do not satisfy the criteria for the
continuum extrapolation.

The 2+1+1-flavour FLAG values for the axial charges gu,d,sA of the proton are the
PNDME 18A results given in Tab. 70:

Nf = 2 + 1 + 1 : guA = 0.777(25)(30) Ref. [99], (437)

Nf = 2 + 1 + 1 : gdA = −0.438(18)(30) Ref. [99], (438)

Nf = 2 + 1 + 1 : gsA = −0.053(8) Ref. [99]. (439)

The 2+1-flavour FLAG results from χQCD 18 [92] were obtained using the overlap-
on-domain-wall formalism. Three domain-wall ensembles with lattice spacings 0.143, 0.11
and 0.083 fm and sea-quark pion masses Mπ = 171, 337 and 302 MeV, respectively, were
analyzed. In addition to the three approximately unitary points, the paper presents data
for an additional 4–5 valence-quark masses on each ensemble, i.e., partially quenched data.
Separate excited-state fits were done for the connected and disconnected contributions.
The continuum, chiral and volume extrapolation to the combined unitary and nonunitary
data is made including terms proportional to both M2

π,valence and M2
π,sea, and two O(a2)

discretization terms for the two different domain-wall actions. With just three unitary
points, not all the coefficients are well constrained. The Mπ,sea-dependence is omitted
and considered as a systematic, and a prior is used for the coefficients of the a2-terms to
stabilize the fit. The continuum-limit criteria, δ(amin), could not be extracted for these
results from χQCD 18.

These χQCD 18 2+1-flavour results for the proton, which supersede the χQCD 15
[889] analysis, are

Nf = 2 + 1 : guA = 0.847(18)(32) Ref. [92], (440)

Nf = 2 + 1 : gdA = −0.407(16)(18) Ref. [92], (441)

Nf = 2 + 1 : gsA = −0.035(6)(7) Ref. [92]. (442)

The results for gu,d,sA from Mainz 19A [1015] satisfy all the criteria, however, they are
not included in the averages as [1015] is a conference proceeding. The JLQCD 18 [892],
ETM 17C [877] and Engelhardt 12 [1018] calculations were not considered for the averages
as they did not satisfy the criteria for the continuum extrapolation. All three calculations
were done at a single lattice spacing. The JLQCD 18 calculation used overlap fermions
and the Iwasaki gauge action. They perform a chiral fit using data at four pion masses in
the range 290–540 MeV. Finite-volume corrections are assumed to be negligible since each
of the two pairs of points on different lattice volumes satisfy MπL ≥ 4. The ETM 17C
calculation is based on a single twisted-mass ensemble with Mπ = 130 MeV, a = 0.094
and a relatively small MπL = 2.98. Engelhardt 12 [1018] calculation was done on three
asqtad ensembles with Mπ = 293, 356 and 495 MeV, but all at a single lattice spacing
a = 0.124 fm.

Results for gsA are also presented by LHPC in Ref. [845]. However, this calculation is
not included in Tab. 70 as it has been performed on a single ensemble with a = 0.114 fm
and a heavy pion mass, Mπ ≈ 317 MeV.

Switching to the tensor charges, gu,d,sT , only one calculation, the PNDME 18B [100],
qualifies for the FLAG averaging. These 2+1+1-flavour theory results, which use the same
ensembles already discussed for gu,d,sA , supersede those in PNDME 16 [882] and PNDME
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15 [880]. The continuum-limit criteria, δ(amin), can only be extracted for gsT from PNDME
18B and is 0.5. Again, results in the more recent conference proceedings, [1016] and [1017],
are not discussed here as they are preliminary.

The FLAG values for the proton in the MS scheme at 2 GeV, which remain the same
as in FLAG 19 and FLAG 21, are:

Nf = 2 + 1 + 1 : guT = 0.784(28)(10) Ref. [100], (443)

Nf = 2 + 1 + 1 : gdT = −0.204(11)(10) Ref. [100], (444)

Nf = 2 + 1 + 1 : gsT = −0.0027(16) Ref. [100]. (445)

The ensembles and the analysis strategy used in PNDME 18B is the same as described
in PNDME 18A for gu,d,sA . The only difference for the tensor charges was that a one-state
(constant) fit was used for the disconnected contributions as the data did not show signifi-
cant excited-state contamination. The isovector renormalization factors, used for all three
flavour-diagonal tensor operators, were calculated on the lattice in the RI-SMOM scheme
and converted to MS at 2 GeV using 2-loop perturbation theory [1019]. The proceed-
ing [1017] extends the calculation to eight ensembles and reports that flavour mixing in the
calculation of renormalization factors is small, and the isovector renormalization factor,
which was used for renormalizing the flavour-diagonal tensor charges in PNDME 18B, is
a good approximation.

The ETM 19 [980] results for gu,d,s,cT are from a single ensemble with 2+1+1-flavour
twisted-mass fermions with a clover term at a = 0.0801(4) fm and Mπ = 139.3(7) MeV.
It was not considered for the final averages because it did not satisfy the criteria for the
continuum extrapolation. The same applies to the JLQCD 18 [892] and ETM 17 [878]
calculations. The Mainz 19A [1015] results with 2+1-flavour ensembles of clover fermions
are not included in the averages as Ref. [1015] is a conference proceeding.

10.4.2 Results for gu,d,sS from direct and hybrid calculations of the ma-
trix elements

The sigma terms σq = mq⟨N |q̄q|N⟩ = mqg
q
S or the quark-mass fractions fTq

= σq/MN

are normally computed rather than gqS . These combinations have the advantage of being
renormalization group invariant in the continuum, and this holds on the lattice for actions
with good chiral properties, see Sec. 10.1.3 for a discussion. In order to aid comparison
with phenomenological estimates, e.g., from π-N scattering [1021–1023], the light-quark
sigma terms are usually added to give the πN sigma term, σπN = σu + σd. The direct
evaluation of the sigma terms involves the calculation of the corresponding three-point
correlation functions for different source-sink separations τ . For σπN there are both
connected and disconnected contributions, while for most lattice fermion formulations
only disconnected contributions are needed for σs. The techniques typically employed
lead to the availability of a wider range of τ for the disconnected contributions compared
to the connected ones (both, however, suffer from signal-to-noise problems for large τ , as
discussed in Sec. 10.1) and we only comment on the range of τ computed for the latter in
the following.

Recent Nf = 2+1 and Nf = 2+1+1 results for σπN and σs from the direct approach
are compiled in Tab. 72. In the following, we summarize new results that have appeared
since the last FLAG report and previous studies that enter the averages. Details of
ETM 19 [980] and JLQCD 18 [892] can be found in the FLAG 21 report. As there have
been no new Nf = 2 studies of the sigma terms since the introduction of the section on
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σπN [MeV] σs [MeV]

PNDME 21 [101] 2+1+1 A ◦‡ ⋆ ⋆ a/− ◦ 59.6(7.4) −
ETM 19 [980] 2+1+1 A ■ ◦ ⋆ na/na ◦ 41.6(3.8) 45.6(6.2)

Mainz 23 [106] 2+1 A ⋆b ⋆ ⋆ ⋆/⋆ ◦ 43.7(3.6) 28.6(9.3)

JLQCD 18 [892] 2+1 A ■ ◦ ◦ na/na ◦ 26(3)(5)(2) 17(18)(9)

χQCD 15A [104] 2+1 A ◦ ⋆ ⋆ na/na ◦ 45.9(7.4)(2.8)$ 40.2(11.7)(3.5)$

MILC 12C [107] 2+1+1 A ⋆ ⋆ ⋆ −/◦ ◦ − 0.44(8)(5)×ms
¶§

MILC 12C [107] 2+1 A ⋆ ◦ ⋆ −/◦ ◦ − 0.637(55)(74)×ms
¶§

MILC 09D [1020] 2+1 A ⋆ ◦ ⋆ −/na ◦ − 59(6)(8)§

The renormalization criteria is given for σπN (first) and σs (second). The label ’na’ indicates that no renor-
malization is required.

a Mixing between quark flavours is found to be small and is neglected.
‡ The rating takes into account that the action is not fully O(a)-improved by requiring an additional

lattice spacing.

b The rating takes into account that the scalar current is not fully O(a)-improved by requiring an
additional lattice spacing. The gluonic operator that appears in the O(a) improvement for Wilson
fermions is not implemented. The effect of this term is expected to be small.

$ For this partially quenched analysis the criteria are applied to the unitary points.
§ This study employs a hybrid method, see Ref. [1020].
¶ The matrix element ⟨N |s̄s|N⟩ at the scale µ = 2 GeV in the MS scheme is computed.

Table 72: Overview of results for σπN and σs from the direct approach (above) and σs from
the hybrid approach (below).

nucleon matrix elements [871, 875], we also refer the reader to the previous report for a
discussion of these results and other early three- and four-flavour works with at least one
red square [888, 891, 1018].

Starting with Nf = 2+1+1, there is a new study from PNDME [101]. This calculation
is based on a mixed-action set-up of O(a)-improved Wilson valence fermions on top of
staggered (HISQ) gauge ensembles generated by the MILC collaboration. Six ensembles
are utilized with lattice spacings, a ≈ 0.12, 0.09 and 0.06 fm and pion masses Mπ ≈
315, 230 and 138 MeV. The two-point and three-point correlation functions are fitted
simultaneously including contributions from four and three states, respectively, where
wide-width priors are used for the excited-state masses entering the fits. Four to five
values of the source-sink separation are utilized with the largest τ ≈ 1.5 fm. The fitting
procedure is repeated using a narrow-width prior for the first excited state which is set
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to the energy of the lowest multi-hadron state (Nπ or Nππ, see Sec. 10.1.2). This choice
is motivated by a χPT analysis [101], which indicates that excited-state contributions
arising from low-lying Nπ and Nππ states can be significant on close-to-physical pion
mass ensembles. In particular, there is a significant enhancement of the disconnected
contribution due to the large QCD condensate. The quality of the fits is, however, similar
for both a narrow- and wide-width prior for the first excited state. Combined continuum-
and chiral-limit fits are performed with a parameterization composed of a term linear
in the lattice spacing and the NNLO SU(2) baryon χPT expression for the pion-mass
dependence. Finite-volume effects are not resolved. The result from the narrow-width
first-excited-state prior analysis is chosen as the final value, while the wide-width prior
analysis (which has a first-excited-state energy significantly above the lowest Nπ or Nππ
noninteracting level) gives σπN ≈ 42 MeV.

Moving on to the Nf = 2 + 1 results, Mainz 23 [106] is a new study employing 16
nonperturbatively O(a)-improved Wilson fermion ensembles from the CLS consortium.
The flavour average of the light- and strange-quark mass is held constant in the simulations
as the pion mass varies in the range 350 ≳ Mπ ≳ 130 MeV. Four lattice spacings are
realized, with a = 0.050–0.086 fm. The connected three-point functions are computed for
a large number of source-sink separations (between 9 and 17 values of τ , depending on
the ensemble) where the largest τ = 1.4–1.5 fm. The ground-state matrix elements are
extracted employing two analysis strategies: one employing the summation method (with
only the ground-state terms) and the other performing two-state fits to correlator ratios.
For the latter, the mass gap to the first excited state is set with a prior equal to twice
the pion mass. As both the light- and strange-quark masses vary in the simulations,
σπN and σs are fitted simultaneously with the quark-mass dependence parameterized by
SU(3) O(p3) covariant baryon χPT. Combined continuum, chiral and finite-volume fits
are performed, where cuts are made on the data set entering the fit which depend on the
lattice spacing, finite volume and pion mass. Akaike-information-criterion [964] averages
of the results are computed for the two analysis choices separately. The two results are
then combined to form the final values.

The χQCD 15A [104] study also qualifies for global averaging. In this mixed-action
study, three RBC/UKQCD Nf = 2 + 1 domain-wall ensembles are analyzed comprising
two lattice spacings, a = 0.08 fm with Mπ,sea = 300 MeV and a = 0.11 fm with Mπ,sea =
330 MeV and 139 MeV. Overlap fermions are employed with a number of nonunitary
valence-quark masses. The connected three-point functions are measured with three values
of τ in the range 0.9–1.4 fm. A combined chiral, continuum and volume extrapolation
is performed for all data with Mπ < 350 MeV. The leading-order expressions are taken
for the lattice-spacing and volume dependence while partially quenched SU(2) HBχPT
up to M3

π-terms models the chiral behaviour for σπN . The strange-quark sigma term has
a milder dependence on the pion mass and only the leading-order quadratic terms are
included in this case.

MILC has also computed σs using a hybrid method [1020] which makes use of the
Feynman-Hellmann (FH) theorem and involves evaluating the nucleon matrix element
⟨N |

∫
d4x s̄s|N⟩.79 This method is applied in MILC 09D [1020] to the Nf = 2 + 1 asqtad

ensembles with lattice spacings a = 0.06, 0.09, 0.12 fm and values of Mπ ranging down to
224 MeV. A continuum and chiral extrapolation is performed including terms linear in the
light-quark mass and quadratic in a. As the coefficient of the discretization term is poorly
determined, a Bayesian prior is used, with a width corresponding to a 10% discretization
effect between the continuum limit and the coarsest lattice spacing.80 A similar updated
analysis is presented in MILC 12C [107], with an improved evaluation of ⟨N |

∫
d4x s̄s|N⟩

79Note that in the direct method the matrix element ⟨N |
∫
d3x s̄s|N⟩, involving the spatial-volume sum, is

evaluated for a fixed timeslice.
80This is consistent with discretization effects observed in other quantities at a = 0.12 fm.
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on a subset of the Nf = 2 + 1 asqtad ensembles. The study is also extended to HISQ
Nf = 2 + 1 + 1 ensembles comprising four lattice spacings with a = 0.06–0.15 fm and a
minimum pion mass of 131 MeV. Results are presented for gsS = ⟨N |s̄s|N⟩ (in the MS
scheme at 2 GeV) rather than for σs. The scalar matrix element is renormalized for both
three and four flavours using the 2-loop factor for the asqtad action [238]. The error
incurred by applying the same factor to the HISQ results is expected to be small.81

Both MILC 09D and MILC 12C achieve green tags for all the criteria, see Tab. 72.
As the same set of asqtad ensembles is utilized in both studies we take MILC 12C as
superseding MILC 09D for the three-flavour case. The global averaging is discussed in
Sec. 10.4.4.

10.4.3 Results for gu,d,sS using the Feynman-Hellmann theorem

An alternative approach for accessing the sigma terms is to determine the slope of the
nucleon mass as a function of the quark masses, or equivalently, the squared pseudoscalar
meson masses. The Feynman-Hellman (FH) theorem gives

σπN = mu
∂MN

∂mu
+md

∂MN

∂md
≈M2

π

∂MN

∂M2
π

, σs = ms
∂MN

∂ms
≈M2

s̄s

∂MN

∂M2
s̄s

, (446)

where the fictitious s̄s meson has a mass squared M2
s̄s = 2M2

K −M2
π . In principle this

is a straightforward method as the nucleon mass can be extracted from fits to two-point
correlation functions, and a further fit to MN as a function of Mπ (and also MK for
σs) provides the slope. Nonetheless, this approach presents its own challenges: a func-
tional form for the chiral behaviour of the nucleon mass is needed, and while baryonic
χPT (BχPT) is the natural choice, the convergence properties of the different formula-
tions are not well established. Results are sensitive to the formulation chosen and the
order of the expansion employed. If there is an insufficient number of data points when
implementing higher-order terms, the coefficients are sometimes fixed using additional
input, e.g., from analyses of experimental data. This may influence the slope extracted.
Simulations with pion masses close to or bracketing the physical point can alleviate these
difficulties. In some studies the nucleon mass is used to set the lattice spacing. This
naturally forces the fit to reproduce the physical nucleon mass at the physical point and
may affect the extracted slope. Note that, if the nucleon mass is fitted as a function of
the pion and kaon masses, the dependence of the meson masses on the quark masses also,
in principle, needs to be considered in order to extract the sigma terms.

An overview of recent three- and four-flavour determinations of σπN and σs is given
in Tab. 73. All the results are eligible for global averaging, with RQCD 22 [105] being
the sole new work. For details of earlier works (published before 2014) with at least
one red square [873, 891, 957, 1028–1030] and all Nf = 2 [711, 890] works we refer the
reader to the FLAG 21 report. Note that the renormalization criterion is not included in
Tab. 73 as renormalization is not normally required when computing the sigma terms in
the Feynman-Hellmann approach.82 At present, a rating indicating control over excited-
state contamination is also not considered since a wide range of source-sink separations
are available for nucleon two-point functions and ground-state dominance is normally
achieved. This issue may be revisited in the future as statistical precision improves and
this systematic is further investigated.

We first summarize the determinations of σπN . BMW have performed a Nf = 1+1+
1+1 study BMW 20A [1025] which follows a two-step analysis procedure: the dependence
of the nucleon mass on the pion and kaon masses is determined on HEX-smeared clover

81At least at 1-loop the renormalization factors for HISQ and asqtad are very similar, cf. Ref. [1024].
82An exception to this is when clover fermions are employed. In this case one must take care of the mixing

between quark flavours when renormalizing the quark masses that appear in Eq. (446).
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σπN [MeV] σs [MeV]

BMW 20A [1025] 1+1+1+1 P ⋆‡ ⋆ ⋆ 0.0398(32)(44)×mN
† 0.0577(46)(33)×mN

†

ETM 14A [26] 2+1+1 A ⋆ ◦ ◦ 64.9(1.5)(13.2)△ −

RQCD 22 [105] 2+1 A ⋆ ⋆ ⋆ 43.9(4.7) 16(5868)

BMW 15 [103] 2+1 A ⋆‡ ⋆ ⋆ 38(3)(3) 105(41)(37)

Junnarkar 13 [108] 2+1 A ◦ ◦ ◦ − 48(10)(15)

BMW 11A [102] 2+1 A ◦‡ ⋆ ◦ 39(4)(187 ) 67(27)(5547)

△ Two results for σπN are quoted arising from different fit ansätze to the nucleon mass. The systematic
error is the same as in Ref. [1026] for a combined Nf = 2 and Nf = 2 + 1 + 1 analysis [1027].

‡ The rating takes into account that the action is not fully O(a) improved by requiring an additional
lattice spacing.

† The quark fractions fTud = fTu + fTd = σπN/mN and fTs = σs/mN are computed.

Table 73: Overview of results for σπN and σs from the Feynman-Hellmann approach.

ensembles with a = 0.06–0.1 fm and pion masses in the range Mπ = 195–420 MeV.
The meson masses as a function of the quark masses are evaluated on stout-staggered
ensembles with a similar range in a and quark masses which bracket their physical values.
As [1025] is a preprint, their results (for both sigma terms) are not considered for global
averaging.

Regarding Nf = 2 + 1 + 1, there is only one recent study. In ETM 14A [26], fits are
performed to the nucleon mass utilizing SU(2) χPT for data with Mπ ≥ 213 MeV as part
of an analysis to set the lattice spacing. The expansion is considered to O(p3) and O(p4),
with two and three of the coefficients as free parameters, respectively. The difference
between the two fits is taken as the systematic error. No discernable discretization or
finite-volume effects are observed where the lattice spacing is varied over the range a =
0.06–0.09 fm and the spatial volumes cover MπL = 3.4 up to MπL > 5. The results
are unchanged when a near-physical-point Nf = 2 ensemble is added to the analysis in
Ref. [1026].

Turning to Nf = 2 + 1, RQCD 22 [105] utilizes 49 nonperturbatively O(a)-improved
Wilson fermion CLS ensembles, with six lattice spacings in the range 0.04 ≤ a ≤ 0.1 fm
and Mπ ∼ 130–410 MeV. The ensembles lie on three trajectories in the quark-mass
plane, two of which meet at the physical point. Simultaneous fits to the bayon octet
are performed, employing SU(3) O(p3) covariant baryon χPT, heavy baryon χPT and
Taylor-expansion fit forms for the quark-mass dependence. The final values at the physical
point in the continuum and infinite-volume limits are obtained by performing an Akaike-
information-criterion [964] average of the covariant baryon χPT fits to various reduced
data sets. These fits include finite-volume terms to O(p3) as well as terms quadratic in
the lattice spacing in order to model cut-off effects.
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In BMW 11A [102], stout-smeared tree-level clover fermions are employed on 15 en-
sembles with simulation parameters encompassing a = 0.06–0.12 fm, Mπ ∼ 190–550 MeV
and MπL>∼ 4. Taylor, Padé and covariant SU(3) BχPT fit forms are considered. Due to
the use of smeared gauge links, discretization effects are found to be mild even though
the fermion action is not fully O(a)-improved. Fits are performed including an O(a) or
O(a2) term and also without a lattice-spacing-dependent term. Finite-volume effects were
assessed to be small in an earlier work [1031]. The final results are computed considering
all combinations of the fit ansatz weighted by the quality of the fit. In BMW 15 [103],
a more extensive analysis on 47 ensembles is presented for HEX-smeared clover fermions
involving five lattice spacings and pion masses reaching down to 120 MeV. Bracketing the
physical point reduces the reliance on a chiral extrapolation. Joint continuum, chiral and
infinite-volume extrapolations are carried out for a number of fit parameterizations with
the final results determined via the Akaike-information-criterion procedure. Although
only σπN is accessible in the FH approach in the isospin limit, the individual quark frac-
tions fTq

= σq/MN for q = u, d for the proton and the neutron are also quoted in BMW 15,
using isospin relations.83

With one exception, all of the above studies have also determined the strange-quark
sigma term, while Junnarkar 13 [108] only presents results for σs. This quantity is difficult
to access via the Feynman-Hellmann method since in most simulations the physical point
is approached by varying the light-quark mass, keepingms approximately constant. While
additional ensembles can be generated, it is hard to resolve a small slope with respect to
ms. Such problems are illustrated by the large uncertainties in the results from BMW 11A
and BMW 15. Alternative approaches have been pursued where the physical point is
approached along a trajectory keeping the average of the light- and strange-quark masses
fixed [1029], and where quark-mass reweighting is applied [891]. One can also fit to
the whole baryon octet and apply SU(3) flavour-symmetry constraints as investigated in
RQCD 22 [105] and Refs. [102, 1028–1030].

Junnarkar 13 [108] is a mixed-action study which utilizes domain-wall valence fermions
on MILC Nf = 2+1 asqtad ensembles. The derivative ∂MN/∂ms is determined from sim-
ulations above and below the physical strange-quark mass for Mπ around 240–675 MeV.
The resulting values of σs are extrapolated quadratically in Mπ. The quark fraction
fTs

= σs/MN exhibits a milder pion-mass dependence and extrapolations of this quantity
were also performed using ansätze linear and quadratic in Mπ. A weighted average of all
three fits was used to form the final result. Two lattice spacings were analyzed, with a
around 0.09 fm and 0.12 fm, however, discretization effects could not be resolved.

The global averaging of the results is discussed in the next section.

10.4.4 Summary of Results for gu,d,sS

We consider computing global averages of results determined via the direct, hybrid and
Feynman-Hellmann (FH) methods. Beginning with σπN , Tabs. 72 and 73 show that for
Nf = 2+1+1 ETM 14A (FH) and PNDME 21 (direct) satisfy the selection criteria. The
FLAG average for the four-flavour case reads

Nf = 2 + 1 + 1 : σπN = 60.9(6.5) MeV Refs. [26, 101]. (447)

We remark that although the Nf = 1+1+1+1 BMW 20A study [1025] also satisfies the
criteria, it is not considered for averaging as it is a preprint. For Nf = 2 + 1 we form an
average from the BMW 11A (FH), BMW 15 (FH), χQCD 15A (direct), RQCD 22 (FH)
and Mainz 23 (direct) results, yielding

Nf = 2 + 1 : σπN = 42.2(2.4) MeV Refs. [102–106]. (448)

83These isospin relations were also derived in Ref. [1032].
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Note that both BMW results are included as they were obtained on independent sets of
ensembles (employing different fermion actions). The RQCD 22 and Mainz 23 studies
both utilize CLS Nf = 2 + 1 ensembles (the latter utilizes a subset of the ensembles
employed by the former). To be conservative we take the statistical errors for these two
studies to be 100% correlated. The FLAG result for Nf = 2 can be found in the FLAG
21 report [5].

Moving on to σs and the calculations detailed in Tab. 72, for Nf = 2 + 1 + 1
MILC 12C (hybrid) and BMW 20A satisfy the quality criteria, however, the latter is
a preprint and is not considered for averaging. In order to convert the result for ⟨N |s̄s|N⟩
given in MILC 12C to a value for σs, we multiply by the appropriate FLAG average forms

given in Eq. (35) of FLAG 19. This gives our result for four flavours, which is unchanged
since the last FLAG report,

Nf = 2 + 1 + 1 : σs = 41.0(8.8) MeV Ref. [107]. (449)

For Nf = 2 + 1 we perform a weighted average of BMW 11A (FH), MILC 12C (hybrid),
Junnarkar 13 (FH), BMW 15 (FH), χQCD 15A (direct), RQCD 22 (FH) and Mainz
23 (direct). MILC 09D [1020] also passes the FLAG selection rules, however, this calcula-
tion is superseded by MILC 12C. As for Eq. (449), the strangeness scalar matrix element
determined in the latter study is multiplied by the three-flavour FLAG average for ms

given in Eq. (33) of FLAG 19. There are correlations between the MILC 12C and Jun-
narkar 13 results as there is some overlap between the sets of asqtad ensembles used in
both cases. We take the statistical errors for these two studies to be 100% correlated and,
similarly, for the Mainz 23 and RQCD 22 studies (as for σπN ). The global average is

Nf = 2 + 1 : σs = 44.9(6.4) MeV Refs. [102–108], (450)

where the error has been increased by around 10% because χ2/dof = 1.2317 for the
weighted average. For all the other averages presented above, the χ2/dof is less than one
and no rescaling of the error is applied. There are no Nf = 2 studies of σs which pass the
FLAG quality criteria, see the FLAG 21 report for further details.

We remark that it was not possible to determine δ(amin) for the above works based
on the information provided.

All the results for σπN and σs are displayed in Figs. 46 and 47 along with the averages
given above. Note that where fTud

= fTu + fTd
or fTs is quoted in Tabs. 72 and 73, we

multiply by the experimental proton mass in order to include the results in the figures.
For σπN , the averages are consistent with the respective FLAG 21 values, however, the
errors are significantly reduced. For four flavours, this is due to the PNDME 21 direct
result, which dominates the average. The results that enter the average for three flavours,
are all consistent with each other and the addition of the RQCD 22 and Mainz 23 studies
reduces the uncertainty. The latter is the most precise result to date which passes all the
FLAG quality criteria. Notably, there is now a 2.7σ difference between the Nf = 2 + 1
and Nf = 2 + 1 + 1 FLAG averages. This is unlikely to be due to the inclusion of
charm quarks in the sea. The control of excited-state contributions remains an issue. In
particular, the PNDME 21 study utilizes a narrow-width prior in their fitting analysis
set to the lowest multi-hadron (Nπ or Nππ) excited-state energy. This is motivated by
a χPT analysis which indicates that these multi-hadron contributions are significant at
physical pion masses. If this constraint is relaxed then a sigma term of around 42 MeV is
obtained. Mainz 23 also find an increase in the sigma term if such a prior is included in
the fitting procedure; however, the shift is much less pronounced. Although progress is
being made in terms of improving the statistical precision of the correlation functions and
realising more source-sink separations (with the maximum separation currently around
1.5 fm), more work needs to be done in order to control excited-state contributions at
close-to-physical pion masses. We caution the reader that as more results for both σπN
and σs become available the averages may change.

273



10 20 30 40 50 60 70 80

=
+

+
=

+
 sc

at
t.

