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Abstract

We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics
with the aim of making them easily accessible to the nuclear and particle physics commu-
nities. More specifically, we report on the determination of the light-quark masses, the
form factor f;(0) arising in the semileptonic K — 7 transition at zero momentum trans-
fer, as well as the decay-constant ratio fx/fr and its consequences for the CKM matrix
elements V,,; and V,,4. We review the determination of the Bg parameter of neutral kaon
mixing as well as the additional four B parameters that arise in theories of physics beyond
the Standard Model. For the heavy-quark sector, we provide results for m, and my; as
well as those for the decay constants, form factors, and mixing parameters of charmed
and bottom mesons and baryons. These are the heavy-quark quantities most relevant for
the determination of CKM matrix elements and the global CKM unitarity-triangle fit.
We review the status of lattice determinations of the strong coupling constant ag. We
review the determinations of nucleon charges from the matrix elements of both isovector
and flavour-diagonal axial, scalar and tensor local quark bilinears, and momentum frac-
tion, helicity moment and the transversity moment from one-link quark bilinears. We also
review determinations of scale-setting quantities. Finally, in this review we have added a
new section on the general definition of the low-energy limit of the Standard Model.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Stan-
dard Model of particle physics and for constraining possible extensions that go beyond it.
As the LHC and its experiments continue exploring the energy frontier, and as experi-
ments such as Belle-II, BESIII, NA62 and KOTO-2 continue extending the precision and
intensity frontiers, the importance of flavour physics will grow, both in terms of searches
for signatures of new physics through precision measurements and in terms of attempts to
construct the theoretical framework behind direct discoveries of new particles. Crucial to
such searches for new physics is the ability to quantify strong-interaction effects. Large-
scale numerical calculations of lattice QCD allow for the computation of these effects from
first principles. The scope of the Flavour Lattice Averaging Group (FLAG) is to review
the current status of lattice results for a variety of physical quantities that are important
for flavour physics. Set up in November 2007, it comprises experts in Lattice Field Theory,
Chiral Perturbation Theory, and Standard Model phenomenology. Our aim is to provide
an answer to the frequently posed question “What is currently the best lattice value for
a particular quantity?” in a way that is readily accessible to those who are not expert in
lattice methods. This is generally not an easy question to answer; different collaborations
use different lattice actions (discretizations of QCD) with a variety of lattice spacings
and volumes, and with a range of masses for the v and d quarks. Not only are the sys-
tematic errors different, but also the methodology used to estimate these uncertainties
varies between collaborations. In the present work, we summarize the main features of
each of the calculations and provide a framework for judging and combining the different
results. Sometimes, it is a single result that provides the “best” value; more often, it is a
combination of results from different collaborations. Indeed, when consistency of values
obtained using different formulations is found, this adds significantly to our confidence in
the results.

The first five editions of the FLAG review were made public in 2010 [1], 2013 [2],
2016 [3], 2019 [4], and 2021 [5] (and will be referred to as FLAG 10, FLAG 13, FLAG 16,
FLAG 19, and FLAG 21, respectively). The fifth edition reviewed results related to both
light (u-, d- and s-quark), and heavy (c- and b-quark) flavours. The quantities related to
pion and kaon physics were light-quark masses, the form factor f,(0) arising in semilep-
tonic K — 7 transitions (evaluated at zero momentum transfer), the decay constants
frx and fr, the Bx parameter from neutral kaon mixing, and the kaon mixing matrix
elements of new operators that arise in theories of physics beyond the Standard Model.
Their implications for the CKM matrix elements V,,; and V, 4 were also discussed. Further-
more, results were reported for some of the low-energy constants of SU(2)rxSU(2)r and
SU(3)rxSU(3) g Chiral Perturbation Theory. The quantities related to D- and B-meson
physics that were reviewed were the masses of the charm and bottom quarks together with
the decay constants, form factors, and mixing parameters of D and B mesons. These are
the heavy-light quantities most relevant to the determination of CKM matrix elements
and the global CKM unitarity-triangle fit. The current status of lattice results on the
QCD coupling a; was reviewed. Last but not least, we reviewed calculations of nucleon
matrix elements of flavour nonsinglet and singlet bilinear operators, including the nucleon
axial charge g4 and the nucleon sigma term. These results are relevant for constraining
Vua, for searches for new physics in neutron decays and other processes, and for dark
matter searches.

In FLAG 21, we extended the scope of the review by adding a section on scale setting,
Sec. 11. The motivation for adding this section was that uncertainties in the value of
the lattice spacing a are a major source of error for the calculation of a wide range of
quantities. Thus we felt that a systematic compilation of results, comparing the different
approaches to setting the scale, and summarizing the present status, would be a useful
resource for the lattice community. An additional update was the inclusion, in Sec. 6.2,



of a brief description of the status of lattice calculations of K — 7w decay amplitudes.
Although some aspects of these calculations were not yet at the stage to be included in our
averages, they are approaching this stage, and we felt that, given their phenomenological
relevance, a brief review was appropriate.

In the current review, we have omitted the section on low-energy constants in the chiral
Lagrangian as progress in that area has slowed. FLAG will keep monitoring the situation
and provide updates in future editions, should new results become available. On the other
hand, we have added a new section on isospin breaking, Sec. 3. For the most precisely
determined quantities, isospin breaking—both from the up-down quark-mass difference
and from QED—must be included. An important issue here is that, in the context of a
QED+QCD theory, the separation into QED and QCD contributions to a given physical
quantity is ambiguous. There are several ways of defining such a separation. The new
section allows a more uniform treatment in the sections on quark masses (see Sec. 4) and
scale setting (see Sec. 11). We stress, however, that the physical observable in QCD+QED
is defined unambiguously. Any ambiguity only arises because we are trying to separate a
well-defined, physical quantity into two unphysical parts that provide useful information
for phenomenology.

Our main results are collected in Tabs. 1, 2, 3, 4, and 5. As is clear from the tables,
for most quantities there are results from ensembles with different values for Ny. In most
cases, there is reasonable agreement among results with Ny =2, 241, and 24+ 1+ 1. As
precision increases, we may some day be able to distinguish among the different values of
Ny, in which case, presumably 2 + 1 + 1 would be the most realistic. (If isospin violation
is critical, then 14+1+1 or 14+ 1+ 1+ 1 might be desired.) At present, for some quantities
the errors in the Ny = 2 + 1 results are smaller than those with Ny =2+ 1+1 (e.g.,
for m..), while for others the relative size of the errors is reversed. In most situations we
expect the averages in this report for both Ny = 241 or Ny = 24+ 1+ 1 to provide
a sufficiently accurate description of QCD. In situations where charm-sea-quark and/or
isospin-breaking effects are expected to be subdominant systematic effects, both results
can be used. We do not recommend using the Ny = 2 results, except for studies of the N¢-
dependence of ay, as these have an uncontrolled systematic error coming from quenching
the strange quark.

Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper,
roughly on a triennial basis. This effort is supplemented by our more frequently updated
website http://flag.unibe.ch [6], where figures as well as pdf-files for the individual
sections can be downloaded. The papers reviewed in the present edition have appeared
before the closing date 30 April 2024.!

"Working groups were given the option of including papers submitted to arxiv.org before the closing date
but published after this date. This flexibility allows this review to be up-to-date at the time of submission.
Two papers of this type were included, cf. footnote 9.
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This review is organized as follows. In the remainder of Sec. 1, we summarize the
composition and rules of FLAG and discuss general issues that arise in modern lattice
calculations. In Sec. 2, we explain our general methodology for evaluating the robustness
of lattice results. We also describe the procedures followed for combining results from
different collaborations in a single average or estimate (see Sec. 2.2 for our definition of
these terms). The rest of the paper consists of sections, each dedicated to a set of closely
connected physical quantities, or, for the final section, to the determination of the lattice
scale. Each of these sections is accompanied by an Appendix with explicatory notes.?

In previous editions, we have provided, in an appendix, a glossary summarizing some
standard lattice terminology and describing the most commonly used lattice techniques
and methodologies. Since no significant updates in this information have occurred re-
cently, we have decided, in the interests of reducing the length of this review, to omit
this glossary, and refer the reader to FLAG 19 for this information [4]. This appendix
also contained, in previous versions, a tabulation of the actions used in the papers that
were reviewed. Since this information is available in the discussions in the separate sec-
tions, and is time-consuming to collect from the sections, we have dropped these tables.
In Appendix A, we have added a summary and explanations of acronyms introduced in
the manuscript. Collaborations referred to by an acronym can be identified through the
corresponding bibliographic reference. In Appendix B.1, we provide a short review of
how electromagnetic effects can be taken into account in lattice-QCD calculations. Ap-
pendix B.2 describes the parameterizations of semileptonic form factors that are used in
Sec. 8. A short appendix, Appendix B.3 provides all the details of the parameters used
in the form factor fits in Secs. 7 and 8.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community, both in terms of the geo-
graphical location of its members and the lattice collaborations to which they belong. We
aspire to provide the nuclear- and particle-physics communities with a single source of
reliable information on lattice results.

In order to work reliably and efficiently, we have adopted a formal structure and a set
of rules by which all FLAG members abide. The collaboration presently consists of an
Advisory Board (AB), an Editorial Board (EB), and eight Working Groups (WG). The
role of the Advisory Board is to provide oversight of the content, procedures, schedule and
membership of FLAG, to help resolve disputes, to serve as a source of advice to the EB
and to FLAG as a whole, and to provide a critical assessment of drafts. They also give
their approval of the final version of the preprint before it is released. The Editorial Board
coordinates the activities of FLAG, sets priorities and intermediate deadlines, organizes
votes on FLAG procedures, writes the introductory sections, and takes care of the editorial
work needed to integrate the sections written by the individual working groups into a
uniform and coherent review. The working groups concentrate on writing the review of
the physical quantities for which they are responsible, which is subsequently circulated to
the whole collaboration for critical evaluation.

The current list of FLAG members and their Working Group assignments is:

e Advisory Board (AB): M. Golterman, P. Hernandez, T. Onogi, S.R. Sharpe,

and R. Van de Water

e Editorial Board (EB): S. Gottlieb, A. Jiittner, and U. Wenger
e Working Groups (coordinator listed first):

— Quark masses T. Blum, A. Portelli, and A. Ramos

2In order to keep the length of this review within reasonable bounds, we have dropped these notes for older
data, since they can be found in previous FLAG reviews [1-5].
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— Vs, Vad T. Kaneko, J. N. Simone, and N. Tantalo

— Bg P. Dimopoulos, X. Feng, and G. Herdoiza
— fB.y: ID(y» BB C. Monahan, Y. Aoki, and M. Della Morte
— b and c semileptonic and radiative decays E. Lunghi, S. Meinel,

and A. Vaquero
— Qg S. Sint, L. Del Debbio, and P. Petreczky
— Nucleon matrix elements  R. Gupta, S. Collins, A. Nicholson, and H. Wittig
— Scale setting R. Sommer, N. Tantalo, and U. Wenger

The most important FLAG guidelines and rules are the following:

e the composition of the AB reflects the main geographical areas in which lattice
collaborations are active, with members from America, Asia/Oceania, and Europe;

e the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

e whenever a replacement becomes necessary this has to keep, and possibly improve,
the balance in FLAG, so that different collaborations, from different geographical
areas are represented;

e in all working groups the members must belong to different lattice collaborations;

e a paper is in general not reviewed (nor colour-coded, as described in the next section)
by any of its authors;

e lattice collaborations will be consulted on the colour coding of their calculation;
e there are also internal rules regulating our work, such as voting procedures.

As for FLAG 21, for this review we sought the advice of external reviewers once a
complete draft of the review was available. For each review section, we have asked one
lattice expert (who could be a FLAG alumnus/alumna) and one nonlattice phenomenol-
ogist for a critical assessment.® This is similar to the procedure followed by the Particle
Data Group in the creation of the Review of Particle Physics. The reviewers provide
comments and feedback on scientific and stylistic matters. They are not anonymous, and
enter into a discussion with the authors of the WG. Our aim with this additional step is
to make sure that a wider array of viewpoints enter into the discussions, so as to make
this review more useful for its intended audience.

1.2 Citation policy

We draw attention to this particularly important point. As stated above, our aim is to
make lattice-QCD results easily accessible to those without lattice expertise, and we are
well aware that it is likely that some readers will only consult the present paper and not
the original lattice literature. It is very important that this paper not be the only one
cited when our results are quoted. We strongly suggest that readers also cite the original
sources. In order to facilitate this, in Tabs. 1, 2, 3, 4 and 5, besides summarizing the
main results of the present review, we also cite the original references from which they
have been obtained. In addition, for each figure we make a bibtex file available on our
webpage [6] which contains the bibtex entries of all the calculations contributing to the
FLAG average or estimate. The bibliography at the end of this paper should also make
it easy to cite additional papers. Indeed, we hope that the bibliography will be one of the
most widely used elements of the whole paper.

3The one exception is the scale-setting section, where only a lattice expert has been asked to provide input.
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1.3 General issues

Several general issues concerning the present review are thoroughly discussed in Sec. 1.1
of our initial 2010 paper [1], and we encourage the reader to consult the relevant pages.
In the remainder of the present subsection, we focus on a few important points. Though
the discussion has been duly updated, it is similar to that of the corresponding sections
in the previous reviews [2-5].

The review aims to achieve two distinct goals: first, to provide a description of the
relevant work done on the lattice; and, second, to draw conclusions on the basis of that
work, summarizing the results obtained for the various quantities of physical interest.

The core of the information about the work done on the lattice is presented in the form
of tables, which not only list the various results, but also describe the quality of the data
that underlie them. We consider it important that this part of the review represents a
generally accepted description of the work done. For this reason, we explicitly specify the
quality requirements used and provide sufficient details in appendices so that the reader
can verify the information given in the tables.*

On the other hand, the conclusions drawn on the basis of the available lattice results are
the responsibility of FLAG alone. Preferring to err on the side of caution, in several cases
we draw conclusions that are more conservative than those resulting from a plain weighted
average of the available lattice results. This cautious approach is usually adopted when the
average is dominated by a single lattice result, or when only one lattice result is available
for a given quantity. In such cases, one does not have the same degree of confidence in
results and errors as when there is agreement among several different calculations using
different approaches. The reader should keep in mind that the degree of confidence cannot
be quantified, and it is not reflected in the quoted errors.

Each discretization has its merits, but also its shortcomings. For most topics covered
in this review we have an increasingly broad database, and for most quantities lattice
calculations based on totally different discretizations are now available. This is illustrated
by the dense population of the tables and figures in most parts of this review. Those cal-
culations that do satisfy our quality criteria indeed lead, in almost all cases, to consistent
results, confirming universality within the accuracy reached. The consistency between
independent lattice results, obtained with different discretizations, methods, and lattice
parameters, is an important test of lattice QCD, and observing such consistency also
provides further evidence that systematic errors are fully under control.

In the sections dealing with heavy quarks and with ag, the situation is not the same.
Since the b-quark mass can barely be resolved with current lattice spacings, most lattice
methods for treating b quarks use effective field theory at some level. This introduces
additional complications not present in the light-quark sector. An overview of the is-
sues specific to heavy-quark quantities is given in the introduction of Sec. 8. For B- and
D-meson leptonic decay constants, there already exist a good number of different inde-
pendent calculations that use different heavy-quark methods, but there are only a few
independent calculations of semileptonic B, Ay, and D form factors and of B — B mixing
parameters. For a, most lattice methods involve a range of scales that need to be resolved
and controlling the systematic error over a large range of scales is more demanding. The
issues specific to determinations of the strong coupling are summarized in Sec. 9.

Number of sea quarks in lattice calculations:

Lattice-QCD calculations currently involve two, three or four flavours of dynamical quarks.
Most calculations set the masses of the two lightest quarks to be equal, while the strange
and charm quarks, if present, are heavier (and tuned to lie close to their respective physi-
cal values). Our notation for these calculations indicates which quarks are nondegenerate,

4We also use terms like “quality criteria”, “rating”, “colour coding”, etc., when referring to the classification

of results, as described in Sec. 2.
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eg., Ne=24+1if my, =mg <mgand Ny =241+ 1if my = mg < ms; < me. Calcula-
tions with Ny = 2, i.e., two degenerate dynamical flavours, often include strange valence
quarks interacting with gluons, so that bound states with the quantum numbers of the
kaons can be studied, albeit neglecting strange sea-quark fluctuations. The quenched ap-
proximation (Ny = 0), in which all sea-quark contributions are omitted, has uncontrolled
systematic errors and is no longer used in modern lattice calculations with relevance to
phenomenology.® Accordingly, we will review results obtained with Ny = 2, Ny = 2 + 1,
and Ny = 2+1+41, but omit earlier results with Ny = 0. The only exception concerns the
QCD coupling constant a;. Since this observable does not require valence light quarks, it
is theoretically well defined also in the Ny = 0 theory, which is simply pure gluodynamics.
The N¢-dependence of o, or more precisely of the related quantity roAgyg, is a theoretical
issue of considerable interest; here r( is a quantity with the dimension of length that sets
the physical scale, as discussed in Sec. 11. We stress, however, that only results with
Ny > 3 are used to determine the physical value of s at a high scale.

Lattice actions, parameters, and scale setting:

The remarkable progress in the precision of lattice calculations is due to improved al-
gorithms, better computing resources, and, last but not least, conceptual developments.
Examples of the latter are improved actions that reduce lattice artifacts and actions that
preserve chiral symmetry to a very good approximation. A concise characterization of the
various discretizations that underlie the results reported in the present review is given in
Appendix A.1 of FLAG 19 [4].

Physical quantities are computed in lattice calculations in units of the lattice spacing
so that they are dimensionless. For example, the pion decay constant that is obtained
from a calculation is fra, where a is the spacing between two neighboring lattice sites.
(Al calculations with results quoted in this review use hypercubic lattices, i.e., with the
same spacing in all four Euclidean directions.) To convert these results to physical units
requires knowledge of the lattice spacing a at the fixed values of the bare QCD parameters
(quark masses and gauge coupling) used in the calculation. This is achieved by requir-
ing agreement between the lattice calculation and experimental measurement of a known
quantity, which thus “sets the scale” of a given calculation. (See Sec. 11.)

Renormalization and scheme dependence:

Several of the results covered by this review, such as quark masses, the gauge coupling,
and B-parameters, are for quantities defined in a given renormalization scheme and at
a specific renormalization scale. The schemes employed (e.g., regularization-independent
MOM schemes) are often chosen because of their specific merits when combined with
the lattice regularization. For a brief discussion of their properties, see Appendix A.3
of FLAG 19 [4]. The conversion of the results obtained in these so-called intermediate
schemes to more familiar regularization schemes, such as the MS-scheme, is done with the
aid of perturbation theory. It must be stressed that the renormalization scales accessible
in calculations are limited, because of the presence of an ultraviolet (UV) cutoff of ~ 7/a.
To safely match to MS, a scheme defined in perturbation theory, Renormalization Group
(RG) running to higher scales is performed, either perturbatively or nonperturbatively
(the latter using finite-size scaling techniques).

Ezxtrapolations:

Because of limited computing resources, lattice calculations are often performed at un-
physically heavy pion masses, although results at the physical point, where all quark
masses take their physical values, have become increasingly common. Further, numerical
calculations must be done at nonzero lattice spacing, and in a finite (four-dimensional)
volume. In order to obtain physical results, lattice data are obtained at a sequence of
pion masses and a sequence of lattice spacings, and then extrapolated to the physical

5Lattice calculations with Ny = 2 also have an uncontrolled systematic error, but it is reasonable to expect
that to be much smaller than for Ny = 0.
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pion mass and to the continuum limit. In principle, an extrapolation to infinite volume is
also required. However, for most quantities discussed in this review, finite-volume effects
are exponentially small in the linear extent of the lattice in units of the pion mass, and,
in practice, one often verifies volume independence by comparing results obtained on a
few different physical volumes, holding other parameters fixed. To control the associ-
ated systematic uncertainties, these extrapolations are guided by effective theories. For
light-quark actions, the lattice-spacing dependence is described by Symanzik’s effective
theory [149, 150]; for heavy quarks, this can be extended and/or supplemented by other
effective theories such as Heavy-Quark Effective Theory (HQET). The pion-mass depen-
dence can be parameterized with Chiral Perturbation Theory (xPT), which takes into
account the Nambu-Goldstone nature of the lowest excitations that occur in the presence
of light quarks. Similarly, one can use Heavy-Light Meson Chiral Perturbation Theory
(HMxPT) to extrapolate quantities involving mesons composed of one heavy (b or ¢) and
one light quark. One can combine Symanzik’s effective theory with xPT to simultane-
ously extrapolate to the physical pion mass and the continuum; in this case, the form
of the effective theory depends on the discretization. See Appendix A.4 of FLAG 19 [4]
for a brief description of the different variants in use and some useful references. Finally,
xPT can also be used to estimate the size of finite-volume effects measured in units of the
inverse pion mass, thus providing information on the systematic error due to finite-volume
effects in addition to that obtained by comparing calculations at different volumes.

Ezcited-state contamination:

In all the hadronic matrix elements discussed in this review, the hadron in question is
the lightest state with the chosen quantum numbers. This implies that it dominates the
required correlation functions as their extent in Euclidean time is increased. Excited-state
contributions are suppressed by e *FA7 where AF is the gap between the ground and
excited states, and A7 the relevant separation in Euclidean time. The size of AE depends
on the hadron in question, and in general is a multiple of the pion mass. In practice, as
discussed at length in Sec. 10, the contamination of signals due to excited-state contribu-
tions is a much more challenging problem for baryons than for the other particles discussed
here. This is in part due to the fact that the signal-to-noise ratio drops exponentially for
baryons, which reduces the values of A7 that can be used.

Critical slowing down:

The lattice spacings reached in recent calculations go down to 0.05 fm or even smaller. In
this regime, long autocorrelation times slow down the sampling of the configurations [151—
160]. Many groups check for autocorrelations in a number of observables, including the
topological charge, for which a rapid growth of the autocorrelation time is observed with
decreasing lattice spacing. This is often referred to as topological freezing. A solution to
the problem consists in using open boundary conditions in time [161], instead of the more
common periodic or antiperiodic ones. A combination of open and periodic boundary
conditions have recently been employed in a parallel tempering framework [162]. Other
approaches have been proposed, e.g., based on a multiscale thermalization algorithm
[163, 164], or based on defining QCD on a nonorientable manifold [165], or using huge
master fields [166, 167]. Approaches using trivializing or normalizing flows [168] try to
solve both the problem of topological freezing and critical slowing down by finding invert-
ible maps from simple probability distributions for the lattice configurations, which can be
efficiently sampled, to the target ones. Parameterizing these flows turns out to be difficult,
but can be facilitated by using machine-learning tools [169-173]. So far, these attempts
are restricted to simple field theories, low dimensions or, in four-dimensional SU(3) gauge
theories, to very small and coarse systems [174]. Reference [175] uses machine learning to
construct RG-improved gauge actions with highly suppressed lattice artifacts, such that
efficient calculations on coarse lattices suffice to yield solid continuum limits. The problem
of topological freezing and critical slowing down is also touched upon in Sec. 9.2.1, where
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it is stressed that attention must be paid to this issue.

Few results reviewed here have been obtained with any of the above methods. It is
usually assumed that the continuum limit can be reached by extrapolation from the ex-
isting calculations, and that potential systematic errors due to the long autocorrelation
times have been adequately controlled. Partially or completely frozen topology would
produce a mixture of different 6 vacua, and the difference from the desired § = 0 result
may be estimated in some cases using chiral perturbation theory, which gives predictions
for the #-dependence of the physical quantity of interest [176, 177]. These ideas have been
systematically and successfully tested in various models in [178, 179], and a numerical
test on MILC ensembles indicates that the topology dependence for some of the physical
quantities reviewed here is small, consistent with theoretical expectations [180].

Algorithms and numerical errors:

Most of the modern lattice-QCD calculations use exact algorithms such as those of
Refs. [181, 182], which do not produce any systematic errors when exact arithmetic is
available. In reality, one uses numerical calculations at double (or in some cases even
single) precision, and some errors are unavoidable. More importantly, the inversion of the
Dirac operator is carried out iteratively and it is truncated once some accuracy is reached,
which is another source of potential systematic error. In most cases, these errors have
been confirmed to be much less than the statistical errors. In the following, we assume
that this source of error is negligible. Some of the most recent calculations use an inex-
act algorithm in order to speed up the computation, though it may produce systematic
effects. Currently available tests indicate that errors from the use of inexact algorithms
are under control [183].

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging
lattice quantities have been outlined in our first publication [1]. Our aim is to help the
reader assess the reliability of a particular lattice result without necessarily studying the
original article in depth. This is a delicate issue, since the ratings may make things appear
simpler than they are. Nevertheless, it safeguards against the possibility of using lattice
results, and drawing physics conclusions from them, without a critical assessment of the
quality of the various calculations. We believe that, despite the risks, it is important to
provide some compact information about the quality of a calculation. We stress, however,
the importance of the accompanying detailed discussion of the results presented in the
various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These
include, as discussed in detail below, the chiral, continuum, and infinite-volume extrap-
olations. To each such source of error for which systematic improvement is possible we
assign one of three coloured symbols: green star, unfilled green circle (which replaced
in Ref. [2] the amber disk used in the original FLAG review [1]) or red square. These
correspond to the following ratings:

the parameter values and ranges used to generate the data sets allow for a satisfac-

tory control of the systematic uncertainties;

the parameter values and ranges used to generate the data sets allow for a reasonable

attempt at estimating systematic uncertainties, which however could be improved;

m the parameter values and ranges used to generate the data sets are unlikely to allow
for a reasonable control of systematic uncertainties.

19



The appearance of a red tag, even in a single source of systematic error of a given lattice
result, disqualifies it from inclusion in the global average.

Note that in the first two editions [1, 2], FLAG used the three symbols in order to rate
the reliability of the systematic errors attributed to a given result by the paper’s authors.
Starting with FLAG 16 [3] the meaning of the symbols has changed slightly—they now
rate the quality of a particular simulation, based on the values and range of the chosen
parameters, and its aptness to obtain well-controlled systematic uncertainties. They do
not rate the quality of the analysis performed by the authors of the publication. The
latter question is deferred to the relevant sections of the present review, which contain
detailed discussions of the results contributing (or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the following sources of system-
atic errors: (i) chiral extrapolation; (ii) continuum extrapolation; (iii) finite volume. As
we will see below, renormalization is another source of systematic uncertainties in several
quantities. This we also classify using the three coloured symbols listed above, but now
with a different rationale: they express how reliably these quantities are renormalized,
from a field-theoretic point of view (namely, nonperturbatively, or with 2-loop or 1-loop
perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those
rated by the coloured symbols, need to be evaluated before one can conclude whether a
particular analysis leads to results that should be included in an average or estimate. Some
of these aspects are not so easily expressible in terms of an adjustable parameter such
as the lattice spacing, the pion mass or the volume. As a result of such considerations,
it sometimes occurs, albeit rarely, that a given result does not contribute to the FLAG
average or estimate, despite not carrying any red tags. This happens, for instance, when-
ever aspects of the analysis appear to be incomplete (e.g., an incomplete error budget), so
that the presence of inadequately controlled systematic effects cannot be excluded. This
mostly refers to results with a statistical error only, or results in which the quoted error
budget obviously fails to account for an important contribution.