MeV

Alarcon 11
Chen 12
Chen 12
Hoferichter 15
Ruiz de Elvira 17
Hoferichter 23

BMW 11A
BMW 15
QCD 15A

JLQCD 18
RQCD 22
Mainz 23

FLAG average for = +

ETM 14A
ETM 19
BMW 20A
PNDME 21

FLAG average for = + +

Figure 46: Lattice results and FLAG averages for the nucleon sigma term, σπN , for the
Nf = 2 + 1, and 2 + 1 + 1 flavour calculations. Determinations via the direct approach are
indicated by squares and the Feynman-Hellmann method by triangles. Results from recent
analyses of π-N scattering [1021–1023, 1033, 1034] (circles) are shown for comparison. Note
that the charged pion is used to define the isospin limit in these phenomenological analyses,
while the neutral pion with Mπ ∼ 135 MeV is usually used to define the physical point
in lattice simulations. We adjust the results to be consistent with the latter, applying the
correction for the different conventions determined in Ref. [1034].

Also shown for comparison in the figures are determinations of σπN from recent anal-
yses of π-N scattering [1021–1023, 1033, 1034]. The Nf = 2 + 1 + 1 lattice average is in
agreement with Hoferichter et al. [1034] (Hoferichter 23 in Fig. 46), while there is some
tension, at the level of around three standard deviations, with the lattice average for
Nf = 2 + 1.84

For the strangeness sigma term, the four-flavour average is unchanged from the pre-
vious FLAG report, while the three-flavour average has decreased by 1σ and there is a
small reduction in the error. There is a slight tension between the Mainz 23 and MILC
12C Nf = 2 + 1 results, however, both FLAG averages are consistent with each other.

Finally we remark that, by exploiting the heavy-quark limit, the light- and strange-
quark sigma terms can be used to estimate σq for the charm, bottom and top quarks [1004–
1006]. The resulting estimate for the charm quark, see, e.g., the RQCD 16 Nf = 2
analysis of Ref. [871] that reports fTc = 0.075(4) or σc = 70(4) MeV, is consistent with
the direct determinations of ETM 19 [980] for Nf = 2+1+1 of σc = 107(22) MeV, ETM
16A [875] for Nf = 2 of σc = 79(21)(128 ) MeV and χQCD 13A [888] for Nf = 2 + 1 of
σc = 94(31) MeV. BMW in BMW 20A [1025] employing the Feynman-Hellmann approach

84We adjust the result of Ref. [1034] such that it is consistent with defining the isospin limit using the mass
of the neutral pion.

274



20 0 20 40 60 80 100120140160180

=
+

+
=

+

MeV

MILC 09D
BMW 11A
Junnarkar 13
MILC 12C
BMW 15
QCD 15A

JLQCD 18
RQCD 22
Mainz 23

FLAG average for = +

MILC 12C
ETM 19
BMW 20A

FLAG average for = + +

Figure 47: Lattice results and FLAG averages for σs for the Nf = 2 + 1, and 2 + 1 + 1
flavour calculations. Determinations via the direct approach are indicated by squares, the
Feynman-Hellmann method by triangles and the hybrid approach by circles.

obtain fTc = σc/mN = 0.0734(45)(55) for Nf = 1 + 1 + 1 + 1. MILC in MILC 12C [107]
find ⟨N |c̄c|N⟩ = 0.056(27) in the MS scheme at a scale of 2 GeV for Nf = 2 + 1 + 1 via
the hybrid method. Considering the large uncertainty, this is consistent with the other
results once multiplied by the charm-quark mass.

10.5 Isovector second Mellin moments ⟨x⟩u−d, ⟨x⟩∆u−∆d and ⟨x⟩δu−δd

This section introduces the basics of the calculation of the momentum fraction carried
by the quarks and the transversity and helicity moments in the isovector channel. These
moments of spin-independent (i.e., unpolarized), q = q↑ + q↓, helicity (i.e., polarized),
∆q = q↑ − q↓, and transversity, δq = q⊤ + q⊥ distributions, are defined as

⟨x⟩q =

∫ 1

0

x [q(x) + q(x)] dx , (451)

⟨x⟩∆q =

∫ 1

0

x [∆q(x) + ∆q(x)] dx , (452)

⟨x⟩δq =

∫ 1

0

x [δq(x) + δq(x)] dx , (453)

where q↑(↓) corresponds to quarks with helicity aligned (anti-aligned) with that of a lon-
gitudinally polarized target, and q⊤(⊥) corresponds to quarks with spin aligned (anti-
aligned) with that of a transversely polarized target. These alignments are shown picto-
rially in Fig. 48.

At leading twist, these moments can be extracted from the forward matrix elements
of one-derivative vector, axial-vector and tensor operators within ground-state nucleons.
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Figure 48: A pictorial description of the three moments showing the direction of the spin of
the quark (red arrow) with respect to the nucleon momentum (green arrow).

The complete set of the relevant twist-two operators are

OµνV a = qγ{µ
←→
D ν}τaq ,

OµνAa = qγ{µ
←→
D ν}γ5τaq ,

OµνρTa = qσ[µ{ν]←→D ρ}τaq , (454)

where q = {u, d} is the isodoublet of light quarks and σµν = (γµγν − γνγµ)/2. The

derivative
←→
D ν ≡ 1

2 (
−→
Dν −←−Dν) consists of four terms defined in Ref. [109]. Lorentz indices

within { } in Eq. (454) are symmetrized and within [ ] are antisymmetrized. It is also
implicit that, where relevant, the traceless part of the above operators is taken.

The methodology for nonperturbative renormalization of these operators is very similar
to that for the charges. Details of these twist-two operators and their renormalization can
be found in Refs. [936] and [917].

In numerical calculations, it is typical to set the spin of the nucleon in a given direction.
Choosing the spin to be in the “3” direction and restricting to the isovector case, τa = τ3,
the explicit operators become

O44
V 3 = q(γ4

←→
D 4 − 1

3
γ ·
←→
D )τ3q , (455)

O34
A3 = qγ{3

←→
D 4}γ5τ3q , (456)

O124
T 3 = qσ[1{2]←→D 4}τ3q . (457)

The isovector moments are then obtained from their forward matrix elements within the
nucleon ground state using the following relations:

⟨0|O44
V 3 |0⟩ = −MN ⟨x⟩u−d , (458)

⟨0|O34
A3 |0⟩ = − iMN

2
⟨x⟩∆u−∆d , (459)

⟨0|O124
T 3 |0⟩ = − iMN

2
⟨x⟩δu−δd . (460)

10.5.1 Results for the isovector moments ⟨x⟩u−d, ⟨x⟩∆u−∆d and ⟨x⟩δu−δd

A summary of results for these three moments is given in Tabs. 74 and 75 and the values
including the FLAG averages are shown in Fig. 49. Results from Nf = 2 simulations and
publications prior to 2014 have been included as this is the first review of these quantities.
For the momentum fraction and helicity moment, we have also included phenomenological
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⟨x⟩u−d ⟨x⟩∆u−∆d

ETM 22 [98] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.126(32)

PNDME 20A [109] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.173(14)(07) 0.213(15)(22)

ETM 20C [1035] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.171(18)

ETM 19A [1036] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.178(16) 0.193(18)

Mainz 24 [96] 2+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.153(15)(10) 0.207(15)(06)

LHPC 24 [1037] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.200(17) 0.213(16)

NME 21A [1038] 2+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.156(12)(20) 0.185(12)(20)

NME 20 [110] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.155(17)(20) 0.183(14)(20)

Mainz 19 [917] 2+1 A ⋆‡ ◦ ⋆ ⋆ ◦ 0.180(25)(146 ) 0.221(25)(100 )

χQCD 18A [111] 2+1 A ◦ ⋆ ⋆ ⋆ ◦ 0.151(28)(29)

LHPC 12A [986] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.140(21)

LHPC 10 [899] 2+1 A ■
‡ ◦ ■ ⋆ ■ 0.1758(20) 0.1972(55)

RBC/UKQCD 10D [887] 2+1 A ■ ■ ◦ ⋆ ■ 0.140–0.237 0.180–0.279

RQCD 18 [1039] 2 A ◦‡ ⋆ ⋆ ⋆ ■ 0.195(7)(15) 0.271(14)(16)

ETM 17C [877] 2 A ■ ◦ ◦ ⋆ ◦ 0.194(9)(11)

ETM 15D [874] 2 A ■ ◦ ◦ ⋆ ◦ 0.208(24) 0.229(30)

RQCD 14A [1040] 2 A ◦‡ ⋆ ⋆ ⋆ ■ 0.217(9)

‡ The rating takes into account that the moments are not fully O(a)-improved by requiring an additional
lattice spacing.

Table 74: Overview of results for ⟨x⟩u−d and ⟨x⟩∆u−∆d. The Nf = 2 results and publications
prior to 2014 are included as this is the first review of these quantities.

estimates. Lattice values for the momentum fraction are consistent with phenomenology
but have larger errors. Results for the helicity moment, ⟨x⟩∆u−∆d, are consistent and
have similar uncertainties. Lattice results for the transversity moment are a prediction.

We discuss results for these three moments together as the methodology for their
calculations and the analysis is the same, and the systematics are similar. All results
presented in this section are in the MS scheme at 2 GeV.

For the 2+1+1-theory, the PNDME 20A and ETM 22 results in [98, 109] qualify for the
averages. The PNDME 20A results are from nine HISQ ensembles analyzed using clover
fermions. The operators are renormalized nonperturbatively using the RI’-MOM scheme,
and the chiral-continuum-finite-volume extrapolation is done keeping the leading-order
corrections in each of the three variables. Analyses of excited-state contamination are
done using three strategies that differ in the selection of the first excited-state mass. The
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⟨x⟩δu−δd

ETM 22 [98] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ◦ 0.168(44)

PNDME 20A [109] 2+1+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.208(19)(24)

ETM 19A [1036] 2+1+1 A ■ ◦ ⋆ ⋆ ◦ 0.204(23)

Mainz 24 [96] 2+1 A ⋆‡ ⋆ ⋆ ⋆ ◦ 0.195(17)(15)

LHPC 24 [1037] 2+1 A ■
‡ ⋆ ⋆ ⋆ ◦ 0.219(21)

NME 21A [1038] 2+1 C ⋆‡ ⋆ ⋆ ⋆ ◦ 0.209(15)(20)

NME 20 [110] 2+1 A ◦‡ ⋆ ⋆ ⋆ ◦ 0.220(18)(20)

Mainz 19 [917] 2+1 A ⋆‡ ◦ ⋆ ⋆ ◦ 0.212(32)(
(20
10 )

RQCD 18 [1039] 2 A ◦‡ ⋆ ⋆ ⋆ ■ 0.266(8)(4)

ETM 15D [874] 2 A ■ ◦ ◦ ⋆ ◦ 0.306(29)

‡ The rating takes into account that the moments are not fully O(a)-improved by requiring an additional
lattice spacing.

Table 75: Overview of results for ⟨x⟩δu−δd. The Nf = 2 results and publications prior to 2014
are included as this is the first review of these quantities.

final results are from a three-state fit to the three-point function with the spectrum taken
from the two-point function, i.e., assuming no enhanced contribution from multihadron
excited states. An additional systematic uncertainty is assigned to cover the spread of
these three estimates.

The ETM collaboration has presented new results from three ensembles with 2+1+1-
flavour twisted-mass fermions with close-to-physical pion masses at a = 0.057, 0.069
and 0.80 fm in [98]. These results supersede those in [1035, 1036] based on the single
ensemble at a = 0.080 fm for the momentum fraction and the transversity moment. To
control excited-state contamination, they compare results from the plateau, summation
and two-state methods with the final values taken from the two-state fit. Operators are
renormalized nonperturbatively via the RI’-MOM scheme supplemented by perturbative
subtraction of lattice artefacts. The continuum extrapolation, which keeps the leading
correction ∝ a2, shows a significant slope for ⟨x⟩u−d, which reduces the continuum-limit
value.

When determining the final results to quote for the 2 + 1 + 1 theory, we note the
large difference between the results from Refs. [98, 109] for the momentum fraction. Our
conservative approach is to construct the interval defined by the PNDME 20A value plus
error and the ETM 22 value, i.e., 0.126–0.189, and then take the mean of the interval
for the central value and half the spread for the error as shown in Fig. 49. For the
transversity moment we perform the FLAG averaging assuming no correlations between
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Figure 49: Lattice-QCD results for the second Mellin moments ⟨x⟩u−d, ⟨x⟩∆u−∆d and
⟨x⟩δu−δd. Results from Nf = 2 simulations and publications prior to 2014 have been in-
cluded as this is the first review of these quantities. For the momentum-fraction and helicity
moment, we have also included phenomenological estimates [1041–1051].

the two calculations. For the helicity fraction we quote the PNDME 20A [109] values.
The values of δ(amin) for the three moments for the PNDME 20A calculation [109] are
0.6, 0.3 and 0.13, and those for ETM 22 are roughly 0.8 (momentum fraction) and 0.0
(transversity). The FLAG averages are

Nf = 2 + 1 + 1 : ⟨x⟩u−d = 0.158(32) Refs. [98, 109], (461)

Nf = 2 + 1 + 1 : ⟨x⟩∆u−∆d = 0.213(27) Ref. [109], (462)

Nf = 2 + 1 + 1 : ⟨x⟩δu−δd = 0.195(25) Refs. [98, 109]. (463)

Five calculations qualify for averages for the 2+1-flavour theory: the Mainz [96, 917],
the NME [110, 1038], and χQCD [111]. Of these, the Mainz 24 [96] supercedes the Mainz
19 [917], and while the NME 21A [1038] is an update of NME 20 [110], it is a conference
proceeding.

The Mainz 24 results are based on fifteen Nf = 2 + 1 ensembles produced by the
CLS collaboration covering the ranges 0.05 ≤ a ≤ 0.09 fm and 130 ≤ Mπ ≤ 360 MeV.
A two-state summation method is used to control excited-state contamination. In the
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continuum-chiral-finite-volume extrapolation, leading-order corrections are used for the
continuum and finite-volume corrections and up to NNLO results from SU(2) baryon
chiral perturbation theory for the chiral part.

The NME 20 [110] results are based on seven Nf = 2 + 1 clover ensembles produced
by the JLab/W&M/LANL/MIT collaborations. They cover the range 0.07 ≤ a ≤ 0.13 fm
and 170 ≤Mπ ≤ 280 MeV. The analysis methodology is the same as in Ref. [109] already
discussed above.

The χQCD [111] calculation uses four domain-wall ensembles that have been gene-
rated by the RBC/UKQCD collaboration that cover the range 0.08 ≤ a ≤ 0.14 fm and
139 ≤Mπ ≤ 330 MeV. A number of values of overlap-valence-quark masses, in addition to
those close to the unitary pointM sea

π =Mvalence
π , are used. The renormalization is carried

out nonperturbatively. The continuum-chiral-finite-volume extrapolation is carried out
using the leading corrections plus terms accounting for partial quenching, i.e., the leading
terms in the difference M sea

π −Mvalence
π .

The three older calculations, LHPC 12A [986], LHPC 10 [899] and RBC/UKQCD [887],
do not meet the criteria of control over the continuum limit. Similarly, the Nf = 2 calcu-
lations fail to satisfy one or more of the FLAG criteria.

The 2+1-flavour FLAG averages for the momentum fraction, ⟨x⟩u−d, are constructed
using the Mainz 24 [96], NME 20 [110] and χQCD 18A [111] values assuming zero correla-
tions between them. The results for the helicity and transversity moments are the FLAG
averages of the Mainz 24 [96] and NME 20 [110] values again assuming zero correlations.
The values of δ(amin) for the Mainz 24 [96] for the three moments are 1.5, 0.2, 0.1 and
those for the NME 20 are 0.5, 1.0 and 0.2. The χQCD 18A work does not provide enough
information to determine δ(amin). The FLAG averages are

Nf = 2 + 1 : ⟨x⟩u−d = 0.153(13) Refs. [96, 110, 111], (464)

Nf = 2 + 1 : ⟨x⟩∆u−∆d = 0.200(13) Refs. [96, 110], (465)

Nf = 2 + 1 : ⟨x⟩δu−δd = 0.206(17) Refs. [96, 110]. (466)
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11 Scale setting

Authors: R. Sommer, N. Tantalo, U. Wenger

Matching QCD to nature requires fixing the quark masses and matching an overall
scale to experiment. That overall energy scale S may be taken, for example, as the nucleon
mass. This process is referred to as scale setting.

11.1 Impact

The scale setting procedure, described in some detail below, is a rather technical step
necessary to obtain predictions from QCD. What may easily be overlooked is that the
exact predictions obtained from the theory, including many in this review, may depend
rather sensitively on the scale.

As long as the theory is incomplete, e.g., because we have predictions from Nf =
2 + 1 QCD, results will depend on which physics scale is used. Whenever a theory scale
(see Sec. 11.4) is used, it matters which value one imposes. Thus, to know whether
computations of a particular quantity agree or not, one should check which (value for a)
scale was used.

The sensitivity of predictions to the scale vary with the observable. For example, the
Λ parameter of the theory has a linear dependence,

δΛ

Λ
≈ δS
S , (467)

because Λ has mass dimension one and other hidden dependencies on the scale are (usu-
ally) suppressed. Let us preview the results. The present precision on the most popular
theory scale, w0 in Eq. (503) is about 0.4% and for

√
t0 it is 0.6%. On the Λ parameter

it is about 3%. Thus, we would think that the scale uncertainty is irrelevant. However,
in Sec. 11.7 we will discuss that differences between Nf = 2 + 1 and 2+1+1 numbers for√
t0 are at around 2%, which does matter.
Also, light-quark masses have an approximatively linear dependence on the scale

(roughly speaking one determines, e.g., mud =
1
S × [M2

π ]exp × [mud S
M2

π
]lat) and scale uncer-

tainties may play an important rôle in the discussion of agreement vs. disagreement of
computations within their error budget.

The list of quantities where scale setting is very important may be continued; we just
want to mention an observable very much discussed at present, the hadronic vacuum-
polarisation contribution to the anomalous magnetic moment of the muon [206]. It is
easily seen that the dependence on the scale is about quadratic in that case [1052],

δaHVP
µ

aHVP
µ

≈ 2
δS
S . (468)

This fact means that scale setting has to be precise at the few per-mille precision for the
aHVP
µ lattice determination to be relevant in the comparison with experiment.

11.2 Scale setting as part of hadronic renormalization schemes

We consider QCD with Nf quarks and without a θ-parameter. This theory is completely
defined by its coupling constant as well as Nf quark masses. After these parameters are
specified all other properties of the theory are predictions. Coupling and quark masses
depend on a renormalization scale µ as well as on a renormalization scheme. The most
popular scheme in the framework of perturbative computations is the MS scheme, but
one may also define nonperturbative renormalization schemes, see Secs. 4 and 9.

281



In principle, a lattice computation may, therefore, use these Nf+1 parameters as input
together with the renormalization scale µ to fix the bare quark masses and coupling of the
discretized Lagrangian, perform continuum and infinite-volume limit and obtain desired
results, e.g., for decay rates.85 However, there are various reasons why this strategy is
inefficient. The most relevant one is that unless one uses lattice gauge theory to compute
them, coupling and quark masses cannot be obtained from experiments without invoking
perturbation theory and thus necessarily truncation errors. Moreover, these parameters
are naturally short-distance quantities, since this is where perturbation theory applies.
Lattice QCD on the other hand is most effective at long distances, where the lattice
spacing plays a minor role. Therefore, it is more natural to proceed differently.

Namely, we may fix Nf + 1 nonperturbative, long-distance observables to have the
values found in nature. An obvious choice are Nf + 1 hadron masses that are stable in
the absence of weak interactions. This hadronic renormalization scheme is defined by

Mi(g0, {am0,j})
M1(g0, {am0,j})

=
M exp
i

M exp
1

, i = 2 . . . Nf + 1 , j = 1 . . . Nf . (469)

Here, Mi are the chosen hadron masses, g0 is the bare coupling, and am0,j are the bare
quark masses in lattice units. The ratio Mi/M1 is, precisely speaking, defined through
the hadron masses in lattice units, but in infinite volume. In QCD (without QED), all
particles are massive. Therefore, the infinite volume limit of the properties of stable
particles is approached with exponentially small corrections, which are assumed to be
estimated reliably. The power-like finite-volume corrections in QCD+QED are discussed
in Sec. 11.2.2. For fixed g0, Eq. (469) needs to be solved for the bare quark masses,

am0,j = µj(g0) . (470)

The functions µj define a line in the bare parameter space, called the line of constant
physics. Its dependence on the set of masses {Mi} is suppressed. The continuum limit is

obtained as g0 → 0 with the lattice spacing shrinking roughly as aM1 ∼ e−1/(2b0g
2
0). More

precisely, consider observables O with mass dimension dO. One defines their dimensionless
ratio

Ô(aM1) =
O

MdO
1

∣∣∣∣∣
am0,j=µj(g0)

, (471)

and obtains the continuum prediction as

Ocont = (M exp
1 )

dO lim
aM1→0

Ô(aM1) (472)

which explains why the determination and use of aM1 is referred to as scale setting.
Equation (470) has to be obtained from numerical results. Therefore, it is easiest

and most transparent if the i-th mass ratio depends predominantly on the i-th quark
mass. Remaining for a while in the isospin-symmetric theory with m0,1 = m0,2 (we enu-
merate the quark masses in the order up, down, strange, charm, bottom and ignore the
top quark), we have natural candidates for the numerators as the pseudoscalar masses in
the associated flavour sectors, i.e., π, K, D, B. The desired strong dependence on light-
(strange-)quark masses of π- (K-)meson masses derives from their pseudo-Goldstone na-
ture of the approximate SU(3)L×SU(3)R symmetry of the massless QCD Lagrangian,
which predicts that M2

π is roughly proportional to the light-quark mass and M2
K to the

sum of light- and strange-quark masses. For D and B mesons approximate heavy-quark
symmetry predicts MD and MB to be proportional to charm- and bottom-quark masses.

85At first sight this seems like too many inputs, but note that it is the scale µ, at which α(µ) has a particular
value, which is the input. The coupling α by itself can have any (small) value as it runs.
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Also other heavy-light bound states have this property. There is another important fea-
ture, which singles out pseudoscalar masses. Because they are the lightest particles with
the given flavour quantum numbers, their correlation functions have the least signal/noise
problem in the Monte Carlo evaluation of the path integral [465, 1053].

Still restricting ourselves to isospin-symmetric QCD (isoQCD, see Sec. 3), we thus
take it for granted that the choice Mi, i ≥ 2 is easy, and we do not need to discuss it
in detail: the pseudoscalar meson masses are very good choices, and some variations for
heavy quarks may provide further improvements.

The choice of M1 is more difficult. From the point of view of physics, a natural choice
is the nucleon mass, M1 =Mnucl. Unfortunately it has a rather bad signal/noise problem
when quark masses are close to their physical values. The ratio of signal to noise of the
correlation function at time x0 from N measurements behaves as [465]

Rnucl
S/N

x0 large∼
√
N exp(−(Mnucl −

3

2
Mπ)x0) ≈

√
N exp(−x0/0.27 fm) , (473)

where the numerical value of 0.27 fm uses the experimental masses. The behaviour in
practice, but at still favourably large quark masses, is illustrated in Fig. 50. Because
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Figure 50: Effective masses forMproton [1054],MΩ [1055], V (≈ r0), V (≈ r1) [710] and fπ [1056]
on Nf = 2 CLS ensemble N6 with a = 0.045 fm,Mπ = 340 MeV on a 483 × 96 lattice [1056].
All effective “masses” have been scaled such that the errors in the graph reflect directly the
errors of the determined scales. They are shifted vertically by arbitrary amounts. Figure from
Ref. [817]. Note that this example is at still favourably large quark masses. The situation
for Mproton becomes worse closer to the physical point, but may be changed by algorithmic
improvements.

this property leads to large statistical errors and it is further difficult to control excited-
state contaminations when statistical errors are large, it is useful to search for alternative
physics scales. The community has gone this way, and we discuss some of them below. For
illustration, here we just give one example: the decay constants of leptonic π or K decays
have mass dimension one and can directly replace M1 above. Figure 50 demonstrates
their long and precise plateaux as a function of the Euclidean time. Advantages and
disadvantages of this choice and others are discussed more systematically in Sec. 11.3.
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11.2.1 Theory scales

Since the signal/noise problem of physics scales is rather severe, they were already replaced
by theory scales in the very first days of lattice QCD. These scales cannot be determined
from experiment alone. Rather, their values have to be computed by lattice QCD using
a physics scale as input.

Creutz already used the string tension in his seminal paper on SU(2) Yang Mills theory
[1057], because it is far easier to determine than glueball masses. A further step was made
by the potential scale r0, defined in terms of the static force F (r) as [701]

r20F (r0) = 1.65 . (474)

Even though r0 can vaguely be related to the phenomenology of charmonium and bot-
tomonium states, its precise definition is in terms of F (r) which can be obtained accurately
from Monte Carlo lattice computations with (improvable) control over the uncertainties,
but not from experiment. In that sense, it is a prototype of a theory scale.

Useful properties of a good theory scale are high statistical precision, easy to control sys-
tematics, e.g., weak volume dependence, quark-mass dependence only due to the fermion
determinant, and low numerical cost for its evaluation. These properties are realized to
varying degrees by the different theory scales covered in this section and, in this respect,
they are much preferred compared to physics scales. Consequently, the physics scale M1

has often been replaced by a theory scale as, e.g., S = r−1
0 in the form

Ocont =
(
Sphys

)dO
lim
aS→0

ÔS(aS) with ÔS(aS) =
[
S−dO O

]
am0,j=µj(g0)

, (475)

and
Sphys = (M exp

1 ) lim
aM1→0

ŜM1
(aM1) . (476)

In this section, we review the determination of numerical results for the values of
various theory scales in physical units, Eq. (476). The main difficulty is that a physics
scale M1 has to be determined first in order to connect to nature and, in particular, that
the continuum limit of the theory scale in units of the physics scale has to be taken.

11.2.2 Isospin breaking

For simplicity and because it is a very good approximation, we have assumed above that
all other interactions except for QCD can be ignored when hadron masses and many other
properties of hadrons are considered. This is a natural point of view because QCD is a
renormalizable field theory and thus provides unique results.

However, we must be aware that while it is true that the predictions (e.g., for hadron
masses Mi, i > Nf + 1) are unique once Eq. (469) is specified, they will change when
we change the inputs M exp

i . These ambiguities are due to the neglected electroweak and
gravitational interactions, namely because QCD is only an approximate—even if precise—
theory of hadrons. At the sub-percent level, QED effects and isospin violations due to
mu ̸= md must be included. At that level one has a very precise description of nature,
where weak decays or weak effects, in general, can be included perturbatively and sys-
tematically in an effective-field-theory description through the weak-effective-interaction
Hamiltonian, while gravity may be ignored.

Scale setting is then part of the renormalization of QCD+QED, and in principle it is
quite analogous to the previous discussion. Triviality of QED does not play a rôle at small
enough α: we may think of replacing the continuum limit a→ 0 by a limit a→ aw with
aw nonzero but very far below all physical QCD+QED scales treated. The definition and
implementation of a hadronic renormalization scheme of QCD+QED defined on the lattice
is discussed in Sec. 3. The electric charge appears as a new parameter and is conveniently
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fixed in the Thomson limit. Care needs to be taken in the separate definition of QED
effects and strong isospin-breaking effects due to the up/down quark-mass difference.
Here, we repeat Eq. (23),

Xϕ = X̄ +Xγ +XSU(2) , (477)

and again emphasize that the split of physical observables Xϕ into their isoQCD part, X̄,
the QED contributions, Xγ , and the strong IB effects, XSU(2), is scheme dependent. In
order to hopefully avoid confusion and to make it possible to average results also when
they have a precision where the small IB-breaking effects matter, a particular scheme has
been defined in Sec. 3. For quantities that enter in the averages, the schemes used in the
computations are listed in Tab. 76. In this way, we can, to some degree, judge whether
differences of results may also be due to the scheme used.