Of course, any colour coding has to be treated with caution; we emphasize that the
criteria are subjective and evolving. Sometimes, a single source of systematic error domi-
nates the systematic uncertainty and it is more important to reduce this uncertainty than
to aim for green stars for other sources of error. In spite of these caveats, we hope that
our attempt to introduce quality measures for lattice simulations will prove to be a useful
guide. In addition, we would like to stress that the agreement of lattice results obtained
using different actions and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are mea-
sured become tighter. For this reason FLAG reassesses criteria with each edition and as
a result some of the quality criteria (the one on chiral extrapolation for instance) have
been tightened up over time [1-4].

In the following, we present the rating criteria used in the current report. While these
criteria apply to most quantities without modification, there are cases where they need
to be amended or additional criteria need to be defined. For instance, the discussion
of the strong coupling constant in Sec. 9 requires tailored criteria for renormalization,
perturbative behaviour, and continuum extrapolation. Finally, in the section on nuclear
matrix elements, Sec. 10, the chiral extrapolation criterion is made slightly stronger, and
a new criterion is adopted for excited-state contributions. In such cases, the modified
criteria are discussed in the respective sections. Apart from only a few exceptions the
following colour code applies in the tables:
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e Chiral extrapolation:
My min < 200 MeV, with three or more pion masses used in the extrapolation
or two values of M, with one lying within 10 MeV of 135 MeV (the physical
neutral pion mass) and the other one below 200 MeV
200 MeV < My min < 400 MeV, with three or more pion masses used in the
extrapolation
or two values of M, with My min < 200 MeV
or a single value of M, lying within 10 MeV of 135 MeV (the physical neutral
pion mass)
m otherwise
This criterion is unchanged from FLAG 19. In Sec. 10 the upper end of the range
for M min in the green circle criterion is lowered to 300 MeV, as in FLAG 19.

e Continuum extrapolation:
at least three lattice spacings and at least two points below 0.1 fm and a range
of lattice spacings satisfying [amax/@min]* > 2
at least two lattice spacings and at least one point below 0.1 fm and a range of
lattice spacings satisfying [amax/@min]? > 1.4
m otherwise
It is assumed that the lattice action is O(a)-improved (i.e., the discretization er-
rors vanish quadratically with the lattice spacing); otherwise this will be explicitly
mentioned. For unimproved actions an additional lattice spacing is required. This
condition is unchanged from FLAG 19.

e Finite-volume effects:

The finite-volume colour code used for a result is chosen to be the worse of the QCD
and the QED codes, as described below. If only QCD is used the QED colour code
is ignored.
— For QCD:

(M min/My 5] exp{4 — M min[L(My min)|max} < 1, or at least three volumes

(M min/Myr sia]? exp{3 — Mz min[L(Myz min)|max} < 1, or at least two volumes

m otherwise

where we have introduced [L(My min)]max, which is the maximum box size used in
the simulations performed at the smallest pion mass My min, as well as a fiducial
pion mass My g4, which we set to 200 MeV (the cutoff value for a green star in the
chiral extrapolation). It is assumed here that calculations are in the p-regime of
chiral perturbation theory, and that all volumes used exceed 2 fm. The rationale
for this condition is as follows. Finite-volume effects contain the universal factor
exp{—M,L}, and if this were the only contribution a criterion based on the values
of My minL would be appropriate. However, as pion masses decrease, one must
also account for the weakening of the pion couplings. In particular, 1-loop chiral
perturbation theory [184] reveals a behaviour proportional to M2 exp{—M,L}. Our
condition includes this weakening of the coupling, and ensures, for example, that
simulations with My min = 135 MeV and My minl = 3.2 are rated equivalently to
those with My min = 200 MeV and My minl = 4.
— For QED (where applicable):

1/([Mr min L{M 7 min)]max) ™™ < 0.02, or at least four volumes

1/([Mr min L( Mz min)]max)™™® < 0.04, or at least three volumes

m otherwise

Because of the infrared-singular structure of QED, electromagnetic finite-volume
effects decay only like a power of the inverse spatial extent. In several cases like
mass splittings [185, 186] or leptonic decays [187], the leading corrections are known
to be universal, i.e., independent of the structure of the involved hadrons. In such
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cases, the leading universal effects can be directly subtracted exactly from the lattice
data. We denote n.,;, the smallest power of % at which such a subtraction cannot be
done. In the widely used finite-volume formulation QED; , one always has npyi, < 3
due to the nonlocality of the theory [188]. The QED criteria are used here only in
Sec. 4. Both QCD and QED criteria are unchanged from FLAG 19.

Isospin-breaking effects (where applicable):
all leading isospin-breaking effects are included in the lattice calculation
isospin-breaking effects are included using the electro-quenched approximation
m otherwise

This criterion is used for quantities which are breaking isospin symmetry or which
can be determined at the sub-percent accuracy where isospin-breaking effects, if not
included, are expected to be the dominant source of uncertainty. In the current
edition, this criterion is only used for the up- and down-quark masses, and related
quantities (e, @? and R?). The criteria for isospin-breaking effects are unchanged
from FLAG 19.

Renormalization (where applicable):
nonperturbative
1-loop perturbation theory or higher with a reasonable estimate of truncation
errors
m otherwise

In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop
in perturbation theory. In FLAG 13 [2], we decided that this was too restrictive,
since the error arising from renormalization constants, calculated in perturbation
theory at 1-loop, is often estimated conservatively and reliably. These criteria have
remained unchanged since then.

Renormalization Group (RG) running (where applicable):

For scale-dependent quantities, such as quark masses or By, it is essential that con-
tact with continuum perturbation theory can be established. Various different meth-
ods are used for this purpose (cf. Appendix A.3 in FLAG 19 [4]): Regularization-
independent Momentum Subtraction (RI/MOM), the Schrodinger functional, and
direct comparison with (resummed) perturbation theory. Irrespective of the par-
ticular method used, the uncertainty associated with the choice of intermediate
renormalization scales in the construction of physical observables must be brought
under control. This is best achieved by performing comparisons between nonper-
turbative and perturbative running over a reasonably broad range of scales. These
comparisons were initially only made in the Schriodinger functional approach, but
are now also being performed in RI/MOM schemes. We mark the data for which in-
formation about nonperturbative-running checks is available and give some details,
but do not attempt to translate this into a colour code.

The pion mass plays an important role in the criteria relevant for chiral extrapolation

and finite volume. For some of the regularizations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions, discretization effects give rise
to a mass difference between charged and neutral pions even when the up- and down-quark
masses are equal: the charged pion is found to be the heavier of the two for twisted-mass
Wilson fermions (cf. Ref. [189]). In early works, typically referring to Ny = 2 simulations
(e.g., Refs. [189] and [190]), chiral extrapolations are based on chiral perturbation theory
formulae which do not take these regularization effects into account. After the importance
of accounting for isospin breaking when doing chiral fits was shown in Ref. [191], later
works, typically referring to Ny = 2 4 1 + 1 simulations, have taken these effects into
account [8]. We use M+ for My iy in the chiral-extrapolation rating criterion. On the
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other hand, we identify M i, with the root mean square (RMS) of M+, M, - and M o
in the finite-volume rating criterion.

In the case of staggered fermions, discretization effects give rise to several light states
with the quantum numbers of the pion.® The mass splitting among these “taste” partners
represents a discretization effect of O(a?), which can be significant at large lattice spacings
but shrinks as the spacing is reduced. In the discussion of the results obtained with
staggered quarks given in the following sections, we assume that these artifacts are under
control. We conservatively identify My min with the root mean square (RMS) average
of the masses of all the taste partners, both for chiral-extrapolation and finite-volume
criteria.

In some of the simulations, the fermion formulations employed for the valence quarks
are different from those used for the sea quarks. Even when the fermion formulations are
the same, there are cases where the sea- and valence-quark masses differ. In such cases, we
use the smaller of the valence-valence and valence-sea M _. values in the finite-volume
criteria, since either of these channels may give the leading contribution depending on
the quantity of interest at the 1-loop level of chiral perturbation theory. For the chiral-
extrapolation criteria, on the other hand, we use the unitary point, where the sea- and
valence-quark masses are the same, to define M., .

The strong coupling a; is computed in lattice QCD with methods differing substan-
tially from those used in the calculations of the other quantities discussed in this review.
Therefore, we have established separate criteria for o results, which will be discussed in
Sec. 9.2.1.

In Sec. 10 on nuclear matrix elements, an additional criterion is used. This concerns
the level of control over contamination from excited states, which is a more challenging
issue for nucleons than for mesons. In response to an improved understanding of the
impact of this contamination, the excited-state contamination criterion has been made
more stringent compared to that in FLAG 19.

2.1.2 Data-driven criteria

For some time, the FLAG working groups have been considering using a ‘data-driven’
criterion in assessing how well the continuum limit is controlled. The quantity d(a) is
defined as

: (1)
7Q

were ((a) is the quantity under consideration with lattice spacing a, Q(0) is the extrap-
olated continuum-limit value, and og is its error in the continuum limit. If api, is the
smallest lattice spacing used, there is concern if §(amin) is very large. That is, the re-
sults at the finest lattice spacing should not be too many standard deviations from the
continuum limit in order for the extrapolation to be considered reliable.

The following is adopted for the current edition of the review: (1) Each working group
attempts to determine d(amin) for each calculation that contributes to a FLAG average.
However, it is not currently used as a criterion for inclusion in the averages. (2) The text
of the report includes these values for calculations contributing to FLAG averages. (3)
For the current edition of FLAG it is at the discretion of each working group to decide
whether they wish to inflate the error of contributions to the average for calculations with
large values of §(amin). If this is done, the inflation factor will be

5(8) = max[1,1+ 2(5 — 3)/3). 2)

The inflation of the error is not displayed in tables or plots. It is only used to evaluate
FLAG averages.

SWe refer the interested reader to a number of reviews on the subject [192-196].
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2.1.3 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action follows a very different
approach from that used for light flavours. There are several different methods for treating
heavy quarks on the lattice, each with its own issues and considerations. Most of these
methods use Effective Field Theory (EFT) at some point in the computation, either via
direct simulation of the EFT, or by using EFT as a tool to estimate the size of cutoff
errors, or by using EFT to extrapolate from the simulated lattice quark masses up to
the physical b-quark mass. Because of the use of an EFT, truncation errors must be
considered together with discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In
our earlier reviews, the calculations involving charm quarks often treated it using one of
the approaches adopted for the b quark. Since FLAG 16 [3], however, most calculations
simulate the charm quark using light-quark actions. This has become possible thanks to
the increasing availability of dynamical gauge field ensembles with fine lattice spacings.
But clearly, when charm quarks are treated relativistically, discretization errors are more
severe than those of the corresponding light-quark quantities.

In order to address these complications, the heavy-quark section adds an additional,
bipartite, treatment category to the rating system. The purpose of this criterion is to
provide a guideline for the level of action and operator improvement needed in each
approach to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy quarks on the lattice can
be found in Appendix A.1.3 of FLAG 19 [4]. For truncation errors we use HQET power
counting throughout, since this review is focused on heavy-quark quantities involving B
and D mesons rather than bottomonium or charmonium quantities. Here we describe the
criteria for how each approach must be implemented in order to receive an acceptable
rating (V') for both the heavy-quark actions and the weak operators. Heavy-quark im-
plementations without the level of improvement described below are rated not acceptable
(m). The matching is evaluated together with renormalization, using the renormaliza-
tion criteria described in Sec. 2.1.1. We emphasize that the heavy-quark implementations
rated as acceptable and described below have been validated in a variety of ways, such as
via phenomenological agreement with experimental measurements, consistency between
independent lattice calculations, and numerical studies of truncation errors. These tests
are summarized in Sec. 8.

Relativistic heavy-quark actions:

at least tree-level O(a)-improved action and weak operators
This is similar to the requirements for light-quark actions. All current implementations
of relativistic heavy-quark actions satisfy this criterion.

NRQCD:

tree-level matched through O(1/my;,) and improved through O(a?)
The current implementations of NRQCD satisfy this criterion, and also include tree-level
corrections of O(1/m?) in the action.
HQET:

tree-level matched through O(1/my,) with discretization errors starting at O(a?)
The current implementation of HQET by the ALPHA collaboration satisfies this criterion,
since both action and weak operators are matched nonperturbatively through O(1/my,).
Calculations that exclusively use a static-limit action do not satisfy this criterion, since
the static-limit action, by definition, does not include 1/m;, terms. We therefore include
static computations in our final estimates only if truncation errors (in 1/my,) are discussed
and included in the systematic uncertainties.

Light-quark actions for heavy quarks:
discretization errors starting at O(a?) or higher
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This applies to calculations that use the twisted-mass Wilson action, a nonperturbatively
improved Wilson action, domain-wall fermions or the HISQ action for charm-quark quan-
tities. It also applies to calculations that use these light-quark actions in the charm
region and above together with either the static limit or with an HQET-inspired extrapo-
lation to obtain results at the physical b-quark mass. In these cases, the combined list of
lattice spacings used for the data sets with mj; > 0.5my, pnys must satisfy the continuum-
extrapolation criteria.

2.1.4 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key
role, but the colour coding cannot be carried over to the figures. On the other hand,
simply showing all data on equal footing might give the misleading impression that the
overall consistency of the information available on the lattice is questionable. Therefore,
in the figures we indicate the quality of the data in a rudimentary way, using the following
symbols:
B corresponds to results included in the average or estimate (i.e., results that con-
tribute to the black square below);
[J corresponds to results that are not included in the average but pass all quality
criteria;
[J corresponds to all other results;
B corresponds to FLAG averages or estimates; they are also highlighted by a gray
vertical band.
The reason for not including a given result in the average is not always the same: the result
may fail one of the quality criteria; the paper may be unpublished; it may be superseded
by newer results; or it may not offer a complete error budget.
Symbols other than squares are used to distinguish results with specific properties and
are always explained in the caption.”
Often, nonlattice data are also shown in the figures for comparison. For these we use
the following symbols:
® corresponds to nonlattice results;
A corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we
clarify this distinction. To start with, both averages and estimates are based on results
without any red tags in their colour coding. For many observables there are enough
independent lattice calculations of good quality, with all sources of error (not merely
those related to the colour-coded criteria), as analyzed in the original papers, appearing
to be under control. In such cases, it makes sense to average these results and propose
such an average as the best current lattice number. The averaging procedure applied to
this data and the way the error is obtained is explained in detail in Sec. 2.3. In those
cases where only a sole result passes our rating criteria (colour coding), we refer to it
as our FLAG average, provided it also displays adequate control of all other sources of
systematic uncertainty.

On the other hand, there are some cases in which this procedure leads to a result that,
in our opinion, does not cover all uncertainties. Systematic errors are by their nature often
subjective and difficult to estimate, and may thus end up being underestimated in one or
more results that receive green symbols for all explicitly tabulated criteria. Adopting a

“For example, for quark-mass results we distinguish between perturbative and nonperturbative renormal-
ization, and for heavy-flavour results we distinguish between those from leptonic and semileptonic decays.
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conservative policy, in these cases we opt for an estimate (or a range), which we consider
as a fair assessment of the knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but reflects what we consider the
best possible analysis of the available information. The hope is that this will encourage
more detailed investigations by the lattice community.

There are two other important criteria that also play a role in this respect, but that
cannot be colour coded, because a systematic improvement is not possible. These are: i)
the publication status, and ) the number of sea-quark flavours Ny. As far as the former
criterion is concerned, we adopt the following policy: we average only results that have
been published in peer-reviewed journals, i.e., they have been endorsed by referee(s). The
only exception to this rule consists in straightforward updates of previously published
results, typically presented in conference proceedings. Such updates, which supersede the
corresponding results in the published papers, are included in the averages. Note that
updates of earlier results rely, at least partially, on the same gauge-field-configuration
ensembles. For this reason, we do not average updates with earlier results. Nevertheless,
all results are listed in the tables,® and their publication status is identified by the following
symbols:

e Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of April 2024 is relevant. If
the paper appeared in print after that date, this is accounted for in the bibliography, but
does not affect the averages.”

As noted above, in this review we present results from simulations with Ny = 2,
Ny =2+ 1and Ny = 2+ 1+ 1 (except for roAyg where we also give the Ny = 0
result). We are not aware of an a priori way to quantitatively estimate the difference
between results produced in simulations with a different number of dynamical quarks.
We therefore average results at fixed Ny separately; averages of calculations with different
Ny are not provided.

To date, no significant differences between results with different values of Ny have been
observed in the quantities listed in Tabs. 1, 2, 3, and 4. In particular, differences between
results from simulations with Ny = 2 and Ny = 2 4+ 1 would reflect Zweig-rule violations
related to strange-quark loops. Although not of direct phenomenological relevance, the
size of such violations is an interesting theoretical issue per se, and one that can be
quantitatively addressed only with lattice calculations. It remains to be seen whether the
status presented here will change in the future, since this will require dedicated Ny = 2
and Ny = 2 4+ 1 calculations, which are not a priority of present lattice work.

The question of differences between results with Ny =2+ 1 and Ny =24+ 141 is
more subtle. The dominant effect of including the charm sea quark is to shift the lattice
scale, an effect that is accounted for by fixing this scale nonperturbatively using physical
quantities. For most of the quantities discussed in this review, it is expected that residual
effects are small in the continuum limit, suppressed by as(m.) and powers of A%/m?2.
Here A is a hadronic scale that can only be roughly estimated and depends on the process
under consideration. Note that the A?/m? effects have been addressed in Refs. [198-202],
and were found to be small for the quantities considered. Assuming that such effects
are generically small, it might be reasonable to average the results from Ny =24 1 and
Ny =2+ 1+ 1 simulations, although we do not do so here.

8Whenever tables and figures turn out to be overcrowded, older, superseded results are omitted. However,
all the most recent results from each collaboration are displayed.
9As noted above in footnote 1, two exceptions to this deadline were made, Refs. [56, 197].
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2.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained by different collaborations,
and estimate the error on the resulting averages. Here we provide details on how averages
are obtained.

2.3.1 Averaging — generic case

We continue to follow the procedure of FLAG 13 and FLAG 16 [2, 3] which we describe
here in full detail.

One of the problems arising when forming averages is that not all of the data sets are
independent. In particular, the same gauge-field configurations, produced with a given
fermion discretization, are often used by different research teams with different valence-
quark lattice actions, obtaining results that are not really independent. Our averaging
procedure takes such correlations into account.

Consider a given measurable quantity ), measured by M distinct, not necessarily un-
correlated, numerical experiments (simulations). The result of each of these measurement
is expressed as

Q: = zizl:ogl):taf):l:n:t GEE) , (3)
where x; is the value obtained by the i experiment (i = 1,---, M) and az(a) (for a =
1,--+, E) are the various errors. Typically 051) stands for the statistical error and aga)

(o > 2) are the different systematic errors from various sources. For each individual result,
we estimate the total error o; by adding statistical and systematic errors in quadrature:

Qi = z o,
o = Z [ofo‘)]z (4)
a=1

Wi:M1727 (5)

2ic10i

the central value of the average over all simulations is given by

M
Ty = inwi. (6)
i=1

The above central value corresponds to a x?2, -weighted average, evaluated by adding
statistical and systematic errors in quadrature. If the fit is not of good quality (x2,;,/dof >
1), the statistical and systematic error bars are stretched by a factor S = /x?/dof.
Next, we examine error budgets for individual calculations and look for potentially
correlated uncertainties. Specific problems encountered in connection with correlations
between different data sets are described in the text that accompanies the averaging. If
there is reason to believe that a source of error is correlated between two calculations, a
100% correlation is assumed. The covariance matrix C;; for the set of correlated lattice
results is estimated by a prescription due to Schmelling [203]. This consists in defining

Oij = Z/ [Uz(a)r ) (7)

«

with Z/a running only over those errors of z; that are correlated with the corresponding
errors of the measurement z;. This expresses the part of the uncertainty in z; that is
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correlated with the uncertainty in x;. If no such correlations are known to exist, then we
take 0;,; = 0. The diagonal and off-diagonal elements of the covariance matrix are then
taken to be

Cy = o? (i=1,---, M),

K2

Cij = O0i:5 04 (Z7é]) (8)

Finally, the error of the average is estimated by

M M
oh = .Y wiw;Cyj 9)

i=1 j=1

and the FLAG average is
Qav = Tay T Oay . (10)

2.3.2 Nested averaging

We have encountered one case where the correlations between results are more involved,
and a nested averaging scheme is required. This concerns the B-meson bag parameters
discussed in Sec. 8.2. In the following, we describe the details of the nested averaging
scheme. This is an updated version of the section added in the web update of the FLAG
16 report.

The issue arises for a quantity @ that is given by a ratio, Q = Y/Z. In most simula-
tions, both Y and Z are calculated, and the error in () can be obtained in each simulation
in the standard way. However, in other simulations only Y is calculated, with Z taken
from a global average of some type. The issue to be addressed is that this average value
Z has errors that are correlated with those in Q.

In the example that arises in Sec. 8.2, Q = Bp, Y = Bpf3 and Z = f3. In one
of the simulations that contribute to the average, Z is replaced by Z, the PDG average
for f% [204] (obtained with an averaging procedure similar to that used by FLAG). This
simulation is labeled with ¢ = 1, so that

Y1
Q== (1)
The other simulations have results labeled );, with j > 2. In this set up, the issue is that
Z is correlated with the Q;, j > 2.10
We begin by decomposing the error in (); in the same schematic form as above,

n @ ()

o o o Yio=
Q=g+ 2+ B ... 48 4197 (12)

Z Z Z 7z

Here the last term represents the error propagating from that in Z, while the others arise
from errors in Y;. For the remaining @Q; (j > 2) the decomposition is as in Eq. (3). The
total error of ) then reads

1\ 2 @)\ 2 (E)\ 2 2
g g o Y;
U?=<§> +<;> ++<;> +<Z12) o, (13)

OThere is also a small correlation between Y7 and Z, but we follow the original Ref. [79] and do not take
this into account. Thus, the error in @ is obtained by simple error propagation from those in Y; and Z.
Ignoring this correlation is conservative, because, as in the calculation of By, the correlations between Bp f
and f2 tend to lead to a cancellation of errors. By ignoring this effect we are making a small overestimate of
the error in Q1.
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while that for the Q; (j > 2) is

1= () o) s () o

Correlations between @Q; and Q (j, k > 2) are taken care of by Schmelling’s prescription,
as explained above. What is new here is how the correlations between @1 and Q; (j > 2)
are taken into account.

To proceed, we recall from Eq. (9) that o is given by

M’
oy = 3 wlZewl2];ClZ)iy. (15)
il 5/ =1

Here the indices 7 and j’ run over the M’ simulations that contribute to Z, which, in
general, are different from those contributing to the results for Q. The weights w[Z] and
covariance matrix C[Z] are given an explicit argument Z to emphasize that they refer
to the calculation of this quantity and not to that of Q. C[Z] is calculated using the
Schmelling prescription [Egs. (7)—(9)] in terms of the errors, U[Z]E,a)
the correlations between the different calculations of Z.

We now generalize Schmelling’s prescription for o;.;, Eq. (7), to that for o1 (k > 2),
i.e., the part of the error in (); that is correlated with Q. We take

, taking into account

1 / N 9 Y2 M’
o = 4=z 2 [0 + 2 Do wlZlwl2); 2o - (16)
(@)K i3’

The first term under the square root sums those sources of error in Y; that are correlated
with Q. Here we are using a more explicit notation from that in Eq. (7), with (a) <> &
indicating that the sum is restricted to the values of o for which the error o’§,01‘) is correlated
with Q. The second term accounts for the correlations within Z with Qj, and is the
nested part of the present scheme. The new matrix C[Z]; j ) is a restriction of the full
covariance matrix C[Z], and is defined as follows. Its diagonal elements are given by

ClZiiresk = (0[Z]ier)? (@=1--- M), (17)
(@[Z)ver)? = D (0l2)5)2, (18)
(@) ¢k

(@)

where the summation Z/(a) 1 over () is restricted to those o[Z];;" that are correlated

with Q. The off-diagonal elements are

ClZlijiosk = 0lZlinjrorolZ]jier (@ #3') (19)
!/
oZgron = | D, @2 (20)
(a)>j'k

where the summation Z/(a) ok Over (a) is restricted to o[Z] z(»fl ) that are correlated with
both Zj/ and Qk~

The last quantity that we need to define is oy;;.




where the summation E'(a) .1 1s restricted to those U,(CO‘) that are correlated with one of

the terms in Eq. (13).

In summary, we construct the covariance matrix C;; using Eq. (8), as in the generic
case, except the expressions for o1, and o1 are now given by Eqgs. (16) and (21), respec-
tively. All other o;,; are given by the original Schmelling prescription, Eq. (7). In this
way, we extend the philosophy of Schmelling’s approach while accounting for the more
involved correlations.
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3 General definition of the low-energy limit of the
Standard Model

Authors: A. Portelli, A. Ramos, N. Tantalo

This section discusses the matching of quantum chromodynamics (QCD) and quantum
electrodynamics (QED) to nature in order to obtain predictions for low-energy Standard
Model observables. In particular, we discuss the prescription dependence, i.e., the depen-
dence on which observables are matched, arising when one neglects electromagnetic inter-
actions, an approximation made in numerous lattice and phenomenological calculations.
These ambiguities need to be controlled when combining high-precision observables—
typically with less than 1% of relative uncertainty—in that approximation. In order to
facilitate that, we propose here a fixed prescription for the separation of QCD and QED
contributions to any given hadronic observable. While this prescription is, in principle,
arbitrary, one has to take care not to introduce artificially large QED contributions and
to stay close to prescriptions used commonly in phenomenology. This prescription was
discussed and agreed upon during an open workshop that took place at the Higgs Cen-
tre for Theoretical Physics, Edinburgh, in May 2023, and therefore is referred to as the
“Edinburgh Consensus.”!!

We note that since this consensus emerged only recently, the majority of results in this
review are averaged neglecting potential discrepancies arising from the ambiguities. This
is, on the one hand, an adequate procedure in the case of quantities with uncertainties
larger than the size of expected QED corrections. On the other hand, it can be difficult
to correct these ambiguities to a common prescription since it requires the knowledge of
derivatives of observables in quark masses and couplings, rarely communicated in papers.
We emphasize the present consensus in the hope that it will be widely adopted in upcoming
high-precision Standard Model predictions, allowing future editions of this review to avoid
uncertainties resulting from these ambiguities.

3.1 First-order isospin-breaking expansion

According to our present knowledge, hadronic physics is well described by the low-energy
limit of the Standard Model, which is understood as energies well below the electroweak
symmetry-breaking scale Sgsp &~ 100 GeV. In that limit, the Standard Model is an
SU(3) x U(1) gauge theory defined by the QCD+QED Lagrangian, whose free parameters
are the e-, y-, and 7-lepton masses, the u-, d-, s-, c-, and b-quark masses, and the strong
and electromagnetic coupling constants, respectively, gs and e. In that context, isospin
symmetry is defined by assuming that the up and down quarks are identical particles apart
from their flavour. This symmetry is only approximate and it is broken by two effects:
the small but different masses of the two quarks, and their different electric charges. The
total effect is expected to be small, typically a O(1%) perturbation of a hadronic energy
or amplitude. Therefore, we consider only first-order perturbations in isospin-breaking
effects, and we expect this approximation to be accurate at the level of O(10~%) relative
precision.