Collaboration Ref. Nf MK [MeV] scale scale [MeV]

ETM 21 [45] 2+1+1 494.2 fπ 130.4
CalLat 20A [112] 2+1+1 494.2 MΩ 1672.5
MILC 15 [113] 2+1+1 494.5 Fp4s(fπ) 153.90(9)(+21

−28)
HPQCD 13A [42] 2+1+1 494.6 fπ 130.4

Hudspith 24 [1058] 2+1 494.2 MΩ 1672.5
RQCD 22 [105] 2+1 494.2 MΞ 1316.9
CLS 21 [1059] 2+1 497.6 1

3
(fπ + 2fK) 148.3

CLS 16 [114] 2+1 494.2 1
3
(fπ + 2fK) 147.6

RBC/UKQCD 14B [12] 2+1 495.7 MΩ 1672.5

HotQCD 14 [117] 2+1 n/a # r1(fπ) 0.3106 fm
BMW 12A [115] 2+1 494.2 MΩ 1672.5

Edinburgh consensus 494.6 fπ 130.5

# The scheme uses Mηss̄ ≈ 695 MeV instead of fixing MK.

Table 76: isoQCD schemes used in different computations as well as the Edinburgh consensus
(see Sec. 3). We do not list the choice for Mπ. It is Mπ = 135.0 MeV throughout. As all
quantities refer to the light sector of QCD only, charm quarks only enter through sea-quark
effects. We therefore do not list which quantity is used to fix the charm-quark mass at the
present stage.

As a matter of fact, many existing lattice calculations have been performed in the
isospin-symmetric limit, but not all the results considered in this review correspond to the
very same definition of QCD. The different choices of experimental inputs are perfectly
legitimate if QED radiative corrections are neglected, but in principle, predictions of
isoQCD do depend on these choices, and it is not meaningful to average numbers obtained
with different inputs. However, at the present level of precision the sub-percent differences
in the inputs are most likely not relevant, and we will average and compare isoQCD results
irrespective of these differences. The issue will become important when results become
significantly more precise. Of course, the different inputs may not be ignored, when
radiative corrections, Eq. (23), from various collaborations are directly compared. In this
case, we strongly suggest to compare results for the unambiguous full theory observable
or sticking to a standard.

11.3 Physical scales

The purpose of this short section is to summarize the most popular scales and give a short
discussion of their advantages and disadvantages. We restrict ourselves to those used in
more recent computations and, thus, the list is short.
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11.3.1 The mass of the Ω baryon

As already discussed, masses of hadrons that are stable in QCD+QED and have a small
width, in general, are very good candidates for physical scales since there are no QED
infrared divergences to be discussed. Furthermore, remaining within this class, the radia-
tive corrections are expected to be small. Furthermore, the Ω baryon has a significantly
better noise/signal ratio than the nucleon (see Fig. 50). It also has little dependence on
up- and down-quark masses, since it is composed entirely of strange valence quarks.

Still, one has to be aware that the mass is not extracted from the plateau region
but from a modelling of the approach to a plateau in the form of fits [12, 112, 115, 116,
119, 235]. In this sense, the noise/signal ratio problem may persist. The use of various
interpolating fields for the Ω helps in constraining such analyses, but it would be desirable
to have a theoretical understanding of multi-hadron (or in QCD+QED multi-hadron +
photon) contributions as for the nucleon [1060] discussed in Sec. 10. In the present review,
we take the estimates of the collaborations at face value and do not try to apply a rating
or an estimate of systematic error due to excited-state contributions.

11.3.2 Pion and kaon leptonic decay rates

These decay rates play a prominent rôle in scale setting, in (pure) QCD because excited-
state contaminations can simply be avoided by going to sufficiently large Euclidean time.
As a downside, QED radiative corrections need to be taken into account in the values
assigned to the associated decay constants. Therefore, we briefly summarize the knowledge
of QED radiative corrections and the definition of decay constants. More details are found
in the previous edition of this review.

The physical observable is the decay rate ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ] of a pion at
rest. It depends on the maximum energy Eγ of photons emitted in the decay and registered
in the experimental measurement. These soft and hard photons can’t be avoided since the
cross-section vanishes as Eγ → 0 and, e.g., the fixed-order cross-section without final-state
photons is infrared divergent. However, apart from the dependence on Eγ , there are no
ambiguities in the definition of ΓQCD+QED.

In QCD, the leptonic decay rate is,

ΓQCD[π 7→ µν̄µ] =
G2
F

8π
|Vud|2M exp

π−
(
mexp
µ

)2 [
1−

(
mexp
µ

)2(
M exp
π−
)2
] (

fQCD
π

)2
, (478)

where one naturally introduces the decay constant,

fQCD
π =

⟨0| ūγ0γ5d |π⟩QCD

MQCD
π

. (479)

of the pion. Radiative corrections to fQCD
π are then defined by

δfQCD
π (Eγ) =

√
ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ]

ΓQCD[π 7→ µν̄µ]
− 1 , (480)

such that

ΓQCD+QED[π− 7→ µν̄µ(γ), Eγ ] = ΓQCD[π 7→ µν̄µ]
[
1 + δfQCD

π (Eγ)
]2
. (481)

Common practice is to set

Eγ = Emax
γ =

M exp
π−

2

[
1−

(
mexp
µ

)2(
M exp
π−
)2
]
, (482)

286



the maximum energy allowed for a single photon in the case of negligible O(α2
em) correc-

tions.
As discussed in Sec. 3, δfQCD

π (Eγ) depends on the scheme used to define QCD. How-
ever, the RM123 lattice determination in the electro-quenched approximation [217] found
the scheme dependence to be irrelevant at the level of their result, δf isoQCD

π (Emax
γ ) =

0.0076(9).86 Additionally this agrees well with the estimate, δf isoQCD
π (Emax

γ ) = 0.0088(11)
from ChPT [282, 1061, 1062]. Taking Vud from the PDG [225] (beta decays) and the ChPT
number for δfπ, one has

f isoQCD
π = 130.56(2)exp(13)QED(2)Vud

MeV .

With the Edinburgh consensus Sec. 3, the scale of isoQCD is defined by

f isoQCD
π ≡ 130.5MeV . (483)

At the present level of accuracy the difference between the determined value (with a
scheme uncertainty of around 1 permille) and the defining value (483) is irrelevant.

Some scale determinations use also the Kaon decay constant. There the understanding
of QED radiative corrections is not yet as good as for pion decays. The ChPT estimate is
δf isoQCD
K (Emax

γ ) = 0.0053(11) [282, 1061, 1062], while the electro-quenched lattice com-

putation yielded δf isoQCD
K (Emax

γ ) = 0.0012(5) [217]. As a slight update of the previous
review, here we opt for a more conservative number of

δf isoQCD
K (Emax

γ ) = 0.003(3) , (484)

encompassing both estimates. Together with Vus = 0.2232(6) from Sec. 5 (f+(0) for
Nf = 2 + 1 + 1) and the PDG decay rate, we have

f isoQCD
K = 157.4(2)exp(4)QED(4)Vus MeV . (485)

Depending on the lattice formulation, there is also a nontrivial renormalization of the
axial current. Since it is easily determined from a chiral Ward identity, it does not play
an important rôle. When it is present, it is assumed to be accounted for in the statistical
errors.

11.3.3 Other physics scales

Scales derived from bottomonium have been used in the past, in particular, the splitting
∆MΥ = MΥ(2s) −MΥ(1s). They have very little dependence on the light-quark masses,
but need an input for the b-quark mass. In all relevant cases, the b quark is treated by
NRQCD.

11.4 Theory scales

In the following, we consider in more detail the two classes of theory scales that are most
commonly used in typical lattice computations. The first class consists of scales related
to the static quark-antiquark potential [701]. The second class is related to the action
density renormalized through the gradient flow [365].

86More precisely, both a hadronic scheme and a so-called GRS scheme were tested, where as a simplifi-
cation one may replace constant αs(µref) across theories by constant lattice spacing in the electro-quenched
approximation.
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11.4.1 Potential scales

In this approach, lattice scales are derived from the properties of the static quark-
antiquark potential. In particular, a scale can be defined by fixing the force F (r) between
a static quark and antiquark separated by the distance r in physical units [701]. Ad-
vantages of using the potential include the ease and accuracy of its computation, and its
mild dependence on the valence-quark mass. In general, a potential scale rc can be fixed
through the condition that the static force takes a predescribed value, i.e.,

r2cF (rc) = Xc , (486)

where Xc is a suitably chosen number. Phenomenological and computational considera-
tions suggest that the optimal choice for Xc is in the region where the static force turns
over from Coulomb-like to linear behaviour and before string breaking occurs. In the
original work [701], it was suggested to use X0 = 1.65 leading to the condition

r20F (r0) = 1.65 . (487)

In Ref. [702], the value X1 = 1.0 was proposed yielding the scale r1.
The static force is the derivative of the static quark-antiquark potential V (r) which can

be determined through the calculation of Wilson loops. More specifically, the potential
at distance r is extracted from the asymptotic time dependence of the r× t-sized Wilson
loops W (r, t),

V (r) = − lim
t→∞

d

dt
log⟨W (r, t)⟩ . (488)

The derivative of the potential needed for the force is then determined through the deriva-
tive of a suitable local parameterization of the potential as a function of r, e.g.,

V (r) = C−
1

r
+ C0 + C+r , (489)

and estimating uncertainties due to the parameterization. In some calculations, the gauge
field is fixed to Coulomb or temporal gauge in order to ease the computation of the
potential at arbitrary distances.

In order to optimize the overlap of the Wilson loops with the ground state of the po-
tential, one can use different types and levels of spatial gauge-field smearing and extract
the ground-state energy from the corresponding correlation matrix by solving a gener-
alized eigenvalue problem [930, 931, 1063]. Finally, one can also make use of the noise
reduction proposed in Refs. [1064, 1065]. It includes a smearing of the temporal paral-
lel transporter [1066] in the lattice definition of the discretized loops and thus yields a
different discretization of the continuum force.

11.4.2 Gradient flow scales

The gradient flow Bµ(t, x) of gauge fields is defined in the continuum by the flow equation

Ḃµ = DνGνµ, Bµ|t=0 = Aµ , (490)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], Dµ = ∂µ + [Bµ, · ] , (491)

where Aµ is the fundamental gauge field, Gµν the field-strength tensor, and Dµ the
covariant derivative [365]. At finite lattice spacing, a possible form of Eqs. (490) and
(491) is

a2
d

dt
Vt(x, µ) = −g20 · ∂x,µSG(Vt) ·Vt(x, µ) , (492)

where Vt(x, µ) is the flow of the original gauge field U(x, µ) at flow time t, SG is an
arbitrary lattice discretization of the gauge action, and ∂x,µ denotes the su(3)-valued
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differential operator with respect to Vt(x, µ). An important point to note is that the flow
time t has the dimension of a length squared, i.e., t ∼ a2, and hence provides a means for
setting the scale.

One crucial property of the gradient flow is that any function of the gauge fields eval-
uated at flow times t > 0 is renormalized [832] by just renormalizing the gauge coupling.
Therefore, one can define a scale by keeping a suitable gluonic observable defined at con-
stant flow time t, e.g., the action density E = − 1

2 TrGµνGµν [365], fixed in physical units.
This can, for example, be achieved through the condition

t2c⟨E(tc, x)⟩ = c , E(t, x) = −1

2
TrGµν(t, x)Gµν(t, x) , (493)

where Gµν(t, x) is the field-strength tensor evaluated on the flowed gauge field Vt. Then,
the lattice scale a can be determined from the dimensionless flow time in lattice units,
t̂c = a2tc. The original proposal in [365] was to use c = 0.3 yielding the scale t0,

t20⟨E(t0)⟩ = 0.3 . (494)

For convenience one sometimes also defines s0 =
√
t0.

An alternative scale w0 has been introduced in Ref. [115]. It is defined by fixing a
suitable derivative of the action density,

W (tc) = tc · ∂t
(
t2⟨E(t)⟩

)
t=tc

= c . (495)

Setting c = 0.3 yields the scale w0 through

W (w2
0) = 0.3 . (496)

In addition to the lattice scales from t0 and w0, one can also consider the scale from
the dimensionful combination t0/w0. This combination is observed to have a very weak
dependence on the quark mass [45, 1067, 1068].

A useful property of the gradient-flow scales is the fact that their quark-mass depen-
dence is known from χPT [1069].

Since the action density at t ∼ t0 ∼ w2
0 usually suffers from large autocorrelation [1067,

1070], the calculation of the statistical error needs special care.
Lattice artefacts in the gradient-flow scales originate from different sources [1071],

which are systematically discussed by considering t as a coordinate in a fifth dimension.
First, there is the choice of the action SG for t > 0. Second, there is the discretization
of E(t, x). Third, due to the discretization of the four-dimensional quantum action, and
fourth, contributions of terms localized at the boundary t = 0+. The interplay between
the different sources of lattice artefacts turns out to be rather subtle [1071].

Removing discretization errors due to the first two sources requires only classical (g0-
independent) improvement. Those due to the quantum action are common to all t = 0
observables, but the effects of the boundary terms are not easily removed in practice.
At tree level, the Zeuthen flow [1071] removes these effects completely, but none of the
computations reviewed here have used it. Discretization effects due to SG can be removed
by using an improved action such as the tree-level Symanzik-improved gauge action [115,
1072]. More phenomenological attempts of improving the gradient-flow scales consist of
applying a t-shift [1073], or tree-level improvement [1074].

11.4.3 Other theory scales

The MILC collaboration has been using another set of scales, the partially-quenched
pseudoscalar decay constant fp4s with degenerate valence quarks with a mass mq =
0.4 ·mstrange, and the corresponding partially quenched pseudoscalar mass Mp4s. So far
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it has been a quantity only used by the MILC collaboration [20, 21, 183]. We do not
perform an in-depth discussion or an average but will list numbers in the results section.

Yet another scale that has been used is the leptonic decay constant of the ηs. This
fictitious particle is a pseudoscalar made of a valence quark-antiquark pair with different
(fictitious) flavours which are mass-degenerate with the strange quark [120, 122, 1075].

11.5 List of computations and results

11.5.1 Gradient-flow scales

We now turn to a review of the calculations of the gradient-flow scales
√
t0 and w0. The

results are compiled in Tab. 77 and shown in Fig. 51. In the following, we briefly discuss
the calculations in the order that they appear in the table and figure.

Collaboration Ref. Nf pu
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ph
ys
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e

√
t0 [fm] w0 [fm]

ETM 21 [45] 2+1+1 A ⋆ ⋆ ⋆ fπ 0.14436(61) 0.17383(63)
CalLat 20A [112] 2+1+1 A ⋆ ⋆ ⋆ MΩ 0.1422(14) 0.1709(11)
BMW 20 [116] 1+1+1+1 A ⋆ ⋆ ⋆ MΩ 0.17236(29)(63)[70]
ETM 20 [1076] 2+1+1 C ⋆ ⋆ ⋆ fπ 0.1706(18)

MILC 15 [113] 2+1+1 A ⋆ ⋆ ⋆ Fp4s(fπ)
# 0.1416(+8/-5) 0.1714(+15/-12)

HPQCD 13A [42] 2+1+1 A ⋆ ◦ ⋆ fπ 0.1420(8) 0.1715(9)

Hudspith 24 [1058] 2+1 P ⋆ ⋆ ⋆ & 0.14480(32)(6)
RQCD 22 [105] 2+1 A ⋆ ⋆ ⋆ MΞ 0.1449(+7/-9)
CLS 21 [1059] 2+1 C ⋆ ⋆ ⋆ fπ, fK 0.1443(7)(13)
CLS 16 [114] 2+1 A ◦ ⋆ ⋆ fπ, fK 0.1467(14)(7)

QCDSF/UKQCD 15B[1077] 2+1 P ◦ ◦ ◦ M
SU(3)
P 0.1511(22)(6)(5)(3) 0.1808(23)(5)(6)(4)

RBC/UKQCD 14B [12] 2+1 A ⋆ ⋆ ⋆ MΩ 0.14389(81) 0.17250(91)

HotQCD 14 [117] 2+1 A ⋆ ⋆ ⋆ r1(fπ)
# 0.1749(14)

BMW 12A [115] 2+1 A ⋆ ⋆ ⋆ MΩ 0.1465(21)(13) 0.1755(18)(4)

# These scales are not physical scales and have been determined from fπ.
& There is no physical scale as such. The input is the quark-mass dependence of MΩ.

Table 77: Results for gradient flow scales at the physical point, cf. Eq. (476). Note that
BMW 20 [116] take IB and QED corrections into account. An additional result for the ratio
of scales is:
ETM 21 [45]: t0/w0 = 0.11969(62) fm.

ETM 21 [45] finalizes and supersedes ETM 20 discussed below. It determines the
scales

√
t0, w0, also t0/w0 = 0.11969(62) fm, and the ratio

√
t0/w0 = 0.82930(65), cf. also

HPQCD 13A [42]. Since ETM 21 is now published, the values replace the ones of ETM
20 in the previous FLAG average.

CalLat 20A [112] use Möbius Domain-Wall valence fermions on HISQ ensembles gen-
erated by the MILC and CalLat collaborations. The gauge fields entering the Möbius
Domain-Wall operator are gradient-flow smeared with t = a2. They compute the Ω mass
and the scales w0, t0 and perform global fits to determine w0MΩ and

√
t0MΩ at the

physical point. The flow is discretized with the Symanzik tree-level improved action and
the clover discretization of E(t) is used. A global fit with Bayesian priors is performed
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including terms derived from χPT for finite-volume and quark-mass dependencies, as well
as a2 and a2αs(1.5/a) terms for discretization errors. Also, a tree-level improved defini-
tion of the GF scales is used where the leading-in-g2 cutoff effects are removed up to and
including O(a8/t4).

BMW 20 [116] presents a result for w0 in the context of their staggered-fermion cal-
culation of the muon anomalous magnetic moment. It is the first computation that takes
QED and isospin-breaking corrections into account. The simulations are performed by
using staggered fermions with stout gauge-field smearing with six lattice spacings and sev-
eral pion masses around the physical point with Mπ between 110 and 140 MeV. Volumes
are around L = 6 fm. At the largest lattice spacing, it is demonstrated how the effective
masses of the Ω correlator almost reach the plateau value extracted from a four-state fit
(two states per parity). Within the range where the data are fit, the deviation of data
points from the estimated plateau is less than a percent. Isospin-breaking corrections are
computed by Taylor expansion around isoQCD with QED treated as QEDL [263]. Finite-
volume effects in QED are taken from the 1/L, 1/L2 universal corrections and O(1/L3)
effects are neglected. The results for MΩw0 are extrapolated to the continuum by a fit
with a2 and a4 terms.

ETM 20 [1076] presents in their proceedings contribution a preliminary analysis of
their Nf = 2 + 1 + 1 Wilson twisted-mass fermion simulations at maximal twist (i.e.,
automatic O(a) improved), at three lattice spacings and pion masses at the physical
point. Their determination of w0 = 0.1706(18) fm from fπ using an analysis in terms of
Mπ is the value quoted above. They obtain the consistent value w0 = 0.1703(18) fm from
an analysis in terms of the renormalized light quark mass.

MILC 15 [113] sets the physical scale using the fictitious pseudoscalar decay constant
Fp4s = 153.90(9)(+21/− 28) MeV with degenerate valence quarks of mass mv = 0.4ms

and physical sea-quark masses [183]. (Fp4s has strong dependence on the valence-quark
mass and is determined from fπ.) They use a definition of the flow scales where the
tree-level lattice artefacts up to O(a4/t2) are divided out. Charm-quark mass mistunings
are between 1% and 11%. They are taken into account at leading order in 1/mc through

Λ
(3)
QCD applied directly to Fp4s and 1/mc corrections are included as terms in the fits.

They use elaborate variations of fits in order to estimate extrapolation errors (both in GF
scales and Fp4s). They include errors from FV effects and experimental errors in fπ in
Fp4s.

HPQCD 13A [42] uses eight MILC-HISQ ensembles with lattice spacings a = 0.088,
0.121, 0.151 fm. Values of L are between 2.5 fm and 5.8 fm with MπL = 3.3–4.6. Pion
masses range between 128 and 306 MeV. QCD is defined by using the inputs Mπ =
134.98(32) MeV,MK = 494.6(3) MeV, fπ+ = 130.4(2) MeV derived by model subtractions
of IB effects. Additional scale ratios are given:

√
t0/w0 = 0.835(8), r1/w0 = 1.789(26).

Hudspith 24 [1058] computes the mass of the Omega baryon on CLS Nf = 2 + 1
configurations along the trajectories with approximately constant trace of the bare quark-
mass matrix. They use 27 ensembles with six different values of the lattice spacing from
a = 0.09 fm to a = 0.04 fm. They compute the (nonpositive) correlation function CΩ(x0)
of a local field with a gauge-fixed wall-source, which results in a very good statistical
precision. It is analyzed directly with a two-state fit describing the data over a large
range. In addition they also extract MΩ by constructing a 2x2 generalized Pencil-of-
Functions matrix correlator from CΩ(x0), CΩ(x0 + a), CΩ(x0 + 2a). Projecting with a
GEVP eigenvector (from a fixed-time GEVP) a correlation function with a long plateau
of the effective mass is found. Precisions for the Omega mass on various ensembles range
from a few per mille to below a per mille.
These masses, together with the scale t0 are subsequently fit using a phenomenology- and
ChPT-motivated form where a few parameters are taken from previous ChPT fits [1078]
to baryon masses computed on CLS ensembles by RQCD [105]. The dependence on t0
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is in the higher-order chiral-correction terms which include NNNLO. There is no term in
the fit which allows for discretization effects in the chiral corrections. Their absence is
justified by the results of previous fits in [1078]. Given the unconventional analysis carried
out in this work, the WG hopes that additional technical information will be provided in
the published version of the paper (in particular concerning the direction in parameter
space of the global fit of the Ω, kaon and pion masses from which the continuum value
of t0 is extracted) and may reconsider the ⋆ assigned in this review, on the basis of the
standard continuum-limit criterion, once the paper is published and eligible to enter the
average. Once the precision for the raw values of amΩ is independently confirmed, this
paper [1058], possibly with a new analysis, may lead to very high-precision determinations
of the theory scales.

RQCD 22 [105] is an independent analysis of CLS ensembles employing Nf = 2 + 1
nonperturbatively improved Wilson fermions and the tree-level Symanzik improved gauge
action. It uses a multitude of quark-mass combinations at six different values of the lattice
spacing, ranging from a ≲ 0.098 fm down to a < 0.039 fm. Near-physical quark masses
are realized at a = 0.064 fm and a = 0.085 fm. The input quantities used to fix the
physical point and to set the scale are Mπ = 134.8(3) MeV, MK = 494.2(3) MeV, and
mΞ = 1316.9(3) MeV (last line of pg. 33 in [105]). As RQCD 22 has been published since
the last update, the result for

√
t0 is now included in the FLAG average.

CLS 21 [1059] is a proceedings contribution describing a preliminary analysis following
the one in CLS 16 [114], cf. the description below. CLS 21 includes about twice the number
of ensembles as compared to CLS 16, in particular, ensembles at two more lattice spacings
and two ensembles at the physical point. As a consequence, this analysis is not considered
a straightforward update and hence does not supersede the result of CLS 16.

CLS 16 [114] uses CLS configurations of 2+1 nonperturbatively O(a)-improved Wilson
fermions. There are a few pion masses with the strange mass adjusted along a line of
mu +md +ms = const. Three different lattice spacings are used. They determine t0 at
the physical point defined by π and K masses and the linear combination fK+ 1

2fπ. They
use the Wilson flow with the clover definition of E(t).

QCDSF 15B [1077, 1079] results, unpublished, are obtained by simulating Nf = 2+ 1
QCD with the tree-level Symanzik-improved gauge action and clover Wilson fermions with
single-level stout smearing for the hopping terms together with unsmeared links for the
clover term (SLiNC action). Simulations are performed at four different lattice spacings,
in the range [0.06, 0.08] fm, with Mπ,min = 228 MeV and Mπ,minL = 4.1. The results for
the gradient-flow scales have been obtained by relying on the observation that flavour-
symmetric quantities get corrections of O((∆mq)

2) where ∆mq is the difference of the
quark mass from the SU(3)-symmetric value. The O(∆m2

q) terms are not detected in the
data and subsequently neglected.

RBC/UKQCD 14B [12] presents results for
√
t0 and w0 obtained in QCD with 2 + 1

dynamical flavours. The simulations are performed by using domain-wall fermions on six
ensembles with lattice spacing a−1 = 1.38, 1.73, 1.78, 2.36, 2.38, and 3.15 GeV, pion masses
in the rangeMunitary

π ∈ [139, 360] MeV. The simulated volumes are such thatMπL > 3.9.
The effective masses of the Ω correlator are extracted with two-state fits and it is shown,
by using two different nonlocal interpolating operators at the source, that the correlators
almost reach a pleateau. In the calculation of

√
t0 and w0, the clover definition of E(t) is

used. The values given are
√
t0 = 0.7292(41)GeV−1 and w0 = 0.8742(46)GeV−1 which

we converted to the values in Tab. 77.
HotQCD 14 [117] determines the equation of state with Nf = 2 + 1 flavours using

highly improved staggered quarks (HISQ/tree). As a byproduct, they update the results
of HotQCD 11 [712] by adding simulations at four new values of β, for a total of 24
ensembles, with lattice spacings in the range [0.04, 0.25] fm and volumes in the range
[2.6, 6.1] fm with Mπ = 160 MeV. They obtain values for the scale parameters r0 and
w0, via the ratios r0/r1, w0/r1 and using r1 = 0.3106(14)(8)(4) fm from MILC 10 [47].
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Figure 51: Results for gradient flow scales.

They obtain for the ratios (r0/r1)cont = 1.5092(39) and (w0/r1)cont = 0.5619(21) in
the continuum. They crosscheck their determination of the scale r1 using the hadronic
quantities fK , fη from HPQCD 09B [122] and the experimental value of Mφ, and find
good agreement.

BMW 12A [115] is the work in which w0 was introduced. Simulations with 2HEX
smeared Wilson fermions and two-level stout-smeared rooted staggered fermions are done.
The Wilson flow with clover E(t) is used, and a test of the Symanzik flow is carried out.
They take the results with Wilson fermions as their central value, because those “do not
rely on the ‘rooting’ of the fermion determinant”. Staggered fermion results agree within
uncertainties.

11.5.2 Potential scales

We now turn to a review of the calculations of the potential scales r0 and r1. The results
are compiled in Tab. 78 and shown in Fig. 52. With the exception of TUMQCD 22 [118],
the most recent calculations date back to 2014, and we discuss them in the order that
they appear in the table and the figure.

Asmussen 23 [1080] perform a computation of the potential at five lattice spacings
down to a = 0.04 fm on CLS ensembles. The ground-state level is extracted from a GEVP,
starting from smeared Wilson loops with different levels of smearing. The results are thus
far only available as a conference proceedings. The final result for r0 originates from a
global fit incorporating the pion-mass dependence and the lattice-spacing dependence.

TUMQCD 22 [118] uses HISQ ensembles generated by MILC at six lattice spacings
ranging from a = 0.15 fm to a = 0.03 fm to compute the potential. Scale setting is
performed through fp4s [20]. In contrast to other determinations, the static potential is
extracted using Coulomb-gauge fixing on two time-slices and the Wilson lines connecting
the two time-slices. Thus, there is no variational method but fits are performed with up
to three energy levels. Both continuum extrapolations with a2 corrections and α2(1/a) a2

are performed, where there is a preselection of the direction r⃗/r and direction-dependent
discretization effects are assumed to be sufficiently reduced by the use of the tree-level
improved rI [701]. The final results come from a Bayesian model average.

ETM 14 [8] uses Nf = 2 + 1 + 1 Wilson twisted-mass fermions at maximal twist
(i.e., automatic O(a)-improved), three lattice spacings and pion masses reaching down
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r0 [fm] r1 [fm]

TUMQCD 22 [118] 2+1+1 A ⋆ ⋆ ⋆ fp4s ([20]) $ 0.4547(64) 0.3037(25)
ETM 14 [8] 2+1+1 A ◦ ⋆ ⋆ fπ 0.474(14)
HPQCD 13A [42] 2+1+1 A ⋆ ◦ ⋆ fπ 0.3112(30)
HPQCD 11B [1075] 2+1+1 A ◦ ◦ ◦ ∆MΥ, fηs 0.3209(26)

Asmussen 23 [1080] 2+1 C ⋆ ⋆ ⋆ fπ, fK 0.4671(64)

HotQCD 14 [117] 2+1 A ⋆ ⋆ ⋆ r1([47])
# 0.4671(41)

χQCD 14 [29] 2+1 A ◦ ◦ ◦ three inputs87 0.465(4)(9)
HotQCD 11 [712] 2+1 A ⋆ ⋆ ⋆ fπ 0.468(4)
RBC/UKQCD 10A [119] 2+1 A ◦ ◦ ◦ MΩ 0.487(9) 0.333(9)
MILC 10 [47] 2+1 C ◦ ⋆ ⋆ fπ 0.3106(8)(14)(4)
MILC 09 [196] 2+1 A ◦ ⋆ ⋆ fπ 0.3108(15)(+26

−79)
MILC 09A [19] 2+1 C ◦ ⋆ ⋆ fπ 0.3117(6)(+12

−31)
HPQCD 09B [122] 2+1 A ◦ ⋆ ◦ three inputs 0.3133(23)(3)
PACS-CS 08 [235] 2+1 A ⋆ ■ ■ MΩ 0.4921(64)(+74

−2 )
HPQCD 05B [120] 2+1 A ◦ ◦ ◦ ∆MΥ 0.469(7) 0.321(5)
Aubin 04 [121] 2+1 A ◦ ◦ ◦ ∆MΥ 0.462(11)(4) 0.317(7)(3)

# This theory scale was determined in turn from r1 [47].
$ This theory scale was determined in turn from fπ.

Table 78: Results for potential scales at the physical point, cf. Eq. (476). ∆MΥ = MΥ(2s) −
MΥ(1s).

to Mπ = 211 MeV. They determine the scale r0 through fπ = fπ+ = 130.41 MeV. A
crosscheck of the so-obtained lattice spacings with the ones obtained via the fictitious
pseudoscalar meson Ms′s′ made of two strange-like quarks gives consistent results. The
crosscheck is done using the dimensionless combinations r0Ms′s′ (with r0 in the chiral
limit) and fπ/Ms′s′ determined in the continuum, and then using r0/a and the value of
Ms′s′ obtained from the experimental value of fπ. We also note that in Ref. [1067] using
the same ensembles the preliminary value w0 = 0.1782 fm is determined, however, without
error due to the missing or incomplete investigation of the systematic effects.

HPQCD 13A [42] was already discussed above in connection with the gradient flow
scales.

HPQCD 11B [1075] uses five MILC-HISQ ensembles and determines r1 fromMΥ(2s)−
MΥ(1s) and the decay constant fηs (see HPQCD 09B). The valence b quark is treated by
NRQCD, while the light valence quarks have the HISQ discretization, identical to the sea
quarks.

HotQCD 14 [117] was already discussed in connection with the gradient flow scales.
χQCD 14 [29] uses overlap fermions as valence quarks on Nf = 2 + 1 domain-wall

fermion gauge configurations generated by the RBC/UKQCD collaboration [119]. Using
the physical masses of Ds, D

∗
s and J/ψ as inputs, the strange- and charm-quark masses

and the decay contant fDs
are determined as well as the scale r0.

HotQCD 11 [712] uses configurations with tree-level improved Symanzik gauge ac-
tion and HISQ staggered quarks in addition to previously generated ensembles with p4
and asqtad staggered quarks. In this calculation, QCD is defined by generating lines of
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constant physics with ml/ms = {0.2, 0.1, 0.05, 0.025} and setting the strange-quark mass
by requiring that the mass of a fictious ηss̄ meson is Mηss̄ =

√
2M2

K −M2
π . The physi-

cal point is taken to be at ml/ms = 0.037. The physical scale is set by using the value
r1 = 0.3106(8)(18)(4) fm obtained in Ref. [47] by using fπ as physical input. In the paper,
this result is shown to be consistent within the statistical and systematic errors with the
choice of fK as physical input. The result r0/r1 = 1.508(5) is obtained by averaging over
12 ensembles at ml/ms = 0.05 with lattice spacings in the range [0.066, 0.14] fm. This
result is then used to get r0 = 0.468(4) fm. Finite-volume effects have been monitored
with 20 ensembles in the range [3.2, 6.1]fm with MπL > 2.6.

RBC/UKQCD 10A [119] uses Nf = 2 + 1 flavours of domain-wall quarks and the
Iwasaki gauge action at two values of the lattice spacing with unitary pion masses in the
approximate range [290, 420] MeV. They use the masses of π and K meson and of the Ω
baryon to determine the physical quark masses and the lattice spacings, and so obtain
estimates of the scales r0, r1 and the ratio r1/r0 from a combined chiral and continuum
extrapolation.

MILC 10 [47] presents a further update of r1 with asqtad-staggered-quark ensembles
with a ∈ {0.045, 0.06, 0.09} fm. It supersedes MILC 09 [19, 196, 1081].

MILC 09 [196] presents an Nf = 2 + 1 calculation of the potential scales on asqtad-
staggered-quark ensembles with a ∈ {0.045, 0.06, 0.09, 0.12, 0.15, 0.18} fm. The continuum
extrapolation is performed by using Goldstone-boson pions as light as Mπ = 224 MeV
(RMS pion mass of 258 MeV). The physical scale is set from fπ. The result for r1 obtained
in the published paper [196] is then updated and, therefore, superseded by the conference
proceedings MILC 09A and 09B [19, 1081].

HPQCD 09B [122] is an extension of HPQCD 05B [120] and uses HISQ valence quarks
instead of asqtad quarks. The scale r1 is obtained from three different inputs. First
r1 = 0.309(4) fm from the splitting of 2S and 1S Υ states as in Ref. [120], second r1 =
0.316(5) fm fromMDs

−Mηs/2 and third r1 = 0.315(3) fm from the decay constant of the
ηs. The ficitious ηs state is operationally defined by setting quark masses to the s-quark
mass and dropping disconnected diagrams. Its mass and decay constant are obtained from
a partially-quenched-chiral-perturbation-theory analysis using the pion and kaon states
from experiment together with various partially-quenched lattice data. The three results
are combined to r1 = 0.3133(23)(3) fm.

PACS-CS 08 [235] presents a calculation of r0 in Nf = 2+ 1 QCD by using NP O(a)-
improved clover Wilson quarks and Iwasaki gauge action. The calculation is done at fixed
lattice spacing a = 0.09 fm and is extrapolated to the physical point from (unitary) pion
masses in the range [156, 702] MeV. The Nf = 2 + 1 theory is defined by fixing Mπ,
MK , and MΩ to 135.0, 497.6, and 1672.25 MeV, respectively. The effective masses of
smeared-local Ω correlators averaged over the four spin polarizations show quite good
plateaux.

RBC/Bielefeld 07 [1082] performed calculations of the equation of state with two
light-quark flavours and a heavier strange quark using improved staggered fermions.
Zero-temperature calculations including the static-quark potential were used to set the
temperature scale for the thermodynamic observables. The lattice cut-off changes by a
factor 6 from a ≃ 0.3 fm down to a ≃ 0.05 fm while the pion mass is kept fixed at
Mπ ≃ 220(4) MeV. Apart from the dimensionless ratio r0/r1 = 1.4636(60) they also
provide a result for the ratio r0

√
σ = 1.1034(40)

HPQCD 05B [120] performed the first bottomonium spectrum calculation in full QCD
with Nf = 2+1 on MILC asqtad configurations and the b quark treated by NRQCD. They
find agreement of the low lying Υ states with experiment and also compare to quenched
and Nf = 2 results. They determined r0 and r1 from the splitting of 2S and 1S states.

Aubin 04 [121] presents anNf = 2+1 calculation of the potential scales by using asqtad
staggered quark ensembles with a = 0.09 and 0.12} fm. The continuum extrapolation is
performed by using Goldstone-boson pions as light as Mπ = 250 MeV. The physical scale
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is set from the Υ 2S-1S and 1P-1S splittings computed with NRQCD by HPQCD [1083].
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Figure 52: Results for potential scales.

11.5.3 Ratios of scales

It is convenient in many cases to also have ratios of scales at hand. In addition to
translating from one scale to another, the ratios provide important crosschecks between
different determinations. Results on ratios provided by the collaborations are compiled
in Tab. 79 and Fig. 53. The details of the computations were already discussed in the
previous sections.
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√
t0/w0 r0/r1 r1/w0

TUMQCD 22 [118] 2+1+1 A ⋆ ⋆ ⋆ 1.4968(69)
ETM 21 [45] 2+1+1 A ⋆ ⋆ ⋆ 0.82930(65)
HPQCD 13A [42] 2+1+1 A ⋆ ◦ ⋆ 0.835(8) 1.789(26)

HotQCD 14 [117] 2+1 A ⋆ ⋆ ⋆ 1.7797(67)
HotQCD 11 [712] 2+1 A ⋆ ⋆ ⋆ 1.508(5)

RBC/UKQCD 10A [119] 2+1 A ◦ ◦ ◦ 1.462(32)#

RBC/Bielefeld 07 [1082] 2+1 A ■ ⋆ ⋆ 1.4636(60)
Aubin 04 [121] 2+1 A ◦ ◦ ◦ 1.474(7)(18)

#This value is obtained from r1/r0 = 0.684(15)(0)(0).

Table 79: Results for dimensionless ratios of scales.
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Figure 53: Results for dimensionless ratios of scales.
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11.6 Averages

Data-driven continuum-limit criterion
As discussed in Sec. 2.1.2, we evaluate the inflation factor

s(a) = max[1, 1 + 2(δ(a)− 3)/3] , δ(a) =
|Q(a)−Q(0)|

σQ
, (497)

where Q is the quantity for which we perform an average, and σQ is the uncertainty
estimated by the collaboration for its continuum limit. If s(amin) exceeds one, i.e., if
the continuum limit is more than three σQ from the result at smallest lattice spacing,
amin, the error of the computation is inflated by s(amin) before taking the average. For
our quantities s(amin) = 1 except for few cases. We therefore report explicitly values of
s(amin) only where s(amin) > 1.

Gradient flow scale
√
t0

For Nf = 2 + 1 + 1, we have two recent calculations from ETM 21 [45] and CalLat
20A [112], and two less recent ones from MILC 15 [113] and HPQCD 13A [42] fulfilling
the FLAG criteria to enter the average. The latter two and CalLat 20A are based on the
same MILC-HISQ gauge-field ensembles, hence we consider their statistical errors to be
100% correlated.

For Nf = 2 + 1, we have four calculations from RQCD 22 [105], CLS 16 [114],
RBC/UKQCD 14B [12], and BMW 12A [115] which enter the FLAG average. RQCD
22 and CLS 16 are based on the same gauge-field ensembles, hence we consider their
statistical errors to be 100% correlated. The other two are independent computations, so
there is no correlation to be taken into account. QCDSF/UKQCD 15B [1077] does not
contribute to the average, because it is not published. CLS 21 [1059] is a proceedings con-
tribution based on double the number of ensembles. It is therefore not a straightforward
update and does not supersede CLS 16 [114]. Performing the weighted and correlated
average we obtain

Nf = 2 + 1 + 1 :
√
t0 = 0.14292(104) fm Refs. [42, 45, 112, 113], (498)

Nf = 2 + 1 :
√
t0 = 0.14474(57) fm Refs. [12, 105, 114, 115]. (499)

We note that the Nf = 2+1+1 results of staggered fermions and the twisted-mass result
are not well compatible. The resulting stretching factor based on the χ2 value from the
weighted average for Nf = 2+ 1+ 1 is 1.81. It causes the error to be increased compared
to FLAG 21. For the Nf = 2 + 1 average the stretching factor is 1.04. We hope that the
differences for Nf = 2 + 1 + 1 get resolved in the near future and the uncertainty of the
average decreases.

Gradient flow scale w0

For Nf = 1 + 1 + 1 + 1, including QED, there is a single calculation, BMW 20 [116]
with the result

Nf = 1 + 1 + 1 + 1 + QED : w0 = 0.17236(70) fm Ref. [116]. (500)

For Nf = 2 + 1 + 1 we now have four calculations ETM 21 [45], CalLat 20A [112],
MILC 15 [113], and HPQCD 13A [42] entering the FLAG average. The proceedings ETM
20 is superseded by ETM 21. As discussed above in connection with

√
t0, we assume 100%

correlation between the statistical errors of CalLat 20A, MILC 15, and HPQCD 13A.
For Nf = 2+1, we have three calculations RBC/UKQCD 14B [12], HotQCD 14 [117],

and BMW 12A [115] that enter the FLAG average. These calculations are independent,
and no correlation is used. QCDSF/UKQCD 15B [1077] does not contribute to the
average, because it is not published.
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Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : w0 = 0.17256(103) fm Refs. [42, 45, 112, 113], (501)

Nf = 2 + 1 : w0 = 0.17355(92) fm Refs. [12, 115, 117]. (502)

As above, Nf = 2+1+1 results of staggered fermions and the twisted-mass result are not
well compatible. The resulting stretching factor based on the χ2 value from the weighted
average is 1.67. It causes the error to be slightly increased compared to FLAG 21. For
the Nf = 2 + 1 average the stretching factor is 1.23. We hope that the differences for
Nf = 2+1+1 get resolved in the near future and the uncertainty of the average decreases.

Isospin-breaking and electromagnetic corrections are expected to be small at the level
of present uncertainties. This is also confirmed by the explicit computation by BMW 12A.
Therefore, we also perform an average over all Nf > 2 + 1 computations and obtain

Nf > 2 + 1 : w0 = 0.17250(70) fm Refs. [42, 45, 112, 113, 116]. (503)

For the Nf > 2 + 1 average the rescaling factor is 1.45.

Gradient flow scale t0/w0

Currently, there is only one calculation of the scale t0/w0 available from ETM 21 [45]
which forms the FLAG average

Nf = 2 + 1 + 1 : t0/w0 = 0.11969(62) fm Ref. [45]. (504)

Potential scale r0
For Nf = 2+1+1, there are two determinations of r0 from ETM 14 [8] and TUMQCD

22 [118], which contribute to the FLAG average and these are uncorrelated.
For Nf = 2 + 1, all but one calculation fulfill all the criteria to enter the FLAG

average. HotQCD 14 [117] is essentially an update of HotQCD 11 [712] by enlarging
the set of ensembles used in the computation. Therefore, the result from HotQCD 14
supersedes the one from HotQCD 11 and, hence, we only use the former in the average.
The computation of χQCD [29] is based on the configurations produced by RBC/UKQCD
10A [119], and we, therefore, assume a 100% correlation between the statistical errors of
the two calculations. HPQCD 05B [120] enhances the calculation of Aubin 04 [121] by
adding ensembles at a coarser lattice spacing and using the same discretization for the
valence fermion. Therefore, we consider the full errors (statistical and systematic) on the
results from Aubin 04 and HPQCD 05B to be 100% correlated.

Performing the weighted (and correlated) average, we obtain

Nf = 2 + 1 + 1 : r0 = 0.4580(73) fm Refs. [8, 118], (505)

Nf = 2 + 1 : r0 = 0.4701(36) fm Refs. [29, 117, 119–121]. (506)

We note that for the Nf = 2 + 1 + 1 average, the stretching factor based on the χ2-value
from the weighted average is 1.25, while for the Nf = 2 + 1 average it is 1.14.

Potential scale r1
For Nf = 2 + 1 + 1, there are three works that fulfill the criteria to enter the FLAG

average, namely TUMQCD 22 [118], HPQCD 13A [42] and HPQCD 11B [1075]. They are
all based on a varying number of MILC-HISQ ensembles and we therefore assume 100%
correlation between the statistical errors. The result from HPQCD 13A supersedes the
result from HPQCD 11B (in line with a corresponding statement in HPQCD 13A), hence
TUMQCD 22 and HPQCD 13A form the FLAG average.

For Nf = 2+ 1, all the results quoted in Tab. 78 fulfill the FLAG criteria, but not all
of them enter the average. The published result from MILC 09 [196] is superseded by the
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result in the proceedings MILC 10 [47], while MILC 09A [19] is a proceedings contribution
and does not enter the average. HPQCD 09B [122] uses HISQ valence quarks instead
of asqtad valence quarks as in HPQCD 05B [120]. Therefore, we have RBC/UKQCD
10A [119], MILC 10, HPQCD 09B, HPQCD 05B, and Aubin 04 entering the average.
However, since the latter four calculations are based on the aqtad MILC ensembles, we
attribute 100% correlation on the statistical error between them and 100% correlation on
the systematic error between HPQCD 05B and Aubin 04 as discussed above in connection
with r0.

Performing the weighted and correlated average, we obtain

Nf = 2 + 1 + 1 : r1 = 0.3068(37) fm Refs. [42, 118], (507)

Nf = 2 + 1 : r1 = 0.3127(30) fm Refs. [47, 119–122]. (508)

We note that for the Nf = 2 + 1 + 1 average the stretching factor based on the χ2-value
from the weighted average is 1.92, while for the Nf = 2+ 1 average it is 1.57. While it is
not entirely clear what the reasons are for the discrepancies encoded in these stretching
factors, excited-state contaminations are likely to play a role. Also for the potential, states
with additional pions will play an increasingly important role at small pion masses and
are not easily captured.

The scales Mp4s and fp4s
As mentioned in Sec. 11.4.3, these scales have been used only by the MILC and

FNAL/MILC collaborations [20, 21, 183]. The latest numbers from Ref. [20] are f4ps =
153.98(11)(+2

−12)(12)[4] MeV and Mp4s = 433.12(14)(+17
−6 )(4)[40] MeV and, hence, we have

Nf = 2 + 1 + 1 : f4ps = 153.98(20) MeV Ref. [20], (509)

Nf = 2 + 1 + 1 : M4ps = 433.12(30) MeV Ref. [20]. (510)

Dimensionless ratios of scales
We start with the ratio

√
t0/w0 for which two Nf = 2+ 1 + 1 calculations from ETM

21 [45] and HPQCD 13A [42] are available and form the FLAG average

Nf = 2 + 1 + 1 :
√
t0/w0 = 0.832(6) Refs. [42, 45]. (511)

Here we found a large stretching factor s(amin) = 12.3 for [45]. It was applied to the
uncertainty before performing the weighted average and has a large effect. In fact, in the
web-update after FLAG 21 the error was an order of magnitude smaller due to the very
small error of ETM 21. This is now compensated by the large stretching factor.

For the ratio r0/r1 there is only oneNf = 2+1+1 calculation available from TUMQCD
22 [118], which fulfills the FLAG criteria and therefore forms the FLAG average. For
Nf = 2+1 there are three calculations from HotQCD 11 [712], RBC/UKQCD 10A [119],
and Aubin 04 [121] available. They all fulfill the FLAG criteria and enter the FLAG
average of this ratio,

Nf = 2 + 1 + 1 : r0/r1 = 1.4968(69) Ref. [118], (512)

Nf = 2 + 1 : r0/r1 = 1.5049(74) Refs. [119, 121, 712]. (513)

We note that for Nf = 2+1, the stretching factor based on the χ2-value from the weighted
average is 1.54.

Finally, for the ratio r1/w0 there is one computation from HotQCD 14 [117] for Nf =
2+1+1, and one from HPQCD 13A [42] for Nf = 2+1 fulfilling the FLAG criteria, and,
hence, forming the FLAG values

Nf = 2 + 1 + 1 : r1/w0 = 1.789(26) Ref. [42], (514)

Nf = 2 + 1 : r1/w0 = 1.7797(67) Ref. [117]. (515)
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11.7 Observations and conclusions

Unfortunately the different computations for theory scales reported here are generally not
in good agreement within each set of Nf = 2 + 1 + 1 and 2 + 1 flavour content. As a
measure we list here the stretching factors above one. We remind the reader that their
squares are equal to the χ2/dof of the weighted averages. Quantitatively, the stretching
factors are for Nf = 2 + 1: 1.2 (w0), 1.1 (r0), 1.6 (r1), 1.5 (r0/r1). For Nf = 2 + 1 + 1
the numbers are larger: 1.8 (

√
t0), 1.7 (w0) 1.3 (r0) 1.9 (r1), and due to differences which

exist between present-days twisted-mass QCD results and staggered results. Of course,
the limited number of large-scale QCD simulations that are available means that there
are only a small number of truly independent determinations of the scales. For example,
three out of the five computations entering our average for w0 are based on the same
HISQ rooted staggered fermion configurations and thus their differences are only due to
the choice of the physical scale (MΩ vs. fπ), the valence quark action (Möbius domain-wall
valence fermions vs. staggered fermions) employed to compute it and different analysis of
continuum limit, etc.

Due to the publication of ETM 21, differences between Nf = 2+1 and 2+1+1 QCD are
now smaller and (within their errors) in agreement with expectations [198, 199]. The effect
of the charm quark is −0.6(8)% on w0 and −1.2(9)% on

√
t0 as computed from the FLAG

averages, while precision studies of the decoupling of charm quarks predicted generic
effects of a magnitude of only ≈ 0.2% [198, 199] for low-energy quantities. However,
the agreement within errors is due to large stretching factors. Taking just the individual
results, they do not agree. The differences are between Nf = 2+1 calculations and 2+1+1
calculations, but one can also interpret them as a difference between staggered fermion
simulations and Wilson-type ones. Since the FLAG averages have changed quite a bit due
to one more computation entering the averages, we are looking forward to further and
more precise results to see whether the numbers hold up over time. In this respect, it is
highly desirable for future computations to also publish ratios such as

√
t0/w0 for which

there are few numbers so far.
Such ratios of gradient flow scales are also of high interest in order to better understand

the specific discretization errors of gradient flow observables. So far, systematic studies
and information on the different contributions (see Sec. 11.4.2 and Ref. [1071]) are missing.
A worrying result is, for example, the scale-setting study of Ref. [226] on ratios of scales.
The authors find indications that the asymptotic ∼ a2 scaling does not set in before
a ≈ 0.05 fm and the a = 0.04 fm data has a relevant influence on their continuum
extrapolations.

A final word concerns the physics scales that all results depend on. While the mass of
the Ω baryon is more popular than the leptonic decay rate of the pion, both have system-
atics which are difficult to estimate. For the Ω baryon it is the contaminations by excited
states and for the decay rates it is the QED effects δf isoQCD

π . The uncertainty in Vud is
not relevant at this stage, but means that one is relying more on the standard model being
an accurate low-energy theory than in the case of the Ω mass. In principle, excited-state
effects are controlled by just going to large Euclidean time, but, in practice, this yields
errors that are too large. One, therefore, performs fits with a very small number of exci-
tations while theoretically there is a multitude of multi-hadron states that are expected
to contribute. For the leptonic decay rate of the pion, the situation is quite reversed,
namely, the problematic QED contributions have a well-motivated theory: chiral pertur-
bation theory. The needed combination of low-energy constants is not accessible from
experiment but its large-N estimate [1061] has been (indirectly) confirmed by the recent
computation of δf isoQCD

π [217]. Unfortunately the same comparison is not so favourable
for the leptonic Kaon decay.
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A List of acronyms

BχPT baryonic chiral perturbation theory
BCL Bourrely-Caprini-Lellouch
BGL Boyd-Grinstein-Lebed
BK Becirevic-Kaidalov
BSM beyond standard model
BZ Ball-Zwicky
χPT chiral perturbation theory
CKM Cabibbo-Kobayashi-Maskawa
CLN Caprini-Lellouch-Neubert
CP charge-parity
CPT charge-parity-time reversal
CVC conserved vector current
DSDR dislocation suppressing determinant

ratio
DW domain wall
DWF domain wall fermion
EDM electric dipole moment
EFT effective field theory
EM electromagnetic
ESC excited state contributions
EW electroweak
FCNC flavour-changing neutral current
FH Feynman-Hellman
FSE finite-size effects
FV finite volume
GF gradient flow
GGOU Gambino-Giordano-Ossola-Uraltsev
GRS Gasser-Rusetsky-Scimemi
HEX hypercubic stout
HISQ highly-improved staggered quarks
HMχPT heavy-meson chiral perturbation

theory
HMC hybrid Monte Carlo
HMrSχPT heavy-meson rooted staggered chi-

ral perturbation theory
HQET heavy-quark effective theory
IR infrared
isoQCD isospin-symmetric QCD
LD long distance
LEC low-energy constant
LO leading order
LW Lüscher-Weisz
MC Monte Carlo
MM minimal MOM
MOM momentum subtraction
MS modified minimal substraction

scheme
NDR naive dimensional regularization
nEDM nucleon electric dipole moment

NGB Nambu-Goldstone bosons
NLO next-to-leading order
NME nucleon matrix elements
NNLO next-to-next-to-leading order
NP nonperturbative
npHQET nonperturbative heavy-quark effec-

tive theory
NRQCD nonrelativistic QCD
NSPT numerical stochastic perturbation

theory
OPE operator product expansion
PCAC partially-conserved axial current
PDF parton distribution function
PDG particle data group
QCD quantum chromodynamics
QED quantum electrodynamics
QEDL formulation of QED in finite volume

(see [263])
QEDTL formulation of QED in finite volume

(see [1084])
RG renormalization group
RGI renormalization group invariant
RH R. Hill
RHQ relativistic heavy-quark
RHQA relativistic heavy-quark action
RI-MOM regularization-independent momen-

tum subtraction (also RI/MOM)
RI-
SMOM

regularization-independent
symmetric momentum (also
RI/SMOM)

RMS root mean square
SχPT staggered chiral perturbation theory
SD short distance
SF Schrödinger functional
SIDIS semi-inclusive deep-inelastic scat-

tering
SM standard model
SSF step-scaling function
SUSY supersymmetric
SW Sheikholeslami-Wohlert
UT unitarity triangle
UV ultraviolet
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B Appendix

B.1 Inclusion of electromagnetic effects

Electromagnetism on a lattice can be formulated using a naive discretization of the
Maxwell action S[Aµ] = 1

4

∫
d4x

∑
µ,ν [∂µAν(x) − ∂νAµ(x)]

2. Even in its noncompact
form, the action remains gauge invariant. This is not the case for non-Abelian theories
for which one uses the traditional compact Wilson gauge action (or an improved version of
it). Compact actions for QED feature spurious photon-photon interactions which vanish
only in the continuum limit. This is one of the main reason why the noncompact action
is the most popular so far. It was used in all the calculations presented in this review.
Gauge-fixing is necessary for noncompact actions because of the usual infinite measure of
equivalent gauge orbits which contribute to the path integral. It was shown [1085, 1086]
that gauge-fixing is not necessary with compact actions, including in the construction of
interpolating operators for charged states.

Although discretization is straightforward, simulating QED in a finite volume is more
challenging. Indeed, the long range nature of the interaction suggests that important
finite-size effects have to be expected. In the case of periodic boundary conditions, the
situation is even more critical: a naive implementation of the theory features an isolated
zero-mode singularity in the photon propagator. It was first proposed in [338] to fix the
global zero-mode of the photon field Aµ(x) in order to remove it from the dynamics.
This modified theory is generally named QEDTL. Although this procedure regularizes
the theory and has the right classical infinite-volume limit, it is nonlocal because of the
zero-mode fixing. As first discussed in [185], the nonlocality in time of QEDTL prevents
the existence of a transfer matrix, and therefore a quantum-mechanical interpretation of
the theory. Another prescription named QEDL, proposed in [263], is to remove the zero-
mode of Aµ(x) independently for each time slice. This theory, although still nonlocal in
space, is local in time and has a well-defined transfer matrix. Whether these nonlocalities
constitute an issue to extract infinite-volume physics from lattice-QCD+QEDL simula-
tions is, at the time of this review, still an open question. However, it is known through
analytical calculations of electromagnetic finite-size effects at O(α) in hadron masses [185–
188, 212, 263, 1087, 1088], meson leptonic decays [187, 1088], and the hadronic vacuum
polarization [1089] that QEDL does not suffer from a problematic (e.g., UV divergent)
coupling of short- and long-distance physics due to its nonlocality, and is likely safe to use
for these quantities. Another strategy, first proposed in [1090] and used by the QCDSF
collaboration, is to bound the zero-mode fluctuations to a finite range. Although more
minimal, it is still a nonlocal modification of the theory and so far finite-size effects for
this scheme have not been investigated. Two proposals for local formulations of finite-
volume QED emerged. The first one described in [1091] proposes to use massive photons
to regulate zero-mode singularities, at the price of (softly) breaking gauge invariance. The
second one presented in [1086], based on earlier works [1092, 1093], avoids the zero-mode
issue by using anti-periodic boundary conditions for Aµ(x). In this approach, gauge in-
variance requires the fermion field to undergo a charge conjugation transformation over a
period, breaking electric charge conservation. These local approaches have the potential
to constitute cleaner approaches to finite-volume QED. They have led to first numerical
studies at unphysical masses [1094, 1095], but were not used in any calculation reviewed
in this paper.