The asymptotic states of QCD are hadrons not quarks, and hadron properties are the
only unambiguous observables experimentally available. Similarly, the strong coupling
constant is not directly accessible and can be substituted through dimensional transmu-
tation by a dimensionful hadronic energy scale. Moreover, the running of the electromag-
netic coupling constant is a higher-order correction beyond the order considered here. It
can be fixed to its Thomson-limit value. Finally, nature can be reproduced (up to weak

Uhttps://indico.ph.ed.ac.uk/event/257/
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and gravitational effects) by fixing the bare parameters of the QCD+QED Lagrangian to
reproduce the following inputs:

1. the Thomson-limit constant a® = £ = 7.2973525693(11) x 10~ [205),

2. the experimentally observed lepton masses mf,
3. a choice of Ny known independent hadronic quantities M . setting the quark masses,
4. a single known dimensionful hadronic quantity S?, setting the QCD scale.

The vectors my and M have three and Ny components, respectively, where N; is the
number of quark flavours in the calculation. In the present context, “known” is understood
as experimentally known for measurable quantities, or theoretically predicted for more
abstract quantitities, which are not accessible experimentally, but are renormalized and
gauge invariant and can be predicted by lattice gauge theory. If the dependency of a
given observable X (a, mg, M,S) on the above variables is known, then its physical value
is predicted by

X% = (8 X (a?,mf /S, M?/S?) = X (a?,m{, M?,S8%), (22)

where X is the dimensionless function describing X in units of the scale S, and [X] is the
energy dimension of X. Here M and S are assumed, without loss of generality, to have
an energy dimension of 1. Due to the renormalizability of QCD+QED, this prediction is
unambiguous, i.e., changing the variables M¢ and S? to other inputs with known physical
values will lead to the same prediction for renormalized observables.'?

In many instances, the precision required on hadronic observables is not as small as
one percent, and isospin-breaking effects are potentially negligible. In those cases, it is
generally considerably simpler to neglect the QED contributions, both for lattice and
phenomenological calculations. Moreover, even for observables requiring isospin-breaking
corrections to be computed, it can be phenomenologically relevant to separate an isospin-
symmetric value and isospin-breaking corrections (e.g., specific parts of the HVP contri-
bution to the muon g — 2, decay constants in weak decays). However, since experimental
measurements always contain isospin-breaking corrections, there are no experimental re-
sult available to define the list of inputs above for a = 0, or in the isospin-symmetric
limit. Still, one would like to define an expansion of the form

X=X + X’Y + XSU(Q) , (23)

where X is the isospin-symmetric value of X, and X, and Xgy(g) are the first-order
electromagnetic and strong isospin-breaking corrections, respectively. Only the sum of
these three terms is unambiguous.™ Defining a value for individual terms is prescription-
dependent, and requires additional, in principle arbitrary, inputs. This issue has been
discussed in reviews [206, 207], and both the phenomenology [208-210] and lattice [24, 25,
116, 211-221] literature. If quantities defined at o = 0 are involved in the investigation of
anomalies related to new physics searches, the associated prescriptions must be matched
across predictions. In the next section, we propose a prescription agreed upon at the
dedicated May 2023 workshop in Edinburgh.

3.2 Edinburgh Consensus

The decomposition Eq. (_23) can be unambiguously defined given two extra sets of inputs
(he, M, S) and (my, M, S) specifying pure QCD and isospin-symmetric QCD, respectively

2Here “renormalizability” for QED is understood as perturbative renormalizability, which is sufficient in
this context.

3Here “unambiguous” is used in a loose sense. Ambiguities of the order O(1/mz) and O(1/mn;+1), as well
as higher-order isospin-breaking corrections, remain and are considered to be irrelevant.
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QCD isoQCD QCD | isoQCD
M+ | 135.0 MeV | 135.0 MeV M.+/f+ | 1.034 | 1.034
Mp+ | 491.6 MeV | 494.6 MeV Mic+ [ frr | 3767 | 3.790
Mpo | 497.6 MeV | 494.6 MeV Mo/ fr+ | 3.813 | 3.790
Mp+ | 1967 MeV | 1967 MeV MD;r/fWJr 15.07 | 15.07
Mpo | 5367 MeV | 5367 MeV Mpo/frr | 41.13 | 41.13
ft 130.5 MeV | 130.5 MeV

Table 6: Edinburgh Consensus for the definition of pure QCD and isospin-symmetric QCD.
The rightmost table is redundant and provided for convenience.

(denoted QCD and isoQCD). It is understood that in QCD isospin symmetry can still
be broken by the up-down quark-mass difference. The QCD and isoQCD values of an
observable X can then be defined by

X = X(0,7,M,S) and X = X(0,1my,M,S), (24)
respectively. The variables M, S must have one dimension of linear dependency to reflect
the exact isospin symmetry of this theory. This means that there are only /Ny independent
numbers. Finally, the corrections in Eq. (23) are then defined by

X,=X?-X and Xgyp=X-X. (25)

One should notice that these definitions already constitute in themselves a prescription,
as QED has an isospin-symmetric component which is here assumed to be excluded from
the component X.

The proposed prescription defines lepton masses to always be equal to their ex-
perimental values (for which negligible experimental uncertainties are discarded), i.e.,
My = My = mf, and is based on the mass variables M = (M +, Mg+, Mo, Mp+, Mpo)
and the scale-setting quantity f.+, with the values given in Tab. 6.1 We will now com-
ment on the definition and applications of that prescription.

3.3 Comparison to other schemes

The hadronic quantities that define the proposed prescription, as well as their input values,
have been chosen to balance between two main constraints, on the one hand numerical
and on the other hand theoretical. Since any uncertainties on the theoretical inputs
have to be propagated to the predictions, the numerical constraint requires choosing the
matching observables among those that can be computed on the lattice with the highest
accuracy. The theoretical constraint requires choosing a definition of QCD that leads to
isospin-breaking corrections which are as close as possible to what has commonly been
done in the past, in particular, in phenomenological calculations.

On the numerical side, all the chosen hadronic inputs can be extracted from the leading
exponential behaviour at large Euclidean times of two-point mesonic lattice correlators
with high numerical precision. This constraint is the main reason behind the choice of
f=+ as the scale-setting observable. From the theoretical and phenomenological perspec-
tives, this can be seen as an uncomfortable choice. Indeed, the physical quantity that is
measured in experiments is the leptonic decay rate of the charged pion. In the full theory
(QCD+QED) soft photons as well as nonfactorisable virtual QED corrections have to be
taken into account in the theoretical calculation in order to use the experimental values as

MFor calculations with no active ¢ and/or b quarks, the M+ and/or M B0 components should be ignored.
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an input, and previous knowledge of the CKM matrix element V,,4 is required. From this
perspective, for example, the choice of the (27 -baryon mass used by several lattice col-
laborations might be more natural. However, the majority of lattice calculations are still
performed in the a = 0 limit, which makes f.+ a more accessible choice than a baryonic
quantity in most cases. It is crucial to note that our prescription defines QCD and iso-
QCD in the space of possible a = 0 theories, but the choice of coordinates to define these
points is arbitrary and can be changed using standard change-of-variable algebra, while
keeping the prescription fixed. In particular, the scale setting variable can be changed, as
we discuss now.

The prescription above can be implemented by using other inputs. This is possible
because QCD is renormalizable. Indeed, one can start by defining QCD using our pre-
scription to compute X and Mq, following the notation of the previous section, namely

X = X(0,700, M, fr+)  and Mg = Mo(0,70¢, M, fr+), (26)

where M and f.+ are given by the “QCD” column in Tab. 6. Once this calculation has
been done, the value of Mg that has been obtained (assuming for the moment that the
errors are negligible) can be substituted to fﬂ to redefine our prescription independently
from the pion decay constant. In practice, though, it will not be possible to neglect the
errors on Mg. This means that the equivalence between the two sets of coordinates,
explicitly

X = X(0, 14, M, frs) = X (0,700, M, M), (27)

can be established within the errors on Mg that will have to be propagated on any
prediction. In this respect, the choice of defining QCD by prescribing with no errors the
values appearing in Tab. 6 puts the choice of f,,+ on a slightly different footing than Mg,
The accuracy of this matching will directly depend on the accuracy of the dimensionless
ratio Mo, / f,r+. The whole discussion above can be reiterated identically for isoQCD,
replacing hatted quantities (X , ...) with barred ones (X, ...). It is important to note
that f.+ is used only to define QCD and plays no role in defining the full QCD+QED
theory. In particular, through a change of scale variable, like that discussed above, one
does not need to know the QED correction to the 71 leptonic decay rate to use our
prescription, and one does not lose the ability to predict this rate for high-precision
determinations of the |V,,q] CKM matrix element.

Theoretical constraints are the main reason behind the particular choice of values
prescribed in Tab. 6. Most isospin-breaking separation schemes used in the literature
aim at keeping constant the value of a definition of the renormalized quark masses when
sending « to zero between the physical QCD+QED theory and QCD. Such a class of con-
straints was implemented in various ways, for example by the RM123/RM123S collabora-
tion by computing directly quark masses in the MS scheme at 2 GeV [212, 217, 222, 223].
Another example comes from the BMW collaboration, which used in several calcula-
tions [24, 116, 211, 221] a scheme defined by keeping fixed the squared masses of gg-
connected mesons when changing «.. Although these schemes share similar aims, they are
not equivalent and differ by the choice of renormalization scale and scheme, as well as
the contribution from higher-order chiral corrections when using squared meson masses.
However, at the level of precision of current lattice calculations, no significant discrep-
ancies were observed between both approaches [217, 220, 221, 224], and the numerical
values of the pion and kaon masses in Tab. 6 are compatible with these determinations
within the current level of precision. We also note that the mass values prescribed here
are compatible with those produced from phenomenological inputs in the first edition of
FLAG [1], which predates the lattice references quoted above.

We end this chapter with a comment on Gasser-Rusetsky-Scimemi (GRS) type schemes
[209]. These authors emphasized the importance of keeping track of the scheme depen-
dence of the splitting in Eq. (23). They furthermore proposed to keep renormalized quark
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masses and the strong coupling at a particular matching scale p; (and a chosen renor-
malization scheme) fixed as one turns off the electromagnetic coupling. In contrast to the
perturbative models studied by GRS, such a scheme is hard to implement in QCD. Even
on the lattice, uncertainties are introduced which are larger than the isospin-breaking cor-
rections (see the sections on quark masses and a;). The RM123S scheme [222] mentioned
above is an electro-quenched GRS type scheme.'® Since there are no electromagnetic con-
tributions to ay in the electro-quenched approximation, the generic difficulties of a GRS
type scheme are circumvented.

5The electro-quenched approximation is defined by setting the electric charges of the sea quarks to zero.
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4 Quark masses

Authors: T. Blum, A. Portelli, A. Ramos

Quark masses are fundamental parameters of the Standard Model. An accurate de-
termination of these parameters is important for both phenomenological and theoretical
applications. The bottom- and charm-quark masses, for instance, are important sources
of parametric uncertainties in several Higgs decay modes. The up-, down- and strange-
quark masses govern the amount of explicit chiral symmetry breaking in QCD. From a
theoretical point of view, the values of quark masses provide information about the flavour
structure of physics beyond the Standard Model. The Review of Particle Physics of the
Particle Data Group contains a review of quark masses [225], which covers light as well
as heavy flavours. Here, we also consider light- and heavy-quark masses, but focus on
lattice results and discuss them in more detail. We do not discuss the top quark, however,
because it decays weakly before it can hadronize, and the nonperturbative QCD dynamics
described by present day lattice calculations is not relevant. The lattice determination
of light- (up, down, strange), charm- and bottom-quark masses is considered below in
Secs. 4.1, 4.2, and 4.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be
isolated, as they are confined inside hadrons. From a theoretical point of view, in QCD
with Ny flavours, a precise definition of quark masses requires one to choose a particu-
lar renormalization scheme. This renormalization procedure introduces a renormalization
scale i, and quark masses depend on this renormalization scale according to the Renor-
malization Group (RG) equations. In mass-independent renormalization schemes the RG
equations read

T — ). (25)
where the function 7(g) is the anomalous dimension, which depends only on the value
of the strong coupling oy = g%/(4n). Note that in QCD 7(g) is the same for all quark
flavours. The anomalous dimension is scheme dependent, but its perturbative expansion

7(9) IR — @ (do + dug® + ... (29)

has a leading coefficient dy = 8/(47)?, which is scheme independent.!® Equation (28),
being a first order differential equation, can be solved exactly by using Eq. (29) as the
boundary condition. The formal solution of the RG equation reads

g(w) (x
M; = (1) [2bog? ()] /) exp {‘/ dr [58 B bdaj } W

where by = (11 — 2N /3)/(4m)? is the universal leading perturbative coefficient in the
expansion of the g-function

dg g—o0

a — 3% (bo+ 015" +...) (31)

Bg) =n
which governs the running of the strong coupling. The renormalization group invariant
(RGI) quark masses M; are formally integration constants of the RG Eq. (28). They are
scale independent, and due to the universality of the coefficient dy, they are also scheme
independent. Moreover, they are nonperturbatively defined by Eq. (30). They only
depend on the number of flavours Ny, making them a natural candidate to quote quark
masses and compare determinations from different lattice collaborations. Nevertheless, it

1We follow the conventions of Gasser and Leutwyler [208].
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is customary in the phenomenology community to use the MS scheme at a scale p = 2
GeV to compare different results for light quarks and the charm quark, and to use a
scale equal to its own mass for the charm and bottom. In this review, we will quote final
averages for both quantities.

Results for quark masses are always quoted in the four-flavour theory unless otherwise
noted. Ny = 2 + 1 results have to be converted to the four-flavour theory. Fortunately,
the charm quark is heavy (Aqcp/me)? < 1, and this conversion can be performed in
perturbation theory with negligible (~ 0.2%) perturbative uncertainties.

Nonperturbative corrections in this matching are more difficult to estimate. Lattice
determinations do not show any significant deviation between Ny = 241 and Ny = 2+141
calculations. For example, the difference in the final averages for the mass of the strange
quark mg between Ny = 2+ 1 and Ny = 2 + 1 + 1 determinations is about 1.3%, or
about one standard deviation. Since these effects are suppressed by a factor of 1/Ng,
and a factor of the strong coupling at the scale of the charm mass, naive power counting
arguments would suggest that the effects are ~ 1%, in line with the above observation. On
the other hand, numerical nonperturbative studies [198, 200, 226] have found this power
counting argument to be an overestimate by one order of magnitude in the determination
the A-parameter and other quantities.

We quote all final averages at 2 GeV in the MS scheme and also the RGI values (in
the four-flavour theory). We use the exact RG Eq. (30). Note that to use this equation
we need the value of the strong coupling in the MS scheme at a scale i = 2 GeV. All our
results are obtained from the RG equation in the MS scheme and the 5-loop beta function
together with the value of the A-parameter in the four-flavour theory A% = 295(10) MeV
obtained in this review (see Sec. 9). We use the 5-loop mass anomalous dimension as
well [227]. In the uncertainties of the RGI masses, we separate the contributions from the
determination of the quark masses and the propagation of the uncertainty of A%. These
are identified with the subscripts m and A, respectively.

Conceptually, all lattice determinations of quark masses contain three basic ingredi-
ents:

1. Tuning the lattice bare-quark masses to match the experimental values of some
quantities. Pseudo-scalar meson masses provide the most common choice, since
they have a strong dependence on the values of quark masses.

2. Renormalization of the bare-quark masses. Bare-quark masses determined with the
above-mentioned criteria have to be renormalized. Many of the latest determinations
use some nonperturbatively defined scheme. One can also use perturbation theory
to connect directly the values of the bare-quark masses to the values in the MS
scheme at 2 GeV. Experience shows that 1-loop calculations are unreliable for the
renormalization of quark masses: usually at least two loops are required to have
trustworthy results.

3. If quark masses have been nonperturbatively renormalized, for example, to some
MOM or SF scheme, the values in this scheme must be converted to the phenomeno-
logically useful values in the MS scheme (or to the scheme/scale independent RGI
masses). Either option requires the use of perturbation theory. The larger the en-
ergy scale of this matching with perturbation theory, the better, and many recent
computations in MOM schemes do a nonperturbative running up to 3—4 GeV. Com-
putations in the SF scheme allow us to perform this running nonperturbatively over
large energy scales and match with perturbation theory directly at the electro-weak
scale ~ 100 GeV.

Note that many lattice determinations of quark masses make use of perturbation theory
at a scale of a few GeV.
We mention that lattice-QCD calculations of the b-quark mass have an additional
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complication which is not present in the case of the charm and light quarks. At the
lattice spacings currently used in numerical calculations the direct treatment of the b
quark with the fermionic actions commonly used for light quarks is very challenging.
Only two determinations of the b-quark mass use this approach, reaching the physical
b-quark mass region at two lattice spacings with aM ~ 1. There are a few widely used
approaches to treat the b quark on the lattice, which have already been discussed in the
FLAG 13 review (see Sec. 8 of Ref. [2]). Those relevant for the determination of the
b-quark mass will be briefly described in Sec. 4.3.

4.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for
the up and down quarks) or small (for the strange quark) compared to typical hadronic
scales. Thus, their impact on typical hadronic observables is minute, and it is difficult to
isolate their contribution accurately.

Fortunately, the spontaneous breaking of SU(3);,xSU(3)g chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e., pions, kaons, and eta. Indeed, the Gell-
Mann-Oakes-Renner relation [228] predicts that the squared mass of a NGB is directly
proportional to the sum of the masses of the quark and antiquark which compose it,
up to higher-order mass corrections. Moreover, because these NGBs are light, and are
composed of only two valence particles, their masses have a particularly clean statistical
signal in lattice-QCD calculations. In addition, the experimental uncertainties on these
meson masses are negligible. Thus, in lattice calculations, light-quark masses are typically
obtained by renormalizing the input quark mass and tuning them to reproduce NGB
masses, as described above.

4.1.1 Lattice determination of mg; and m,4

We now turn to a review of the lattice calculations of the light-quark masses and begin
with myg, the isospin-averaged up- and down-quark mass m,g4, and their ratio. Most
groups quote only m,q, not the individual up- and down-quark masses. We then discuss
the ratio m,/mg and the individual determinations of m,, and mg.

Quark masses have been calculated on the lattice since the mid-nineties. However,
early calculations were performed in the quenched approximation, leading to unquantifi-
able systematics. Thus, in the following, we only review modern, unquenched calculations,
which include the effects of light sea quarks.

Tables 7 and 8 list the results of Ny = 241 and Ny = 2+1+1 lattice calculations of m,
and myq. These results are given in the MS scheme at 2 GeV, which is standard nowadays,
though some groups are starting to quote results at higher scales (e.g., Ref. [229]). The
tables also show the colour coding of the calculations leading to these results. As indicated
earlier in this review, we treat calculations with different values of Ny separately.

Ny =2+ 1 lattice calculations

We begin with Ny = 2 4 1 calculations (see FLAG 19 and earlier editions for two-
flavour results). These and the corresponding results for m,q and mg are summarized
in Tab. 7. Given the very high precision of a number of the results, with total errors on
the order of 1%, it is important to consider the effects neglected in these calculations.
Isospin-breaking and electromagnetic effects are small on m,s and mg, and have been
approximately accounted for in the calculations that will be retained for our averages.
We have already commented that the effect of the omission of the charm quark in the sea
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is expected to be small, below our current precision, and we do not add any additional
uncertainty due to these effects in the final averages.

The only new computation since the previous FLAG edition is the determination of
light-quark masses by the CLQCD collaboration (CLQCD 23 [10]). Using stout-smeared
clover fermions, the ensembles reach the physical point and have three lattice spacings
to perform the continuum extrapolation. These look under control, having in all cases
d(amin) < 2 (see 2.1.2). Volumes are large, and these characteristics ensure that the rating
is % in all criteria. Renormalization is performed nonperturbatively in two different setups
(RI/MOM and SMOM), with the difference used as a systematic effect. This systematic
effect, in fact, dominates their error budget.

The ALPHA collaboration [22] uses nonperturbatively O(a) improved Wilson fermions
(a subset of the CLS ensembles [245]). The renormalization is performed nonperturba-
tively in the SF scheme from 200 MeV up to the electroweak scale ~ 100 GeV [246].
This nonperturbative running over such large energy scales avoids any use of perturba-
tion theory at low energy scales, but adds a cost in terms of uncertainty: the running
alone propagates to &~ 1% of the error in quark masses. This turns out to be one of the
dominant pieces of uncertainty for the case of ms. On the other hand, for the case of m,gq,
the uncertainty is dominated by the chiral extrapolations. The ensembles used include
four values of the lattice spacing below 0.09 fm, which qualifies for a # in the continuum
extrapolation, and pion masses down to 200 MeV. This value lies just at the boundary
of the rating, but since the chiral extrapolation is a substantial source of systematic
uncertainty, we opted to rate the work with a ©. In any case, this work enters in the
average and their results show a reasonable agreement with the FLAG average. In all
cases the data driven continuum limit criteria shows 6(amin) < 3.

We now comment in some detail on previous works that also contribute to the averages.

RBC/UKQCD 14 [12] significantly improves on their RBC/UKQCD 12B [229] work
by adding three new domain wall fermion ensembles to three used previously. Two of the
new simulations are performed at essentially physical pion masses (M, ~ 139 MeV) on
lattices of about 5.4 fm in size and with lattice spacings of 0.114 fm and 0.084 fm. It is
complemented by a third simulation with M, ~ 371 MeV, a ~ 0.063 fm and a rather small
L ~ 2.0fm. Altogether, this gives them six simulations with six unitary (msea = Myal)
M’s in the range of 139 to 371 MeV, and effectively three lattice spacings from 0.063 to
0.114 fm. They perform a combined global continuum and chiral fit to all of their results
for the m and K masses and decay constants, the {2 baryon mass and two Wilson-flow
parameters. Quark masses in these fits are renormalized and run nonperturbatively in the
RI-SMOM scheme. This is done by computing the relevant renormalization constant for
a reference ensemble, and determining those for other simulations relative to it by adding
appropriate parameters in the global fit. This calculation passes all of our selection
criteria, with 0(amin) =~ 1.

Ny = 2+ 1 MILC results for light-quark masses go back to 2004 [239, 240]. They
use rooted staggered fermions. By 2009 their simulations covered an impressive range of
parameter space, with lattice spacings going down to 0.045 fm, and valence-pion masses
down to approximately 180 MeV [19]. The most recent MILC Ny = 2 + 1 results, i.e.,
MILC 10A [16] and MILC 09A [19], feature large statistics and 2-loop renormalization.
Since these data sets subsume those of their previous calculations, these latest results are
the only ones that need to be kept in any world average.

The BMW 10A, 10B [13, 14] calculation still satisfies our stricter selection criteria.
They reach the physical up- and down-quark mass by interpolation instead of by extrap-
olation. Moreover, their calculation was performed at five lattice spacings ranging from
0.054 to 0.116 fm, with small extrapolations d(amin) < 2. The work uses full nonpertur-
bative renormalization and running and in volumes of up to (6 fm)3, guaranteeing that
the continuum limit, renormalization, and infinite-volume extrapolation are controlled. It
does neglect, however, isospin-breaking effects, which are small on the scale of their error
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bars.

Finally, we come to another calculation which satisfies our selection criteria, HPQCD 10
[15]. It updates the staggered-fermions calculation of HPQCD 09A [33]. In those papers,
the renormalized mass of the strange quark is obtained by combining the result of a pre-
cise calculation of the renormalized charm-quark mass m,. with the result of a calculation
of the quark-mass ratio m./ms. As described in Ref. [244] and in Sec. 4.2, HPQCD de-
termines m, by fitting Euclidean-time moments of the ¢c pseudoscalar density two-point
functions, obtained numerically in lattice QCD, to fourth-order, continuum perturbative
expressions. These moments are normalized and chosen so as to require no renormaliza-
tion with staggered fermions. Since m./ms requires no renormalization either, HPQCD’s
approach displaces the problem of lattice renormalization in the computation of m, to
one of computing continuum perturbative expressions for the moments. To calculate 1,4
HPQCD 10 [15] use the MILC 09 determination of the quark-mass ratio ms/myq [196].

HPQCD 09A [33] obtains m./ms = 11.85(16) [33] fully nonperturbatively, with a
precision slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass,
me(me) = 1.268(6),'7 is even more precise, achieving an accuracy better than 0.5%.

This discussion leaves us with six results for our final average for mg: CLQCD
23 [10], ALPHA 19 [22], MILC 09A [19], BMW 10A, 10B [13, 14], HPQCD 10 [15]
and RBC/UKQCD 14 [12]. Assuming that the result from HPQCD 10 is 100% correlated
with that of MILC 09A, as it is based on a subset of the MILC 09A configurations, we
find my = 92.3(1.0) MeV with a x?/dof = 1.60.

For the light-quark mass m,,q, the results satisfying our criteria are CLQCD 23, AL-
PHA 19, RBC/UKQCD 14B, BMW 10A, 10B, HPQCD 10, and MILC 10A. For the
error, we include the same 100% correlation between statistical errors for the latter two
as for the strange case, resulting in the following (at scale 2 GeV in the MS scheme, and
x?%/dof=1.4),

B . Mya = 3.387(39) MeV Refs. [11-16],
Ny=2+1: ms = 92.4(1.0) MeV Refs. [11-15, 19]. (32)
And the RGI values
N MEF! = 4.714(55),,(46) A MeV Refs. [10-16], (33)
! ' MR = 128.5(1.4),,(1.2) s MeV Refs. [10-15, 19].

Ny =2+41+1 lattice calculations

Since the previous review a new computation of mg, m,q has appeared, ETM 21A [7].
Using twisted-mass fermions with an added clover term to suppress O(a?) effects between
the neutral and charged pions, this work represents a significant improvement over ETM
14 [8]. Renormalization is performed nonperturbatively in the RI-MOM scheme. Their
ensembles comprise three lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for
the finest lattice spacings with pion masses reaching down to the physical point in the
two finest lattices spacings allowing a controlled chiral extrapolation. Their volumes are
large, with m, L between four and five. These characteristics of their ensembles pass the
most stringent FLAG criteria in all categories. This work extracts quark masses from two
different quantities, one based on the meson spectrum and the other based on the baryon
spectrum. Results obtained with these two methods agree within errors, but the size of
the continuum extrapolation is much larger for the case of the extractions based on the
meson spectrum. In particular, we estimate that é(amin) = 4-4.5 for the individual fits
that enter the determination of m.gq, mg respectively. We note that while these values are

"To obtain this number, we have used the conversion from u =3 GeV to m. given in Ref. [244].
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somewhat large, the systematic errors that the authors estimate in the determinations of
the light-quark masses are about the same size as the statistical fluctuations. This will
reduce the stretching factors to a value close to one, and, therefore we do not apply any
additional corrections for these cases. Nevertheless, we stress that some large continuum
extrapolations are present in this work.

Determinations based on the baryon spectrum agree well with the FLAG average while
the ones based on the meson sector are high in comparison (there is good agreement with
their previous results, ETM 14 [8]). Related with the previous point, it is important to
note that the determinations that involve large continuum extrapolations are the ones
that show a larger tension.