Once a finite-volume theory for QED is specified, there are various ways to compute
QED effects themselves on a given hadronic quantity. The most direct approach, first
used in [338], is to include QED directly in the lattice simulations and assemble corre-
lation functions from charged quark propagators. Another approach proposed in [212],
is to exploit the perturbative nature of QED, and compute the leading-order corrections
directly in pure QCD as matrix elements of the electromagnetic current. Both approaches
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have their advantages and disadvantages and as shown in [23], are not mutually exclusive.
A critical comparative study can be found in [1096].

Finally, most of the calculations presented here made the choice of computing electro-
magnetic corrections in the electro-quenched approximation. In this limit, one assumes
that only valence quarks are charged, which is equivalent to neglecting QED corrections to
the fermionic determinant. This approximation reduces dramatically the cost of lattice-
QCD+QED calculations since it allows the reuse of previously generated QCD configura-
tions. If QED is introduced pertubatively through current insertions, the electro-quenched
approximation avoids computing disconnected contributions coming from the electromag-
netic current in the vacuum, which are generally challenging to determine precisely. The
electromagnetic contributions from sea quarks to hadron-mass splittings are known to be
flavour-SU(3) and large-Nc suppressed, thus electro-quenched simulations are expected
to have an O(10%) accuracy for the leading electromagnetic effects. This suppression is
in principle rather weak and results obtained from electro-quenched simulations might
feature uncontrolled systematic errors. For this reason, the use of the electro-quenched
approximation constitutes the difference between ⋆ and ◦ in the FLAG criterion for the
inclusion of isospin-breaking effects.

B.2 Parameterizations of semileptonic form factors

In this section, we discuss the description of the q2-dependence of form factors, using the
vector form factor f+ of B → πℓν decays as a benchmark case. Since in this channel
the parameterization of the q2-dependence is crucial for the extraction of |Vub| from the
existing measurements (involving decays to light leptons), as explained above, it has been
studied in great detail in the literature. Some comments about the generalization of the
techniques involved will follow.

The vector form factor for B → πℓν All form factors are analytic functions of
q2 outside physical poles and inelastic threshold branch points; in the case of B → πℓν,
the only pole expected below the Bπ production region, starting at q2 = t+ = (mB +
mπ)

2, is the B∗. A simple ansatz for the q2-dependence of the B → πℓν semileptonic
form factors that incorporates vector-meson dominance is the Bečirević-Kaidalov (BK)
parameterization [567], which for the vector form factor reads:

f+(q
2) =

f(0)

(1− q2/m2
B∗)(1− αq2/m2

B∗)
. (516)

Because the BK ansatz has few free parameters, it has been used extensively to pa-
rameterize the shape of experimental branching-fraction measurements and theoretical
form-factor calculations. A variant of this parameterization proposed by Ball and Zwicky
(BZ) adds extra pole factors to the expressions in Eq. (516) in order to mimic the ef-
fect of multiparticle states [1097]. A similar idea, extending the use of effective poles
also to D → πℓν decays, is explored in Ref. [1098]. Finally, yet another variant (RH)
has been proposed by Hill in Ref. [568]. Although all of these parameterizations capture
some known properties of form factors, they do not manifestly satisfy others. For ex-
ample, perturbative QCD scaling constrains the behaviour of f+ in the deep Euclidean
region [1099–1101], and angular momentum conservation constrains the asymptotic be-
haviour near thresholds—e.g., Im f+(q

2) ∼ (q2 − t+)
3/2 (see, e.g., Ref. [1102]). Most

importantly, these parameterizations do not allow for an easy quantification of systematic
uncertainties.

A more systematic approach that improves upon the use of simple models for the q2

behaviour exploits the positivity and analyticity properties of two-point functions of vector
currents to obtain optimal parameterizations of form factors [569, 1101, 1103–1107]. Any
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form factor f can be shown to admit a series expansion of the form

f(q2) =
1

B(q2)ϕ(q2, t0)

∞∑
n=0

an(t0) z(q
2, t0)

n , (517)

where the squared momentum transfer is replaced by the variable

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

. (518)

This is a conformal transformation, depending on an arbitrary real parameter t0 < t+,
that maps the q2 plane cut for q2 ≥ t+ onto the disk |z(q2, t0)| < 1 in the z complex plane.
The function B(q2) is called the Blaschke factor, and contains poles and cuts below t+ —
for instance, in the case of B → π decays,

B(q2) =
z(q2, t0)− z(m2

B∗ , t0)

1− z(q2, t0)z(m2
B∗ , t0)

= z(q2,m2
B∗) . (519)

Finally, the quantity ϕ(q2, t0), called the outer function, is some otherwise arbitrary func-
tion that does not introduce further poles or branch cuts. The crucial property of this
series expansion is that the sum of the squares of the coefficients

∞∑
n=0

a2n =
1

2πi

∮
dz

z
|B(z)ϕ(z)f(z)|2 , (520)

is a finite quantity. Therefore, by using this parameterization an absolute bound to the
uncertainty induced by truncating the series can be obtained. The aim in choosing ϕ is to
obtain a bound that is useful in practice, while (ideally) preserving the correct behaviour
of the form factor at high q2 and around thresholds.

The simplest form of the bound would correspond to
∑∞
n=0 a

2
n = 1. Imposing this

bound yields the following “standard” choice for the outer function

ϕ(q2, t0) =

√
1

32πχ1−(0)

(√
t+ − q2 +

√
t+ − t0

)
×
(√

t+ − q2 +
√
t+ − t−

)3/2 (√
t+ − q2 +

√
t+

)−5 t+ − q2
(t+ − t0)1/4

,

(521)

where t− = (mB − mπ)
2, and χ1−(0) is the derivative of the transverse component of

the polarization function (i.e., the Fourier transform of the vector two-point function)
Πµν(q) at Euclidean momentum Q2 = −q2 = 0. It is computed perturbatively, using
operator product expansion techniques, by relating the B → πℓν decay amplitude to
ℓν → Bπ inelastic scattering via crossing symmetry and reproducing the correct value of
the inclusive ℓν → Xb amplitude. We will refer to the series parameterization with the
outer function in Eq. (521) as Boyd, Grinstein, and Lebed (BGL). The perturbative and
OPE truncations imply that the bound is not strict, and one should take it as

N∑
n=0

a2n ≲ 1 , (522)

where this holds for any choice of N . Since the values of |z| in the kinematical region of
interest are well below 1 for judicious choices of t0, this provides a very stringent bound
on systematic uncertainties related to truncation for N ≥ 2. On the other hand, the outer
function in Eq. (521) is somewhat unwieldy and, more relevantly, spoils the correct large
q2 behaviour and induces an unphysical singularity at the Bπ threshold.
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A simpler choice of outer function has been proposed by Bourrely, Caprini and Lellouch
(BCL) in Ref. [1102], which leads to a parameterization of the form

f+(q
2) =

1

1− q2/m2
B∗

N∑
n=0

a+n (t0)z(q
2, t0)

n . (523)

This satisfies all the basic properties of the form factor, at the price of changing the
expression for the bound to

N∑
j,k=0

Bjk(t0)a
+
j (t0)a

+
k (t0) ≤ 1 . (524)

The constants Bjk can be computed and shown to be |Bjk| ≲ O(10−2) for judicious
choices of t0; therefore, one again finds that truncating at N ≥ 2 provides sufficiently
stringent bounds for the current level of experimental and theoretical precision. It is
actually possible to optimize the properties of the expansion by taking

t0 = topt = (mB +mπ)(
√
mB −

√
mπ)

2 , (525)

which for physical values of the masses results in the semileptonic domain being mapped
onto the symmetric interval |z| ∼< 0.279 (where this range differs slightly for the B± and
B0 decay channels), minimizing the maximum truncation error. If one also imposes that
the asymptotic behaviour Im f+(q

2) ∼ (q2 − t+)3/2 near threshold is satisfied, then the
highest-order coefficient is further constrained as

a+N = − (−1)N
N

N−1∑
n=0

(−1)n na+n . (526)

Substituting the above constraint on a+N into Eq. (523) leads to the constrained BCL
parameterization

f+(q
2) =

1

1− q2/m2
B∗

N−1∑
n=0

a+n

[
zn − (−1)n−N n

N
zN
]
, (527)

which is the standard implementation of the BCL parameterization used in the literature.
Parameterizations of the BGL and BCL kind, to which we will refer collectively as

“z-parameterizations”, have already been adopted by the BaBar and Belle collabora-
tions to report their results, and also by the Heavy Flavour Averaging Group (HFAG,
later renamed HFLAV). Some lattice collaborations, such as FNAL/MILC and ALPHA,
have already started to report their results for form factors in this way. The emerging
trend is to use the BCL parameterization as a standard way of presenting results for
the q2-dependence of semileptonic form factors. Our policy will be to quote results for
z-parameterizations when the latter are provided in the paper (including the covariance
matrix of the fits); when this is not the case, but the published form factors include the
full correlation matrix for values at different q2, we will perform our own fit to the con-
strained BCL ansatz in Eq. (527); otherwise no fit will be quoted. We however stress
the importance of providing, apart from parameterization coefficients, values for the form
factors themselves (in the continuum limit and at physical quark masses) for a number of
values of q2, so that the results can be independently parameterized by the readers if so
wished.
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The scalar form factor for B → πℓν The discussion of the scalar B → π form
factor is very similar. The main differences are the absence of a constraint analogue to
Eq. (526) and the choice of the overall pole function. In our fits we adopt the simple
expansion:

f0(q
2) =

N−1∑
n=0

a0n z
n . (528)

We do impose the exact kinematical constraint f+(0) = f0(0) by expressing the a0N−1

coefficient in terms of all remaining a+n and a0n coefficients. This constraint introduces
important correlations between the a+n and a0n coefficients; thus only lattice calculations
that present the correlations between the vector and scalar form factors can be used in
an average that takes into account the constraint at q2 = 0.

Finally we point out that we do not need to use the same number of parameters for the
vector and scalar form factors. For instance, with (N+ = 3, N0 = 3) we have a+0,1,2 and

a00,1, while with (N+ = 3, N0 = 4) we have a+0,1,2 and a00,1,2 as independent fit parameters.
In our average we will choose the combination that optimizes uncertainties.

Extension to other form factors The discussion above largely extends to form

factors for other semileptonic transitions (e.g., Bs → K and B(s) → D
(∗)
(s) , and semileptonic

D and K decays). Details are discussed in the relevant sections.
A general discussion of semileptonic meson decay in this context can be found, e.g., in

Ref. [1108]. Extending what has been discussed above for B → π, the form factors for a
generic H → L transition will display a cut starting at the production threshold t+, and
the optimal value of t0 required in z-parameterizations is t0 = t+(1−

√
1− t−/t+) (where

t± = (mH ± mL)
2). For unitarity bounds to apply, the Blaschke factor has to include

all sub-threshold poles with the quantum numbers of the hadronic current — i.e., vector
(resp. scalar) resonances in Bπ scattering for the vector (resp. scalar) form factors of
B → π, Bs → K, or Λb → p; and vector (resp. scalar) resonances in Bcπ scattering for the
vector (resp. scalar) form factors of B → D or Λb → Λc.

88 Thus, as emphasized above,
the control over systematic uncertainties brought in by using z-parameterizations strongly
depends on implementation details. This has practical consequences, in particular, when
the resonance spectrum in a given channel is not sufficiently well-known. Caveats may also
apply for channels where resonances with a nonnegligible width appear. A further issue
is whether t+ = (mH +mL)

2 is the proper choice for the start of the cut in cases such as
Bs → Kℓν and B → Dℓν, where there are lighter two-particle states that project on the
current (B,π andBc,π for the two processes, respectively).89 In any such situation, it is not
clear a priori that a given z-parameterization will satisfy strict bounds, as has been seen,
e.g., in determinations of the proton charge radius from electron-proton scattering [1109–
1111].

The HPQCD collaboration pioneered a variation on the z-parameterization approach,
which they refer to as a “modified z-expansion,” that is used to simultaneously extrapolate
their lattice simulation data to the physical light-quark masses and the continuum limit,
and to interpolate/extrapolate their lattice data in q2. This entails allowing the coefficients
an to depend on the light-quark masses, squared lattice spacing, and, in some cases the
charm-quark mass and pion or kaon energy. Because the modified z-expansion is not
derived from an underlying effective field theory, there are several potential concerns
with this approach that have yet to be studied. The most significant is that there is no

88A more complicated analytic structure may arise in other cases, such as channels with vector mesons in
the final state. We will however not discuss form-factor parameterizations for any such process.

89We are grateful to G. Herdóıza, R.J. Hill, A. Kronfeld and A. Szczepaniak for illuminating discussions on
this issue.
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theoretical derivation relating the coefficients of the modified z-expansion to those of the
physical coefficients measured in experiment; it therefore introduces an unquantified model
dependence in the form-factor shape. As a result, the applicability of unitarity bounds
has to be examined carefully. Related to this, z-parameterization coefficients implicitly
depend on quark masses, and particular care should be taken in the event that some state
can move across the inelastic threshold as quark masses are changed (which would in
turn also affect the form of the Blaschke factor). Also, the lattice-spacing dependence of
form factors provided by Symanzik effective theory techniques may not extend trivially
to z-parameterization coefficients. The modified z-expansion is now being utilized by
collaborations other than HPQCD and for quantities other than D → πℓν and D → Kℓν,
where it was originally employed. We advise treating results that utilize the modified z-
expansion to obtain form-factor shapes and CKM matrix elements with caution, however,
since the systematics of this approach warrant further study.

Choice of form-factor basis for chiral-continuum extrapolations For
pseudoscalar-to-pseudoscalar transitions P1 → P2 (such as B → π or Bs → K), the
chiral and continuum extrapolations have often been performed in a different basis f∥, f⊥
given by [1112]

⟨P2(p
′)|V µ|P1(p)⟩ =

√
2M1[v

µf∥(E2) + p′µ⊥f⊥(E2)]. (529)

Here, vµ = pµ/M1 is the initial-meson four-velocity, p′µ⊥ = p′µ− (v · p′)vµ is the projection
of the final-meson momentum in the direction perpendicular to vµ, and the form factors
are taken to be functions of E2 = v · p′ (the energy of the final-state meson in the initial-
meson rest frame). After the chiral and continuum extrapolations, the standard form
factors are then constructed as the linear combinations

f0(q
2) =

√
2M1

M2
1 −M2

2

[
(M1 − E2)f∥(E2) + (E2

2 −M2
K)f⊥(E2)

]
, (530)

f+(q
2) =

1√
2M1

[
f∥(E2) + (M1 − E2)f⊥(E2)

]
. (531)

The decomposition (529) is motivated by heavy-meson chiral perturbation theory and is
also convenient for the extraction of the form factors from the correlation functions. For
example, for B → π, heavy-meson chiral perturbation theory predicts, at leading-order in
both the chiral and the heavy-quark expansion,

f⊥(Eπ) =
1

fπ

gB∗Bπ

Eπ +∆B∗
, (532)

f∥(Eπ) =
1

fπ
, (533)

where ∆B∗ = MB∗ −MB . For a general transition P1 → P2, the chiral and continuum
extrapolations were therefore commonly performed by fitting functions of the form

f⊥(E2) =
1

E2 +∆⊥

[
...

]
(534)

and

f∥(E2) =
1

E2 +∆∥

[
...

]
or f∥(E2) =

[
...

]
(535)

with ∆⊥ = M1− −M1 and ∆∥ = M0+ −M1, where M1− and M0+ denote the masses of
the bound states with JP = 1− and JP = 0+ that couple to the weak current, and the
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ellipsis in the brackets denote terms describing the remaining dependence on the quark
masses, lattice spacing, and kinematics. The terms in front of the brackets introduce poles
at E2 = −∆, which corresponds to q2 ≈ M2

JP for large M1. Depending on the process,
there may be no QCD-stable bound state with JP = 0+, in which case this pole factor
for f∥ is usually omitted.

A problem with the above prescription is that, for finite heavy-quark mass, the JP

quantum numbers of the poles appearing in the form factors are definite only in the
helicity basis of the form factors, with JP = 1− for f+ and JP = 0 for f0. In particular,
the form factor f∥, being a linear combination of f+ and f0, also has a pole at the lower
massM1− that is neglected when using the above functions. The alternative is to perform
the chiral-continuum extrapolations for f+ and f0 using

f+(E2) =
1

E2 +∆+

[
...

]
(536)

and

f0(E2) =
1

E2 +∆0

[
...

]
or f0(E2) =

[
...

]
, (537)

where ∆+ =M1− −M1 and ∆0 =M0+ −M1 now truly correspond to the lowest pole in
each form factor. The authors of Ref. [128] found that this method (in the case of Bs → K
form factors) yields significantly different results for the extrapolated f0 when compared
to extrapolating f∥, f⊥ and then reconstructing f+ and f0. Lattice determinations of
the form factors based on extrapolations of f∥, f⊥ may therefore have an uncontrolled
systematic error, and directly extrapolating f+ and f0 appears to be the better choice.

B.3 Explicit parameterizations used in the form factor fits

In order to reconstruct the form factors from the results of fits performed using a z-
parameterization it is necessary not only to use the correct version of the parameterization
but also to adopt exactly the same numerical values for all ancillary quantities that enter
the fit (e.g., location of poles). In particular, users must avoid utilizing the most updated
numerical inputs for these quantities with z-coefficients extracted using older values. The
purpose of this appendix is to eliminate all ambiguities in the implementation of the fit
results presented in Secs. 7 and 8.

B.3.1 D → K form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
D∗

s

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN
]
, (538)

f0(q
2) =

1

1− q2/m2
D∗

s (0
+)

N0−1∑
n=0

a0nz
n . (539)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms

of the other coefficients. We use t+ = (mD + mK)2, t− = (mD − mK)2 and t0 =
t+ −

√
t+(t+ − t−). The numerical inputs are: mD = 1.87265 GeV, mD∗

s
= 2.1122 GeV,

mD∗
s (0

+) = 2.317 GeV, and mK = 0.495644 GeV.
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B.3.2 B → π form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
B∗

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN
]
, (540)

f0(q
2) =

N0−1∑
n=0

a0nz
n . (541)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of

the other coefficients. We use t+ = (mB + mπ)
2 and t0 = (mB + mπ)(

√
mB −

√
mπ).

The numerical inputs are: mB∗ = 5.32471 GeV, mB = 5.27934 GeV and mπ = 0.1349768
GeV.

Results for the form factor fT are taken directly from Ref. [129] where we refer the
reader for details on the parameterization.

B.3.3 Bs → K form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
B∗

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN
]
, (542)

f0(q
2) =

1

1− q2/m2
B∗(0+)

N0−1∑
n=0

a0nz
n . (543)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms

of the other coefficients. We use t+ = (mB + mπ)
2, t− = (mBs − mK)2 and t0 =

t+ −
√
t+(t+ − t−). The numerical inputs are: mB = 5.27931 GeV, mB∗ = 5.3251 GeV,

mBs
= 5.36688 GeV, mB∗(0+) = 5.68 GeV, mK = 0.493677 GeV and mπ = 0.1349766

GeV.

B.3.4 B → K form factors

BCL parameterization:

f+(q
2) =

1

1− q2/m2
B∗

s

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN
]
, (544)

f0(q
2) =

1

1− q2/m2
B∗

s (0
+)

N0−1∑
n=0

a0nz
n , (545)

fT (q
2) =

1

1− q2/m2
B∗

s

NT−1∑
n=0

aTnz
n . (546)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of

the other coefficients. We use t+ = (mB +mK)2 and t0 = (mB +mK)(
√
mB −

√
mK).

The numerical inputs are: mB = 5.27931 GeV, mB∗
s
= 5.4154 GeV, mB∗

s (0
+) = 5.718

GeV and mK = 0.493677 GeV.
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B.3.5 B → D form factors

BCL parameterization:

f+(q
2) =

N+−1∑
n=0

a+n

[
zn − (−1)n−N+ n

N+
zN
]
, (547)

f0(q
2) =

N0−1∑
n=0

a0nz
n . (548)

The kinematical constraint f+(0) = f0(0) is implemented expressing a0N0−1 in terms of

the other coefficients. We use t+ = (mB +mD)
2 and t0 = (mB +mD)(

√
mB −

√
mD).

The numerical inputs are: mB = 5.27931 GeV and mD = (1.86483 + 1.86965)/2 GeV.

B.3.6 Bs → Ds form factors

Results for the form factors are taken directly from Table VIII of Ref. [134] where we refer
the reader for details on the parameterization.

B.3.7 B → D∗ form factors

We adopt the BGL parameterization used in Ref. [136]: the form factors are given in
Eqs. (63) and (64), the poles for the Blaschke factors are given in Table 9, the four outer
functions in Eqs. (67)–(70) and the remaining numerical inputs in Table 10. We impose
the kinematic constraints at zero and max recoil (see Eqs.(72) and (73) of Ref. [136]) by
eliminating the coefficients aF1

0 and aF2
0 .

B.3.8 Bs → D∗
s form factors

We adopt the same BGL parameterization described in Sec. B.3.7. Both the outer func-
tions and the location of the poles are identical to the B → D∗ case, and the kine-
matical constraints are imposed in the same way. The only difference are the masses
mBs

= 5.36688 GeV and mD∗
s
= 2.112 GeV.
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C Notes

In the following Appendices we provide more detailed information on the simulations used
to calculate the quantities discussed in Secs. 4–11. We present this information only for
results that are new w.r.t. FLAG 21. For all other results the information is available
in the corresponding Appendices C.1–C.9 in FLAG 21 [5], B.1–B.8 in FLAG 19 [4], and
B.1–B.7 in FLAG 16 [3].

C.1 Notes to Sec. 4 on quark masses

Collab. Ref. Nf a [fm] Description

CLQCD 23 [10] 2+1 0.052, 0.077, 0.11 smeared Wilson-clover/Symanzik

Table 80: Continuum extrapolations/estimation of lattice artifacts in determinations of mud,
ms and, in some cases mu and md, with Nf = 2 + 1 quark flavours.

Collab. Ref. Nf Mπ,min [MeV] Description

CLQCD 23 [10] 2+1 135.5

Table 81: Chiral extrapolation/minimum pion mass in determinations of mud, ms, and in
some cases mu and md, with Nf = 2 + 1 quark flavours.

Collab. Ref. Nf L [fm] Mπ,minL Description

CLQCD 23 [10] 2+1 2.5 – 5.1 3.45

Table 82: Finite-volume effects in determinations of mud, ms and, in some cases mu and md,
with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Description

CLQCD 23 [10] 2+1 RI/MOM

Table 83: Renormalization in determinations of mud, ms and, in some cases mu and md, with
Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf a [fm] Description

ALPHA 23 [28] 2+1 0.085,
0.075,
0.064,
0.049

O(a2) terms, with mass-
dependent coefficients, are in-
cluded in the chiral-continuum
extrapolation.
t0 is used as intermediate scale
with the physical scale set by a
combination of fπ and fK in the
isosymmetric limit.

Table 84: Continuum extrapolations/estimation of lattice artifacts in the determinations of
mc with Nf = 2 + 1 quark flavours.

Collab. Ref. Nf Mπ,min [MeV] Description

ALPHA 23 [28] 2+1 200

Table 85: Chiral extrapolation/minimum pion mass in the determinations of mc with Nf =
2 + 1 quark flavours.

Collab. Ref. Nf L [fm] Mπ,minL Description

ALPHA 23 [28] 2+1 2.7, 2.4, 3.1/4.1,
2.4/3.1

3.9, 5.1, 4.2,
4.1

No explicit discussion of FSE.

Table 86: Finite-volume effects in the determinations of mc with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Description

ALPHA 23 [28] 2+1 Schrödinger functional

Table 87: Renormalization in the determinations of mc with Nf = 2 + 1 quark flavours.
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C.2 Notes to Sec. 5 on |Vud| and |Vus|

Collab. Ref. Nf a [fm] Description

PACS 22 [342] 2+1 0.085, 0.063 Nonperturbative O(a) clover quark ac-
tion. Scale set from Ξ-baryon mass.

Table 88: Continuum extrapolations/estimation of lattice artifacts in the determinations of
f+(0).

Collab. Ref. Nf Mπ,min [MeV] Description

PACS 22 [342] 2+1 135 Physical point simulation at a single pion
mass 135 MeV.

Table 89: Chiral extrapolation/minimum pion mass in determinations of f+(0).

Collab. Ref. Nf L [fm] Mπ,minL Description

PACS 22 [342] 2+1 10.9 7.5

Table 90: Finite-volume effects in determinations of f+(0).

Collab. Ref. Nf a [fm] Description

ETM 21 [45] 2+1+1 0.07, 0.08, 0.09 Wilson-clover twisted mass quark ac-
tion. Relative scale through gradi-
ent flow scale w0 and absolute scale
through fπ.

Table 91: Continuum extrapolations/estimation of lattice artifacts in determinations of
fK/fπ.

Collab. Ref. Nf Mπ,min [MeV] Description

ETM 21 [45] 2+1+1 134 Chiral extrapolation based on NLO SU(2)
χPT.

Table 92: Chiral extrapolation/minimum pion mass in determinations of fK/fπ.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 21 [45] 2+1+1 2.0–5.6 3.8 Three different volumes at Mπ =
253 MeV and a = 0.08 fm.

Table 93: Finite-volume effects in determinations of fK/fπ.
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C.3 Notes to section 6 on Kaon mixing

C.3.1 Kaon B-parameter BK

Collab. Ref. Nf a [fm] Description

RBC/UKQCD 24 [56] 2+1 0.114, 0.084, 0.073 Combined continuum and chiral (NLO
SU(2)) extrapolation fits. Assigned sys-
tematic error at the per-mille level

.

Table 94: Continuum extrapolations/estimation of lattice artifacts in determinations of BK .

Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 24 [56] 2+1 139, 139,
232

Chiral extrapolations based on SU(2)-
χPT fits at NLO. Systematic uncertainties
amount to less than half a per cent.

Table 95: Chiral extrapolation/minimum pion mass in determinations of BK .

Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 24 [56] 2+1 5.5, 5.4,
3.5, 2.6

3.9, 3.8, 4.1 Finite-volume effects are found to be negli-
gible compared to other systematic effects
and are thus omitted in the final error bud-
get.

Table 96: Finite-volume effects in determinations of BK .

running
Collab. Ref. Nf Ren.

match.
Description

RBC/UKQCD 24 [56] 2+1 RI PT1ℓ Two different RI-SMOM schemes
used to estimate a 1% system-
atic error owing to the perturbative
matching to MS.

Table 97: Running and matching in determinations of BK .
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C.3.2 Kaon BSM B-parameters

Collab. Ref. Nf a [fm] Description

RBC/UKQCD 24 [56] 2+1 0.114, 0.084, 0.073 Systematic uncertainties ranging from a
minimum of 0.4% (for the case of B2) to
1.9% (for the case of B3).

Table 98: Continuum extrapolations/estimation of lattice artifacts in determinations of the
BSM Bi parameters.

Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 24 [56] 2+1 139, 139,
232

Chiral extrapolations based on SU(2)-
χPT fits at NLO. Systematic uncertainties
amount to less than half a percent.