There are three other works that enter in light-quark mass averages. Contributing
both to the average of m,q and m, is FNAL/MILC/TUMQCD 18 [9]. They perform
a determination of the strange-quark mass using masses of the heavy-strange mesons as
input. In this case, some very large continuum extrapolations, with §(amin) =~ 14 enter
in a global analysis, but for the determination of the light-quark masses, we believe that
the influence of the data at heavier masses on the determination of the fit parameter
that determines mg is small. In the region Mmpeavy < 3 GeV the extrapolations are much
better under control, and in fact involve up to five lattice spacing. We conclude that the
large value of §(amin) does not influence significantly the values of the light-quark masses.
HPQCD 18 [17] and HPQCD 14A [18] contribute to the determination of m,q, and both
show 6(amin) < 3 for most of their region of parameters.

The Ny = 2 + 1 + 1 results are summarized in Tab. 8. While the results of HPQCD
14A and HPQCD 18 agree well (using different methods), there are several tensions in
the determination of mg. The most significant discrepancy is between the results of
the ETM collaboration and other results. But also the two very precise determinations
of HPQCD 18 and FNAL/MILC/TUMQCD 18 show a tension. Note that the results of
Ref. [18] are reported as m(2 GeV; Ny = 3) and those of Ref. [8] as 11,,4(5) (2 GeV; Ny = 4).
We convert the former to Ny = 4 and obtain ms(2GeV; Ny = 4) = 93.7(8)MeV. The
average of ETM 21A, FNAL/MILC/TUMQCD 18, HPQCD 18, ETM 14 and HPQCD
14A is 93.46(58)MeV with x2/dof = 1.3. For the light-quark mass, we average ETM
21A, ETM 14 and FNAL/MILC/TUMQCD 18 to obtain 3.427(51) with a x?/dof = 4.5.
We note these x? values are large. For the case of the light-quark masses there is a
clear tension between the ETM and FNAL/MILC/TUMQCD results. We also note that
the 2+1-flavour values are consistent with the four-flavour ones, so in all cases we have
simply quoted averages according to FLAG rules, including stretching factors for the errors
based on x2 values of our fits. Nevertheless it is worth pointing out that large continuum
extrapolations are present in the Ny = 24+1+1 determination of quark masses. Global fits
that aim at describing results obtained for a wide range of quark masses are involved in
many analyses. At small quark masses many lattice spacing enter these determinations,
but how the large quark mass region influences the precision obtained at small quark
masses is something that deserves further investigation.

Mg = 3.427(51) MeV Refs. [7-9],
Np=2+4+1+1: 4
gEatle my = 93.46(58) MeV Refs. [7-9, 17, 18], %)
and the RGI values
Ny —24141: MEGT = 4.768(71),,(46) , MeV Refs. [7-9], (35)

MEST = 130.0(0.8),,,(1.3) 4 MeV Refs. [7-9, 17, 18].

In Figs. 1 and 2 the lattice results listed in Tabs. 7 and 8 and the FLAG averages
obtained at each value of Ny are presented and compared with various phenomenological
results.
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Figure 1:  MS mass of the strange quark (at 2 GeV scale) in MeV. The upper two panels show
the lattice results listed in Tabs. 7 and 8, while the bottom panel collects sum rule results [247—
251]. Diamonds and squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands represent our averages
(32) and (34). The significance of the colours is explained in Sec. 2.

4.1.2 Lattice determinations of mg/myq

The lattice results for mg/m,q are summarized in Tab. 9. In the ratio mg/myq, one of the
sources of systematic error—the uncertainties in the renormalization factors—drops out.
This is especially important for the recent determination by the CLQCD collaboration,
since their error budget for the individual quark masses was dominated by the systematic
associated with the renormalization. Also, other systematic effects (like the effect of the
scale setting) are reduced in these ratios. This might explain that despite the discrepancies
that are present in the individual quark mass determinations, the ratios show an overall
very good agreement.

Ny =2+ 1 lattice calculations

CLQCD 23 [10], discussed already, is the only new result for this section. The other
works contributing to this average are ALPHA 19, RBC/UKQCD 14B, which replaces
RBC/UKQCD 12 (see Sec. 4.1.1), and the results of MILC 09A and BMW 10A, 10B.

The results show very good agreement with a x?/dof = 0.14. The final uncertainty
(= 0.5%) is smaller than the ones of the quark masses themselves. At this level of precision,
the uncertainties in the electromagnetic and strong isospin-breaking corrections might not
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shows results based on sum rules [247, 250, 252] (for more details see Fig. 1).

be completely negligible. Nevertheless, we decided not to add any uncertainty associated
with this effect. The main reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive power counting estimates
(see Ny =241+ 1 section),

Ny =2+41:  mg/mua=2742 (12)  Refs. [12-14, 19, 22]. (36)

Ny =2+ 1+1 lattice calculations

For Ny = 241+ 1 there are four results, ETM 21 [7], MILC 17 [20], ETM 14 [8] and
FNAL/MILC 14A [21], all of which satisfy our selection criteria.

All these works have been discussed in the previous FLAG edition [4], except the new
result ETM 21A, that we have already examined. The fit has x?/dof ~ 1.7, and the result
shows reasonable agreement with the Ny = 2 + 1 result.

Ny=2+1+1:  my/muq=27.227 (81)  Refs. [7, 8, 20, 21], (37)
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which corresponds to an overall uncertainty equal to 0.4%. It is worth noting that Ref. [20]
estimates the EM effects in this quantity to be ~ 0.18% (or 0.049 which is less than the
quoted error above).

All the lattice results listed in Tab. 9 as well as the FLAG averages for each value of
Ny are reported in Fig. 3 and compared with xPT and sum rules.
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Figure 3:

Results for the ratio mgs/myq. The upper part shows the lattice results listed in

Tab. 9 together with the FLAG averages for each value of Ny. The lower part shows results
obtained from xPT and sum rules [250, 253-256].

4.1.3 Lattice determination of m, and my

In this section, we review computations of the individual m, and mg quark masses, as
well as the parameter € related to the violations of Dashen’s theorem

(AME — AM2),
AM2 ’

€ =

(38)

where AM2 = M2, — M2, and AM} = M3, — M7, are the pion and kaon squared mass
splittings, respectively. The subscript 7, here and in the following, denotes corrections that
arise from electromagnetic effects only according to the prescription given in Section 3.
This parameter is often a crucial intermediate quantity in the extraction of the individual
light-quark masses. Indeed, it can be shown using the G-parity symmetry of the pion
triplet, that AM2 does not receive O(m, — mg) isospin-breaking corrections. In other
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at leading order in the isospin-breaking expansion. Once known, e allows one to consis-
tently subtract the electromagnetic part of the kaon-mass splitting to obtain the QCD
part of the kaon mass splitting (AM%)SU(Q). In contrast with the pion, the kaon QCD
splitting is sensitive to m, — mg4 and, in particular, proportional to it at leading order
in xPT. Therefore, the knowledge of € allows for the determination of m, — mg from a
chiral fit to lattice-QCD data. Originally introduced in another form in [257], € vanishes
in the SU(3) chiral limit, a result known as Dashen’s theorem. However, in the 1990’s nu-
merous phenomenological papers pointed out that e might be an O(1) number, indicating
a significant failure of SU(3) xPT in the description of electromagnetic effects on light-
meson masses. However, the phenomenological determinations of € feature some level of
controversy, leading to the rather imprecise estimate € = 0.7(5) given in the first edition
of FLAG. Starting with the FLAG 19 edition of the review, we quote more precise aver-
ages for €, directly obtained from lattice-QCD+QED simulations. We refer the reader to
earlier editions of FLAG and to the review [214] for discussions of the phenomenological
determinations of e.

The quality criteria regarding finite-volume effects for calculations including QED are
presented in Sec. 2.1.1. Due to the long-distance nature of the electromagnetic interaction,
these effects are dominated by a power law in the lattice spatial size. The coefficients of
this expansion depend on the chosen finite-volume formulation of QED. For QED;,, these
effects on the squared mass M? of a charged meson are given by [185, 186, 188]

AM? = (AM2Z), and €= -1, (39)

ApyM? = aM? {A?L+ (]\%)zﬁo [(MIL)R)H : (40)

with ¢; ~ —2.83730. It has been shown in [185] that the two first orders in this expan-
sion are exactly known for hadrons, and are equal to the pointlike case. However, the
O[1/(ML)3] term and higher orders depend on the structure of the hadron. The universal
corrections for QED, can also be found in [185]. In all this part, for all computations
using such universal formulae, the QED finite-volume quality criterion has been applied
with nyi, = 3, otherwise npyin = 1 was used (see 2.1.1).

Since FLAG 21, one new result has been reported for nondegenerate light-quark
masses, namely CLQCD 23 [10]. This result is based on a new set of Ny = 2 + 1 stout-
smeared clover fermion simulations, including one ensemble at the physical light-quark
mass. This calculation achieves a s rating in all criteria except the inclusion of isospin-
breaking effects. Regarding the latter, (AM2)7 from RM123 17 [23] is used to estimate
the QCD kaon-mass splitting required to constrain m, and my. Because of the use of a
result already averaged for Ny = 241+ 1 up- and down-quark masses, and in application
of our quality criterion, we do not include CLQCD 23 in our average for m,,/mg.

Regarding results already presented in previous FLAG editions, we start by reviewing
predictions for the Ny = 2+1 sector. MILC 09A [19] uses the mass difference between K°
and K+, from which they subtract electromagnetic effects using Dashen’s theorem with
corrections, as discussed in the introduction of this section. The up and down sea quarks
remain degenerate in their calculation, fixed to the value of m,4 obtained from M 0. To
determine m,/mg4, BMW 10A, 10B [13, 14] follow a slightly different strategy. They
obtain this ratio from their result for mg/m,q combined with a phenomenological deter-
mination of the isospin-breaking quark-mass ratio @ = 22.3(8), from 1 — 37 decays [261]
(the decay n — 3w is very sensitive to QCD isospin breaking, but fairly insensitive to
QED isospin breaking). Instead of subtracting electromagnetic effects using phenomenol-
ogy, RBC 07 [262] and Blum 10 [233] actually include a quenched electromagnetic field in
their calculation. This means that their results include corrections to Dashen’s theorem,
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Figure 4: Lattice results and FLAG averages at Ny = 241 and 2+1+1 for the up-down-quark
masses ratio m,,/mg, together with the current PDG estimate.

albeit only in the presence of quenched electromagnetism. Since the up and down quarks
in the sea are treated as degenerate, very small isospin corrections are neglected, as in
MILC’s calculation. PACS-CS 12 [231] takes the inclusion of isospin-breaking effects one
step further. Using reweighting techniques, it also includes electromagnetic and m, —my
effects in the sea. However, they do not correct for the large finite-volume effects coming
from electromagnetism in their ML ~ 2 simulations, but provide rough estimates for
their size, based on Ref. [263]. QCDSF/UKQCD 15 [259] uses QCD+QED dynamical
simulations performed at the SU(3)-flavour-symmetric point, but at a single lattice spac-
ing, so they do not enter our average. The smallest partially quenched (mgea 7 Myal) pion
mass is greater than 200 MeV, so our chiral-extrapolation criteria require a rating.
Concerning finite-volume effects, this work uses three spatial extents L of 1.6 fm, 2.2 fm,
and 3.3 fm. QCDSF/UKQCD 15 claims that the volume dependence is not visible on the
two largest volumes, leading them to assume that finite-size effects are under control. As
a consequence of that, the final result for quark masses does not feature a finite-volume
extrapolation or an estimation of the finite-volume uncertainty. However, in their work
on the QED corrections to the hadron spectrum [259] based on the same ensembles, a
volume study shows some level of compatibility with the QEDy, finite-volume effects de-
rived in [186]. We see two issues here. First, the analytical result quoted from [186]
predicts large, O(10%) finite-size effects from QED on the meson masses at the values of
M, L considered in QCDSF/UKQCD 15, which is inconsistent with the statement made
in the paper. Second, it is not known that the zero-mode regularization scheme used here

46



has the same volume scaling as QED;. We therefore chose to assign the m rating for
finite volume to QCDSF/UKQCD 15. BMW 16A [24] reuses the data set produced from
their determination of the light-baryon octet-mass splittings [211] using electro-quenched
QCD+QED~y, smeared clover-fermion simulations. Finally, MILC 16 [258], which is a
preliminary result for the value of € published in MILC 18 [25], also provides a Ny =2+1
computation of the ratio m,/mg.

We now describe the Ny = 2 + 1 + 1 calculations. ETM 14 [8] uses simulations in
pure QCD, but determines m, — mgy from the slope OM% /Om.q and the physical value
for the QCD kaon-mass splitting taken from the phenomenological estimate in FLAG
13. In the Ny = 2+ 1+ 1 sector, MILC 18 [25] computed € using Ny = 2 + 1 asqtad
electro-quenched QCD+QED.;, simulations and extracted the ratio m, /mg from a new
set of Ny = 2+ 1+ 1 HISQ QCD simulations. Although € comes from Ny = 2 +1
simulations, (AM%)SY() which is about three times larger than (AM?%)Y, has been
determined in the Ny = 2 4 1 + 1 theory. We therefore chose to classify this result
as a four-flavour one. This result is explicitly described by the authors as an update of
MILC 17 [20]. In MILC 17 [20], m,, /mg is determined as a side-product of a global analysis
of heavy-meson decay constants, using a preliminary version of e from MILC 18 [25]. In
FNAL/MILC/TUMQCD 18 [9] the ratio m,,/mg from MILC 17 [20] is used to determine
the individual masses m,, and mg from a new calculation of m,,4. The work RM123 17 [23]
is the continuation of the Ny = 2 work named RM123 13 [212] in the previous edition of
FLAG. This group now uses Ny =2+ 1+ 1 ensembles from ETM 10 [264], however, still
with a rather large minimum pion mass of 270 MeV, leading to the o rating for chiral
extrapolations.

Lattice results for m,,, mq and m, /mg4 are summarized in Tab. 10. The colour coding
is specified in detail in Sec. 2.1. Considering the important progress in the last years on
including isospin-breaking effects in lattice simulations, we are now in a position where
averages for m, and mgy can be made without the need of phenomenological inputs.
Therefore, lattice calculations of the individual quark masses using phenomenological
inputs for isospin-breaking effects will be coded m .

We begin with Ny = 2+ 1 (for Ny = 2 see the 2021 edition). The only result that
qualifies to enter the FLAG average is BMW 16A [24],

My = 2.27(9) MeV Ref. [24],
Ny=2+1: mq = 4.67(9) MeV Ref. [24], (41)
M /mg = 0.485(19) Ref. [24],

with errors of roughly 4%, 2% and 4%, respectively. These numbers result in the following
RGI averages

MBECT = 3.15(12),,,(4) A MeV Ref. [24],
Ny =2+1: MRS = 6.49(12),,(7) s MeV Ref. [24].  (42)
Finally, for Ny =2+ 1+ 1, RM123 17 [23] and FNAL/MILC/TUMQCD 18 [9] enter

the average for the individual m,, and mg masses, and RM123 17 [23] and MILC 18 [25]
enter the average for the ratio m,/mg, giving

My = 2.14(8) MeV Refs. [9, 23],
Ny=2+1+1: mg = 4.70(5) MeV Refs. [9, 23], (43)
My /mg = 0.465(24) Refs. [23, 25].

with errors of roughly 4%, 1% and 5%, respectively. One can observe some marginal
discrepancies between results coming from the MILC collaboration and RM123 17 [23].
More specifically, adding all sources of uncertainties in quadrature, one obtains a 1.70
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discrepancy between RM123 17 [23] and MILC 18 [25] for m,,/mg, and a 2.20 discrepancy
between RM123 17 [23] and FNAL/MILC/TUMQCD 18 [9] for m,,. However, the values
of mg and € are in very good agreement between the two groups. These discrepancies
are presently too weak to constitute evidence for concern, and will be monitored as more
lattice groups provide results for these quantities. The RGI averages for m,, and mgy are

MECL = 2.97(11),,(3) s MeV Refs. [9, 23],
Ny=2+1+1: MFCT = 6.53(7) (8)a MeV Refs. [9, 23].  (44)

Every result for m, and mg used here to produce the FLAG averages relies on electro-
quenched calculations, so there is some interest to comment on the size of quenching
effects. Considering phenomenology and the lattice results presented here, it is reasonable
for a rough estimate to use the value (AMZ2)Y ~ 2000 MeV? for the QED part of the
kaon-mass splitting. Using the arguments presented in Sec. B.1, one can assume that the
QED sea contribution represents O(10%) of (AM32)". Using SU(3) PQxPT+QED [265,
266] gives a ~ 5% effect. Keeping the more conservative 10% estimate and using the
experimental value of the kaon-mass splitting, one finds that the QCD kaon-mass splitting
(AM3)SU®) gsuffers from a reduced 3% quenching uncertainty. Considering that this
splitting is proportional to m, —m4 at leading order in SU(3) xPT, we can estimate that
a similar error will propagate to the quark masses. So the individual up and down masses
look mildly affected by QED quenching. However, one notices that ~ 3% is the level of
error in the new FLAG averages, and increasing significantly this accuracy will require
using fully dynamical calculations.

In view of the fact that a massless up quark would solve the strong CP problem, many
authors have considered this an attractive possibility, but the results presented above
exclude this possibility: the value of m, in Eq. (41) differs from zero by 26 standard
deviations. We conclude that nature solves the strong CP problem differently.

Finally, we conclude this section by giving the FLAG averages for € defined in Eq. (38).
For Ny =2+ 1+ 1, we average the results of RM123 17 [23] and MILC 18 [25] with the
value of (AMZ)” from BMW 14 [185] combined with Eq. (39), giving

Ny=2+1+1: € =0.79(6) Refs. [23, 25, 185]. (45)

Although BMW 14 [185] focuses on hadron masses and did not extract the light-quark
masses, they are the only fully unquenched QCD+QED calculation to date that qualifies
to enter a FLAG average. With the exception of renormalization, which is not discussed
in the paper, that work has a % rating for every FLAG criterion considered for the m,,
and mgq quark masses. For Ny =2+ 1 we use the results from BMW 16A [24],

Nf=2+41: € =0.73(17) Ref. [24]. (46)

It is important to notice that the e uncertainties from BMW 16A and RM123 17
are dominated by estimates of the QED quenching effects. Indeed, in contrast with the
quark masses, € is expected to be rather sensitive to the sea-quark QED contributions.
Using the arguments presented in Sec. B.1, if one conservatively assumes that the QED
sea contributions represent O(10%) of (AMZ%)7, then Eq. (39) implies that ¢ will have
a quenching error of ~ 0.15 for (AMZ)? ~ (45 MeV)?, representing a large ~ 20%
relative error. It is interesting to observe that such a discrepancy does not appear between
BMW 14 and RM123 17, although the ~ 10% accuracy of both results might not be
sufficient to resolve these effects. On the other hand, in the context of SU(3) chiral
perturbation theory, Bijnens and Danielsson [265] show that the QED quenching effects
on € do not depend on unknown LECs at NLO in the chiral expansion and are therefore
computable at that order. In that approach, MILC 18 finds the effect at NLO to be only
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5%. To conclude, although the controversy around the value of € has been significantly
reduced by lattice-QCD+QED determinations, computing this at few-percent accuracy
requires simulations with charged sea quarks.

4.1.4 Estimates for R and

The quark-mass ratios

2 2

m2 —m
and Q%= — ”2d
mg — My, m3 —m?

Ms — Myd

R

(47)

compare SU(3) breaking with isospin breaking. Both numbers only depend on the ratios
Ms/Myq and my, /mg,

1+ mu
R:l(ms—1> ma and Q2:1<m5+1)R. (48)

2 mayd 1-— P
The quantity @ is of particular interest because of a low-energy theorem [267], which
relates it to a ratio of meson masses,

N2 — A2 . . . - -
2 _ Mg K T MgE%(M?r++M30)7 M%(E%(M?(++Ml2(o). (49)

e = M2 M2, — M2,
(We remind the reader that the ~ denotes a quantity evaluated in the o — 0 limit.) Chiral

symmetry implies that the expansion of Q3, in powers of the quark masses (i) starts with
Q? and (ii) does not receive any contributions at NLO [267]:

Qu = Q. (50)
For Ny =2+ 1, we use Egs. (36) and (41) and obtain
R =38.1(1.5), Q = 23.3(0.5) , (51)
and for Ny =2 +141,
R =35.9(1.7), Q = 22.5(0.5) , (52)

which are quite compatible (see the 2021 edition for the two flavour numbers which are
also compatible with the above). It is interesting to note that the most recent phenomeno-
logical determination of R and @ from n — 37 decay [268] gives the values R = 34.4(2.1)
and @ = 22.1(0.7), which are consistent with the averages presented here. The authors
of Refs. [268, 269] point out that this discrepancy is likely due to surprisingly large cor-
rections to the approximation in Eq. (50) used in the phenomenological analysis.

Our final results for the masses m.,,, Mg, Mqyq, Mms and the mass ratios m, /mq, ms/mayq,
R, Q are collected in Tabs. 11 and 12.
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Collaboration Ref. 4 & OOQ § & &§ Mud mMs
CLQCD 23 [10] A e 3.60(11)(15) 98.8(2.9)(4.7)
ALPHA 19 [11] A e 3.54(12)(9) 95.7(2.5)(2.4)
Maezawa 16 230 A = d - 92.0(1.7)
RBC/UKQCD 14B® [12] A d  3.31(4)(4) 90.3(0.9)(1.0)
RBC/UKQCD 12° [229] A d  33709)(7)(1)(2)  92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12* [231] A TR b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [54] C —  3.31(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B* [13,14] A ¢ 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 [232] A SR b 2.78(27) 86.7(2.3)
MILC 10A [16] C — 3.19(4)(5)(16) -
HPQCD 10** [15] A - —  3.39(6) 92.2(1.3)
RBC/UKQCD 10A [119] A a  3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum 10% [233] A . — 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [234] A E = b 2.97(28)(3) 92.75(58)(95)
HPQCD 09A® 33] A - = 3.40(7) 92.4(1.5)
MILC 09A [19] C — 3.25 (1)(7)(16)(0)  89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [196] A —3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [235] A m o= m - 2527(47) 72.72(78)
RBC/UKQCD 08 [236] A n —  3.72(16)(33)(18)  107.3(4.4)(9.7)(4.9)
?EQ%%C% 237] A = - 35519)(*%) 90.1(4.3)(*157)
HPQCD 05 [238] A - 3.2(0)(2)(2)(0)* 87(0)(4)(4)(0)*
ﬁiig /%kglé%%a/ 239, 240] A n - 280)1)B)0)  76(0)(3)(7)(0)

© The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using
numerically integrated 4-loop running [241, 242] with Ny = 3 and with the values of as(Mz), msp, and
me taken from Ref. [243]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that perturbative running uncertainties are small. We neglect them here.

The calculation includes electromagnetic and m,, # mygy effects through reweighting.
The fermion action used is tree-level improved.
** m, is obtained by combining m. and HPQCD 09A’s m./m, = 11.85(16) [33].

Finally, mq is

determined from ms with the MILC 09 result for ms/mqyq. Since m./ms is renormalization group
invariant in QCD, the renormalization and running of the quark masses enter indirectly through that
of m. (see below).

The calculation includes quenched electromagnetic effects.

What is calculated is me/ms = 11.85(16). ms is then obtained by combining this result with the
determination mc(m.) = 1.268(9) GeV from Ref. [244]. Finally, m,q is determined from m, with the
MILC 09 result for ms/mqq.

The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop
to 1-loop renormalization factors.

The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Ny = 3 RI-SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing
results in the two schemes in the region of 2 GeV to 3 GeV [119].

The masses are renormalized and run nonperturbatively up to a scale of 40 GeV in the Ny = 3 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 40 GeV all the way down to 3 GeV [232].

The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Ny = 3 RI-MOM
scheme. In this scheme, nonperturbative and N3*LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [14].

All required running is performed nonperturbatively.

Running is performed nonperturbatively from 200 MeV to the electroweak scale ~ 100 GeV.

Table 7: Ny = 2 + 1 lattice results for the masses m,q and m; (MeV).
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Collaboration Ref. ) O < < 5 < Mud ms
ETM 21A 71 A —  3.636(66)(T%2)  98.7(2.4)(739)
HPQCD 187 7 A - 94.49(96)
FNAL/MILC/TUMQCD 18 [9] A —  3.404(14)(21) 92.52(40)(56)
HPQCD 14A © (18] A - = 93.7(8)
ETM 14% 8] A —  3.70(13)(11) 99.6(3.6)(2.3)

T Bare-quark masses are renormalized nonperturbatively in the RI-SMOM scheme at scales u~2-5GeV
for different lattice spacings and translated to the MS scheme. Perturbative running is then used to run
all results to a reference scale p = 3 GeV.

®  As explained in the text, ms is obtained by combining the results m.(5 GeV; Ny = 4) = 0.8905(56) GeV
and (me/ms)(Ny = 4) = 11.652(65), determined on the same data set. A subsequent scale and scheme
conversion, performed by the authors, leads to the value 93.6(8). In the table, we have converted this
to ms(2 GeV; Ny = 4), which makes a very small change.

Table 8: Ny =2+ 1+ 1 lattice results for the masses m,q and m; (MeV).

o1



$§
~
s & &
> ~¥ <
& S & o
S & g
S F § 05
NS4 N & o
s £ § 3
Collaboration Ref. Ny g 4 & & Ms/Mud
ETM 21A (7] 24+1+1 A 27.17(32) 158
MILC 17 % [20] 2+1+1 A 27.178(47) 155
FNAL/MILC 14A [21] 24+1+1 A 27.35(5)*3°
ETM 14 8] 24141 A 26.66(32)(2)
CLQCD 23 [10] 2+1 A 27.47(30)(13)
ALPHA 19 [22] 2+1 A 27.0(1.0)(0.4)
RBC/UKQCD 14B [12] 2+1 A 27.34(21)
RBC/UKQCD 12° [229] 2+1 A 27.36(39)(31)(22)
PACS-CS 12* [231] 2+1 A " " 26.8(2.0)
Laiho 11 [54] 2+1 ¢ 28.4(0.5)(1.3)
BMW 10A, 10B* [13, 14] 2+1 A 27.53(20)(8)
RBC/UKQCD 10A [119] 2+1 A 26.8(0.8)(1.1)
Blum 10f [233] 241 A m 28.31(0.29)(1.77)
PACS-CS 09 [234] 241 A " " 31.2(2.7)
MILC 09A [19] 241 C 27.41(5)(22)(0)(4)
MILC 09 [196] 2+1 A 27.2(1)(3)(0)(0)
PACS-CS 08 [235] 2+1 A " " 28.8(4)
RBC/UKQCD 08 [236] 2+1 A " 28.8(0.4)(1.6)
MILC 04, HPQCD/ 00 o451 941 A 27.4(1)(4)(0)(1)

MILC/UKQCD 04

The calculation includes electromagnetic effects.

The errors are statistical, chiral and finite volume.

The calculation includes electromagnetic and m,, # mq effects through reweighting.
The fermion action used is tree-level improved.

f The calculation includes quenched electromagnetic effects.

Table 9: Lattice results for the ratio ms/myq.
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N f Myd ms ms/ Mud

2+1+1 3.410(43) 93.44(68) 27.23(10)

241 3.364(41) 92.03(88) 27.42(12)

Table 11: Our estimates for the average up-down-quark mass and the strange-quark mass
in the MS scheme at running scale u = 2 GeV. Mass values are given in MeV. In the results
presented here, the error is the one which we obtain by applying the averaging procedure of
Sec. 2.3 to the relevant lattice results.

Ny M mq My /Mg R Q
24141 2.14(8) 4.70(5) 0.465(24) 35.9(1.7) 22.5(0.5)
241 2.27(9) 4.67(9) 0.485(19) 38.1(1.5) 23.3(0.5)

Table 12: Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale ; = 2 GeV. Mass
values are given in MeV.
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4.2 Charm-quark mass

In the following, we collect and discuss the lattice determinations of the MS charm-
quark mass .. Most of the results have been obtained by analyzing the lattice-QCD
simulations of two-point heavy-light- or heavy-heavy-meson correlation functions, using
as input the experimental values of the D, D, and charmonium mesons. Some groups use
the moments method. The latter is based on the lattice calculation of the Euclidean time
moments of pseudoscalar-pseudoscalar correlators for heavy-quark currents followed by an
OPE expansion dominated by perturbative QCD effects, which provides the determination
of both the heavy-quark mass and the strong-coupling constant c.

The heavy-quark actions adopted by various lattice collaborations have been discussed
in previous FLAG reviews [2—4], and their descriptions can be found in Sec. A.1.3 of FLAG
19 [4]. While the charm mass determined with the moments method does not need any
lattice evaluation of the mass-renormalization constant Z,,, the extraction of m,. from
two-point heavy-meson correlators does require the nonperturbative calculation of Z,,.
The lattice scale at which Z,, is obtained is usually at least of the order 2-3 GeV, and
therefore it is natural in this review to provide the values of M (1) at the renormalization
scale u = 3 GeV. Since the choice of a renormalization scale equal to . is still commonly
adopted (as by the PDG [225]), we have collected in Tab. 13 the lattice results for both
m.(M.) and M.(3 GeV), obtained for Ny =2+ 1 and 2+ 1+ 1. For Ny = 2, interested
readers are referred to previous reviews [2, 3].

When not directly available in the published work, we apply a conversion factor using
perturbative QCD evolution at five loops to run down from pu = 3 GeV to the scales
w = . and 2 GeV of 0.7739(60) and 0.9026(23), respectively, where the error comes
from the uncertainty in Aqcp. We use Aqep = 297(12) MeV for Ny = 4 (see Sec. 9).
Perturbation theory uncertainties, estimated as the difference between results that use
4- and 5-loop running, are significantly smaller than the parametric uncertainty coming
from Aqcp. For p = ., the former is about about 2.5 times smaller.

In the next subsections, we review separately the results for 7. with three or four
flavours of quarks in the sea.

4.2.1 Ny =2+1 results

Since the last review [5], there is one new result: ALPHA 23 [28]. This work uses a sub-
set of CLS ensembles, based on simulations of nonperturbatively O(a)-improved Wilson
fermions. The difference with ALPHA 21 is that the valence sector uses both Wilson and
twisted-mass discretizations instead of just Wilson. Renormalization is based on previous
work by the ALPHA collaboration, and is performed nonperturbatively from 100 MeV
to the electroweak scale. The subset of ensembles used have large volumes, four lattice
spacings, and reach pion masses of 200 MeV, which guarantees entering in the average.
Contrary to the extraction of light-quark masses in ALPHA 19, the chiral extrapolation
does not dominate the error budget, and being less critical in this case we decide to give
a for the chiral extrapolation. The data-driven criteria quantity for the continuum
extrapolation §(amin) (see 2.1.2) is smaller than 3 in all cases.

Petreczky 19 employs the HISQ action on ten ensembles with ten lattice spacings
down to 0.025 fm, physical strange-quark mass, and two light-quark masses, the lightest
corresponding to 161 MeV pions. Their study incorporates lattices with 11 different sizes,
ranging from 1.6 to 5.4 fm. The masses are computed from moments of pseudoscalar
quarkonium correlation functions, and MS masses are extracted with 4-loop continuum
perturbation theory. Thus, that work easily rates green stars in all categories. Continuum
extrapolations are challenging, but judging the data itself the values of d(amin) are not
very large. It is just that the functional form of the data is complicated.

ALPHA 21 uses the O(a)-improved Wilson-clover action with five lattice spacings from
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Collaboration ~ Ref. Ny § ¥ & & ¢ me(me) me(3 GeV)
ETM 21A 7] 24141 P 1.339(22)(F1)(10)"  1.036(17)(TL%)
HPQCD 20A  [27] 24141 A 1.2719(78) 0.9841(51)
HPQCD 18 [17] 2+1+1 A 1.2757(84) 0.9896(61)
FNAL/MILC/
TUMQCD 18 9] 24141 A —  1.273(4)(1)(10) 0.9837(43)(14)(33)(5)
HPQCD 14A  [18] 24141 A —  1.2715(95) 0.9851(63)
ETM 14A [26] 24141 A 1.3478(27)(195) 1.0557(22)(153)*
ETM 14 8] 2+14+1 A 1.348(46) 1.058(35)*
ALPHA 23 28]  2+1 At 1.296(15) 1.006(9)
ALPHA 21 [32] 241 A* 1.296(19) 1.007(16)
Petreczky 19 [31] 2+1 A 1.265(10) 1.001(16)
Maezawa 16 [230] 2+1 A (] 1.267(12)
JLQCD 16 [30]  2+1 A —  1.2871(123) 1.0033(96)
xQCD 14 [29] 2+1 A 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [15]  2+1 A —  1.273(6) 0.986(6)
HPQCD 08B [244] 2+1 A —  1.268(9) 0.986(10)
PDG [225] 1.27(2)

T We applied the running factor 0.7739(60) for 1 = 3 GeV to m.. The errors are statistical, systematic,
and the uncertainty in the running factor.

* A running factor equal to 0.900 between the scales p = 2 GeV and p = 3 GeV was applied by us.

T Published after the FLAG deadline.

Table 13:

Lattice results for the MS charm-quark mass m.(m.) and m.(3 GeV) in GeV,

together with the colour coding of the calculations used to obtain them.

0.087 to 0.039 fm, produced by the CLS collaboration. For each lattice spacing, several
light sea-quark masses are used in a global chiral-continuum extrapolation (the lightest
pion mass for one ensemble is 198 MeV). The authors also use nonperturbative renormal-
ization and running through application of step-scaling and the Schrodinger functional
scheme. Finite-volume effects are investigated at one lattice spacing and only for ~ 400
MeV pions on the smallest two volumes where results are compatible within statistical
errors. ALPHA 21 satisfies the FLAG criteria for green-star ratings in all of the categories
listed in Tab. 13. The values of 0(amin) are smaller than 3 in all continuum extrapolations.
Descriptions of the other works in this section can be found in an earlier review [4].

According to our rules on the publication status, the FLAG average for the charm-
quark mass at Ny = 2 + 1 is obtained by combining the results HPQCD 10, xQCD 14,
JLQCD 16, Petreczky 19, ALPHA 21 and ALPHA 23,

me(m.) = 1.278(6) GeV
Me(3 GeV) = 0.991(6) GeV

Refs. [15, 28-32],
Refs. [15, 28-32],

(53)

Ne=2+1:
gt (54)
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This result corresponds to the following RGI average

MRS = 1.526(7),,(21) s GeV Refs. [15, 29-32] . (55)

4.2.2 Ny=2+1+1 results

For a discussion of older results, see the previous FLAG reviews. Since FLAG 19 two
groups have produced updated values with charm quarks in the sea.

HPQCD 20A [27] is an update of HPQCD 18, including a new finer ensemble (a =~ 0.045
fm) and EM corrections computed in the quenched approximation of QED for the first
time. Besides these new items, the analysis is largely unchanged from HPQCD 18 except
for an added o2 correction to the SMOM-to-MS conversion factor and tuning the bare
charm mass via the J/v¢ mass rather than the 7.. Their new value in pure QCD is
m(3 GeV) = 0.9858(51) GeV which is quite consistent with HPQCD 18 and the FLAG
19 average. The effects of quenched QED in both the bare charm-quark mass and the
renormalization constant are small. Both effects are precisely determined, and the overall
effect shifts the mass down slightly to m.(3 GeV) = 0.9841(51) where the uncertainty
due to QED is invisible in the final error. The shift from their pure QCD value due to
quenched QED is about —0.2%.

ETM 21A [7] is a new work that follows a similar methodology as ETM 14, but with
significant improvements. Notably, a clover-term is added to the twisted mass fermion
action which suppresses O(a?) effects between the neutral and charged pions. Additional
improvements include new ensembles lying very close to the physical mass point, better
control of nonperturbative renormalization systematics, and use of both meson and baryon
correlation functions to determine the quark mass. They use the RI-MOM scheme for
nonperturbative renormalization. The analysis comprises ten ensembles in total with three
lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for the finest lattice spacings
and four for the other two, and pion masses down to 134 MeV for the finest ensemble.
The values of m, L range mostly from almost four to greater than five. According to the
FLAG criteria, green stars are earned in all categories. The authors find m.(3 GeV) =
1.036(17)(T4%) GeV. In Tab. 13 we have applied a factor of 0.7739(60) to run from 3 GeV
to M. Asin FLAG 19, the new value is consistent with ETM 14 and ETM 14A, but is still
high compared to the FLAG average. The authors plan future improvements, including a
finer lattice spacing for better control of the continuum limit and a new renormalization
scheme, like RI-SMOM.

Six results enter the FLAG average for Ny = 2 + 1 + 1 quark flavours: ETM 14,
ETM 14A, HPQCD 14A, FNAL/MILC/TUMQCD 18, HPQCD 20A, and ETM 21A. We
note that while the ETM determinations of m. agree well with each other, they are in-
compatible with HPQCD 14A, FNAL/MILC/TUMQCD 18, and HPQCD 20A by several
standard deviations. While the ETM 14 and ETM 14A use the same configurations, the
analyses are quite different and independent, and ETM 21A is a new result on new ensem-
bles with improved methodology. As mentioned earlier, m,q and mg values by ETM are
also systematically high compared to their respective averages. Combining all six results
yields yields

No— 24141 me(m.) = 1.280(13) GeV Refs. [7-9, 18, 26, 27], (56)

f ' m.(3 GeV) = 0.989(10) GeV Refs. [7-9, 18, 26, 27], (57)

where the errors include large stretching factors /x?/dof ~ 2.0 and 2.4, respectively.

We have assumed 100% correlation for statistical errors between ETM 14 and ETM 14A
results and the same for HPQCD 14A, HPQCD 20A, and FNAL/MILC/TUMQCD 18.

These are obviously poor x? values, and the stretching factors are quite large. While

it may be prudent in such a case to quote a range of values covering the central values
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of all results that pass the quality criteria, we believe in this case that would obscure
rather than clarify the situation. From Fig. 5, we note that not only do ETM 21A,
ETM 14A, and ETM 14 lie well above the other 24141 results, but also above all of
the 241 flavour results. A similar trend is apparent for the light-quark masses (see
Figs. 1 and 2) while for mass ratios there is better agreement (Figs. 3, 4, and 6). The
latter suggests there may be underestimated systematic uncertainties associated with scale
setting and/or renormalization which have not been detected. Finally we note the ETM
results are significantly higher than the PDG average. For these reasons, which admittedly
are not entirely satisfactory, we continue to quote an average with a stretching factor as
in previous reviews.
The RGI average reads as follows,

MECL = 1.528(15),,,(21)x GeV Refs. [7-9, 18, 26, 27].  (58)

Figure 5 presents the values of m.(7.) given in Tab. 13 along with the FLAG averages
obtained for 2+ 1 and 2 + 1 + 1 flavours.

FLAG2024 m.(m¢)

—l— FLAG average for N;=2+1+1

—a— ETM 21A
HilH HPQCD 20A
HPQCD 18
FNAL/MILC/TUMQCD 18
HPQCD 14A
—a— ETM 14A
L 1 ETM 14

=241+1
.

d

HEH FLAG average for N;=2+1

:I..: ALPHA 23
ALPHA 21
i

241

Petreczky 19
Maezawa 16
JLQCD 16
il — xQCD 14
Hill HPQCD 10
HH HPQCD 08B

Ne=
T

—A— PDG
1.25 1.30 1.35 1.40 GeV

Figure 5:

The charm-quark mass for 2 + 1 and 2 + 1 4+ 1 flavours. For the latter a large

stretching factor is used for the FLAG average due to poor x? from our fit.

4.2.3 Lattice determinations of the ratio m./m

Because some of the results for quark masses given in this review are obtained via the
quark-mass ratio m./ms, we review these lattice calculations, which are listed in Tab. 14,
as well.

The Ny = 2+ 1 results from yQCD 14 and HPQCD 09A [33] are from the same cal-
culations that were described for the charm-quark mass in the previous review. Maezawa
16 does not pass our chiral-limit test (see the previous review), though we note that it is
quite consistent with the other values. Combining yQCD 14 and HPQCD 09A, we obtain
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Collaboration Ref. Ny ) O S RN Me/Ms
ETM 21A [7] 2+1+1 P 11.48(12)(*35)
FNAL/MILC/TUMQCD 18  [9]  2+1+1 A 11.784(11)(17)(00)(08)
HPQCD 14A (18] 24141 A 11.652(35)(55)
ETM 14 8] 2+1+1 A 11.62(16)
Maezawa 16 [230] 2+1 A [ 11.877(91)
xQCD 14 209]  2+1 A 11.1(8)
HPQCD 09A 33]  2+1 A 11.85(16)

Table 14: Lattice results for the quark-mass ratio m./ms, together with the colour coding of
the calculations used to obtain them.

the same result reported in FLAG 19,
Ny =241  m./ms=11.82(16)  Refs. [29, 33, (59)

with a x?/dof ~ 0.85.

Turning to Ny = 2+ 1+ 1, there is a new result from ETM 21A (see the previous
section for details). The errors have actually increased compared to ETM 14, due to
larger uncertainties in the baryon sector which enter their average with the meson sector.
See the earlier reviews for a discussion of previous results.

We note that some tension exists between the HPQCD 14A and FNAL/MILC/TUMQCD
results. Combining these with ETM 14 and ETM 21A yields

Ny=2+1+1:  m./m,=11.766(30)  Refs. [7-9, 18], (60)

where the error includes the stretching factor y/x?/dof ~ 1.4. We have assumed a 100%
correlation of statistical errors for FNAL/MILC/TUMQCD 18 and HPQCD 14A.

Results for m./mg are shown in Fig. 6 together with the FLAG averages for Ny = 2+1
and 2+ 1+ 1 flavours.
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Figure 6: Lattice results for the ratio m./ms listed in Tab. 14 and the FLAG averages
corresponding to 2+ 1 and 2+ 1+ 1 quark flavours. The latter average includes a stretching
factor of 1.4 on the error due a poor x? from our fit.

4.3 Bottom-quark mass

Now we review the lattice results for the MS bottom-quark mass M. Related heavy-
quark actions and observables have been discussed in previous FLAG reviews [2-4], and
descriptions can be found in Sec. A.1.3 of FLAG 19 [4]. In Tab. 15, we collect results
for 7y, (7 ) obtained with Ny =2+ 1 and 2 4+ 1 + 1 sea-quark flavours. Available results
for the quark-mass ratio my/m. are also reported. After discussing the new results, we
evaluate the corresponding FLAG averages.

431 Np=2+1

There are no new results since the last review, so we simply quote the same average of
HPQCD 10 and Petreczky 19 (both are reported for Ny = 5, so we simply quote the
average for Ny = 5).

Ny=2+1: myp(mp) = 4.171(20) GeV Refs. [15, 31]. (61)
The corresponding (four-flavour) RGI average is

Ny=2+1: MECT = 6.888(33),,(45) s GeV Refs. [15, 31]. (62)

432 Ny=2+1+1

HPQCD 21 [34] is an update of HPQCD 14A (and replaces it in our average. See FLAG
19 for details.), including EM corrections for the first time for the b-quark mass. Four
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Collaboration Ref. Ny I &8¢ & i (T my/me
HPQCD 21 [34]  2+1+1 A - 4.209(21)F* 4.586(12)**
FNAL/MILC/TUM 18 [9]  2+1+1 A - 4.201(12)(1)(8)(1)  4.578(5)(6)(0)(1)
Gambino 17 [37] 2+1+1 A 4.26(18)
ETM 16B [36]  24+1+1 A 4.26(3)(10)* 4.42(3)(8)
HPQCD 14B [35]  2+14+1 A 4.196(0)(23)"
Petreczky19 [31] 2+1 A 4.188(37) 4.586(43)
Maezawa 16 [230] 241 A m 4.184(89) 4.528(57)
HPQCD 13B [270) 241 A =m - - 4.166(43)
HPQCD 10 [15] 241 A - 4.164(23) 4.51(4)
ETM 13B (73] 2 A 4.31(9)(8)
ALPHA 13C [271] 2 A 4.21(11)
ETM 11A [272] 2 A 4.29(14)
PDC [225] 4.18%902

*t*+ We quote the four-flavour result. For Ny = 5, the value is 4.202(21).
** The ratio is quoted in the MS scheme for u = 3 GeV because of the different charges of the bottom
and charm quarks.
T Only two pion points are used for chiral extrapolation.

Table 15: Lattice results for the MS bottom-quark mass 7,(m,) in GeV, together with the
systematic error ratings for each. Available results for the quark-mass ratio my/m. are also
reported.

flavours of HISQ quarks are used on MILC ensembles with lattice spacings from about 0.09
to 0.03 fm. Ensembles with physical- and unphysical-mass sea-quarks are used. Quenched
QED is used to obtain the dominant O(«) effect. The ratio of bottom- to charm-quark
masses is computed in a completely nonperturbative formulation, and the b-quark mass is
extracted using the value of (3 GeV) from HPQCD 20A. Since EM effects are included,
the QED renormalization scale enters the ratio which is quoted for 3 GeV and Ny = 4.
The total error on the new result is more than two times smaller than for HPQCD 14A,
but is only slightly smaller compared to the NRQCD result reported in HPQCD 14B.
The inclusion of QED shifts the ratio my/m,. up slightly from the pure QCD value by
about one standard deviation, and the value of T, (7p) is consistent, within errors, to
the other pure QCD results entering our average. Therefore, we quote a single average.
Cutoff effects are significant in that work, and are the dominant source of uncertainty in
the ratio my/me. It is difficult to estimate the value of §(amin) from the data present in
the publication, but the authors provided extra information about their analysis with the
result that 6(amin) & 3. Therefore, we do not inflate the errors of that computation. The
work rates green stars for all FLAG criteria except for the continuum limit (see Tab. 15)
where less than three ensembles at the physical b-quark mass were used in the a — 0
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extrapolation (in the previous FLAG review this was missed and is corrected here).

HPQCD 14B employs the NRQCD action [35] to treat the b quark. The b-quark mass
is computed with the moments method, that is, from Euclidean-time moments of two-
point, heavy-heavy-meson correlation functions (see also Sec. 9.8 for a description of the
method). Due to the effective treatment of the heavy quark, continuum extrapolations
are under control since five lattice spacings are employed, with the smallest about 0.09
fm, but the requirement that am;, < 1 is not relevant. Their final result is T, (p =
4.18GeV) = 4.207(26) GeV, where the error is from adding systematic uncertainties in
quadrature only (statistical errors are smaller than 0.1% and ignored). The errors arise
from renormalization, perturbation theory, lattice spacing, and NRQCD systematics. The
finite-volume uncertainty is not estimated, but at the lowest pion mass they have m L ~ 4,
which leads to the tag # . In this case, the continuum extrapolations seem mild, in part,
thanks to the NRQCD action used to treat the b quark. The data-driven continuum-limit
criterion d(amin) < 3, 80 no correction factor is necessary here.

The next four-flavour result (ETM 16B [36]) is from the ETM collaboration and up-
dates their preliminary result appearing in a conference proceedings [273]. The calculation
is performed on a set of ensembles generated with twisted-Wilson fermions with three lat-
tice spacings in the range 0.06 to 0.09 fm and with pion masses in the range 210 to 440
MeV. The b-quark mass is determined from a ratio of heavy-light pseudoscalar meson
masses designed to yield the quark pole mass in the static limit. The pole mass is related
to the MS mass through perturbation theory at N3LO. The key idea is that by taking
ratios of ratios, the b-quark mass is accessible through fits to heavy-light(strange)-meson
correlation functions computed on the lattice in the range ~ 1-2 x m, and the static limit,
the latter being exactly 1. By simulating below my, taking the continuum limit is easier.
They find () = 4.26(3)(10) GeV, where the first error is statistical and the second
systematic. The dominant errors come from setting the lattice scale and fit systematics.

Gambino et al. [37] use twisted-mass-fermion ensembles from the ETM collaboration
and the ETM ratio method as in ETM 16B. Three values of the lattice spacing are used,
ranging from 0.062 to 0.089 fm. Several volumes are also used. The light-quark masses
produce pions with masses from 210 to 450 MeV. The main difference with ETM 16
is that the authors use the kinetic mass defined in the heavy-quark expansion (HQE) to
extract the b-quark mass instead of the pole mass. They include an additional uncertainty
stemming from the conversion between kinetic and MS schemes which leads to a somewhat
larger total uncertainty compared to ETM 16B.

The final b-quark mass result is FNAL/MILC/TUM 18 [9]. The mass is extracted from
the same fit and analysis done for the charm quark mass. Note that relativistic HISQ
valence masses reach the physical b mass on the two finest lattice spacings (a = 0.042
fm, 0.03 fm) with physical and 0.2 x mg light-quark masses, respectively. In lattice
units, the heavy valence masses correspond to aMBST > 0.90, making the continuum
extrapolation challenging. The extrapolations have §(amin) ~ 14 (taking into account
only the statistical error of the continuum extrapolation, which is a 40% of their total
error budget). According to our policy (2.1.2) we increase the error for the average by a
factor 3.5. Their results are also consistent with an analysis dropping the finest lattice
spacing from the fit. Since the b-quark mass region is only reached with two lattice
spacings, we rate this work with a green circle for the continuum extrapolation (the same
as HPQCD 21). Note, however, that for other values of the quark masses they use up to
five values of the lattice spacing (cf. their charm-quark mass determination) with small
values of 0(amin) in the continuum extrapolation. In summary, we judge that these large
scaling violations affect mainly the determination of the b-quark mass.

All of the above results enter our average. We note that here the ETM 16B result is
consistent with the average and a stretching factor on the error is not used.

Ny=2+4+1+1: mp (M) = 4.200(14) GeV Refs. [9, 34-37]. (63)
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We have included a 100% correlation on the statistical errors of ETM 16B and Gambino 17,
since the same ensembles are used in both. While FNAL/MILC/TUM 18 and HPQCD
21 also use the same MILC HISQ ensembles, the statistical error in the HPQCD 21
analysis is negligible, so we do not include a correlation between them. The average has
x2/dof = 0.02.

The above translates to the RGI average

Ny=2+1+1: MECT = 6.938(23),,(45) 4 GeV Refs. [9, 34-37]. (64)

Results for 7, (7;) are shown in Fig. 7 together with the FLAG averages corresponding
to Ny =241 and 2 + 1+ 1 quark flavours.

FIAG2024 mp(Mp)

FLAG average for N,=2+1+1
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Figure 7:  The b-quark mass for Ny = 2+1 and 2+ 1 + 1 flavours. The updated PDG value
from Ref. [274] is reported for comparison.
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5 Leptonic and semileptonic kaon and pion decay and
[Vial and |V

Authors: T. Kaneko, J. N. Simone, N. Tantalo

This section summarizes state-of-the-art lattice calculations of the leptonic kaon and
pion decay constants and the kaon semileptonic-decay form factor and provides an analysis
in the framework of the Standard Model. With respect to the previous edition of the FLAG
review [5], there has been a new study on f4(0) for Ny = 2+ 1, and a new entry to the
average of the decay constant ratio fx+/fr+ for Ny =2+ 1+ 1.1 As in Ref. [5], when
combining lattice data with experimental results, we take into account the strong isospin
correction, either obtained in lattice calculations or estimated by using chiral perturbation
theory (xPT), both for the kaon leptonic decay constant fx+ and for the ratio fr+/fr+.

5.1 Experimental information concerning |V,|, |Vus|, f+(0) and
fKi/fﬂ'i

The following review relies on the fact that precision experimental data on kaon decays
very accurately determine the product |V,s|f+(0) [275] and the ratio |Vis/Vialfr=/ frat
[205, 275]:

S

Jrt

Here, and in the following, frx+ and f,+ are the isospin-broken decay constants in QCD.
We will refer to the decay constants in the isospin-symmetric limit as fx and fr (the
latter at leading order in the mass difference (m, —mg) coincides with f,+). The param-
eters |V,q| and |V,| are elements of the Cabibbo-Kobayashi-Maskawa matrix and f (¢?)
represents one of the form factors relevant for the semileptonic decay K° — 7~ £v, which
depends on the momentum transfer ¢ between the two mesons. What matters here is the
value at ¢ = 0:

£4(0) = FE 7 (0) = 1577 (0) = ¢*(n (0)]57,ul KO (p)) / (ME — M2)

Vsl £1(0) = 0.21654(41)

‘ Vus = 0.27599(41) . (65)

Vud

(66)

q2—0"
The pion and kaon decay constants are defined by’

(O] dyys ulmt (p)) = ipufor (0] 57,75 ul K (p)) = ipufr+ - (67)

In this normalization, f,+ ~ 130 MeV, fr+ ~ 155 MeV.

In Eq. (65), the electromagnetic effects have already been subtracted in the experi-
mental analysis using xPT [279-282]. In 2015, a new method [283] has been proposed
by the RM123-SOTON collaboration for calculating the leptonic decay rates of hadrons
including both QCD and QED on the lattice, and successfully applied to the case of
the ratio of the leptonic decay rates of kaons and pions [217, 223]. By employing the

8Tn this edition, we omit results for Ny = 2, because there has been no new entry after 2014. We refer to

the 2016 edition [3] for the Ny = 2 results.

9The pion decay constant represents a QCD matrix element—in the full Standard Model, the one-pion
state is not a meaningful notion: the correlation function of the charged axial current does not have a pole
at p? = M72r+, but a branch cut extending from Mﬁ+ to co. The analytic properties of the correlation
function and the problems encountered in the determination of fr are thoroughly discussed in Ref. [210]. The
“experimental” value of fr depends on the convention used when splitting the sum Lqcp + Lqep into two
parts. The lattice determinations of fr do not yet reach the accuracy where this is of significance, but at the
precision claimed by the Particle Data Group [243, 276], the numerical value does depend on the convention

used [209, 210, 277, 278].
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twisted-mass discretization, they simulate Ny =2+ 14 1 QCD at three lattice spacings
a = 0.07, 0.08, 0.09 fm with pion masses down to ~ 220 MeV on multiple lattice volumes
to directly examine finite-volume effects. The correction to the K,2/m,2 decay rate, in-
cluding both electromagnetic and strong isospin-breaking effects, is found to be equal to
—1.26(14)% [217] to be compared to the estimate —1.12(21)% based on xPT [204, 282].2°
Using the experimental values of the K, and m,» decay rates the result of Ref. [217]
implies

Jr _ 0.27683 (29) exp (20)in [35] | (68)

us

‘ Vus
Vud

where the last error in brackets is the sum in quadrature of the experimental and the-
oretical uncertainties, and the ratio of the decay constants is the one corresponding to
isosymmetric QCD. A large part of the theoretical uncertainty comes from the statistical
error and continuum and chiral extrapolation of lattice data, which can be systematically
reduced by a more realistic simulation with high statistics.