Table 99: Chiral extrapolation/minimum pion mass in determinations of the BSM Bi param-
eters.

Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 24 [56] 2+1 5.5, 5.4,
3.5 2.6

3.9, 3.8, 4.1 Finite-volume effects are at most at
the 2 per-mille level. They are neg-
ligible compared to other system-
atic effects and are therefore omit-
ted in the error budget.

Table 100: Finite-volume effects in determinations of the BSM Bi parameters.

running
Collab. Ref. Nf Ren.

match.
Description

RBC/UKQCD 24 [56] 2+1 RI PT1ℓ Two different RI-SMOM schemes
used to estimate the systematic
error owing to the perturbative
matching to MS; minimal value of
about 0.7% for the case of B2 and
maximal of 2.4% for B3.

Table 101: Running and matching in determinations of the BSM Bi parameters.
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C.3.3 K → ππ decay amplitudes

Collab. Ref. Nf a [fm] Description

RBC/UKQCD 23A [410] 2+1 0.193 Single lattice spacing.

Table 102: Continuum extrapolations/estimation of lattice artifacts in determinations of the
K → ππ decay amplitudes.

Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 23A [410] 2+1 142.6 Single pion mass value, close to the physi-
cal point.

Table 103: Chiral extrapolation/minimum pion mass in determinations of the K → ππ decay
amplitudes.

Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 23A [410] 2+1 4.6 3.3 Finite-volume effects amount to a
7% systematic error contribution to
the final error budget of A0 and A2.

Table 104: Finite-volume effects in determinations of the K → ππ decay amplitudes.

running
Collab. Ref. Nf Ren.

match.
Description

RBC/UKQCD 23A [410] 2+1 RI PT1ℓ Two different RI-SMOM schemes
are used. One of the two schemes
is used for the final analysis. A sys-
tematic error ranging from 6% to
16%, depending on the considered
case, is included based on the dis-
perision of other sets of intermedi-
ate scheme and scales. Systematic
uncertainties arising from the com-
putation of the Wilson coefficients
in the MS scheme amount to 12%.

Table 105: Running and matching in determinations of the K → ππ decay amplitudes.
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C.4 Notes to Sec. 7 on D-meson decay constants and form factors

Collab. Ref. Nf Mπ,min [MeV] Description

ETM 13F
ETM 14E
ETM 21B

[43, 356, 453] 2+1+1 245, 239, 211

167, 137, 134

fDs

√
mDs in ETM 13F and fDs/mDs

in ETM 14E are extrapolated using
both a quadratic and a linear fit in ml

plus O(a2) terms. In ETM 21B either
w0 or the D(s) meson mass are used as
scaling variables in the chiral-continuum
extrapolations.

Table 106: Chiral extrapolation/minimum pion mass in Nf = 2+1+1 determinations of the
D- and Ds-meson decay constants. For actions with multiple species of pions, masses quoted
are the RMS pion masses. The different Mπ,min entries correspond to the different lattice
spacings.

Collab. Ref. Nf Mπ,min [MeV] Description

RQCD/ALPHA 24 [456] 2+1 335, 129, 155,
130, 175, 337

The dependence on light and strange
quark masses is described using fit
ansätze inspired by NLO HMχPT.

ALPHA 23 [28] 2+1 277, 415, 200,
257

HMχPT expressions are used for the
quantities (8t0)

3/4fD(s)

√
mD(s)

.

Table 107: Chiral extrapolation/minimum pion mass in Nf = 2 + 1 determinations of the
D- and Ds-meson decay constants. For actions with multiple species of pions, masses quoted
are the RMS pion masses. The different Mπ,min entries correspond to the different lattice
spacings.

Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 13F
ETM 14E
ETM 21B

[43, 356, 453] 2+1+1 2.3/4.6,
2.6/5.2,
3.3/5.5

3.8, 3.6, 3.7 The comparison of two differ-
ent volumes at the two largest
lattice spacings indicates that
FV effects are below the sta-
tistical errors. No explicit dis-
cussion of FSE in ETM 21B.

Table 108: Finite-volume effects in Nf = 2 + 1 + 1 determinations of the D- and Ds-meson
decay constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the lightest
masses are quoted.
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Collab. Ref. Nf L [fm] Mπ,minL Description

RQCD/ALPHA 24 [456] 2+1 2.34, 2.05/5.46,
2.4/4.8, 2.0/6.1,
2.4/4.8, 2.48

4, 3.6,
3.8, 4.05,
4.2, 4.2

By comparing different volumes
(up to 5) at fixed pion mass, FSE
are estimated to be negligible once
the cut mπL ≥ 3.5 or L ≥ 2.3 fm
is imposed.

ALPHA 23 [28] 2+1 2.7, 2.4, 3.1/4.1,
2.4/3.1

3.9, 5.1, 4.2,
4.1

No explicit discussion of FSE.

Table 109: Finite-volume effects in Nf = 2+1 determinations of the D- and Ds-meson decay
constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the lightest
masses are quoted.

Collab. Ref. Nf a [fm] Continuum extrapolation Scale Setting

ETM 13F
ETM 14E
ETM 21B

[43, 356, 453] 2+1+1 0.095,
0.081,
0.069

Chiral and continuum ex-
trapolations performed si-
multaneously by adding an
O(a2) term to the chiral
fits.

Relative scale set
through w0 or Mc′s′ ,
the mass of a ficti-
tious meson made
of valence quarks of
mass r0ms′ = 0.22 and
r0mc′ = 2.4. Absolute
scale through f iso

π .

Table 110: Lattice spacings and description of actions used in Nf = 2+ 1+ 1 determinations
of the D- and Ds-meson decay constants.

Collab. Ref. Nf a [fm] Continuum extrapolation Scale Setting

RQCD/ALPHA 24 [456] 2+1 0.098,
0.085,
0.075,
0.064,
0.049,
0.039

Terms up to a4 (possibly
with mass-dependent coef-
ficients) are included in the
chiral-continuum extrapo-
lation.

t0 is used as intermedi-
ate scale with the the
physical scale set by a
combination of fπ and
fK in the isosymmetric
limit.

ALPHA 23 [28] 2+1 0.085,
0.075,
0.064,
0.049

O(a2) terms, with mass-
dependent coefficients, are
included in the chiral-
continuum extrapolation.

t0 is used as intermedi-
ate scale with the the
physical scale set by a
combination of fπ and
fK in the isosymmetric
limit.

Table 111: Lattice spacings and description of actions used in Nf = 2 + 1 determinations of
the D- and Ds-meson decay constants.
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Collab. Ref. Nf Ren. Description

ETM 13F
ETM 14E
ETM 21B

[43, 356, 453] 2+1+1 − The axial current is absolutely normalized.

Table 112: Operator renormalization in Nf = 2+1+1 determinations of the D- and Ds-meson
decay constants.

Collab. Ref. Nf Ren. Description

RQCD/ALPHA 24 [456] 2+1 SF The axial current is nonperturbatively improved
and renormalized.

ALPHA 23 [28] 2+1 − The axial current is absolutely normalized.

Table 113: Operator renormalization in Nf = 2 + 1 determinations of the D- and Ds-meson
decay constants.

Collab. Ref. Nf Action Description

ETM 13F
ETM 14E
ETM 21B

[43, 356, 453] 2+1+1 tmWil 0.15<∼ amh
<∼ 0.28.

Table 114: Heavy-quark treatment in Nf = 2+ 1+ 1 determinations of the D-and Ds-meson
decay constants.

Collab. Ref. Nf Action Description

RQCD/ALPHA 24 [456] 2+1 npSW 0.1 ≤ amh ≤ 0.3.

ALPHA 23 [28] 2+1 tmWil on npSW 0.13 ≤ amh ≤ 0.26

Table 115: Heavy-quark treatment in Nf = 2 + 1 determinations of the D- and Ds-meson
decay constants.
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C.4.1 Form factors for semileptonic decays of charmed hadrons
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Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

FNAL/MILC 22 [123] 2+1+1 0.12,
0.088,
0.057,
0.042

Combined chiral-continuum
extrapolation using SU(2)
heavy-meson rooted stag-
gered chiral perturbation
theory.

Scale setting using gradi-
ent flow w0 with physical
scale from fπ.

Meinel 21B [498] 2+1 0.0828(3),
0.1106(3)

Combined chiral-continuum
extrapolation as part of the
expansion of form factor
shape in powers of w − 1.
Systematics estimated by
varying fit form.

Scale setting using Ω
mass in Ref. [12].

HPQCD 21A [65] 2+1+1 0.042,
0.06,
0.09,
0.12,
0.15

Modified z-expansion fit
combining the continuum
and chiral extrapolations
and the momentum-transfer
dependence. Discretization
effects assumed dominated
by the charm scale. Dis-
cretization errors on form
factors between 0.4% and
1.2% as a function of the
momentum transfer.

Scale setting from fπ via
the flow quantity w0 [18,
42, 1113].

Zhang 21 [495] 2+1 0.080,
0.11

Continuum extrapolation
combined with fit to q2-
dependence of form factors
in a “modified” z-expansion.
Systematics estimated from
difference between extrap-
olated results and results
at smallest lattice spacing,
and difference between two
current renormalization
methods.

Set from Wilson-flow
quantity w0.

HPQCD 20 [488] 2+1+1 0.06,
0.09,
0.12,
0.15

Modified z-expansion fit
combining the continuum
and chiral extrapolations
and the momentum-transfer
dependence, and, for the
heavy-HISQ spectator b
quark, the dependence on
1/mQ. The analysis com-
bines data with NRQCD b
quarks and data with HISQ
heavy quarks.

Scale setting from fπ via
the flow quantity w0 [18,
42, 1113].

Table 116: Continuum extrapolations/estimation of lattice artifacts in Nf = 2 + 1 + 1 deter-
minations of form factors for semileptonic decays of charmed hadrons. For HPQCD 22, see
Tab. 142.
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Collab. Ref. Nf Mπ,min [MeV] Description

FNAL/MILC 22 [123] 2+1+1 135, 130, 134,
308

Combined chiral-continuum extrapolation
using SU(2) heavy-meson rooted staggered
chiral perturbation theory at NLO, includ-
ing NNLO analytic terms.

Meinel 21B [498] 2+1 303, 340 Combined chiral-continuum extrapolation
as part of the expansion of form factor
shape in powers of w − 1. Systematic un-
certainty estimated by repeating fit with
added higher-order terms.

HPQCD 21A [65] 2+1+1 315, 329, 129,
132, 131

Modified z-expansion fit combining the
continuum and chiral extrapolations
and the momentum-transfer dependence.
Polynomial dependence on quark masses,
supplemented by a pion chiral logarithm.
Fit result compared with alternative
approach based on cubic splines in q2.

Zhang 21 [495] 2+1 300, 290 Dependence on pion mass neglected. No
estimate of resulting systematic uncer-
tainty.

HPQCD 20 [488] 2+1+1 329, 316,
132/305,
131/305

Modified z-expansion fit combining the
continuum and chiral extrapolations and
the momentum-transfer dependence, and,
for the heavy-HISQ spectator b quark, the
dependence on 1/mQ. The analysis com-
bines data with NRQCD b quarks and data
with HISQ heavy quarks.

Table 117: Chiral extrapolation/minimum pion mass in determinations of form factors for
semileptonic decays of charmed hadrons. For actions with multiple species of pions, masses
quoted are the RMS pion masses forNf = 2+1 and the Goldstone mode mass forNf = 2+1+1.
The different Mπ,min entries correspond to the different lattice spacings. For HPQCD 22, see
Tab. 143.
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Collab. Ref. Nf L [fm] Mπ,minL Description

FNAL/MILC 22 [123] 2+1+1 5.76,
4.22/5.63,
2.74/3.65/5.47,
2.69

3.95, 3.72,
3.72, 4.20

Finite-volume effects removed by
correction to chiral logs due to sums
over discrete momenta; corrections
are O(0.01)% overall. Effect of
frozen topological charge at finest
lattice spacing also corrected using
χPT and found to be ≲ 0.03%.

Meinel 21B [498] 2+1 2.7, 2.7 4.1, 4.6 Finite-volume effects not quan-
tified. Effects from unstable
Λ∗(1520) not quantified.

HPQCD 21A [65] 2+1+1 2.73, 2.72,
2.81/5.62,
2.93/5.87,
2.45/4.89

≳ 3.7 Finite-volume correction included
in chiral fit, claimed to be a negligi-
ble effect. Effect of frozen topology
in finest ensemble not discussed.

Zhang 21 [495] 2+1+1 2.6, 2.6 ≳ 3.8 No discussion of finite-volume ef-
fects.

HPQCD 20 [488] 2+1+1 2.72, 2.81,
2.93/5.87,
2.45/4.89

≳ 3.8 Physical point ensemble at a ≃
0.15 fm has mπL = 3.3; the state-
ment mπL ≳ 3.8 applies to the
other five ensembles.

Table 118: Finite-volume effects in determinations of form factors for semileptonic decays
of charmed hadrons. Each L-entry corresponds to a different lattice spacing, with multiple
spatial volumes at some lattice spacings. For actions with multiple species of pions, the
lightest pion masses are quoted. For HPQCD 22, see Tab. 144.
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Collab. Ref. Nf Ren. Description

FNAL/MILC 22 [123] 2+1+1 NPR Nonperturbative renormalization by im-
posing the PCVC relation.

Meinel 21B [498] 2+1 mNPR Residual matching factors ρ computed at
1-loop for vector and axial-vector currents,
but at tree-level only for tensor currents. A
systematic uncertainty is assigned to ρTµν

as the double of max(|ρAµ − 1|, |ρV µ − 1|).

HPQCD 21A [65] 2+1+1 NP Vector current normalized by imposing
Ward identity at zero recoil.

Zhang 21 [495] 2+1 NP Local vector current renormalized using ra-
tio to conserved vector current. Axial cur-
rent renormalized using ratio of off-shell
quark matrix elements.

HPQCD 20 [488] 2+1+1 NP Vector current normalized by imposing
Ward identity at zero recoil.

Table 119: Operator renormalization in determinations of form factors for semileptonic decays
of charmed hadrons. For HPQCD 22, see Tab. 145.
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Collab. Ref. Nf Action Description

FNAL/MILC 22 [123] 2+1+1 HISQ Valence heavy-quark masses range from
0.9 to 2 times the physical charm mass,
with 0.164 ≤ amh ≤ 0.8935

Meinel 21B [498] 2+1 Columbia RHQ for
both the b and c
quarks.

Discretization errors discussed as part of
combined chiral-continuum-w fit. Higher-
order fit also includes O(αsa|p|) terms to
account for missing radiative corrections to
O(a) improvement of the currents.

HPQCD 21A [65] 2+1+1 HISQ Bare charm-quark mass 0.194 ≲ amc ≲
0.8605.

Zhang 21 [495] 2+1+1 SW Bare charm-quark mass 0.235 ≲ amc ≲
0.485. No O(a) improvement of currents.

HPQCD 20 [488] 2+1+1

Charm: HISQ
Bottom
(spectator):
HISQ and
NRQCD

Bare charm-quark HIQS mass 0.274 ≲
amc ≲ 0.827.
Bare bottom-quark HIQS mass 0.274 ≲
amb ≲ 0.8.

Table 120: Heavy-quark treatment in determinations of form factors for semileptonic decays
of charmed hadrons. For HPQCD 22, see Tab. 146.
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C.5 Notes to Sec. 8 on B-meson decay constants, mixing param-
eters and form factors

C.5.1 B(s)-meson decay constants

Collab. Ref. Nf Mπ,min [MeV] Description

Frezzotti 24 [527] 2+1+1 175, 140,
137, 141

One light-quark mass per lattice spacing. Chiral
effects expected to be subdominant compared to
other effects.

Table 121: Chiral extrapolation/minimum pion mass in determinations of the B- and Bs-
meson decay constants for Nf = 2+1+1 simulations. The differentMπ,min entries correspond
to the different lattice spacings.

Collab. Ref. Nf Mπ,min [MeV] Description

QCDSF/UKQCD
/CSSM 22

[543] 2+1 280, 155,
226, 290

Between one and three light-quark masses per lat-
tice spacing. Generic fits to (M2

π/X
2
π − 1)2 and

a2(M2
π/X

2
π−1) in the combined chiral-continuum

extrapolation, with systematic errors estimated to
be from 1.3% in fBs/fB .

RBC/UKQCD 22 [545] 2+1 340, 302,
267, 371

Between one and three light-quark masses per lat-
tice spacing. Combined chiral-continuum extrap-
olation using NLO SU(2) Heavy-Meson χPT. No
explicit estimate of systematic errors.

Table 122: Chiral extrapolation/minimum pion mass in determinations of the B- and Bs-
meson decay constants for Nf = 2 + 1 simulations. The different Mπ,min entries correspond
to the different lattice spacings.

Collab. Ref. Nf L [fm] Mπ,minL Description

Frezzotti 24 [527] 2+1+1 4.36, 5.09,
5.46, 5.46

3.9, 3.6,
3.8, 3.9

Finite-volume effects estimated to
be subdominant to other sources of
uncertainty, based in part on calcu-
lations in a larger ensemble in [462]

Table 123: Finite-volume effects in determinations of the B- and Bs-meson decay constants
for Nf = 2 + 1 + 1 simulations. Each L-entry corresponds to a different lattice spacing.
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Collab. Ref. Nf L [fm] Mπ,minL Description

QCDSF/UKQCD
/CSSM 22

[543] 2+1 2.62,
2.36/3.55,
3.26/4.35,
2.83

3.86,
3.10/4.07,
4.37/3.42,
4.03

Final result for fBs/fB includes
fits to ensembles with MπL > 4.
No explicit estimate of FV effects.

RBC/UKQCD 22 [545] 2+1 2.65, 2.65,
3.40, 2.00

4.57, 4.06,
4.60, 3.77

No explicit estimate of FV effects.

Table 124: Finite-volume effects in determinations of the B- and Bs-meson decay constants
for Nf = 2 + 1 simulations. Each L-entry corresponds to a different lattice spacing, with
multiple spatial volumes at some lattice spacings.

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

Frezzotti 24 [527] 2+1+1 0.091,
0.080,
0.068,
0.057

Continuum extrapolation
linear in a2.

Scale set by w0, with de-
tails described in Ref. [7].

Table 125: Continuum extrapolations/estimation of lattice artifacts in determinations of the
B- and Bs-meson decay constants for Nf = 2 + 1 + 1 simulations.

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

QCDSF/UKQCD
/CSSM 22

[543] 2+1 0.082,
0.074,
0.068,
0.059

Combined continuum and
chiral extrapolation omits
the term linear in a2. Sys-
tematic errors associated
with discretization effects
subdominant in fBs/fB .

Scale setting procedure
and scale uncertainty are
not discussed.

RBC/UKQCD 22 [545] 2+1 0.11,
0.083,
0.071,
0.063

Combined continuum
and chiral extrapolation
includes term linear in a2.
No estimate of systematic
errors associated with
discretization effects.

Scale setting procedure
and scale uncertainty are
not discussed.

Table 126: Continuum extrapolations/estimation of lattice artifacts in determinations of the
B and Bs meson decay constants for Nf = 2 + 1 simulations.

Collab. Ref. Nf Ren. Description

Frezzotti 24 [527] 2+1+1 – Nonperturbative operator renormalization provided
by ETMC by private communication and unpublished
at the time of this review.

Table 127: Description of the renormalization/matching procedure adopted in the determi-
nations of the B- and Bs-meson decay constants for Nf = 2 + 1 + 1 simulations.
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Collab. Ref. Nf Ren. Description

QCDSF/UKQCD
/CSSM 22

[543] 2+1 mNPR Operator renormalization is calculated partially non-
perturbatively as ZBq = ρbqA

√
Zbb

V Zqq
V , with pertur-

bative contribution neglected, ρbqA = 1.

RBC/UKQCD 22 [545] 2+1 mNPR Operator renormalization is calculated partially non-
perturbatively as ZBq = ρbqA

√
Zbb

V Zqq
V .

Table 128: Description of the renormalization/matching procedure adopted in the determi-
nations of the B- and Bs-meson decay constants for Nf = 2 + 1 simulations.

Collab. Ref. Nf Action Description

Frezzotti 24 [527] 2+1+1 tmWil Heavy-strange meson extrapolated to physical
Bs mass using HQET scaling linear in B/mHs ,
with contributions from QCD-HQET current
matching and HQET axial current anomalous
dimension at 1-loop.

Table 129: Heavy-quark treatment in determinations of the B- and Bs-meson decay constants
for Nf = 2 + 1 + 1 simulations.

Collab. Ref. Nf Action Description

QCDSF/UKQCD
/CSSM 22

[543] 2+1 RHQ HQ tuning effects are estimated to be 0.06%
infBs/fB . HQ discretization effects not explicitly es-
timated, although the continuum-limit fits do not in-
dicate a strong a2 dependence.

RBC/UKQCD 22 [545] 2+1 RHQ HQ tuning and discretization effects not explicitly es-
timated. HQ tuning of new finest ensemble ongoing.

Table 130: Heavy-quark treatment in Nf = 2 + 1 determinations of the B-and Bs-meson
decay constants.
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C.5.2 B(s)-meson mixing matrix elements

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

HPQCD 19A [77] 2+1+1 0.15,
0.12,
0.09

Discretization errors start
from αsa

2 and are included
in the systematic error. It
is estimated as 1.8% for
individual bag parameters.
Residual αsa

2 and a4 errors
from wrong-spin contributions
are subtracted by including
them in the chiral fit.

Scale setting done using Υ
and Υ′ mass splitting [1075].

Table 131: Continuum extrapolations/estimation of lattice artifacts in determinations of the
neutral B-meson mixing matrix elements for Nf = 2 + 1 + 1 simulations.

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

RBC/UKQCD 18A [76] 2+1 0.11,
0.08,
0.07

Combined continuum (a2) and
heavy quark (1/mH) extrapo-
lation with the LO pion mass
dependence (m2

π) in the global
fit.

Lattice scale and target quark
masses are set using Ω, K and
π masses [12, 61, 119].

Table 132: Continuum extrapolations/estimation of lattice artifacts in determinations of the
neutral B-meson mixing matrix elements for Nf = 2 + 1 simulations.

Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 19A [77] 2+1+1 311, 241, – Pion mass in the Goldston channel is as
small as 130 MeV for two coarser lattices.
NLO HMrSχPT is used with NNLO ana-
lytic terms and other discretization errors.
Staggered wrong-spin contributions are in-
cluded.

RBC/UKQCD 18A [76] 2+1 139, 139, 234 Combined continuum (a2) and heavy
quark (1/mH) extrapolation with the LO
pion mass dependence (m2

π) in the global
fit.

Table 133: Chiral extrapolation/minimum pion mass in determinations of the neutral B-
meson mixing matrix elements. For actions with multiple species of pions, masses quoted
are the RMS pion masses (where available). The different Mπ,min entries correspond to the
different lattice spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 19A [77] 2+1+1 2.4/3.5/4.6,
2.9/3.8/5.7,
2.8

7.3, 7.0, - FV error is estimated to be negligi-
ble from FV HMχPT.

RBC/UKQCD 18A [76] 2+1 2.7/5.5,
2.6/5.3, 3.5

3.9, 3.8, 4.0 FV error is estimated to be less
than 0.18% for SU(3)-breaking ra-
tios from FV HMχPT.

Table 134: Finite-volume effects in determinations of the neutral B-meson mixing matrix ele-
ments. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes
at some lattice spacings. For actions with multiple species of pions, masses quoted are the
RMS pion masses (where available).

Collab. Ref. Nf Ren. Description

HPQCD 19A [77] 2+1+1 PT1ℓ HISQ-NRQCD 4-quark operators are
matched through O(1/M) and renor-
malized to 1-loop: included are those
of O(αs), O(ΛQCD/M), O(αs/aM),
O(αs ΛQCD/M). Remnant error is dom-
inated by O(αsΛQCD/M) 2.9% and
O(α2

s) 2.1% for individual bag parameters.
Associated error for their SU(3) breaking
ratio are negligible.

RBC/UKQCD 18A [76] 2+1 - Operators are renormalized multiplica-
tively due to chiral symmetry of DWF. No
need to calculate the renormalization fac-
tor since only the SU(3) breaking ratios are
examined.

Table 135: Operator renormalization in determinations of the neutral B-meson mixing matrix
elements.

Collab. Ref. Nf Action Description

HPQCD 19A [77] 2+1+1 NRQCD See the entry in Tab. 135.

RBC/UKQCD 18A [76] 2+1 DWF Domain-wall fermion with 3 stout-smearing extends the
reach to heavy mass, allowing to simulate up to half of
the b-quark mass. Heavy mass errors on ξ are estimated
as 0.8% from fitting range and 0.4% from higher order
(1/M2) by power counting.

Table 136: Heavy-quark treatment in determinations of the neutral B-meson mixing matrix
elements.
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C.5.3 Form factors entering determinations of |Vub| (B → πℓν, Bs →
Kℓν, Λb → pℓν̄)

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

RBC/UKQCD 23 [128] 2+1 0.071, 0.083,
0.11

Joint chiral-continuum ex-
trapolation using SU(2) hard-
pion HMχPT. Systematic un-
certainty estimated by vary-
ing fit ansatz and form of coef-
ficients, as well as implement-
ing different cuts on data.

Scale implicitly set in
the light-quark sector
using the Ω− mass,
cf. [12, 61, 76].

JLQCD 22 [126] 2+1 0.044, 0.055,
0.080

Discretization effects treated
using overall factors of
(1 + Ca2(ΛQCDa)

2 +
C(amQ)2(amQ)

2), with
independent coefficients for
the two form factors. System-
atic uncertainties estimated
by adding Ca4(ΛQCDa)

4 or
C(amQ)4(amQ)

4) terms.

Relative scale set
using gradient-flow
time t

1/2
0 /a. Abso-

lute scale t
1/2
0 taken

from Ref. [115].

FNAL/MILC 19 [586] 2+1 0.06, 0.09,
0.12

HMrSχPT expansion used
at next-to-leading order in
SU(2) and leading order
in 1/MB , including next-
to-next-to-leading-order
(NNLO) analytic and generic
discretization terms. Hard
kaons assumed to decouple.
Systematic uncertainties
estimated by varying fit
ansatz and data range. The
(stat + chiral extrap + HQ
discretization + gπ) uncer-
tainty dominates the error
budget, ranging from 2–3%
at q2 ≳ 21 GeV2 to up to
8-10% in the lower end of the
accessed q2 interval.

Relative scale r1/a
set from the static-
quark potential. Ab-
solute scale r1, in-
cluding related un-
certainty estimates,
taken from [60].

Table 137: Continuum extrapolations/estimation of lattice artifacts in determinations of
B → πℓν, Bs → Kℓν, and Λb → pℓν̄ form factors.
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Collab. Ref. Nf Mπ,min [MeV] Description

RBC/UKQCD 23 [128] 2+1 268, 301, 340 Joint chiral-continuum extrap-
olation using SU(2) hard-pion
HMχPT. Systematic uncertainty
estimated by varying fit ansatz
and form of coefficients, as well
as implementing different cuts on
data.

JLQCD 22 [126] 2+1 300, 300, 230 Chiral extrapolation uses SU(2)
hard-pion heavy-meson chiral per-
turbation theory at next-to-leading
order. Systematic uncertainty esti-
mated by adding M4

π terms or by
making the coefficients of the chiral
logs fit parameters.

FNAL/MILC 19 [586] 2+1 255, 277, 456 HMrSχPT expansion used at
next-to-leading order in SU(2) and
leading order in 1/MB , includ-
ing next-to-next-to-leading-order
(NNLO) analytic and generic
discretization terms. Hard kaons
assumed to decouple. Systematic
uncertainties estimated by varying
fit ansatz and data range.

Table 138: Chiral extrapolation/minimum pion mass in determinations of B → πℓν, Bs →
Kℓν, and Λb → pℓν̄ form factors. For actions with multiple species of pions, masses quoted
are the RMS pion masses. The different Mπ,min entries correspond to the different lattice
spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

RBC/UKQCD 23 [128] 2+1 3.4, 2.7, 2.6 4.6, 4.0, 4.4 Finite-volume effects removed by
correction to chiral logs due to sums
over discrete momenta; quoted
maximum corrections are 0.13% for
f+ and 0.06% for f0.