An independent study of the electromagnetic effects is carried out by the RBC/UKQCD
collaboration using the domain-wall discretization [220]. They simulate Ny =2+ 1 QCD
at a single lattice spacing a = 0.11 fm, a pion mass close to its physical value, and a
lattice volume with ML ~ 3.9. Their result —0.86(*1}) % including the strong isospin
corrections is consistent with the RM123-SOTON estimate. The larger uncertainty is due
to the possibly large finite-volume effects, which are under active investigation in different
lattice-QED prescriptions [284].

At present, the superallowed nuclear [ transitions provide the most precise deter-
mination of |V,q4|. Its accuracy has been limited by hadronic uncertainties in the uni-
versal electroweak radiative correction A%. A 2018 analysis in terms of a dispersion
relation [285, 286] found A}, larger than the previous estimate [287]. A more straightfor-
ward update [288] of Ref. [287] on the description of relevant hadronic contributions as
well as a lattice and perturbative-QCD calculation [289] also reported larger Al‘é, which is
consistent with the dispersive estimate within uncertainties. Together with conservative
estimate of nuclear corrections [285, 290-298], a recent reanalysis of twenty-three 3 decays
obtained [205, 299]

|Via| = 0.97373(31). (69)

The matrix element |V,s| can be determined from inclusive hadronic 7 decays [300-
303]. Both Gamiz et al. [304, 305] and Maltman et al. [302, 306, 307] arrived at very
similar values of |V,s| by separating the inclusive decay 7 — X4 v, into nonstrange
(Xqvr) and strange (X v,) final states and evaluating the relevant spectral integral using
the operator product expansion (OPE). However, |V,,s| = 0.2195(19) quoted by HFLAV
18 [308] differs from the result one obtains from the kaon decays by about three standard
deviations (see Tab. 20 in Sec. 5.5). A new treatment of higher orders in the OPE obtained
a slightly larger value of |V,,s| = 0.2219(22) with a different experimental input [309].

Reference [310] proposed a new method to determine |V,s| without any recourse to
the OPE by evaluating the spectral integral from lattice-QCD data of the hadronic vac-
uum polarization function through generalized dispersion relations. This led to an analy-
sis [309] yielding |V,s| = 0.2240(18), which is consistent with that from the kaon decays.
However, this result mostly relies on the 7 — Kv, decay channel, which represents only
~ 24 % of the inclusive 7 — X v, decay, due to their choice of the generalized dispersion
relation [311].

The ETM collaboration carried out a first lattice calculation of the fully inclusive rate
of the hadronic 7 decays based on ideas to study inclusive processes on the lattice [312,
313]. Their study of 7 — Xg4v; led to 0.4% determination of |V,4| = 0.9752(39), which
is nicely consistent with Eq. (69) from nuclear § decay [314]. Their extension to the

20Gee the discussion concerning the definition of QCD and of the isospin-breaking corrections in Sec. 3.
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T — Xsv; decay yields |V,s| = 0.2189(19) and confirms the above tension with that from
the kaon decays [315]. In Sec. 5.5 of this review, we quote

[Vas| = 0.2184(21) (70)

from HFLAV 22 [148] as |Vys| from the inclusive hadronic 7 decays.

The experimental results in Eq. (65) are for the semileptonic decay of a neutral kaon
into a negatively charged pion and the charged pion and kaon leptonic decays, respec-
tively, in QCD. In the case of the semileptonic decays the corrections for strong and
electromagnetic isospin breaking in yPT at NLO have allowed for averaging the differ-
ent experimentally measured isospin channels [316]. This is quite a convenient procedure
as long as lattice-QCD calculations do not include strong or QED isospin-breaking ef-
fects. Several lattice results for fr/f, are quoted for QCD with (squared) pion and kaon
masses of M2 = M2, and M} = 3 (MZ. + M3, — M2, + M?,) for which the leading
strong and electromagnetic isospin violations cancel. For these results, contact with ex-
perimental results is made by correcting leading isospin breaking guided either by yPT
or by lattice calculations. We note, however, that the modern trend for the leptonic de-
cays is to include strong and electromagnetic isospin breaking in the lattice calculations
(e.g., Refs. [212-214, 222, 223, 235, 283, 317, 318)).

This trend is being extended to the semileptonic decays. Calculating the electromag-
netic correction to the Kjy3 semileptonic decays on the lattice is more involved due to
the photon exchange between 7+ and ¢ in the final state. A framework has been pro-
posed [319], and its applicability to the kaon semileptonic decays has been discussed in
Ref. [320]. References [321-323] pursue an effective field theory setup supplemented by
nonperturbative lattice-QCD inputs to estimate the radiative corrections.

5.2 Lattice results for f(0) and fx=/fr+

The traditional way of determining |V,,s| relies on using estimates for the value of f;(0),
invoking the Ademollo-Gatto theorem [324]. This theorem states that the corrections to
the SU(3) symmetric limit fi(0) = 1 start at second order in SU(3) breaking, namely
x (ms— mud)Q. Theoretical models are used to estimate higher-order corrections. Lattice
methods have now reached the stage where quantities like f(0) or fx/fr can be deter-
mined to good accuracy. As a consequence, the uncertainties inherent in the theoretical
estimates for the higher order effects in the value of f1(0) do not represent a limiting
factor any more, and we shall, therefore, not invoke those estimates. Also, we will use the
experimental results based on nuclear 8 decay and inclusive hadronic 7 decay exclusively
for comparison—the main aim of the present review is to assess the information gathered
with lattice methods and to use it for testing the consistency of the SM and its potential
to provide constraints for its extensions.

The database underlying the present review of the semileptonic form factor and the
ratio of decay constants is listed in Tabs. 16 and 17. The properties of the lattice data
play a crucial role for the conclusions to be drawn from these results: ranges of a, M, and
LM, to control continuum extrapolation, extrapolation in the quark masses, finite-size
effects, etc. The key features of the various data sets are characterized by means of the
colour code specified in Sec. 2.1. More detailed information on individual computations
are compiled in Appendix C.2, which in this edition is limited to new results and to
those entering the FLAG averages. For other calculations the reader should refer to the
Appendix B.2 of Ref. [3].

The quantity f1(0) represents a matrix element of a strangeness-changing null-plane
charge, f1(0) = (K|Q"$|r) (see Ref. [325]). The vector charges obey the commutation
relations of the Lie algebra of SU(3), in particular [Q%, Q%] = Q““~55. This relation
implies the sum rule Y, [(K|Q"|n)|>?=>",, [(K|Q%*|n)|* = 1. Since the contribution from
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the one-pion intermediate state to the first sum is given by f1(0)2, the relation amounts
to an exact representation for this quantity [326]:

F4(0) = 1= [(KIQ™ ) + > [(K|Q[n)[*. (71)
n#ET n

While the first sum on the right extends over nonstrange intermediate states, the second
runs over exotic states with strangeness +2 and is expected to be small compared to the
first.

The expansion of fi(0) in SU(3) xPT in powers of m,, my, and ms starts with
f+(0) =1+ fo + fa + ... [327]. The NLO contribution fo is known, since it can be
expressed in terms of M., Mg, M, and fr [325]. In the language of the sum rule (71),
fo stems from nonstrange intermediate states with three mesons. Like all other nonexotic
intermediate states, it lowers the value of f1 (0): fo = —0.023 when using the experimental
value of f; as input. The corresponding expressions have also been derived in quenched or
partially quenched (staggered) xPT [40, 328]. At the same order in the SU(2) expansion
[329], f+(0) is parameterized in terms of M, and two a priori unknown parameters. The
latter can be determined from the dependence of the lattice results on the masses of the
quarks. For the SU(3) xPT formula for fo, one may use fy, that is the decay constant in
the chiral limit, instead of f,. While this affects the result only at higher orders, it may
make a significant numerical difference in calculations where the higher-order corrections
are not explicitly accounted for. (Lattice results concerning the value of the ratio f/fo
are reviewed in Sec. 5.3 of the previous review [5].)

The lattice results shown in Fig. 8 indicate that the higher order contributions Af =
f+(0) — 1 — f5 are negative and thus amplify the effect generated by fo. This confirms
the expectation that the exotic contributions are small. The entries in the lower part
represent various model estimates for f;. In Ref. [330], the symmetry-breaking effects are
estimated in the framework of the quark model. The more recent calculations are more
sophisticated, as they make use of the known explicit expression for the K3 form factors
to NNLO in xPT [331, 332]. The corresponding formula for f; accounts for the chiral
logarithms occurring at NNLO and is not subject to the ambiguity mentioned above.?!
The numerical result, however, depends on the model used to estimate the low-energy
constants occurring in fy [332-335]. The figure indicates that the most recent numbers
obtained in this way correspond to a positive or an almost vanishing rather than a negative
value for Af. We note that FNAL/MILC 121 [40], JLQCD 17 [336], FNAL/MILC 18 [39],
and Ref. [337] have made an attempt at determining a combination of some of the low-
energy constants appearing in f, from lattice data.

5.3 Direct determination of f,(0) and fx=/fr+

Many lattice results for the form factor f1 (0) and for the ratio of decay constants, which
we summarize here in Tabs. 16 and 17, respectively, have been computed in isospin-
symmetric QCD. The reason for this unphysical parameter choice is that there are only a
few simulations of isospin-breaking effects in lattice QCD, which is ultimately the cleanest
way for predicting these effects [212-214, 220, 222, 223, 233, 283, 338-340]. In the
meantime, one relies either on xPT [239, 327] to estimate the correction to the isospin
limit or one calculates the breaking at leading order in (m, — mg) in the valence quark
sector by extrapolating the lattice data for the charged kaons to the physical value of the
up(down)-quark mass (the result for the pion decay constant is always extrapolated to
the value of the average light-quark mass m). This defines the prediction for fr+/fr+.

' Fortran programs for the numerical evaluation of the form factor representation in Ref. [332] are available
on request from Johan Bijnens.
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Collaboration Ref. Ny N T S £ f+(0)
FNAL/MILC 18 [39] 2+1+41 A 0.9696(15)(12)
ETM 16 [38] 241+1 A 0.9709(45)(9)
FNAL/MILC 13E [341] 241+1 A 0.9704(24)(22)
PACS 22 [342] 2+1 A | 0.9615(10)(F47)
PACS 19 [343] 2+1 A [ 0.9603(16)(*39)
JLQCD 17 [336] 241 A | 0.9636(36)(*37)
RBC/UKQCD 15A [41] 2+1 A 0.9685(34)(14)
RBC/UKQCD 13 [344] 2+1 A 0.9670(20)(*1%)
FNAL/MILC 121 [40] 241 A 0.9667(23)(33)
JLQCD 12 [345] 241 C | 0.959(6)(5)
JLQCD 11 [346] 2+1 C | 0.964(6)
RBC/UKQCD 10 [347] 2+1 A | 0.9599(34)(*31)(14)
RBC/UKQCD 07 [348) 2+1 A | 0.9644(33)(34)(14)

Table 16: Colour codes for the data on f4(0). In this and previous editions [4, 5], old results
with two red tags have been dropped.

Since the majority of results that qualify for inclusion into the FLAG average include
the strong isospin-breaking correction, we provide in Fig. 9 the overview of the world data
of fx+/fr=. For all the results of Tab. 17 provided only in the isospin-symmetric limit
we apply individually an isospin correction that will be described later on (see Egs. (74)—
(75)).

The plots in Figs. 8 and 9 illustrate our compilation of data for f1(0) and fx«/fr+.
The lattice data for the latter quantity is largely consistent even when comparing sim-
ulations with different Ny. In the case of f4(0), a slight tendency to get higher values
when increasing Ny seems to be visible, while it does not exceed one standard devia-
tion. We now proceed to form the corresponding averages, separately for the data with
Ny =2+1+1and Ny =2+ 1 dynamical flavours, and in the following we will refer to
these averages as the “direct” determinations.

5.3.1 Results for f,(0)

For f(0) there are currently two computational strategies: FNAL/MILC uses the Ward
identity to relate the K — 7 form factor at zero momentum transfer to the matrix
element (7|S|K) of the flavour-changing scalar current S = su. Peculiarities of the stag-
gered fermion discretization used by FNAL/MILC (see Ref. [40]) makes this the favoured
choice. The other collaborations are instead computing the vector current matrix element
(m|5y,ulK). Apart from FNAL/MILC 13E, RBC/UKQCD 15A, FNAL/MILC 18, PACS
19 and 22, all simulations in Tab. 16 involve unphysically heavy quarks and, therefore, the
lattice data needs to be extrapolated to the physical pion and kaon masses corresponding
to the K — 7~ channel. We note also that the recent computations of f (0) make use of
the partially-twisted boundary conditions to determine the form-factor results directly at
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Figure 8:

Comparison of lattice results (squares) for fi(0) with various model estimates

based on xPT [330, 332-335] (blue circles). The black squares and grey bands indicate our
averages in Egs. (72) and (73). The significance of the colours is explained in Sec. 2.

the relevant kinematical point ¢? = 0 [349, 350], avoiding in this way any uncertainty due
to the momentum dependence of the vector and/or scalar form factors. The ETM collabo-
ration uses partially-twisted boundary conditions to compare the momentum dependence
of the scalar and vector form factors with the one of the experimental data [38, 351],
while keeping at the same time the advantage of the high-precision determination of the
scalar form factor at the kinematical end-point ¢2,,, = (Mg — M,)? [352, 353] for the
interpolation at ¢? = 0.

According to the colour codes reported in Tab. 16 and to the FLAG rules of Sec. 2.2,
the results FNAL/MILC 12I and RBC/UKQCD 15A with Ny = 2+ 1, and the results
ETM 16 and FNAL/MILC 18 with Ny = 2 + 1 + 1 dynamical flavours of fermions,
respectively, can enter the FLAG averages. Therefore, there is no new entry to form the
averages in Eqs. (72) and (73) in this edition.

At Ny = 2+1+1 the result from the FNAL/MILC collaboration, f4(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking effects, and includes simulations with three lattice spacings and physical
light-quark masses. These features lead to uncertainties due to the chiral extrapolation
and the discretization artifacts that are well below the statistical error. The remain-
ing largest systematic uncertainty comes from finite-size effects, which have been inves-
tigated in Ref. [354] using one-loop xPT (with and without taste-violating effects). In
Ref. [39], the FNAL/MILC collaboration presented a more precise determination of f (0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study
the finite-size effects. The improvement of the precision with respect to FNAL/MILC

69



13E is obtained mainly by an estimate of finite-size effects, which is claimed to be con-
trolled at the level of ~ 0.05% by comparing two analyses with and without the one-loop
correction. The total uncertainty is reduced to ~ 0.2%. An independent calculation of
such high precision would be highly welcome to solidify the lattice prediction of f(0),
which currently suggests a tension with CKM unitarity with the updated value of |V,4]
(see Sec. 5.4).

The result from the ETM collaboration, f1(0) = 0.9709(45)(9) (ETM 16), makes use
of the twisted-mass discretization adopting three values of the lattice spacing in the range
0.06 — 0.09 fm and pion masses simulated in the range 210 — 450 MeV. The chiral and
continuum extrapolations are performed in a combined fit together with the momentum
dependence, using both a SU(2)-xPT inspired ansatz (following Ref. [351]) and a modified
z-expansion fit. The uncertainties coming from the chiral extrapolation, the continuum
extrapolation and the finite-volume effects turn out to be well below the dominant statis-
tical error, which includes also the error due to the fitting procedure. A set of synthetic
data points, representing both the vector and the scalar semileptonic form factors at the
physical point for several selected values of ¢?, is provided together with the corresponding
correlation matrix.

In ETM 16, a measure of the scaling violation §(a) defined in Eq. (1) estimated
from their continuum and chiral extrapolation decreases toward the chiral limit with the
strange-quark mass kept fixed, because the SU(3)-breaking effects to be calculated on the
lattice increases, and more statistics are needed to keep the statistical accuracy toward
this limit. At the physical point, §(a) is consistent with zero in their region of the lattice
spacing a. This is also the case for FNAL/MILC 18, where they demonstrated that
f+(0) extrapolated to the physical point at each simulated value of a is consistent with
the value extrapolated to the continuum limit within 2 0. We note that, in contrast
to the heavy-meson semileptonic decays, relevant meson masses and momenta at zero
momentum transfer are at most O(My), and hence well below the cutoff a 1.

The PACS collaboration carried out a calculation (PACS 19) for Ny = 2+ 1 using the
O(H)-improved Wilson quark action by creating an ensemble with the physical light-quark
mass on a large lattice volume of (10.9fm)? at a single spacing a = 0.085 fm [343]. Such
a large lattice enables them to interpolate f; (¢?) to zero momentum transfer and study
the momentum-transfer dependence of the form factors without using partially-twisted
boundary conditions. This was extended to a smaller lattice spacing a = 0.063 fm in
PACS 22, which yields f1(0) = 0.9615(10) (*§"). However, their result does not enter
the FLAG average, because they simulate only two lattice spacings using unimproved
local and conserved vector currents. That setup is the source of the largest (and very
asymmetric) error in their calculation. Further extension to an even smaller lattice spacing
a = 0.041 fm has been reported in Ref. [355], where authors estimate the statistical error
only, and refrain from quoting a numerical value of f, (0).

For Ny =2+ 1, the two results eligible to enter the FLAG average are the one from
RBC/UKQCD 15A, f1(0) = 0.9685(34)(14) [41], and the one from FNAL/MILC 12I,
f+(0) = 0.9667(23)(33) [40]. These results, based on different fermion discretizations
(staggered fermions in the case of FNAL/MILC and domain wall fermions in the case of
RBC/UKQCD) are in nice agreement. Moreover, in the case of FNAL/MILC the form
factor has been determined from the scalar current matrix element, while in the case of
RBC/UKQCD it has been determined including also the matrix element of the vector
current. To a certain extent, both simulations are expected to be affected by different
systematic effects.

RBC/UKQCD 15A has analyzed results on ensembles with pion masses down to
140 MeV, mapping out the complete range from the SU(3)-symmetric limit to the physical
point. No significant cut-off effects (results for two lattice spacings) were observed in the
simulation results. Ensembles with unphysical light-quark masses are weighted to work
as a guide for small corrections toward the physical point, reducing in this way the model
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dependence in the fitting ansatz. The systematic uncertainty turns out to be dominated
by finite-volume effects, for which an estimate based on effective theory arguments is
provided.

The result FNAL/MILC 121 is from simulations reaching down to a lightest RMS
pion mass of about 380 MeV (the lightest valence pion mass for one of their ensem-
bles is about 260 MeV). Their combined chiral and continuum extrapolation (results for
two lattice spacings) is based on NLO staggered xyPT supplemented by the continuum
NNLO expression [332] and a phenomenological parameterization of the breaking of the
Ademollo-Gatto theorem at finite lattice spacing inherent in their approach. The p*
low-energy constants entering the NNLO expression have been fixed in terms of external
input [269)].

Since there has been no new entry after the previous edition, the FLAG average for
f+(0) remains unchanged. The Ny =2+ 1+ 1 average is based on the FNAL/MILC 18
and ETM 16 (uncorrelated) results, the Ny = 2 + 1 average based on FNAL/MILC 12I
and RBC/UKQCD 15A, which we consider uncorrelated:

direct, N =2+1+1: F1(0) = 0.9698(17) Refs. [38, 39, (72)
direct, Ny =241 : £1(0) = 0.9677(27) Refs. [40, 41]. (73)

We stress that the results (72) and (73), corresponding to Ny =2+1+1 and Ny = 2+1,
respectively, include simulations with physical light-quark masses.

5.3.2 Results for fr+/f +

In the case of the ratio of decay constants, the data sets that meet the criteria formulated
in the introduction are HPQCD 13A [42], ETM 14E [43], FNAL/MILC 17 [20] (which
updates FNAL/MILC 14A [21]), CalLat 20 [44] and ETM 21 [45] with Ny = 2+1+1, and
HPQCD/UKQCD 07 [46], MILC 10 [47], BMW 10 [48], RBC/UKQCD 14B [12], BMW
16 [49, 360], and QCDSF/UKQCD 16 [50] with Ny = 2 4+ 1 dynamical flavours. Note
that the new entry in this edition is ETM 21 for Ny = 2+ 1 + 1, which did not enter the
previous FLAG average due to its publication status.

CalLat 20 employs a mixed action setup with Mobius domain-wall valence quarks on
gradient-flowed HISQ ensembles at four lattice spacings a = 0.06-0.15 fm. The valence
pion mass reaches the physical point at three lattice spacings, and the smallest valence-
sea and sea pion masses are below 200 MeV. Finite-volume corrections are studied on
three lattice volumes at ¢ = 0.12 fm and M, ~ 220 MeV. The extrapolation to the
continuum limit and the physical point is based on NNLO xPT [363]. A comprehensive
study of systematic uncertainties is performed by exploring several options including the
use of the mixed-action effective theory expression, and the inclusion of N3LO counter
terms. They obtain fr+/fr+ = 1.1942(32)stat(12)4(20)a2 (1) pv (12) a(7) 15, where the
errors are statistical, due to the extrapolation in pion and kaon masses, extrapolation in
a?, finite-size effects, choice of the fitting form and strong isospin-breaking corrections.

ETM 14E uses the twisted-mass discretization and provides a comprehensive study
of the systematics by presenting results for three lattice spacings in the range 0.06—
0.09 fm and for pion masses in the range 210-450 MeV. This makes it possible to
constrain the chiral extrapolation, using both SU(2) [329] xPT and polynomial fits.
The ETM collaboration includes the spread in the central values obtained from differ-
ent ansétze into the systematic errors. The final result of their analysis is fx+/frt =
1.184(12)stat+t (3) chira1(9) a2 (1) z,» (3) Fv (3) 15 where the errors are (statistical + the error
due to the fitting procedure), due to the chiral extrapolation, the continuum extrapola-
tion, the mass-renormalization constant, the finite-volume and (strong) isospin-breaking
effects.

In ETM 21 [45], the ETM collaboration presented an independent estimate of fx /fx
in isosymmetric QCD with 2+1+1 dynamical flavours of the twisted-mass quarks. Their
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ETM 21 [45]  2+1+1 A 1.1995(44)(7) 1.1957(44)(7)
CalLat 20 [44] 2+1+41 A 1.1964(32)(30)  1.1942(32)(3 )
FNAL/MILC 17 [20] 2+1+1 A 1.1980(12)(F55)  1.1950(15)(*S)
ETM 14E [43]  2+1+1 A 1.188(11)(11) 1.184(12)(11 )
FNAL/MILC 14A [21] 2+1+1 A 1.1956(10)(13%)
ETM 13F [356] 2+1+1 C 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [42]  2+1+41 A 1.1948(15)(18)  1.1916(15)(16)
MILC 13A [357]  2+1+1 A 1.1947(26)(37)
MILC 11 [358] 2+1+1 C 1.1872(42)1 .
ETM 10E [359] 2+1+1 C 1.224(13)stat
QCDSF/UKQCD 16 [50]  2+1 A 1.192(10)(13) 1.190(10)(13)
BMW 16 [49, 360]  2+1 A 1.182(10)(26) 1.178(10)(26)
RBC/UKQCD 14B [12]  2+1 A 1.1945(45)
RBC/UKQCD 12 [229] 2+1 A 1.199(12)(14)
Laiho 11 [54] 2+1 C 1.202(11)(9)(2)(5) "
MILC 10 [47]  2+1 C 1.197(2)(F3)
JLQCD/TWQCD 10 [361] 241 C ] 1.230(19)
RBC/UKQCD 10A [119]  2+1 A 1.204(7)(25)
BMW 10 [48]  2+1 A 1.192(7)(6)
MILC 09A [19] 241 C 1.198(2)(*9)
MILC 09 [196) 2+1 A 1.197(3)(1%)
Aubin 08 [362] 241 C 1.191(16)(17)
RBC/UKQCD 08 [236] 241 A ] 1.205(18)(62)
HPQCD/UKQCD 07 [46]  2+1 A 1.189(2)(7)
MILC 04 [239] 241 A 1.210(4)(13)

T Result with statistical error only from polynomial interpolation to the physical point.
1 This work is the continuation of Aubin 08.

Table 17: Colour codes for the data on the ratio of decay constants: fx/fr is the pure
QCD isospin-symmetric ratio, while fr+/fr+ is in pure QCD including the isospin-breaking
correction. In this and previous editions [4, 5], old results with two red tags have been
dropped.

new set of gauge ensembles reaches the physical pion mass. The quark action includes
the Sheikoleslami-Wohlert term [364] for a better control of discretization effects. The
finite-volume effects are examined by simulating three spatial volumes, and are corrected
by SU(2) xPT formulae [184]. Their new estimate fx/fr = 1.1995(44)stat+a6(7)sys is
consistent with ETM 14E with the total uncertainty reduced by a factor of ~ 3.5.
FNAL/MILC 17 has determined the ratio of the decay constants from a comprehensive
set of HISQ ensembles with Ny = 2 + 1 4 1 dynamical flavours. They have generated 24
ensembles for six values of the lattice spacing (0.03-0.15 fm, scale set with f.+) and
with both physical and unphysical values of the light sea-quark masses, controlling in
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Figure 9:

Comparison of lattice results for fg+/fr+. This ratio is obtained in pure QCD

including the isospin-breaking correction (see Sec. 5.3). The black squares and grey bands
indicate our averages in Eqs. (76) and (77).

this way the systematic uncertainties due to chiral and continuum extrapolations. With
respect to FNAL/MILC 14A they have increased the statistics and added three ensembles
at very fine lattice spacings, a ~ 0.03 and 0.042 fm, including for the latter case also
a simulation at the physical value of the light-quark mass. The final result of their
analysis is fx+/frt = 1.1950(14)stat(F7)a2 (2) rv (3) 1. pDG (3) Ear(2) o2, Where the errors
are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic effects and sampling of the topological charge distribution.??

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study of
fr=/fr+ is based on the same set of ensembles as FNAL/MILC 17 bar the ones at the
finest lattice spacings (namely, only a = 0.09-0.15 fm, scale set with f,+ and relative
scale set with the Wilson flow [115, 365]) supplemented by some simulation points with
heavier quark masses. HPQCD employs a global fit based on continuum NLO SU(3)
XPT for the decay constants supplemented by a model for higher-order terms including
discretization and finite-volume effects (61 parameters for 39 data points supplemented by
Bayesian priors). Their final result is fg+/frt = 1.1916(15)stat(12)a2 (1) v (10), where
the errors are statistical, due to the continuum extrapolation, due to finite-volume effects
and the last error contains the combined uncertainties from the chiral extrapolation, the
scale-setting uncertainty, the experimental input in terms of f+ and from the uncertainty
in my/mg.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensem-
bles, we assume a 100 % correlation among their statistical errors. A 100 % correlation on
the total systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD
13A with the HISQ valence quarks.