JLQCD 22 [126] 2+1 2.6, 3.9 ≳ 4.0 Finite-volume effects in form fac-
tors deemed negligible. Bias in pion
mass due to topology freezing at
finest lattice spacing estimated to
be ∼ 0.1%.

FNAL/MILC 19 [586] 2+1 3.8,
2.5/2.9/3.6/5.8,
2.9

≳ 3.8 Finite-volume effects estimated by
comparing infinite volume integrals
with finite sums in HMrSχPT,
found to be negligible.

Table 139: Finite-volume effects in determinations of B → πℓν, Bs → Kℓν, and Λb → pℓν̄
form factors. Each L-entry corresponds to a different lattice spacing, with multiple spatial
volumes at some lattice spacings. For actions with multiple species of pions, the lightest
masses are quoted.

Collab. Ref. Nf Ren. Description

RBC/UKQCD 23 [128] 2+1 mNPR Perturbative truncation error estimated as
full size of O(αs) correction at the 0.083
fm lattice spacing.

JLQCD 22 [126] 2+1 NPR ZVqq obtained using position-space
current-current correlators. For heav-
ier quark masses,

√
ZVQQZVqq is used,

where ZVQQ is the renormalization fac-
tor of the flavour-conserving temporal
vector current, determined using charge
conservation.

FNAL/MILC 19 [586] 2+1 mNPR Perturbative truncation error estimated at
1% with size of 1-loop correction on next-
to-finest ensemble.

Table 140: Operator renormalization in determinations ofB → πℓν, Bs → Kℓν, and Λb → pℓν̄
form factors.
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Collab. Ref. Nf Action Description

RBC/UKQCD 23[128] 2+1 Columbia RHQ Heavy-quark discretization errors estimated by power
counting.

JLQCD 22 [126] 2+1 DWF Bare heavy-quark masses satisfy amQ < 0.7 and reach
from the charm mass up to 2.44 times the charm mass.
Form factors extrapolated linearly in 1/mQ to the bot-
tom mass.

FNAL/MILC 19 [586] 2+1 Fermilab (See comments for continuum limit extrapolation.)

Table 141: Heavy-quark treatment in determinations of B → πℓν, Bs → Kℓν, and Λb → pℓν̄
form factors.
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C.5.4 Form factors for rare decays of beauty hadrons

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

HPQCD 22 [487] 2+1+1 0.15, 0.12,
0.090, 0.088,
0.059, 0.044

Combined extrapolation in
lattice spacing, light-quark
mass, strange-quark mass,
heavy-quark mass, and mo-
mentum transfer using mod-
ified z expansion. Stability
tested by varying fit form,
changing prior widths, and re-
moving data subsets.

Scale setting using
gradient flow w0 with
physical scale from
fπ.

Meinel 20,
Meinel 21B

[498, 663] 2+1 0.0828(3),
0.1106(3)

Combined chiral-continuum
extrapolation as part of the
expansion of form factor
shape in powers of w − 1.
Systematic uncertainty esti-
mated by repeating fit with
added higher-order terms.

Scale setting using Ω
mass in Ref. [12].

Table 142: Continuum extrapolations/estimation of lattice artifacts in determinations of form
factors for rare decays of beauty hadrons.

Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 22 [487] 2+1+1 131, 132, 313,
128, 325, 308

Combined extrapolation in lattice
spacing, light-quark mass, strange-
quark mass, heavy-quark mass, and
momentum transfer using modi-
fied z expansion. Logarithms from
hard-pion χPT included. Stability
tested by varying fit form, chang-
ing prior widths, and removing data
subsets.

Meinel 20,
Meinel 21B

[498, 663] 2+1 303, 340 Combined chiral-continuum extrap-
olation as part of the expansion
of form factor shape in powers of
w − 1. Systematic uncertainty esti-
mated by repeating fit with added
higher-order terms.

Table 143: Chiral extrapolation/minimum pion mass in determinations of form factors for
rare decays of beauty hadrons. For actions with multiple species of pions, masses quoted are
the RMS pion masses for Nf = 2 + 1 and the Goldstone mode mass for Nf = 2 + 1 + 1. The
different Mπ,min entries correspond to the different lattice spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 22 [487] 2+1+1 2.4/4.8,
2.88/5.76,
2.88, 5.63,
2.83, 2.82

3.19, 3.86,
4.57, 3.66,
4.67, 4.41

Finite-volume effects included in
fit by replacing infinite-volume
chiral logs with sums over discrete
momenta.

Meinel 20,
Meinel 21B

[498, 663] 2+1 2.7, 2.7 4.1, 4.6 Finite-volume effects not quan-
tified. Effects from unstable
Λ∗(1520) not quantified.

Table 144: Finite-volume effects in determinations of form factors for rare decays of beauty
hadrons. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes
at some lattice spacings. For actions with multiple species of pions, masses quoted are the
RMS pion masses for Nf = 2 + 1 and the Goldstone mode mass for Nf = 2 + 1 + 1.

Collab. Ref. Nf Ren. Description

HPQCD 22 [487] 2+1+1 NPR ZV and ZA obtained from Ward identities.
ZT determined using RI-SMOM.

Meinel 20,
Meinel 21B

[498, 663] 2+1 mNPR Residual matching factors ρ computed at
1-loop for vector and axial-vector currents,
but at tree-level only for tensor currents. A
systematic uncertainty is assigned to ρTµν

as the double of max(|ρAµ − 1|, |ρV µ − 1|).

Table 145: Operator renormalization in determinations of form factors for rare decays of
beauty hadrons.
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Collab. Ref. Nf Action Description

HPQCD 22 [487] 2+1+1 HISQ Extrapolation to the physical b-quark mass
using terms with powers and logarithms
of the inverse heavy-meson mass in the
modified z-expansion fit. Heavy-quark
masses in lattice units satisfy amh ≤ 0.9.
The heavy-light pseudoscalar meson mass
reaches ≈ 0.94MB,phys..

Meinel 20,
Meinel 21B

[498, 663] 2+1 Columbia RHQ Discretization errors discussed as part of
combined chiral-continuum-w fit. Higher-
order fit also includes O(αsa|p|) terms to
account for missing radiative corrections to
O(a) improvement of the currents.

Table 146: Heavy-quark treatment in determinations of form factors for rare decays of beauty
hadrons.

342



C.5.5 Form factors entering determinations of |Vcb| (B(s) → D
(∗)
(s)ℓν, Λb →

Λ
(∗)
c ℓν̄) and R(D(s))

Collab. Ref. Nf a [fm] Continuum extrapolation Scale setting

HPQCD 23 [135] 2+1+1 0.044,
0.058,
0.088

Combined chiral-continuum
and heavy-quark extrapola-
tions using HMrSχPT. The
recoil dependence in pow-
ers of (w − 1) is fitted
using BGL-inspired coeffi-
cients. Zero-recoil uncer-
tainty negligible compared
to other sources of error.

Scale setting from
Wilson flow, fix-
ing the slope
t d
dt

{
t2 ⟨E(t)⟩

}∣∣
t=w2

0
=

0.3, with w0 taken
from [42]. Uncer-
tainty related to scale
setting estimated at
≈ 0.5%.

JLQCD 23 [137] 2+1 0.044,
0.055,
0.080

Combined chiral-continuum
and heavy-quark extrapola-
tions using HMχPT. Each
form factor is extrapolated
separatedly. Zero-recoil un-
certainty estimated at ≈
0.9%.

Scale setting from
Wilson flow, fix-
ing the slope
t d
dt

{
t2 ⟨E(t)⟩

}∣∣
t=w2

0
=

0.3, with w0 taken
from [115]. Un-
certainty related
to scale setting
estimated at ≈ 1.7%.

FNAL/MILC 21 [136] 2+1 0.045,
0.06, 0.09,
0.12, 0.15

Combined chiral-continuum
extrapolation using
HMrSχPT. Total uncer-
tainty quoted at 0.7%.

Relative scale r1/a
set from the static-
quark potential.
Absolute scale r1,
including related un-
certainty estimates,
taken from [60].
Uncertainty related
to scale setting esti-
mated at less than
0.1%.

Meinel 21,
Meinel 21B

[498, 652] 2+1 0.0828(3),
0.1106(3)

Combined chiral-continuum
extrapolation as part of the
expansion of form factor
shape in powers of w −
1. Systematics estimated by
varying fit form.

Scale setting using Ω
mass in Ref. [12].

Table 147: Continuum extrapolations/estimation of lattice artifacts in Nf = 2 + 1 determi-

nations of B(s) → D
(∗)
(s)ℓν and Λb → Λ

(∗)
c ℓν̄ form factors, and of R(D(s)).
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Collab. Ref. Nf Mπ,min [MeV] Description

HPQCD 23 [135] 2+1+1 315, 135, 129 Combined chiral-continuum and
heavy-quark extrapolations using
HMrSχPT. The recoil dependence
in powers of (w − 1) is fitted us-
ing BGL-inspired coefficients. Zero-
recoil uncertainty negligible com-
pared to other sources of error.

JLQCD 23 [137] 2+1 284, 300, 226 Combined chiral-continuum and
heavy-quark extrapolations using
HMχPT. Each form factor is ex-
trapolated separatedly. Zero-recoil
uncertainty estimated at ≈ 0.9%.

FNAL/MILC 21 [136] 2+1 320, 220, 180,
270, 340

Combined chiral-continuum extrap-
olation using HMrSχPT. System-
atic errors estimated by adding
higher-order analytic terms and
varying the D∗-D-π coupling. To-
tal uncertainty quoted at 0.7%.

Meinel 21,
Meinel 21B

[498, 652] 2+1 303, 340 Combined chiral-continuum extrap-
olation as part of the expansion
of form factor shape in powers of
w − 1. Systematic uncertainty esti-
mated by repeating fit with added
higher-order terms.

Table 148: Chiral extrapolation/minimum pion mass in Nf = 2+1 determinations of B(s) →
D

(∗)
(s)ℓν and Λb → Λ

(∗)
c ℓν̄ form factors, and of R(D(s)). For actions with multiple species of

pions, masses quoted are the RMS pion masses for Nf = 2+1 and the Goldstone mode mass
for Nf = 2 + 1 + 1. The different Mπ,min entries correspond to the different lattice spacings.
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Collab. Ref. Nf L [fm] Mπ,minL Description

HPQCD 23 [135] 2+1+1 2.8, 2.8–5.5,
2.8–5.6

4.5, 3.7, 3.7 Finite-volume effects ex-
pected to be negligible,
including the effect of
frozen topology in the
finest ensemble, accord-
ing to [123].

JLQCD 23 [137] 2+1 2.8, 2.6, 2.6–
3.9

4.0, 4.0, 4.4 Study effects of topol-
ogy freezing and com-
pare ensembles with sim-
ilar parameters but dif-
ferent volumes.

FNAL/MILC 21 [136] 2+1 4.6, 4.3–6.3,
4.1–5.8, 3.8–
6.2, 3.9

≳ 3.8 Finite-volume error es-
timated to be negligi-
ble at zero recoil using
HMrSχPT. Given the
values mπL ≳ 3.7 and
the smallness of the chi-
ral logs, expectations are
that finite-volume errors
remain negligible in the
whole recoil range.

Meinel 21,
Meinel 21B

[498, 652] 2+1 2.7, 2.7 4.1, 4.6 Finite-volume effects not
quantified. Effects from
unstable Λ∗

c not quanti-
fied.

Table 149: Finite-volume effects in determinations of B(s) → D
(∗)
(s)ℓν and Λb → Λ

(∗)
c ℓν̄ form

factors, and of R(D(s)). Each L-entry corresponds to a different lattice spacing, with multiple
spatial volumes at some lattice spacings. For actions with multiple species of pions, the
lightest pion masses are quoted.
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Collab. Ref. Nf Ren. Description

HPQCD 23 [135] 2+1+1 NPR Vector (axial) currents renormalized non-
perturbatively using the PCVC (PCAC)
relation.

JLQCD 23 [137] 2+1 mNPR Majority of current renormalization factor
cancels in ratio of lattice correlation func-
tions. Remaining correction expected to
behave better than O(a), and vanishes in
the continuum limit.

FNAL/MILC 21 [136] 2+1 mNPR Majority of current renormalization factor
cancels in double ratio of lattice correla-
tion functions. Remaining correction cal-
culated with 1-loop tadpole-improved lat-
tice perturbation theory. Systematic un-
certainty estimated at 0.1%.

Meinel 21,
Meinel 21B

[498, 652] 2+1 mNPR Residual matching factors ρ computed at
1-loop for vector and axial-vector currents,
but at tree-level only for tensor currents. A
systematic uncertainty is assigned to ρTµν

as the double of max(|ρAµ − 1|, |ρV µ − 1|).

Table 150: Operator renormalization in determinations of B(s) → D
(∗)
(s)ℓν and Λb → Λ

(∗)
c ℓν̄

form factors, and of R(D(s)).
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Collab. Ref. Nf Action Description

HPQCD 23 [135] 2+1+1 HISQ for both the b
and c quarks.

Values of bare heavy-quark masses up to
amh = 0.8. The error from continuum
limit and extrapolation to physical b mass
at zero recoil is quite small, but it becomes
dominant at mid-recoil.

JLQCD 23 [137] 2+1 Möbius Domain-Wall
for both the b and c
quarks.

Values of bare heavy-quark masses up to
amh = 0.69. The systematics associated to
the extrapolation to physical b mass stays
under 4% for all form factors in the whole
recoil range.

FNAL/MILC 21 [136] 2+1 Fermilab RHQ for
both the b and c
quarks.

Discretization errors discussed as part of
combined chiral-continuum stemming from
αsa, a

2 and a3 terms.

Meinel 21,
Meinel 21B

[498, 652] 2+1 Columbia RHQ for
both the b and c
quarks.

Discretization errors discussed as part of
combined chiral-continuum-w fit. Higher-
order fit also includes O(αsa|p|) terms to
account for missing radiative corrections to
O(a) improvement of the currents.

Table 151: Heavy-quark treatment in determinations of B(s) → D
(∗)
(s)ℓν and Λb → Λ

(∗)
c ℓν̄ form

factors, and of R(D(s)).
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C.6 Notes to Sec. 9 on the strong coupling αs

C.6.1 Renormalization scale and perturbative behaviour

Collab. Ref. Nf αeff nl Description

Hasenfratz 23 [698] 0 0.095 < αeff < 1.26 2 GF scheme does not reach perturbative asymptotics.

Wong 23 [699] 0 0.095 < αeff < 1.26 2 GF scheme does not reach perturbative asymptotics.

Brambilla 23 [197] 0 0.27 < αeff < 0.36 3 Static force using operator insertion.

Chimirri 23 [700] 0 0.17 < αMS < 0.25 2 Values for α read off from figure.

Bribian 21 [697] 0 SF: 0.07–0.19
TGF: 0.05–0.92

2 Step scaling with TGF, nonpert. matching to SF.

Table 152: Renormalization scale and perturbative behaviour of αs determinations forNf = 0.

Collab. Ref. Nf αeff nl Description

ALPHA 22 [80] 2+1, 0 0.08–0.95 2 Decoupling Nf = 3 → Nf = 0;
uses Nf = 0 step-scaling from Dalla Brida 19 [756].

Table 153: Renormalization scale and perturbative behaviour of αs determinations forNf = 3.
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C.6.2 Continuum limit

Collab. Ref. Nf aµ Description

Hasenfratz 23 [698] 0 0.158 < a/
√
8t < 0.29 GF scheme, infinite-volume extrapolation,

direct determination of the β-function.

Wong 23 [699] 0 0.16 < a/
√
8t < 0.28 GF scheme, infinite-volume extrapolation,

direct determination of the β-function.

Brambilla 23 [197] 0 0.23 < aµ < 0.49 Force between static quarks using operator
insertion.

Chimirri 23 [700] 0 0.8mc < µ < 3.5mc Lattice spacings a in the range 0.01–0.07
fm;
Scale defined by µ = s×mMS,c(µ).

Bribian 21 [697] 0 TGF: 0.041 < aµ < 0.083
SF: 0.063 < aµ < 0.17

Step scaling TGF scheme,
nonpert. matching to SF scheme.

Table 154: Continuum limit for αs determinations with Nf = 0.

Collab. Ref. Nf aµ Description

ALPHA 22 [80] 2+1, 0 0.021 < aµdec < 0.083 Decoupling Nf = 3 → Nf = 0;
continuum limit subject to cutoff aM < 0.4,
z = M/µdec = 4− 12.

Table 155: Continuum limit for αs determinations with Nf = 3.

349



C.7 Notes to Sec. 10 on nucleon matrix elements

Collab. Ref. Nf a [fm] Description

ETM 23 [91] 2+1+1 0.057, 0.069, 0.080 Extrapolation via a fit which is linear in a2.

PNDME 23 [90] 2+1+1 0.06, 0.09, 0.12, 0.15 Physical-point extrapolations performed si-
multaneously, keeping only the leading-order
terms in the various expansion parameters.

ETM 22 [98] 2+1+1 0.057, 0.069, 0.080 Extrapolation via a fit which is linear in a2.

Table 156: Continuum extrapolations/estimation of lattice artifacts in determinations of the
isovector axial, scalar and tensor charges with Nf = 2 + 1 + 1 quark flavours.

Collab. Ref. Nf a [fm] Description

Mainz 24 [96] 2+1 0.049,0.064,0.076,0.086 Extrapolation performed as part of a simul-
taneous fit in a, Mπ and MπL.

PACS 23 [981] 2+1 0.063, 0.085 Discretization effects estimated by difference
between two ensembles.

RQCD 23 [95] 2+1 0.039, 0.049, 0.064, 0.076,
0.086, 0.098

Extrapolation performed using terms up to
a2 in the lattice spacing.

QCDSF/
UKQCD/
CSSM 23

[94] 2+1 0.052, 0.059, 0.068, 0.074, 0.082 Extrapolation performed including leading
discretization effects.

PACS 22B [982] 2+1 0.085 Single lattice spacing.

Mainz 22 [983] 2+1 0.049,0.064,0.076,0.086 Extrapolation performed as part of a simul-
taneous fit in a, Mπ and MπL.

Table 157: Continuum extrapolations/estimation of lattice artifacts in determinations of the
isovector axial, scalar and tensor charges with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

ETM 23 [91] 2+1+1 140, 138, 141 Three pion masses within 3% of the physical
value.

PNDME 23 [90] 2+1+1 321, 228, 138, 136 Fit performed including leading-order pion-
mass dependence.

ETM 22 [98] 2+1+1 140, 138, 141 Three pion masses within 3% of the physical
value.

Table 158: Chiral extrapolation/minimum pion mass in determinations of the isovector axial,
scalar and tensor charges with Nf = 2 + 1 + 1 quark flavours.

Collab. Ref. Nf Mπ,min [MeV] Description

Mainz 24 [96] 2+1 176, 130,218,228 Physical-point extrapolations were per-
formed simultaneously in the lattice spacing,
pion mass, and volume.

PACS 23 [981] 2+1 138, 135 Three near-physical pion masses.

RQCD 23 [95] 2+1 336,176, 131,156,127,338 Extrapolations performed using leading-
order chiral expressions for the pion mass.

QCDSF/
UKQCD/
CSSM 23

[94] 2+1 290,315,270,220,280,347 Combined pion-mass, lattice-spacing, and
volume extrapolations, performed around
chiral SU(3) point.

PACS 22B [982] 2+1 135 Two near-physical pion masses.

Mainz 22 [983] 2+1 176, 130,218,228 Physical-point extrapolations were per-
formed simultaneously in the lattice spacing,
pion mass, and volume.

Table 159: Chiral extrapolation/minimum pion mass in determinations of the isovector axial,
scalar and tensor charges with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 23 [91] 2+1+1 5.1,
5.4,
5.5

3.6,
3.8,
3.9

No extrapolation performed.

PNDME 23 [90] 2+1+1 2.4,
2.9-4.8,
2.9-5.8,
2.9-5.8

3.62,
2.98

Physical-point extrapolations performed
simultaneously, using the leading-order
terms in the various expansion parame-
ters.

ETM 22 [98] 2+1+1 5.1,
5.4,
5.5

3.62,
2.98

No extrapolation performed.

Table 160: Finite-volume effects in determinations of the isovector axial, scalar and tensor
charges with Nf = 2 + 1 + 1 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

Mainz 24 [96] 2+1 4.1
4.8,
6.1,
4.7

4.7,
5.4,
4.0,
4.2

Extrapolation performed including a term of
the form M2

πe
−MπL/

√
MπL as part of a si-

multaneous fit in a, Mπ and MπL.

PACS 23 [981] 2+1 5.5-10.9,
10.9

3.8-7.5,
7.5

Negligible finite-volume effects seen between
volumes.

RQCD 23 [95] 2+1 4.8,
2.75-11,
4.9-9.7,
4.1-12.3,
6.3-9.4,
7.5

4.0,
3.5,
3.8,
4.1,
4.3,
4.3

Leading asymptotic form for finite-volume
corrections used for extrapolation.

QCDSF/
UKQCD/
CSSM 23

[94] 2+1 2.6,
2.4,
3.3-4.4,
2.8,
2.5

4.0,
3.9

Combined pion-mass, lattice-spacing, and
volume extrapolations performed.

PACS 22B [982] 2+1 5.5-10.9 3.8-7.5 Negligible finite-volume effects seen between
volumes.

Mainz 22 [983] 2+1 4.1
4.8,
6.1,
4.7

4.7,
5.4,
4.0,
4.2

Extrapolation performed including a term
of the form M2

πe
−MπL/

√
MπL as part of

a simultaneous fit in a, Mπ and MπL.

Table 161: Finite-volume effects in determinations of the isovector axial, scalar and tensor
charges with Nf = 2 + 1 quark flavours.

Collab. Ref. Nf Ren.

ETM 23 [91] 2+1+1 RI’-MOM

PNDME 23 [90] 2+1+1 RI-SMOM

ETM 22 [98] 2+1+1 RI’-MOM

Table 162: Renormalization in determinations of the isovector axial, scalar and tensor charges
with Nf = 2 + 1 + 1 quark flavours.
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Collab. Ref. Nf Ren.

Mainz 24 [96] 2+1 RI-SMOM

PACS 23 [981] 2+1 RI-SMOM

RQCD 23 [95] 2+1 RI’-SMOM

QCDSF/
UKQCD/
CSSM 23

[94] 2+1 RI’-MOM

PACS 22B [982] 2+1 RI-SMOM

Mainz 22 [983] 2+1 RI-SMOM

Table 163: Renormalization in determinations of the isovector axial, scalar and tensor charges
with 2 + 1 quark flavours.

Collab. Ref. Nf τ [fm] Description

ETM 23 [91] 2+1+1 [0.6–1.6]
[0.6–1.5]
[0.5–1.2]

Compared results from the plateau,
summation method and two-state fits.

PNDME 23 [90] 2+1+1 [0.8–1.4]
[1–1.4,1–1.4,1–1.4,1–1.7]
[0.9–1.4,0.9–1.4,0.7–1.4]
[1–1.4,1.1–1.4,1–1.4,1.1–
1.4,1–1.3]

Several strategies to remove excited-
state contributions, including remov-
ing Nπ contributions.

ETM 22 [98] 2+1+1 [0.6–1.6]
[0.6–1.5]

Compared results from the plateau,
summation method and two-state fits.

Table 164: Control of excited-state contamination in determinations of the isovector axial,
scalar and tensor charges with Nf = 2 + 1 + 1 quark flavours. The comma-separated list of
numbers in square brackets denote the range of source-sink separations τ (in fermi) at each
value of the bare coupling.
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Collab. Ref. Nf τ [fm] Description

Mainz 24 [96] 2+1 [0.4–1.5,0.4–1.5,0.4–
1.5,0.4–1.5]
[1–1.2]
[0.3–1.5,0.3–1.5,0.3–1.5]
[0.3–1.4,0.3–1.4,0.3–
1.4,0.3–1.4,0.3–1.4]
[0.2–1.4,0.2–1.4,0.2–1.4]
[0.3–1.4]
[0.9–1.5]

Two-state fits to the summation
method.

PACS 23 [981] 2+1 [0.8–1.1]
[0.75–1.3,0.75–1.7]
[0.72–1.46,0.72–1.46]
[0.8–1.4,0.9–1.5]

Excited-state contributions estimated
using different time separations and
smearings.

RQCD 23 [95] 2+1 [0.7–1.3,0.7–1.3,0.7–1.3]
[0.5–1.2,0.5–1.2,0.5–
1.2,0.5–1.2,0.5–1.2,0.5–
1.2,0.5–1.2,0.5–1.2,0.5–
1.2,0.5–1.2,0.5–1.2,0.5–
1.2,0.5–1.2,0.5–1.2,0.5–
1.2]
[0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2]
[0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2]
[0.7–1.2,0.7–1.2,0.7–
1.2,0.7–1.2,0.7–1.2,0.7–
1.2]
[0.7–1.3,0.7–1.3]

Simultaneous two- and three-state fits
of up to four different observables us-
ing four time separations.

QCDSF/
UKQCD/
CSSM 23

[94] 2+1 all Energies from fits to two-point corre-
lation functions, where a weighted av-
erage is taken of the results obtained
when varying the fitting range.

Table 165: Control of excited-state contamination in determinations of the isovector axial,
scalar and tensor charges with Nf = 2 + 1 quark flavours. The comma-separated list of
numbers in square brackets denote the range of source-sink separations τ (in fermi) at each
value of the bare coupling.
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Collab. Ref. Nf τ [fm] Description

PACS 22B [982] 2+1 [0.9–1.4] Excited-state contributions estimated
using different time separations and
smearings.

Mainz 22 [983] 2+1 [0.4–1.5,0.4–1.5,0.4–
1.5,0.4–1.5]
[1–1.2]
[0.3–1.5,0.3–1.5,0.3–1.5]
[0.3–1.4,0.3–1.4,0.3–
1.4,0.3–1.4,0.3–1.4]
[0.2–1.4,0.2–1.4,0.2–1.4]
[0.3–1.4]
[0.9–1.5]

Two-state fits to the summation
method.

Table 165: (cntd.) Control of excited-state contamination in determinations of the isovector
axial, scalar and tensor charges with Nf = 2+1 quark flavours. The comma-separated list of
numbers in square brackets denote the range of source-sink separations τ (in fermi) at each
value of the bare coupling.
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Collab. Ref. Nf a [fm] Description

PNDME 21 [101] 2+1+1 0.12,0.09,0.06 Joint continuum and chiral fit includes a
aM2

π term.

Mainz 23 [106] 2+1 0.08,0.07,0.06,0.05 Joint continuum, chiral and finite-volume
(correlated) fit of σπN and σs includes a
aM2

π,K term. Fits are performed including
and excluding this term.

Table 166: Continuum extrapolation/estimation of lattice artifacts in direct determinations
of σπN and σs.

Collab. Ref. Nf Mπ,min [MeV] Description

PNDME 21 [101] 2+1+1 228,138,235 Joint continuum and chiral fit including the
SU(2) NNLO baryon χPT [1114] terms.

Mainz 23 [106] 2+1 219, 154, 128, 174 Joint continuum, chiral and finite-volume (corre-
lated) fit of σπN and σs utilizing SU(3) NNLO
covariant baryon χPT with the EOMS loop reg-
ularization scheme [956, 1115, 1116]. Cuts on the
pion mass excluding ensembles with Mπ > 220,
285 or 360 MeV are made.

Table 167: Chiral extrapolation/minimum pion mass in direct determinations of σπN and
σs.

Collab. Ref. Nf L [fm] Mπ,minL Description

PNDME 21 [101] 2+1+1 2.9–3.8
2.8–5.6
2.8–3.7

4.4,
3.9
4.4

Finite-volume terms are not included in the
joint continuum-chiral extrapolation.