2270 form the average in Eq. (76), we have symmetrized the asymmetric systematic error and shifted the
central value by half the difference as will be done throughout this section.
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The discretization effects are not large, typically at the < 1 % level in HPQCD 13A,
FNAL/MILC 17 and ETM21 in their simulation region of a. This does not necessarily
mean that 6(a) in units of the uncertainty of the observable is small. HPQCD 13A
observed that it also depends on the choice of the input to fix the lattice scale: d(a) is
consistent with zero with the relative scale setting using 1 from the static potential and
wo from the gradient flow, whereas d(a) < 7 with another flow scale v/%p.2® It is not
surprising that CalLat 20 observed larger scaling violation of < 4 %: while they partly
share gauge ensembles with HPQCD 13A and FNAL/MILC 17, the Mdbius domain-wall
action without the tree-level O(a?) improvement is employed in their mixed action setup.

For Ny = 24 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter
the FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge
ensembles generated using tree-level clover-improved fermions with two HEX-smearings
and the tree-level Symanzik-improved gauge action. The ensembles correspond to five
values of the lattice spacing (0.05-0.12 fm, scale set by {2 mass), to pion masses in the
range 130-680 MeV and to values of the lattice size from 1.7 to 5.6 fm, obtaining a good
control over the interpolation to the physical mass point and the extrapolation to the
continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for
the fermions (mildly stout-smeared) and the tree-level Symanzik action for the gluons.
Four values of the lattice spacing (0.06-0.08 fm) have been simulated with pion masses
down to ~ 220 MeV and values of the lattice size in the range 2.0-2.8 fm. The decay
constants are evaluated using an expansion around the symmetric SU(3) point m, =
mg = ms = (My +mg + mg)PMvs /3.

Note that for Ny = 2 + 1 MILC 10 and HPQCD/UKQCD 07 are based on stag-
gered fermions, BMW 10, BMW 16 and QCDSF/UKQCD 16 have used improved Wilson
fermions and RBC/UKQCD 14B’s result is based on the domain-wall formulation. In
contrast to RBC/UKQCD 14B and BMW 16, the other simulations are for unphysical
values of the light-quark masses (corresponding to smallest pion masses in the range 220—
260 MeV in the case of MILC 10, HPQCD/UKQCD 07, and QCDSF/UKQCD 16) and,
therefore, slightly more sophisticated extrapolations needed to be controlled. Various
ansétze for the mass and cutoff dependence comprising SU(2) and SU(3) xPT or simply
polynomials were used and compared in order to estimate the model dependence. While
BMW 10, RBC/UKQCD 14B, and QCDSF/UKQCD 16 are entirely independent compu-
tations, subsets of the MILC gauge ensembles used by MILC 10 and HPQCD/UKQCD
07 are the same. MILC 10 is certainly based on a larger and more advanced set of gauge
configurations than HPQCD/UKQCD 07. This allows them for a more reliable estima-
tion of systematic effects. In this situation, we consider both statistical and systematic
uncertainties to be correlated.

Before determining the average for fy+/f+, which should be used for applications
to Standard Model phenomenology, we apply the strong-isospin correction individually to
all those results that have been published only in the isospin-symmetric limit, i.e., BMW
10, HPQCD/UKQCD 07 and RBC/UKQCD 14B at Ny = 2+ 1. To this end, as in the
previous editions of the FLAG reviews [2-5], we make use of NLO SU(3) xPT [282, 327],

which predicts
Jxx _ Jk
— = /149 74
Jret fr Tosue) ( )
where [282]

~ 4 2 2 2 21, Mi
~ 3 0 P ™ ™ !
Ssu(2) VBesu |3 Un/fe = 1)+ 5o (M3 - M2 - M2 55 )] . (75)

We use as input egy(z) = V3/(4R) with the FLAG result for R of Eq. (51), Fo = fo/v2 =
80 (20) MeV, M, = 135 MeV and Mg = 495 MeV (we decided to choose a conservative

23We refer to Sec. 11 for detailed discussions on the scale setting and choices of the input.

74



uncertainty on fy in order to reflect the magnitude of potential higher-order corrections).
The results are reported in Tab. 18, where in the last column the last error is due to the
isospin correction (the remaining errors are quoted in the same order as in the original
data).

fr/fx dsu(2) frs/ ot
HPQCD/UKQCD 07 1.189(2)(7) —0.0038(6) 1.187(2)(7)(2)
BMW 10 1.192(7)(6)  —0.0039(6) 1.190(7)(6)(2)
RBC/UKQCD 14B  1.1945(45) —0.0039(6) 1.1921(45)(24)

Table 18: Values of the isospin-breaking correction dgy 2 applied to the lattice data for fx/ fr,
entering the FLAG average at Ny = 2+ 1, for obtaining the corrected charged ratio fr+/f;+.
The last error in the last column is due to a 100 % uncertainty assumed for dgy 2y from SU(3)
xPT.

For Ny =2+ 1+ 1, HPQCD [42], FNAL/MILC [20] and ETM [366] estimate a value
for dgu(2) equal to —0.0054(14), —0.0052(9) and —0.0073(6), respectively. Note that the
ETM result is obtained using the insertion of the isovector scalar current according to the
expansion method of Ref. [222], while the HPQCD and FNAL/MILC results correspond to
the difference between the values of the decay constant ratio extrapolated to the physical
u-quark mass m,, and to the average (m, + mg)/2 light-quark mass.

To remain on the conservative side, we add a 100% error to the correction based on
SU(3) xPT. For further analyses, we add (in quadrature) such an uncertainty to the
systematic error (see Tab. 18).

Using the results of Tab. 18 for Ny = 2 4 1 we obtain

direct, Ny =2+1+1: free/ frr = 1.1934(19) Refs. [20, 42-45], (76)
direct, Ny =2 +1: fics/fae = 11017(37)  Refs. [12, 4650,  (77)

for QCD with broken isospin.

The averages obtained for f;(0) and fr+/fr+ at Ny =24+ 1and Ny =2+ 1+1
[see Eqs. (72-73) and (76-77)] exhibit a precision better than ~ 0.3%. At such a level of
precision, QED effects cannot be ignored, and a consistent lattice treatment of both QED
and QCD effects in leptonic and semileptonic decays becomes mandatory.

5.3.3 Extraction of |V, and |V,]

It is instructive to convert the averages for f (0) and fx+/f+ into a corresponding range
for the CKM matrix elements |V,,4| and |V,s|, using the relations in Eq. (65). Consider
first the results for Ny = 2 + 1+ 1. The average for f4(0) in Eq. (72) is mapped into
the interval |V,s| = 0.22328(58), depicted as a horizontal red band in Fig. 10. That
for fx+/fr+ in Eq. (76) is converted into |Vis|/|Vud| = 0.23126(50) using the result
for |Vius/Vual(fx=/fxt) in Eq. (65), shown as a tilted red band. The red ellipse is the
intersection of these two bands and represents the 68% likelihood contour, obtained by
treating the above two results as independent measurements. Repeating the exercise for
Ny = 2+ 1 leads to the green ellipse.?* The vertical band shows |V,4| from nuclear j3
decay, Eq. (69). The PDG value (69) indicates a tension with both the Ny =2+ 1+1
and Ny = 2 + 1 results from lattice QCD.

24Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2] correspond instead to the 39% likelihood
contours. Note also that in Ref. [2] the likelihood was erroneously stated to be 68% rather than 39%.

75



FIAG2024

0.228 A
0.226 A
02244 —:
9 e
D B
0.222 e
[ lattice results for f,(0), N,.=2+1+1
0.220 - I lattice results for fx=/fr=, N,.=2+1+1
' lattice results for f, (0), N, =2+ 1
lattice results for fg«/fr+, N, =2 + 1
[ lattice results for N,.=2 + 1 + 1.combined
0.218 1 [ lattice results for N,.=2 + 1 combined
’ nuclear B decay
0.955 0.960 0.965 0.970 0.975 0.980

|Vud|

Figure 10:

The plot compares the information for V4|, |Vis| obtained using lattice QCD

for Ny =241 and Ny =2+ 1+ 1 with |V,4| extracted from nuclear § transitions Eq. (69).
The black dotted line indicates the correlation between |V,4| and |V,s| that follows if the
CKM-matrix is unitary.

As we mentioned, the isospin corrections are becoming relevant for the extraction of
the CKM elements at the current precision of lattice QCD inputs. We obtain |Vis|/|Via| =
0.23131(45) by taking the average of fx/fr in isosymmetric QCD and combining it with
the value for |Vys|fx/|Vudlfr in Eq. (68). This estimate plotted in Fig. 11 is consistent
with that obtained from Eq. (65) using the isospin corrections from ChPT. Unlike the
corrections from ChPT, the accuracy of the isospin corrections from lattice QCD can be
readily improved by more realistic simulations and higher statistics, further sharpening
the comparisons shown in the figure.

5.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the
first row obey
|Vu|2 = |Vud|2‘|'|Vu:3|2‘|'|vub|2 =1. (78)

The tiny contribution from |V,;| is known much better than needed in the present context:
|Vup| = 3.82(24) x 1073 [205].2° In the following, we test the first row unitarity Eq. (78)
by calculating |V,,|? and by analyzing the lattice data within the Standard Model.

In Fig. 10, the correlation between |V,q| and |V,s| imposed by the unitarity of the
CKM matrix is indicated by a dotted line (more precisely, in view of the uncertainty in
|Vaus|, the correlation corresponds to a band of finite width, but the effect is too small
to be seen here). The plot shows that there is a tension with unitarity in the data for

25See also Sec. 8.8 for our determination of | Vi)
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Figure 11: Same as Fig. 10 but with |V,s|/|V,.q| obtained using Eq. (68).

Ny = 2+ 1+ 1: Numerically, the outcome for the sum of the squares of the first row of
the CKM matrix reads |V, |2 = 0.9820(65), which deviates from unity at the level of ~ 2.8
standard deviations. Still, it is fair to say that at this level the Standard Model passes a
nontrivial test on the kaon (semi)leptonic and pion leptonic decays.

The test sharpens considerably by combining the lattice results for f; (0) with the 3
decay value of |V,q|: f+(0) for Ny = 2+ 1+ 1 in Eq. (72) and the PDG estimate of
|Vud| in Eq. (69) lead to |V,|? = 0.99802(66), which also shows a ~ 3.0 o deviation with
unitarity. On the other hand, unitarity is fulfilled (1.7 o) with fx+/f.+ and |V (69)
(|Vu]? = 0.99888(67)). Note that the uncertainties on |V,|? coming from the error of |V,,4
is larger by a factor of about three than that from |V,|.

The situation is similar for Ny = 2 4+ 1: with the lattice data alone one has |V, |? =
0.9836(92), which is consistent with unity at the level of ~ 1.8 standard deviations. The
lattice results for f1(0) in Eqs. (73) with the PDG value of |V,4| (69) lead to |V,|? =
0.99824(69), implying a ~ 2.5 ¢ deviation from unitarity, whereas the deviation is reduced
to 1.4 o with fg+/fr+ in Eq. (77) (|V.|? = 0.99902(73)).

5.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in Eq. (65) and the unitarity condition Eq. (78) then reduce the four
quantities |Viyal, |[Vaus|, f+(0), fr+/f=+ to a single unknown: any one of these determines
the other three within narrow uncertainties.

Numerical results for |V,s| and |V,,4| are listed in Tab. 19, where we restrict ourselves
to those determinations that enter the FLAG average in Sec. 5.3 (the error in the exper-
imental numbers used to convert the values of f;(0) and fx+/fr+ into values for V|
is included in the statistical error). As Fig. 12 shows, the results obtained for |V,,,| and
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[Via| from the data on fr+/fr+ (squares) are consistent with the determinations via
f+(0) (triangles), while there is a tendency that |Vys| (|Vaual|) from f4(0) is systematically

smaller (larger) than that from fr+/fr+.

Collaboration Ref. Ny from [Vius| |Vid|
FNAL/MILC 18 [39] 24+1+1  f4(0) 0.22333(55)(28)  0.97474(13)(6)
ETM 16 [38] 24+1+1  £(0) 0.2230(11)(2)  0.97480(26)(5)
ETM 21 [45] 24+ 1+1 fre/fre 0.22490(85)(13) 0.97437(20)(3)
CalLat 20 [44] 24+1+1 fre/frt 0.22517(65)(56) 0.97431(15)(13)
FNAL/MILC 17 [20] 24+ 1+1 fre/fre 0.22513(42)(21) 0.97432(10)(5)
ETM 14E [43] 24141 fre/fre 0.2270(22)(20)  0.97388(51)(47)
HPQCD 13A [42] 24141 fre/frt 0.22564(42)(29) 0.97420(10)(7)
RBC/UKQCD 15A [41] 2+1 f+(0) 0.22358(89)(32)  0.97468(20)(7)
FNAL/MILC 121 [40] 2+1 f+(0) 0.22400(68)(76)  0.97458(16)(18)
QCDSF/UKQCD 16 [50] 241 frx/fze  0.2259(18)(23)  0.97414(42)(54)
BMW 16 [49, 360] 241 frs/fr+ 0.2281(19)(48)  0.9736(4)(11)
RBC/UKQCD 14B [12] 2+1 fr+/fr+  0.22555(87)(43) 0.97422(20)(10)
MILC 10 [47] 2+1 fr+/fr+  0.22503(48)(89) 0.97434(11)(21)
BMW 10 [48] 2+1 fr+/fe+  0.2259(13)(11)  0.97414(30)(26)
HPQCD/UKQCD 07 [46] 2+1 fr+/fr+ 0.2265(5)(13)  0.97401(11)(31)

Table 19: Values of |V,s| and |V,4| obtained from the lattice determinations of either f (0)
or fx+/fr+ assuming CKM unitarity. The first number in brackets represents the statistical
error including the experimental uncertainty, whereas the second is the systematic one.

In order to calculate the average of |V,,s| for Ny = 24141, we consider the data both for
f+(0) and fg+/frt, treating ETM 16 and ETM 14E on the one hand and FNAL/MILC
18, CalLat 20, FNAL/MILC 17, and HPQCD 13A on the other hand, as statistically
correlated according to the prescription of Sec. 2.3. We obtain |V,,s| = 0.22483(61), where
the error is stretched by a factor \/x2/dof ~ 4/2.0. This result is indicated on the left
hand side of Fig. 12 by the narrow vertical band. In the case Ny = 24-1, we consider MILC
10, FNAL/MILC 121 and HPQCD/UKQCD 07 on the one hand, and RBC/UKQCD 14B
and RBC/UKQCD 15A on the other hand, as mutually statistically correlated, since the
analysis in the two cases starts from partialy the same set of gauge ensembles. In this
way, we arrive at |V,s| = 0.2248(6) with x?/dof ~ 0.7. The figure shows that the results
obtained for the data with Ny =241 and Ny =241+ 1 are consistent with each other.
However, the larger error for Ny = 2+ 1+ 1 due to the stretch factor y/x2/dof suggests
a slight tension between the estimates from the semileptonic and leptonic decays.

We take the average of |V,q| similarly. Again, the result |V, = 0.97439(14) for
Ny =2+ 141 is perfectly consistent with the values |V,,4| = 0.97440(13) obtained from
the data with Ny = 241. These values are consistent with Eq. (69) from the superallowed
nuclear transitions within 2 o.

As mentioned in Sec. 5.1, the HFLAV value of |V,| from the inclusive hadronic 7 de-
cays differs from those obtained from the kaon decays by about three standard deviations.
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Figure 12: Results for |V,s| and |V,4| that follow from the lattice data for fi(0) (triangles)
and fr+/fr+ (squares), on the basis of the assumption that the CKM matrix is unitary. The
black square and the grey band represent the average for each value of Ny. For comparison,
the figure also indicates the results obtained if the data on nuclear 5 decay and inclusive
hadronic 7 decay is analyzed within the Standard Model.

Assuming the first row unitarity defined in Eq. (78) leads to a larger value of |V,,4| than
those from the kaon and nuclear decays.

Ref. |Vus| ‘VUd|
Ny=2+1+1 0.22483(61) 0.97439(14)
Np=2+1 0.22481(58) 0.97440(13)
nuclear § decay [205] 0.2277(13) 0.97373(31)
inclusive 7 decay [148] 0.2184(21) 0.97585(47)

Table 20: The upper half of the table shows the results for |V,s| and |V,4| from the analysis
of the kaon and pion decays within the Standard Model. For comparison, the lower half lists
the values that follow if the lattice results are replaced by the experimental results on nuclear
B decay and inclusive hadronic 7 decay, respectively.

5.6 Direct determination of fi+ and [+

Tt is useful for flavour-physics studies to provide not only the lattice average of fx+/fr+,
but also the average of the decay constant fi+. The case of the decay constant f,+ is
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different, since the the PDG value [276] of this quantity, based on the use of the value
of |V,4| obtained from superallowed nuclear 8 decays [297], is often used for setting the
scale in lattice QCD. However, the physical scale can be set in different ways, namely, by
using as input the mass of the  baryon (mgq) or the T-meson spectrum (AMy), which
are less sensitive to the uncertainties of the chiral extrapolation in the light-quark mass
with respect to f,=.26 In such cases, the value of the decay constant f,+ becomes a direct
prediction of the lattice-QCD simulations. Therefore, it is interesting to provide also the
average of the decay constant f.+, obtained when the physical scale is set through another
hadron observable, in order to check the consistency of different scale-setting procedures.

Our compilation of the values of f.+ and frg+ with the corresponding colour code
is presented in Tab. 21 and it is unchanged from the corresponding one in the previous
FLAG reviews [4, 5].

In comparison to the case of fx=+/fr+, we have added two columns indicating which
quantity is used to set the physical scale and the possible use of a renormalization constant
for the axial current. For several lattice formulations, the use of the nonsinglet axial-vector
Ward identity allows us to avoid the use of any renormalization constant.

One can see that the determinations of f;+ and fr+ suffer from larger uncertainties
than those of the ratio fg+/fr+, which is less sensitive to various systematic effects
(including the uncertainty of a possible renormalization constant) and, moreover, is not
exposed to the uncertainties of the procedure used to set the physical scale.

According to the FLAG rules, for Ny =24 14 1 four data sets can form the average
of frg+ only: ETM 21 [45], ETM 14E [43], FNAL/MILC 14A [21], and HPQCD 13A
[42]. Following the same procedure already adopted in Sec. 5.3 for the ratio of the decay
constants, we assume 100 % statistical and systematic correlation between FNAL/MILC
14A and HPQCD 13A. For Ny = 2 + 1 three data sets can form the average of f,+ and
fx+ : RBC/UKQCD 14B [12] (update of RBC/UKQCD 12), HPQCD/UKQCD 07 [46],
and MILC 10 [47], which is the latest update from the MILC program. We consider
HPQCD/UKQCD 07 and MILC 10 as statistically correlated and use the prescription of
Sec. 2.3 to form an average.

Thus, our averages read

Ny=2+1: frt =130.2 (0.8) MeV Refs. [12, 46, 47], (79)
Ny=2+1+1: frt = 155.7 (0.3) MeV Refs. [21, 42, 43, 45], (80)
Ny=2+1: frt =155.7 (0.7) MeV Refs. [12, 46, 47], (81)

The lattice results of Tab. 21 and our averages in Egs. (79)—(81) are reported in Fig. 13.
Note that the FLAG average of fx+ for Ny =2+ 141 is based on calculations in which
frt is used to set the lattice scale, while the Ny = 2 + 1 average does not rely on that.

26See Sec. 11 for detailed discussions.
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Collaboration Ref. Ny * & & Q\@ & frt fr+
ETM 21 [45] 2+1+1 A na  fx - 155.92(62)(9)"
ETM 14E [43] 24+1+1 A na  fr - 154.4(1.5)(1.3)
FNAL/MILC 14A [21] 2+1+1 A na  fx - 155.92(13)(T3%)
HPQCD 13A [42] 2+1+1 A na  fx - 155.37(20)(27)
MILC 13A [357) 2+1+1 A na  fr - 155.80(34)(54)
ETM 10E [359] 24141 C na  fr v - 159.6(2.0)
JLQCD 15C [367) 2+1  C NPR to 125.7(7.4)stat
RBC/UKQCD 14B  [12] 2+1 A NPR mq v 130.19(89) 155.18(89)
RBC/UKQCD 12 [229] 241 A NPR mq v 127.1(2.7)(2.7)  152.1(3.0)(1.7)
Laiho 11 [54] 2+1 C na 130.53(87)(2.10) 156.8(1.0)(1.7)
MILC 10 [47] 241 C na 129.2(4)(1.4) -
MILC 10 [47] 241  C na fr - 156.1(4) (%)
JLQCD/TWQCD 10 [361] 24+1  C ] na  mo v 1185(3.6)star  145.7(2.7)stat
RBC/UKQCD 10A  [119] 241 A NPR mq v 124(2)(5) 148.8(2.0)(3.0)
MILC 09A [19] 241 C na  AMxy 128.0(0.3)(2.9)  153.8(0.3)(3.9)
MILC 09A [19] 241 C na  fr - 156.2(0.3)(1.1)
MILC 09 [196] 2+1 A na  AMxy 128.3(0.5)(T23) 154.3(0.4)(T31)
MILC 09 [196] 241 A na  fx 156.5(0.4)(739)
Aubin 08 [362] 241  C na  AMry 129.1(1.9)(4.0)  153.9(1.7)(4.4)
RBC/UKQCD 08 [236] 24+1 A ] NPR mq v 124.1(3.6)(6.9) 149.4(3.6)(6.3)
HPQCD/UKQCD 07 [46] 2+1 A na  AMy v 132(2) 156.7(0.7)(1.9)
MILC 04 [239] 241 A na  AMry 129.5(0.9)(3.5)  156.6(1.0)(3.6)

The label 'na’ indicates the lattice calculations that do not require the use of any renormalization constant for
the axial current, while the label 'NPR’ signals the use of a renormalization constant calculated nonperturba-
tively.

T We evaluated from fr+/f,+ in Tab. 17 and their input to fix the scale fr = 130.4(2).

T The ratios of lattice spacings within the ensembles were determined using the quantity 1. The
conversion to physical units was made on the basis of Ref. [122], and we note that such a determination
depends on the PDG value [276] of the pion decay constant.

Table 21: Colour codes for the lattice data on f+ and fi+ together with information on the
way the lattice spacing was converted to physical units and on whether or not an isospin-
breaking correction has been applied to the quoted result (see Sec. 5.3). The numerical values
are listed in MeV units. In this and previous editions [4, 5], old results with two red tags
have been dropped.
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in Egs. (79) and (81).
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6 Kaon mixing

Authors: P. Dimopoulos, X. Feng, G. Herdoiza

The mixing of neutral pseudoscalar mesons plays an important role in the understand-
ing of the physics of quark-flavour mixing and CP violation. In this section, we discuss
K° — KO oscillations, which probe the physics of indirect CP violation. Extensive reviews
on this subject can be found in Refs. [368-373]. The main changes in this section with
respect to the FLAG 21 edition [5] are as follows: A discussion on the €x calculation has
been added in Sec. 6.1. An updated discussion regarding new lattice determinations of
the K — 7 decay amplitudes and related quantities is provided in Sec. 6.2. New FLAG
averages for SM and BSM bag parameters are reported in Secs. 6.3 and 6.4, which con-
cern the kaon mixing within the Standard Model (SM) and Beyond the Standard Model
(BSM), respectively.

6.1 Indirect CP violation and ¢x in the SM

Indirect CP violation arises in Kj — 77 transitions through the decay of the CP = +1
component of K, into two pions (which are also in a CP = +1 state). Its measure is

defined as

_ .A[KL — (7T7T)[:0] (82)
A[KS — (7T7T)[:0] ’

with the final state having total isospin zero. The parameter ex may also be expressed

in terms of K* — K oscillations. In the Standard Model, ex is given by the following

expression [372, 374-377]

€K

m(MEP) | Im(MIP) | Tm(Ay)

AMK AMK Re(Ao) ’ (83)

ex = exp(id.) sin(¢e)
where the various contributions can be related to: (i) short-distance (SD) physics given
by AS = 2 “box diagrams” involving W bosons and u, ¢ and t quarks; (ii) long-distance
(LD) physics from light hadrons contributing to the imaginary part of the dispersive
amplitude Mo, Im (MEP), used in the two-component description of K° — K° mixing;
(iii) the imaginary part of the absorptive amplitude I';5 from K° — K9 mixing which can
be related to Im(Ap)/Re(Ap), where Ag is the K — (77) -0 decay amplitude, as (77) ;-0
states provide the dominant contribution to the absorptive part of the integral in I'y5. The
various factors of this decomposition may vary according to phase conventions. In terms

of the AS = 2 effective Hamiltonian, ’Hﬁfszz, it is common to represent contribution (i)
by

1 _ _
Im(M7y) = 5 —Im[(K°[Hg =2 |KP)]. (84)
2M g
The phase of ek is given by
M
¢ = arctan AI‘KI/(2 . (85)

The quantities AMy and Al'x are the mass and decay width differences between long-
and short-lived neutral kaons. The experimentally known values of the above quantities
are [274]:

lexe| = 2.228(11) x 1077, (86)
b = 43.52(5)°, (87)
AMg = Mg, — Mg, = 3.484(6) x 107> MeV (88)
ATy = Ty, —Tg, = 7.3382(33)x 1072 MeV , (89)
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where the latter three measurements have been obtained by imposing CPT symmetry.

We will start by discussing the short-distance effects (i) since they provide the dom-
inant contribution to ex. To lowest order in the electroweak theory, the contribution
to K° — K oscillations arises from the box diagrams, in which two W bosons and two
“up-type” quarks (i.e., up, charm, top) are exchanged between the constituent down and
strange quarks of the K mesons. The loop integration of the box diagrams can be per-
formed exactly. In the limit of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion interaction, expressed in terms
of the effective Hamiltonian

Gh My

HAS:Q —
off 1672

FOQA5=% + he. . (90)

In this expression, G is the Fermi coupling, My the W-boson mass, and
Q=2 = [57,(1 — v5)d] [57.(1 — 75)d] = Oyvian — Ovatav , (91)

is a dimension-six, four-fermion operator. The subscripts V and A denote vector (5v,d)
and axial-vector (57,7vsd) bilinears, respectively. The function FY is given by

FO = MSo(xe) + MSo(ws) + 2MAeSo(we, 74) (92)

where A\, = VXV,q, and a = ¢,t denotes a flavour index. The quantities Sp(z.), So(z+)
and So(ze,z¢) with z. = m2/M%, ©, = m?/M% are the Inami-Lim functions [378],
which express the basic electroweak loop contributions without QCD corrections. The
contribution of the up quark, which is taken to be massless in this approach, has been
taken into account by imposing the unitarity constraint A, + A. + Ay = 0. By substituting
Ae = —Au — Ay, one can rewrite FO as [379, 380]

FO = M2So(ze) + A2[So(xs) 4+ So(ze) — 280(ze, 21)] + 220 Ne[So(ze) — So (e, x1)] . (93)

Equations (92) and (93) are denoted as “c-t unitarity” and “u-t unitarity”, respectively.
Since A2 Sy(z.) is real, it does not factor into ef, even when accounting for QCD correc-
tions.