Mainz 23 [106] 2+1 2.7–4.1
2.4–4.8
2.0–6.1
2.4–4.7

4.6
3.8
4.0
4.2

Joint continuum, chiral and finite-
volume (correlated) fit of σπN and σs

includes a term derived from the SU(2)
finite-volume expression for the nucleon
mass in Ref. [1117]. Fits are performed
including and excluding this term.

Table 168: Finite-volume effects in direct determinations of σπN and σs.
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Collab. Ref. Nf Ren. Description

PNDME 21 [101] 2+1+1 -/- Flavour mixing occurs due to breaking of chi-
ral symmetry. The ratio of Zns/Zs is es-
timated to be close to 1 and the mixing is
neglected.

Mainz 23 [106] 2+1 NP/NP Flavour mixing occurs due to breaking of chi-
ral symmetry. The mixing is implemented
using ratios of the light- and strange-quark
masses rather than utilising Zns/Zs.

Table 169: Renormalization for direct determinations of σπN and σs. The type of renor-
malization (Ren.) is given for σπN first and σs second. The label ’na’ indicates that no
renormalization is required.

Collab. Ref. Nf τ [fm] Description

PNDME 21 [101] 2+1+1 [1.0–1.7,1.0–1.7]/all
[0.9–1.4,0.9–1.4]/all
[1.1–1.4,1.1–1.4]/all

The two- and three-point functions are fit-
ted simultaneously including four and three
states, respectively. The final results are ob-
tained using a narrow-width prior to set the
first excited-state energy to that of the lowest
Nπ state.

Mainz 23 [106] 2+1 [0.3–1.5]/all
[0.3–1.5]/all
[0.3–1.4]/all
[0.2–1.4]/all

Summation method including the ground-
state terms and ratio fits including an excited
state with the energy fixed with a prior to the
lowest Nπ energy are considered. The final
result combines results from both fit types.

Table 170: Control of excited-state contamination in direct determinations of σπN and σs.
The comma-separated list of numbers in square brackets denote the range of source-sink sep-
arations τ (in fermi) at each value of the bare coupling. The range of τ for the connected (dis-
connected) contributions to the three-point correlation functions is given first (second). If a
wide range of τ values is available this is indicated by “all” in the table.
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Collab. Ref. Nf a [fm] Description

RQCD 22 [105] 2+1 0.10,0.09,0.08,
0.06,0.05,0.04

Combined continuum, chiral and volume fit to
the baryon octet. Leading O(a2) terms are in-
cluded in the parameterisation. Fits are per-
formed also excluding the coarsest lattice spac-
ing.

Table 171: Continuum extrapolations/estimation of lattice artifacts in determinations of σπN
and σs from the Feynman-Hellmann method.

Collab. Ref. Nf Mπ,min [MeV] Description

RQCD 22 [105] 2+1 338,127,216
131,176,336

Combined continuum, chiral and volume
fit to the baryon octet. Fits utilizing
SU(3) NNLO covariant baryon χPT with the
EOMS loop regularization scheme [956, 1115,
1116] are performed. Cuts on the flavour av-
erage meson mass squared are made.

Table 172: Chiral extrapolation/minimum pion mass in determinations of σπN and σs from
the Feynman-Hellmann method.

Collab. Ref. Nf L [fm] Mπ,minL Description

RQCD 22 [105] 2+1 2.3,
2.0–5.5,
2.4–4.8,
2.0–6.1,
2.4–4.7
2.5

4.0,
3.5,
5.3,
4.0,
4.2,
4.2

Combined continuum, chiral and vol-
ume fit to the baryon octet. Finite-
volume terms from NNLO covariant
baryon χPT (with no new fit param-
eters) are included in the fit [1118–
1120]. Ensembles with L < 2.3 fm
are excluded from the analysis.

Table 173: Finite-volume effects in determinations of σπN and σs from the Feynman-Hellmann
method.
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Collab. Ref. Nf a [fm] Description

ETM 22 [98] 2+1+1 0.08,0.07,0.06 Linear extrapolation in a2.

PNDME 20A [109] 2+1+1 0.15,0.12,0.09,0.06 Extrapolation performed using a linear term
in a as part of a simultaneous fit in a, Mπ

and MπL.

ETM 20C [1035] 2+1+1 0.08 Single lattice spacing.

ETM 19A [1036] 2+1+1 0.08 Single lattice spacing.

Table 174: Continuum extrapolations/estimation of lattice artifacts in determinations of the
isovector unpolarised, helicity and transversity second moments with Nf = 2 + 1 + 1 quark
flavours.
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Collab. Ref. Nf a [fm] Description

Mainz 24 [96] 2+1 0.09,0.08,0.06,0.05 A number of simultaneous a, Mπ and MπL
fits are performed using a linear term in
a. The final results are obtained from a
weighted average.

LHPC 24 [1037] 2+1 0.12,0.09 A Bayesian fit is performed including an a
and an a2 term.

NME 21A [1038] 2+1 0.127, 0,09, 0.07 Extrapolation performed using a linear term
in a as part of a simultaneous fit in a, Mπ

and MπL.

NME 20 [110] 2+1 0.127, 0,09, 0.07 Extrapolation performed using a linear term
in a as part of a simultaneous fit in a, Mπ

and MπL.

Mainz 19 [917] 2+1 0.05,0.06,0.08,0.09 Extrapolation performed as part of a simul-
taneous fit in a, Mπ and MπL.

χQCD 18A [111] 2+1 0.143, 0.11, 0.114, 0.083 Partially quenched calculation. Extrapola-
tion performed as part of a simultaneous fit
in a2, Mπ and MπL using expression from
HBChPT.

LHPC 12A [986] 2+1 0.12,0.09 No statistically significant discretization ef-
fects observed. Results assumed to be con-
stant in a.

LHPC 10 [899] 2+1 0.12 Single lattice spacing.

RBC/UKQCD 10D [887] 2+1 0.11 Single lattice spacing.

Table 175: Continuum extrapolations/estimation of lattice artifacts in determinations of
the isovector unpolarised, helicity and transversity second moments with Nf = 2 + 1 quark
flavours.
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Collab. Ref. Nf a [fm] Description

RQCD 18 [1039] 2 0.081, 0.071, 0.060 No significant O(a) effects observed.

ETM 17C [877] 2 0.0938 Single ensemble.

ETM 15D [874] 2 0.093 Single ensemble.

RQCD 14A [1040] 2 0.081, 0.071, 0.060 Analysis not conclusive.

Table 176: Continuum extrapolations/estimation of lattice artifacts in determinations of the
isovector unpolarised, helicity and transversity second moments with Nf = 2 quark flavours.

Collab. Ref. Nf Mπ,min [MeV] Description

ETM 22 [98] 2+1+1 140,137,141 Simulate close to Mphys
π .

PNDME 20A [109] 2+1+1 321,228,138,136 Extrapolation performed using a linear term
in M2

π as part of a simultaneous fit in a, Mπ

and MπL.

ETM 20C [1035] 2+1+1 139 Single pion mass within 3% of the physical
value.

ETM 19A [1036] 2+1+1 139 Single pion mass within 3% of the physical
value.

Table 177: Chiral extrapolation/minimum pion mass in determinations of the isovector un-
polarised, helicity and transversity second moments with Nf = 2 + 1 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

Mainz 24 [96] 2+1 228,218,130,176 A number of simultaneous a, Mπ and MπL
fits are performed using terms which appear
in the SU(2) NNLO ChPT expression for the
axial charge and (alternatively) a linear term
in M2

π . The final results are obtained from a
weighted average.

LHPC 24 [1037] 2+1 136,133 Simulate close to Mphys
π .

NME 21A [1038] 2+1 285, 169, 167 Extrapolation performed using a linear term
in M2

π as part of a simultaneous fit in a, Mπ

and MπL.

NME 20 [110] 2+1 285, 169, 167 Extrapolation performed using a linear term
in M2

π as part of a simultaneous fit in a, Mπ

and MπL.

Mainz 19 [917] 2+1 290, 200, 260 Extrapolation performed using logarithmic
and quadratic terms in Mπ as part of a si-
multaneous fit in a, Mπ and MπL.

χQCD 18A [111] 2+1 171,330,139,300 Partially quenched calculation. Extrapola-
tion performed as part of a simultaneous fit
in a2, Mπ and MπL using expression from
HBChPT.

LHPC 12A [986] 2+1 149,317 Chiral fit formula based on the “small-scale
expansion” to order ϵ3 with some coefficients
fixed.

LHPC 10 [899] 2+1 293 Chiral fit formula based on the “small-scale
expansion” to order ϵ3 with some coefficients
fixed.

RBC/UKQCD 10D [887] 2+1 329,416,555,668 Constant fit to heaviest three and linear fit
to lightest two pion masses gives the quoted
range.

Table 178: Chiral extrapolation/minimum pion mass in determinations of the isovector un-
polarised, helicity and transversity second moments with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] Description

RQCD 18 [1039] 2 280, 150, 260 Chiral fit using BChPT. Kept terms up to O(M3
π).

ETM 17C [877] 2 ≈135 Single ensemble within 3% of physical pion mass.

ETM 15D [874] 2 131 Single ensemble within 3% of physical pion mass.

RQCD 14A [1040] 2 280, 150, 260 No significant dependence on pion mass observed.

Table 179: Chiral extrapolation/minimum pion mass in determinations of the isovector un-
polarised, helicity and transversity second moments with Nf = 2 quark flavours.

Collab. Ref. Nf L [fm] Mπ,minL Description

ETM 22 [98] 2+1+1 5.1,
5.5,
5.5

3.6,
3.8,
3.9

Finite-volume effects not estimated.

PNDME 20A [109] 2+1+1 2.4,
4.8,
5.6,
5.5

3.9,
5.5,
3.9,
3.7

Fit performed using a term of the form
M2

πe
−MπL/

√
MπL as part of a simultane-

ous fit in a, Mπ and MπL.

ETM 20C [1035] 2+1+1 5.1 3.6 Finite-volume effects not estimated.

ETM 19A [1036] 2+1+1 5.1 3.6 Finite-volume effects not estimated.

Table 180: Finite-volume effects in determinations of the isovector unpolarised, helicity and
transversity second moments with Nf = 2 + 1 + 1 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

Mainz 24 [96] 2+1 4.1,
4.8,
6.1,
4.7

4.7,
5.4,
4.0,
4.2

A number of simultaneous a, Mπ and
MπL fits are performed using term of the
form M2

πe
−MπL/

√
MπL. The final results

are obtained from a weighted average.

LHPC 24 [1037] 2+1 5.6,
5.9

3.9,
4.0

Finite-volume effects are not estimated.

NME 21A [1038] 2+1 4.1,
3.0–5.8,
3.5–5.1

5.9,
5.1,
4.3

Fit performed using a term of the form
M2

πe
−MπL/

√
MπL as part of a simultane-

ous fit in a, Mπ and MπL.

NME 20 [110] 2+1 4.1,
3.0–5.8,
3.5–5.1

5.9,
5.1,
4.3

Fit performed using a term of the form
M2

πe
−MπL/

√
MπL as part of a simultane-

ous fit in a, Mπ and MπL.

Mainz 19 [917] 2+1 2.8-4.1,
2.4-3.6,
2.1-4.1,
2.4-3.2

4.7,
5.3,
4.2,
4.3

Extrapolation performed including a term
of the form M2

πe
−MπL/

√
MπL as part of

a simultaneous fit in a2, Mπ and MπL.

χQCD 18A [111] 2+1 4.6,
2.7,
5.5,
2.6

4.0,
4.4,
3.9,
4.0

Extrapolation performed including a term
of the form e−MπL as part of a simultane-
ous fit in a2, Mπ and MπL.

LHPC 12A [986] 2+1 2.8–5.6,
2.9

4.2,
4.6

Finite-volume effects investigated and
found to be negligible.

LHPC 10 [899] 2+1 2.5–3.5 3.7 Finite-volume effects included in chiral fit
formula and found to be negligible.

RBC/UKQCD 10D [887] 2+1 2.7 4.6 No uncertainty estimated. Comparison
between two volumes for the three heavi-
est pion masses shows no deviation within
statistical errors.

Table 181: Finite-volume effects in determinations of the isovector unpolarised, helicity and
transversity second moments with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf L [fm] Mπ,minL Description

RQCD 18 [1039] 2 2.6,
1.7-4.6,
1.9-2.9

3.7,
2.8,
3.8

No significant finite-volume
effects observed.

ETM 17C [877] 2 4.5 3.1 Single ensemble

ETM 15D [874] 2 4.5 3.0 Single ensemble

RQCD 14A [1040] 2 2.6,
1.7-4.6,
1.9-2.9

3.7,
2.8,
3.8

No significant finite-volume
effects observed.

Table 182: Finite-volume effects in determinations of the isovector unpolarised, helicity and
transversity second moments with Nf = 2 quark flavours.
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Collab. Ref. Nf Ren.

ETM 22 [98] 2+1+1 RI′-MOM

PNDME 20A [109] 2+1+1 RI′-MOM

ETM 20C [1035] 2+1+1 RI′-MOM

ETM 19A [1036] 2+1+1 RI′-MOM

Mainz 24 [96] 2+1 RI-MOM

LHPC 24 [1037] 2+1 RI′-MOM/RI-SMOM

NME 21A [1038] 2+1 RI′-MOM

NME 20 [110] 2+1 RI′-MOM

Mainz 19 [917] 2+1 RI-MOM

χQCD 18A [111] 2+1 RI-MOM

LHPC 12A [986] 2+1 RI-MOM

LHPC 10 [899] 2+1 RI-MOM

RBC/UKQCD 10D [887] 2+1 RI-MOM

RQCD 18 [1039] 2 RI′-MOM

ETM 17C [877] 2 RI′-MOM

ETM 15D [874] 2 RI′-MOM

RQCD 14A [1040] 2 RI′-MOM

Table 183: Renormalization in determinations of the isovector unpolarised, helicity and
transversity second moments with Nf = 2 + 1 + 1, Nf = 2 + 1 and Nf = 2 quark flavours.
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Collab. Ref. Nf τ [fm] Description

ETM 22 [98] 2+1+1 [0.6–1.6]
[0.6–1.5]
[0.5–1.2]

Two-state fit to all τ . A comparison
is made with plateau fits and the sum-
mation method.

PNDME 20A [109] 2+1+1 [0.8–1.4]
[1.0–1.7,1.0–1.7]
[0.9–1.4,0.9–1.4,0.9–1.4]
[1.0–1.4,0.9–1.3]

Fits to the τ - and t-dependence of
three-point correlators using two or
three lowest-lying states.

ETM 20C [1035] 2+1+1 [0.6–1.6] Two-state fit to all τ . A comparison
is made with plateau fits and the sum-
mation method.

ETM 19A [1036] 2+1+1 [0.6–1.6] Two-state fit to all τ . A comparison
is made with plateau fits and the sum-
mation method.

Table 184: Control of excited-state contamination in determinations of the isovector unpo-
larised, helicity and transversity second moments with Nf = 2 + 1 + 1 quark flavours. The
comma-separated list of numbers in square brackets denote the range of source-sink separa-
tions τ (in fermi) at each value of the bare coupling.
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Collab. Ref. Nf τ [fm] Description

Mainz 24 [96] 2+1 [0.4–1.5,0.4–1.5,0.4–
1.5,0.4–1.5]
[0.3–1.5,0.3–1.5,0.3–1.5]
[0.3–1.4,0.3–1.4,0.3–
1.4,0.3–1.4,0.3–1.4]
[0.2–1.4,0.2–1.4,0.2–1.4]

Two-state summation method.

LHPC 24 [1037] 2+1 [0.3–1.4]
[0.9–1.5]

Two-state fits to the three-point func-
tion and the summation method are
utilised, with the final results obtained
from a weighted average.

NME 21A [1038] 2+1 [1.3–1.8]
[1.1–1.5,1.3–1.7,1.1–
1.5,1.1–1.5]
[1.1–1.4,1.2–1.5]

Fits to the τ - and t-dependence of
three-point correlators using two or
three lowest-lying states.

NME 20 [110] 2+1 [1.3–1.8]
[1.1–1.5,1.3–1.7,1.1–
1.5,1.1–1.5]
[1.1–1.4,1.2–1.5]

Fits to the τ - and t-dependence of
three-point correlators using two or
three lowest-lying states.

Mainz 19 [917] 2+1 [1.0–1.4,1.0–1.4,1.0–1.4]
[1.0–1.5,1.0–1.5]
[1.0–1.4,1.0–1.4,1.0–
1.4,1.0–1.4]
[1.0–1.4,1.0–1.3]

Fits to the τ - and t-dependence of
correlator ratios using the two lowest-
lying states.

χQCD 18A [111] 2+1 [0.7–1.5] two-state fits to the three-point func-
tion.

LHPC 12A [986] 2+1 [0.9–1.4,0.9–1.4,0.9–
1.4,0.9–1.4,0.9–1.4]
[0.9–1.4]

Fits to the leading (ground state) τ -
dependence of summed correlator ra-
tios.

LHPC 10 [899] 2+1 [1.1,1.1,1.1,1.1,1.1–
1.2,1.1]

Plateau fits of correlator ratio at τ =
1.1 fm. Larger source-sink separation
on one ensemble as cross check.

RBC/UKQCD 10D [887] 2+1 [1.4,1.4,1.4,1.4] Single source-sink separation consid-
ered.

Table 185: Control of excited-state contamination in determinations of the isovector un-
polarised, helicity and transversity second moments with Nf = 2 + 1 quark flavours. The
comma-separated list of numbers in square brackets denote the range of source-sink separa-
tions τ (in fermi) at each value of the bare coupling.
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Collab. Ref. Nf τ [fm] Description

RQCD 18 [1039] 2 Not given Analysis limited by statistics

ETM 17C [877] 2 [0.9–1.5] Result from plateau method with
τ/a = 14. Consistent with esti-
mates from summation and two-state
fit methods.

ETM 15D [874] 2 [0.9–1.3] Result from plateau method with
τ/a = 14. Consistent with estimate
from the summation method.

RQCD 14A [1040] 2 Not given Plateau value at larger τ/a consistent
with two-state fit.

Table 186: Control of excited-state contamination in determinations of the isovector unpo-
larised, helicity and transversity second moments with Nf = 2 quark flavours. The comma-
separated list of numbers in square brackets denote the range of source-sink separations τ (in
fermi) at each value of the bare coupling.
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C.8 Notes to Sec. 11 on scale setting

Collab. Ref. Nf a [fm] Description

TUMQCD 22 [118] 2+1+1 0.15294, 0.12224,
0.08786, 0.05662,
0.0426, 0.03216

MILC ensembles from on-shell
Symanzik-improved gauge action
and rooted HISQ fermions

ETM 21 [45] 2+1+1 0.069, 0.079, 0.097

Table 187: Continuum extrapolations/estimation of lattice artifacts in scale determinations
with Nf = 2 + 1 + 1 quark flavours.

Collab. Ref. Nf a [fm] Description

Hudspith 24 [1058] 2+1 0.098, 0.085, 0.075,
0.064, 0.049, 0.039

NP O(a)-improved Wilson fermions
with tree-level Symanzik improved
gauge action.

Asmussen 23 [1080] 2+1 0.085, 0.075, 0.064,
0.049, 0.039

NP O(a)-improved Wilson fermions
with tree-level Symanzik improved
gauge action.

RQCD 22 [105] 2+1 0.098, 0.085, 0.075,
0.064, 0.049, 0.039

NP O(a)-improved Wilson fermions
with tree-level Symanzik improved
gauge action.

RBC/Bielefeld 07 [1082] 2+1 0.3 - 0.05 Simulations with improved staggered
fermions (p4fat3-action: smeared 1-
link term and bent 3-link terms) at 27
different values of β.

Table 188: Continuum extrapolations/estimation of lattice artifacts in scale determinations
with Nf = 2 + 1 quark flavours.
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Collab. Ref. Nf Mπ,min [MeV] MπL Description

TUMQCD 22 [118] 2+1+1 129 3.25 − 4.17 At the physical point.

ETM 21 [45] 2+1+1 134.2 3.78

Table 189: Chiral extrapolation and finite-volume effects in scale determinations with
Nf = 2 + 1 + 1 quark flavours. We list the minimum pion mass Mπ,min and MπL ≡
Mπ,min[L(Mπ,min)]max is evaluated at the maximum value of L available at Mπ =Mπ,min.

Collab. Ref. Nf Mπ,min [MeV] MπL Description

Hudspith 24 [1058] 2+1 127/131 3.51/4.05 At m = msymm.

Asmussen 23 [1080] 2+1 127/131 3.51/4.05 At m = msymm.

RQCD 22 [105] 2+1 127/131 3.51/4.05 At m = msymm.
200 4.14 At m̃s = m̃s,phys

RBC/Bielefeld 07 [1082] 2+1 220 5.456

Table 190: Chiral extrapolation and finite-volume effects in scale determinations with
Nf = 2 + 1 quark flavours. We list the minimum pion mass Mπ,min and MπL ≡
Mπ,min[L(Mπ,min)]max is evaluated at the maximum value of L available at Mπ =Mπ,min.
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currents, Nuovo Cim. 38 (1965) 1747.

[327] J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange
quark, Nucl. Phys. B250 (1985) 465.

[328] C. Bernard, J. Bijnens and E. Gamiz, Semileptonic kaon decay in staggered chiral perturbation
theory, Phys. Rev. D89 (2014) 054510 [1311.7511].

[329] [RBC 08A] J. M. Flynn and C.T. Sachrajda, SU(2) chiral perturbation theory for Kℓ3 decay
amplitudes, Nucl. Phys. B812 (2009) 64 [0809.1229].

[330] H. Leutwyler and M. Roos, Determination of the elements Vus and Vud of the Kobayashi-
Maskawa matrix, Z. Phys. C25 (1984) 91.

[331] P. Post and K. Schilcher, Kl3 form factors at order p6 in chiral perturbation theory, Eur. Phys.
J. C25 (2002) 427 [hep-ph/0112352].

[332] J. Bijnens and P. Talavera, Kl3 decays in chiral perturbation theory, Nucl. Phys. B669 (2003)
341 [hep-ph/0303103].

[333] M. Jamin, J.A. Oller and A. Pich, Order p6 chiral couplings from the scalar Kπ form factor,
JHEP 02 (2004) 047 [hep-ph/0401080].

[334] V. Cirigliano et al., The Green function and SU(3) breaking in Kl3 decays, JHEP 04 (2005)
006 [hep-ph/0503108].

[335] A. Kastner and H. Neufeld, The Kl3 scalar form factors in the Standard Model, Eur. Phys. J.
C57 (2008) 541 [0805.2222].

[336] [JLQCD 17] S. Aoki, G. Cossu, X. Feng, H. Fukaya, S. Hashimoto, T. Kaneko et al., Chiral
behavior of K → πlν decay form factors in lattice QCD with exact chiral symmetry, Phys. Rev.
D96 (2017) 034501 [1705.00884].

[337] V. Bernard and E. Passemar, Matching chiral perturbation theory and the dispersive represen-
tation of the scalar K pi form-factor, Phys. Lett. B661 (2008) 95 [0711.3450].

391

https://doi.org/10.22323/1.453.0266
https://arxiv.org/abs/2402.08915
https://doi.org/10.1007/JHEP10(2020)179
https://arxiv.org/abs/2009.00459
https://doi.org/10.1103/PhysRevD.103.114503
https://arxiv.org/abs/2102.12048
https://doi.org/10.1007/JHEP11(2021)172
https://arxiv.org/abs/2103.04843
https://doi.org/10.1103/PhysRevLett.13.264
https://doi.org/10.1016/0550-3213(85)90493-6
https://doi.org/10.1016/0550-3213(85)90493-6
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1103/PhysRevD.89.054510
https://arxiv.org/abs/1311.7511
https://doi.org/10.1016/j.nuclphysb.2008.12.001
https://arxiv.org/abs/0809.1229
https://doi.org/10.1007/BF01571961
https://doi.org/10.1007/s10052-002-0967-1
https://doi.org/10.1007/s10052-002-0967-1
https://arxiv.org/abs/hep-ph/0112352
https://doi.org/10.1016/S0550-3213(03)00581-9
https://doi.org/10.1016/S0550-3213(03)00581-9
https://arxiv.org/abs/hep-ph/0303103
https://arxiv.org/abs/hep-ph/0401080
https://arxiv.org/abs/hep-ph/0503108
https://doi.org/10.1140/epjc/s10052-008-0703-6
https://doi.org/10.1140/epjc/s10052-008-0703-6
https://arxiv.org/abs/0805.2222
https://doi.org/10.1103/PhysRevD.96.034501
https://doi.org/10.1103/PhysRevD.96.034501
https://arxiv.org/abs/1705.00884
https://doi.org/10.1016/j.physletb.2008.02.004
https://arxiv.org/abs/0711.3450


[338] A. Duncan, E. Eichten and H. Thacker, Electromagnetic splittings and light quark masses in
lattice QCD, Phys. Rev. Lett. 76 (1996) 3894 [hep-lat/9602005].

[339] [MILC 08] S. Basak et al., Electromagnetic splittings of hadrons from improved staggered quarks
in full QCD, PoS LAT2008 (2008) 127 [0812.4486].

[340] [BMW 10C] A. Portelli et al., Electromagnetic corrections to light hadron masses, PoS
LAT2010 (2010) 121 [1011.4189].

[341] [FNAL/MILC 13E] A. Bazavov et al., Determination of |Vus| from a lattice-QCD calculation of
the K → πℓν semileptonic form factor with physical quark masses, Phys. Rev. Lett. 112 (2014)
112001 [1312.1228].

[342] [PACS 22] K.-I. Ishikawa, N. Ishizuka, Y. Kuramashi, Y. Namekawa, Y. Taniguchi, N. Ukita
et al., Kℓ3 form factors at the physical point: Toward the continuum limit, Phys. Rev. D 106
(2022) 094501 [2206.08654].

[343] [PACS 19] J. Kakazu, K.-i. Ishikawa, N. Ishizuka, Y. Kuramashi, Y. Nakamura, Y. Namekawa
et al., Kl3 form factors at the physical point on (10.9 fm)3 volume, Phys. Rev. D 101 (2020)
094504 [1912.13127].

[344] [RBC/UKQCD 13] P. A. Boyle, J.M. Flynn, N. Garron, A. Jüttner, C.T. Sachrajda et al., The
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[360] E.E. Scholz and S. Dürr, Leptonic decay-constant ratio fK/fπ from clover-improved Nf = 2+1
QCD, PoS LATTICE2016 (2016) 283 [1610.00932].

[361] [JLQCD/TWQCD 10] J. Noaki et al., Chiral properties of light mesons in Nf = 2 + 1 overlap
QCD, PoS LAT2010 (2010) 117.

[362] C. Aubin, J. Laiho and R.S. Van de Water, Light pseudoscalar meson masses and decay con-
stants from mixed action lattice QCD, PoS LAT2008 (2008) 105 [0810.4328].

[363] B. Ananthanarayan, J. Bijnens, S. Friot and S. Ghosh, Analytic representation of fk/fπ in two
loop chiral perturbation theory, Physical Review D 97 (2018) .

[364] B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wil-
son fermions, Nucl. Phys. B259 (1985) 572.
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tudes with improved Wilson fermion action in lattice QCD, Phys. Rev. D92 (2015) 074503
[1505.05289].

[417] N. Ishizuka, K.I. Ishikawa, A. Ukawa and T. Yoshié, Calculation of K → ππ decay amplitudes
with improved Wilson fermion action in non-zero momentum frame in lattice QCD, Phys. Rev.
D98 (2018) 114512 [1809.03893].

[418] A. Donini, P. Hernández, C. Pena and F. Romero-López, Nonleptonic kaon decays at large Nc,
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Nc, Eur. Phys. J. C 80 (2020) 638 [2003.10293].

[420] J. Baeza-Ballesteros, P. Hernández and F. Romero-López, A lattice study of ππ scattering at
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axial charge from lattice QCD with controlled errors, Phys.Rev.D86 (2012) 074502 [1205.0180].
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