When strong interactions are included, AS = 2 transitions can no longer be discussed
at the quark level. Instead, the effective Hamiltonian must be considered between mesonic
initial and final states. Since the strong coupling is large at typical hadronic scales, the
resulting weak matrix element cannot be calculated in perturbation theory. The operator
product expansion (OPE) does, however, factorize long- and short-distance effects. For
energy scales below the charm threshold, the K°— K° transition amplitude of the effective
Hamiltonian can be expressed in terms of the ¢t unitarity framework as follows

= - G2 M2

(ROHET ) = ZER N2So(aem + A2So(ai)me + 2AchiSo(we. z)ns

= —v0/(2Bo) (1)

9(#)2) " {/g (7(9) 70 )} 0| NAS=2 0
X | —— ex dg| == + — K K”) + hc., (94
(2 o [ o (35 + 3% ) HRUIQRTE 1) (99

where g(u) and QﬁSﬂ(,u) are the renormalized gauge coupling and the four-fermion

operator in some renormalization scheme. The factors 71,72 and 13 depend on the renor-
malized coupling g, evaluated at the various flavour thresholds m;, my, m. and My, as
required by the OPE and Renormalization-Group (RG) running procedure that separate
high- and low-energy contributions. Explicit expressions can be found in Ref. [371] and
references therein, except that 7; and 73 have been calculated to NNLO in Refs. [381] and
[382], respectively. We follow the same conventions for the RG equations as in Ref. [371].
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Thus the Callan-Symanzik function and the anomalous dimension v(g) of Q45=2 are
defined by

dg ~ dQAS:2 ~ _
g =20, =0 R, (95)
with perturbative expansions
3 5
g g
_ _ o 96
ﬂ(‘g) ﬁo (47_[_)2 Bl (471_)4 ) ( )
2 4
_ 9 9 .

We stress that Sy, 31 and vy are universal, i.e., scheme independent. As for K° — K°
mixing, this is usually considered in the naive dimensional regularization (NDR) scheme
of MS, and below we specify the perturbative coefficient v, in that scheme:

1. 2 34 13 1
={=N-ZN NN (2N - —
Po {3 3f}’ & {3 f<3 N)} 1)
6(N — 1) N-1 57 19 4
=2 S 0 VRS s A
o N " 2N{ N3V T3 }

Note that for QCD the above expressions must be evaluated for N = 3 colours, while
Ny denotes the number of active quark flavours. As already stated, Eq. (94) is valid at
scales below the charm threshold, after all heavier flavours have been integrated out, i.e.,
Ny =3.

In Eq. (94), the terms proportional to 71, 72 and 73, multiplied by the contributions
containing ()%, correspond to the Wilson coefficient of the OPE, computed in pertur-
bation theory. Its dependence on the renormalization scheme and scale p is canceled by
that of the weak matrix element (K°|Q&°=2(u)|K°). The latter corresponds to the long-
distance effects of the effective Hamiltonian and must be computed nonperturbatively.
For historical, as well as technical reasons, it is convenient to express it in terms of the
B-parameter By, defined as

(K Q5 (u)| K7)
sfeMi

Bi(n) = (98)

The four-quark operator Q2=2(p) is renormalized at scale y in some regularization
scheme, for instance, NDR-MS. Assuming that By (u) and the anomalous dimension
~(g) are both known in that scheme, the renormalization group independent (RGI) B-
parameter By is related to B k(1) by the exact formula

At NLO in perturbation theory, the above reduces to

- —70/(2B0) Y
; glp)*\ " g(w)?* [ B0 — Bon
Bk = 1 B . 100
K ( An ) T lany 282 K () (100)
To this order, this is the scale-independent product of all u-dependent quantities in

Eq. (94).

Lattice-QCD calculations provide results for B (11). However, these results are usually
obtained in intermediate schemes other than the continuum MS scheme used to calculate
the Wilson coefficients appearing in Eq. (94). Examples of intermediate schemes are
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the RI/MOM scheme [383] (also dubbed the “Rome-Southampton method”) and the
Schrodinger functional (SF) scheme [384]. These schemes permit the nonperturbative
renormalization of the four-fermion operator to be conducted, using an auxiliary lattice
simulation. This allows By (1) to be calculated with percent-level accuracy, as described
below.

In order to make contact with phenomenology, however, and in particular to use the
results presented above, one must convert from the intermediate scheme to the MS scheme
or to the RGI quantity By. This conversion relies on 1- or 2-loop perturbative matching
calculations, the truncation errors in which are, for many calculations, the dominant
source of error in By (see, for instance, Refs. [12, 54-56, 229, 385]). While this scheme-
conversion error is not, strictly speaking, an error of the lattice calculation itself, it must be
included in results for the quantities of phenomenological interest, namely, Bx (MS, 2 GeV)
and Bp. Incidentally, we remark that this truncation error is estimated in different ways
and that its relative contribution to the total error can considerably differ among the
various lattice calculations. We note that this error can be minimized by matching between
the intermediate scheme and MS at as large a scale p as possible (so that the coupling
which determines the rate of convergence is minimized). The latest available calculations
have pushed the matching p up to the range 3-3.5 GeV. This is possible because of the use
of nonperturbative RG running determined on the lattice [12, 53, 229]. The Schrédinger
functional offers the possibility to run nonperturbatively to scales p ~ My where the
truncation error can be safely neglected. However, so far this has been applied only for
two flavours for By in Ref. [386] and for the case of the BSM bag parameters in Ref. [387],
and in Ref. [388] for three flavours. (See more details in Sec. 6.4.)°

Perturbative truncation errors in Eq. (94) also affect the Wilson coefficients 11, 72
and ns. It turns out that the largest uncertainty arises from the charm quark contribution
m = 1.87(76) [381]. Although it is now calculated at NNLO, the series shows poor
convergence. The net effect from the uncertainty on 7; on the amplitude in Eq. (94) is
larger than that of present lattice calculations of By . Exploiting an idea presented in
Ref. [379], it has been shown in Ref. [380] that, by using the u-t instead of the usual c-¢
unitarity in the ex computation, the perturbative uncertainties associated with residual
short-distance quark contributions can be reduced. We will elaborate upon this point
later.

Returning to Eq. (83), we note that an analytical estimate of the leading contri-
bution from Im(MJP) based on xPT, shows that it is approximately proportional to
& = Im(Ap)/ Re(Ap) so that Eq. (83) can be written as follows [376, 377]:

(M)

N+ 6], (101)

ex = exp(ide) sin(¢e)
where the deviation of p from one parameterizes the long-distance effects in Im(M;2).
The general formula presented in Eq. (101) for the parameter ek provides one of the
most valuable inputs for tests of CKM unitarity. Moreover, it holds significant potential
as a probe for New Physics, provided that its precision can be enhanced. In the following,
we will provide a general overview of the current status of the computation of |ex]|.
With a very good approximation the formula for |ex| can be written in the so-
called Wolfenstein parametrization [389]. The determination of |ex| requires the knowl-
edge of more than a dozen input quantities, which can be categorized into four groups.
The first group includes six quantities (Gr, ¢, Mo, AMg, My and m;) whose values
are known from experiment with high precision. The second group consists of sev-
eral observables computed in lattice QCD, including the kaon decay constant fx, the
charm-quark mass m.(m.), the neutral kaon mixing bag parameter Bk, and the ratio
& = Im(Ap)/Re(Ap).2” Moreover, the values of the CKM matrix elements |V,a|, |Vas|

2TFurthermore, the long-distance effects owing to light hadrons can be estimated on the lattice as noted
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and |V| are required—see for instance Ref. [391]—which are based on lattice-QCD com-
putations. It is worth recalling that the present FLAG report provides average values for
these quantities, see Secs. 5 and 8. The third group involves the short-distance interaction
factors calculated in perturbation theory. In the c-t unitarity formula, these factors are
1, N2, and 73, as mentioned earlier in this section and shown in Eq. (94). In the u-t
unitarity case, there appear only two relevant factors (see Refs. [380, 392]). Finally, the
fourth group of inputs consists of the pair of CKM triangle variables (p,7) whose values
are estimated from the unitarity triangle analysis. In particular, the Angle-only Fit (AoF)
analysis used in Refs. [393-395] (see also Ref. [396]) prevents any correlation of (p,7) with
the rest of the inputs used in the formula for |ex|.

Among the various inputs, given its precision, the value of |V,;| has a dominant impact
on both the statistically propagated error and the systematic uncertainty of the final |ex|
result. The substantial statistical error arises due to the amplified propagated error caused
by the fourth-power dependence of |V,;| in the |ex| formula.

The main source of systematic uncertainty is particularly significant, as it stems from
the known tension between the values of |V ;| obtained from exclusive decays (derived
from lattice calculations of the relevant form factors) and those derived from inclusive
decays. The total errors associated with both determinations are comparable, yet their
values differ by nearly three standard deviations, as discussed in Sec. 8.

Another significant source of uncertainty, when the ¢t unitarity formula for |ex| is
employed, is related to the factor ; that is computed to NNLO in perturbation theory. For
more information on the estimation of the systematic error due to perturbative truncation,
see Refs. [381, 394, 397]. This source of uncertainty can be mitigated by adopting the u-t
unitarity formula for |ex|. In this case, it is found that the two relevant QCD perturbative
factors are not subject to significant systematic uncertainties. Furthermore, this approach
reduces the correlations between the individual perturbative contributions [380].

We close this discussion by mentioning that the use of the u-t unitarity formula leads to
a total statistical error of about 8% in |ex|. In this case, when analyzing the error budget,
we see that nearly half of the total error comes from the propagation of the uncertainty
from |V|. Furthermore, the propagated error owing to the 77 error is the second most
significant source of uncertainty in |ex|. It is noteworthy that the propagated error from
By is much smaller, accounting for only a few percent in the final error budget. It should
also be noted that the relative uncertainties contributing to the error budget are rather
sensitive to improvements in the precision of |V,;|.2® On the other hand, the additional
systematic uncertainty due to the tension of the inclusive and exclusive determinations
of |Vip| is much larger than the statistical one. It is worth adding that the use of the
inclusive |V| determination brings the theoretical estimate of |ex| to be compatible with
the experimental value. The resolution of this long-standing tension, in conjunction with
a reduction in the overall uncertainty of |ex/|, is highly desirable in order to enhance its
impact on the search for New Physics. 2

In order to facilitate the subsequent discussions about the status of the lattice studies
of K — 7w and of the current estimates of & = Im(Ag)/Re(4p), we provide a brief
account of the parameter € that describes direct CP-violation in the kaon sector. The
definition of € is given by:

’ LA[KS — (7T7T)[:2] (.A[KL — (7T7T)[:2] B A[KL — (7T7T)]_0]>
\ﬁA[Ks—)(ﬂ'Tr)I:o] '

A[KS — (7T7T)1:2] .A[Ks — (7T7T)[:0]
below in Sec. 6.2, c.f. Ref. [390]. However, the current accuracy of this calculation is not yet high enough to
constrain the determination of |ex]|.
28For a recent analysis with the c-t unitarity formulae see Ref. [391] and references therein.
2Note that a more precise determination of |ex | will require taking into account the effect of short-distance
power corrections from dim-8 operators to the AS = 2 effective Hamiltonian. It is estimated that their effect
leads to an increase of the central value by 1%, see Refs. [398, 399).

€

(102)
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By selecting appropriate phase conventions for the mixing parameters between K O and
K° CP-cigenstates (see, e.g., Ref. [369] for further details), the expression of ¢ can be
expressed in terms of the real and imaginary parts of the isospin amplitudes as follows:

i et(02—d0)
gL W e\/5 [52 B 50} 7 (103)
where w = Re(As)/Re(4p), &2 = Im(Az)/Re(Az), Ay denotes the AT = 3/2 K — 7w
decay amplitude, and J; denotes the strong scattering phase shifts in the corresponding,
I=0,2, K — (nm); decays. Given that the phase ¢, = do — §p + 7/2 =~ 42.3(1.5)° [274]
is nearly equal to ¢, in Eq. (87), the ratio of parameters characterizing the direct and
indirect CP-violation in the kaon sector can be approximated in the following way,

6//6 = Re(g//e) = m{fg*fg}, (104)

where on the left hand side we have set € = e€x. The experimentally measured value
reads [274],
Re(€' /) = 16.6(2.3) x 107%. (105)

We remark that isospin breaking and electromagnetic effects (see Refs. [400, 401], and the
discussion in Ref. [370]) introduce additional correction terms into Eq. (104).

6.2 Lattice-QCD studies of the K — (7nm); decay amplitudes, &,
& and €' /e

As a preamble to this section, it should be noted that the study of K — nw decay am-
plitudes requires the development of computational strategies that are at the forefront of
lattice QCD techniques. These studies represent a significant advance in the study of kaon
physics. However, at present, they have not yet reached the same level of maturity of most
of the quantities analyzed in the FLAG report, where, for instance, independent results
by various lattice collaborations are being compared and averaged. We will, therefore,
review the current status of K — 77 lattice computations, but we will provide a FLAG
average only for the case of the decay amplitude As,.

We start by reviewing the determination of the parameter £ = Im(Ag)/ Re(Ap).
An estimate of & has been obtained from a direct evaluation of the ratio of ampli-
tudes Im(Ap)/ Re(Ap), where Im(Ap) is determined from a lattice-QCD computation
by RBC/UKQCD 20 [402] employing Ny = 2+ 1 Mé&bius domain-wall fermions at a single
value of the lattice spacing, while Re(A4g) ~ |A4o| and the value |A4o| = 3.320(2) x 1077
GeV are used based on the relevant experimental input [225] from the decay to two pions.
This leads to a result for £y with a rather large relative error,

€ = —2.1(5) x 10~ (106)

Following a similar procedure, an estimate of £, was obtained through the use of a previous
lattice QCD determination of Im(Ap) by RBC/UKQCD 15G [403]. We refer to Tab. 22
for further details about these computations of Im(A4gp). The comparison of the estimates
of &, based on lattice QCD input are collected in Tab. 24.

To determine the value of &y, the expression in Eq. (104) together with the experi-
mental values of Re(€'/¢), |ex| and w can also be used. This approach has been pursued
with the help of a lattice-QCD calculation of the ratio of amplitudes Im(As)/Re(Az)
by RBC/UKQCD 15F [51] where the continuum-limit result is based on computations
at two values of the lattice spacing employing Ny = 2 + 1 Mobius domain-wall fermions.
Further details about the lattice computations of Ay are collected in Tab. 23. In this
case, we obtain & = —1.6(2) x 107%. The use of the updated value of Im(A;) =
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—8.34(1.03) x 10713 GeV from Ref. [402], in combination with the experimental value
of Re(Az) = 1.479(4) x 1078 GeV, introduces a small change with respect to the above
result.?? The value for & reads !

& =—17(2) x 107 (107)

A phenomenological estimate can also be obtained from the relationship of &y to
Re(€'/e), using the experimental value of the latter and further assumptions concerning
the estimate of hadronic contributions. The corresponding value of &, reads [376, 377]

€0 = —6.0(1.5) x 1072 x V2 |ex| = —1.9(5) x 1074, (108)

We note that the use of the experimental value for Re(€'/e€) is based on the assumption
that it is free from New Physics contributions. The value of £y can then be combined
with a yPT-based estimate for the long-range contribution, p = 0.6(3) [377]. Overall, the
combination p&y appearing in Eq. (101) leads to a suppression of the SM prediction of
lex| by about 3(2)% relative to the experimental measurement of |ex| given in Eq. (86),
regardless of whether the phenomenological estimate of & [see Eq. (108)] or the most
precise lattice result [see Eq. (106)] are used. The uncertainty in the suppression factor
is dominated by the error on p. Although this is a small correction, we note that its
contribution to the error of € is larger than that arising from the value of Bg reported
below.

The evolution of lattice-QCD methodologies has enabled recent ongoing efforts to
calculate the long-distance contributions to e [390, 405] and the K — Kg mass dif-
ference [379, 406-409]. However, the results are not yet precise enough to improve the
accuracy in the determination of the parameter p.

The lattice-QCD study of K — 7m decays provides crucial input to the SM prediction
of ex. During the last decade, the RBC/UKQCD collaboration has undertaken a series
of lattice-QCD calculations of K — nm decay amplitudes [51, 402, 403, 410]. In 2015,
the first calculation of the K — (77)—¢ decay amplitude Ay was performed using phys-
ical kinematics on a 323 x 64 lattice with an inverse lattice spacing of a=! = 1.3784(68)
GeV [403, 411]. The main features of the RBC/UKQCD 15G calculation included, fixing
the I = 0 77 energy very close to the kaon mass by imposing G-parity boundary condi-
tions, a continuum-like operator mixing pattern through the use of a domain-wall fermion
action with accurate chiral symmetry, and the construction of the complete set of corre-
lation functions by computing seventy-five distinct diagrams. Results for the real and the
imaginary parts of the decay amplitude Ay from the RBC/UKQCD 15G computation are
collected in Tab. 22, where the first error is statistical and the second is systematic.

The calculation in RBC/UKQCD 20 [402] using the same lattice setup has improved
upon RBC/UKQCD 15G [403] in three important aspects: (i) an increase in statistics
by a factor of 3.4; (ii) the inclusion of a scalar two-quark operator and the addition of
another pion-pion operator to isolate the ground state, and (iii) the use of step scaling
techniques to raise the renormalization scale from 1.53 GeV to 4.01 GeV. The updated
determinations of the real and the imaginary parts of Ag in Ref. [402] are shown in Tab. 22.

In addition to utilizing G-parity boundary conditions to address the challenges asso-
ciated with extracting excited states for achieving the correct kinematics of K — o,

30The update in Im(As) is due to a change in the value of the imaginary part of the ratio of CKM matrix
elements, 7 = —V;5Via/VisVud, as given in Ref. [404]. The lattice-QCD input is therefore the one reported in

Ref. [51].

31The current estimates for the corrections owing to isospin breaking and electromagnetic effects [401] imply
a relative change on the theoretical value for € /e by about —20% with respect to the determination based on
Eq. (104). The size of these isospin breaking and electromagnetic corrections is related to the enhancement
of the decay amplitudes between the I = 0 and the I = 2 channels. As a consequence, one obtains a similar

reduction on &g, leading to a value that is close to the result of Eq. (106).
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Collaboration Ref. Ny J & ¥ v ¢ 7 Re(Ao) Im(Ao)
[10~7 GeV] [10~11 GeV]
RBC/UKQCD 23A [410] 241 A W a 2.84(0.57)(0.87)  —8.7(1.2)(2.6)
RBC/UKQCD 20  [402] 2+1 A ™ a  2.99(0.32)(0.59) —6.98(0.62)(1.44)
RBC/UKQCD 15G  [403] 2+1 A W b 4.66(1.00)(1.26)  —1.90(1.23)(1.08)

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53 GeV and running to
4.0 GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53 GeV. Conversion to MS
at 1-loop order at the same scale.

Table 22: Results for the real and imaginary parts of the K — nm decay amplitude Ag
from lattice-QCD computations with Ny = 2 + 1 dynamical flavours. Information about the
renormalization, running and matching to the MS scheme is indicated in the column “run-
ning/matching”, with details given at the bottom of the table. We refer to the text for further
details about the main differences between the lattice computations in Refs. [402] and [403].

the latest publications, RBC/UKQCD 23A [410] and RBC/UKQCD 23B [412], also in-
vestigate alternative approaches for overcoming this issue, namely employing variational
methods and periodic boundary conditions. Two-pion scattering calculations are carried
out for the isospin channels I = 0 and I = 2 on two gauge-field ensembles with physical
pion masses and inverse lattice spacings of 1.023 and 1.378 GeV [412] employing domain-
wall fermions. The results for scattering phase shifts in both I = 0 and I = 2 channels
exhibit consistency with the Roy equation and chiral perturbation theory, although the
statistical error for I = 0 remains relatively large. The computation of K — mw decay
amplitudes and ¢ is performed on a single ensemble with a physical pion mass and an
inverse lattice spacing of 1.023 GeV [410]. The value obtained for Re(¢’/e) is consistent
with that of the previous 2020 calculation, albeit with 1.7 times larger uncertainty. Re-
sults from RBC/UKQCD 23A for the real and imaginary parts of Ay and As are reported
in Tabs. 22 and 23, respectively.

As previously discussed, the determination of Im(Ag) from Ref. [402] has been used to
obtain the value of the parameter £y in Eq. (106). A first-principles computation of Re(Ag)
is essential to address the so-called AT = 1/2 puzzle associated to the enhancement of
AT = 1/2 over AI = 3/2 transitions owing, crucially, to long distance effects. Indeed,
short-distance enhancements in the Wilson coefficients are not large enough to explain
the AT = 1/2 rule [413, 414]. Lattice-QCD calculations do provide a method to study
such a long-distance enhancement. The combination of the most precise result for Ay in
Tab. 22, Ref. [402], with the earlier lattice calculation of As in Ref. [51] leads to the ratio,
Re(4p)/ Re(A3) = 19.9(5.0), which agrees with the value Re(A4g)/Re(42) = 22.45(6)
that we obtain based solely on PDG 24 [274] experimental input. In Ref. [402], the lattice
determination of relative size of direct CP violation was updated as follows,

Re(€'/e) = 21.7(2.6)(6.2)(5.0) x 107%, (109)
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Collaboration Ref. Ny g & v F & 2 Re(A2) Im(As)
[1078 GeV] [10~13 GeV]
RBC/UKQCD 23A [410] 241 A ® a 1.74(0.15)(0.48)  —5.91(0.13)(1.75)
RBC/UKQCD 15F  [51] 241 A b 1.50(0.04)(0.14)  —8.34(1.03)°

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53 GeV and running to
4.0 GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.
b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 3 GeV. Conversion to MS
at 1-loop order.
¢ This value of Im(Az) is an update reported in Ref. [402] which is based on the lattice QCD computation
in Ref. [51] but where a change in the value of the imaginary part of the ratio of CKM matrix elements
7 = —Vi5Via/ViisVua reported in Ref. [404] has been applied.
Table 23: Results for the real and the imaginary parts of the K — w7 decay amplitude As from
lattice-QCD computations with Ny = 241 dynamical flavours. Information about the renor-
malization and matching to the MS scheme is indicated in the column “running/matching”,

with details given at the bottom of the table.

where the first two errors are statistical and systematic, respectively. The third error
arises from having omitted the strong and electromagnetic isospin breaking effects. The
value of Re(€'/€) in Eq. (109) uses the experimental values of Re(Ap) and Re(As). The
lattice determination of Re(¢’/e) is in good agreement with the experimental result in
Eq. (105). However, while the result in Eq. (109) represents a significant step forward, it
is important to keep in mind that the calculation of A is currently based on a single value
of the lattice spacing. It is expected that future work with additional values of the lattice
spacing will contribute to improve the precision. For a description of the computation of
the 77 scattering phase shifts entering in the determination of Re(€’/€) in Eq. (109), we
refer to Ref. [415].

The complex amplitude Ay has been determined by RBC/UKQCD 15F [51] employing
Ny = 2+ 1 Mobius domain-wall fermions at two values of the lattice spacing, namely
a = 0.114fm and 0.083 fm, and performing simulations at the physical pion mass with
M;L =~ 3.8.

A compilation of lattice results for the real and imaginary parts of the K — 7w
decay amplitudes, Ag and Ay, with Ny = 2 + 1 flavours of dynamical quarks is shown in
Tabs. 22 and 23. In Appendix C.3.3, we collect the corresponding information about the
lattice QCD simulations, including the values of some of the most relevant parameters.

The determination of the real and imaginary parts of A by RBC/UKQCD 15F shown
in Tab. 23 is free of red tags. We therefore quote the following FLAG averages:

Re(Ay) = 1.50(0.04)(0.14) x 1078 GeV,

Ne=2+1:
! Im(Az) = —8.34(1.03) x 1073 GeV,

Ref. [51]. (110)
Results for the parameter &, are presented in Tab. 24. Except for the most recent
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Collaboration Ref. Ny &o

RBC/UKQCD 23A° [410] 2+1 —2.63(37)(68) -107*
RBC/UKQCD 20' [402] 241 —2.1(5)-107*
RBC/UKQCD 15G° [403] 241 —0.6(5)-10~*
RBC/UKQCD 15F* [51] 241 -1.7(2)-107*

° Estimate for & has been provided by RBC/UKQCD (private communication with Masaaki Tomii.)

T Estimate for & obtained from a direct evaluation of the ratio of amplitudes Im(Ag)/Re(Ao) where
Im(Aop) is determined from the lattice-QCD computation of Ref. [402] while for Re(Ao) ~ |Ao| is taken
from the experimental value for |Ag]|.

Estimate for & obtained from a direct evaluation of the ratio of amplitudes Im(Ag)/ Re(Ao) where
Im(Ap) is determined from the lattice-QCD computation of Ref. [403] while for Re(Ao) ~ |Ao| is taken
from the experimental value for |Ao|.

* Estimate for £ based on the use of Eq. (104). The new value of Im(Asz) reported in Ref. [402]—based

on the lattice-QCD computation of Ref. [51] following an update of a nonlattice input—is used in
combination with the experimental values for Re(A2), Re(€'/e), |ex| and w.

Table 24: Results for the parameter £y = Im(A4y)/ Re(Ap) obtained through the combination
of lattice-QCD determinations of K — 77 decay amplitudes with Ny = 2 + 1 dynamical
flavours and experimental inputs.

calculation RBC/UKQCD 23A, which is based on the direct lattice calculation of the
relevant quantities, we note that, for the other reported values of &y, the total uncertainty
depends on the specific way in which lattice and experimental inputs are selected.

Besides the RBC/UKQCD collaboration programme [51, 402, 403, 410, 412] using
domain-wall fermions, an approach based on improved Wilson fermions [416, 417] has
presented a determination of the K — nw decay amplitudes, Ay and Ao, at unphysical
quark masses. See Refs. [418-420] for an analysis of the scaling with the number of colours
of K — mm decay amplitudes using lattice-QCD computations

Proposals aiming at the inclusion of electromagnetism in lattice-QCD calculations
of K — mm decays are being explored [421-423] in order to reduce the uncertainties
associated with isospin breaking effects.

6.3 Lattice computation of By

Lattice calculations of By are affected by the same type of systematic effects discussed in
the various sections of this review. However, the issue of renormalization merits special
attention. The reason is that the multiplicative renormalizability of the relevant operator
Q?5=2 is lost once the regularized QCD action ceases to be invariant under chiral trans-
formations. As a result, the renormalization pattern of Bx depends on the specific choice
of the fermionic discretization.

In the case of Wilson fermions, Q=2 mixes with four additional dimension-six opera-
tors, which belong to different representations of the chiral group, with mixing coefficients
that are finite functions of the gauge coupling. This complicated renormalization pattern
was identified as the main source of systematic error in earlier, mostly quenched calcula-
tions of B with Wilson quarks. It can be bypassed via the implementation of specifically
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designed methods, which are either based on Ward identities [424] or on a modification
of the Wilson quark action, known as twisted-mass QCD [425-427].

An advantage of staggered fermions is the presence of a remnant U (1) chiral symme-
try. However, at nonvanishing lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing with other dimension-six opera-
tors cannot be avoided in the staggered formulation, which complicates the determination
of the B-parameter. In general, taste conserving mixings are implemented directly in the
lattice computation of the matrix element. The effects of the broken taste symmetry are
usually treated through an effective field theory, staggered Chiral Perturbation Theory
(SxPT) [428, 429], parameterizing the quark-mass and lattice-spacing dependences.

Fermionic lattice actions based on the Ginsparg-Wilson relation [430] are invariant
under the chiral group, and hence four-quark operators such as Q*%=2 renormalize multi-
plicatively. However, depending on the particular formulation of Ginsparg-Wilson fermions,
residual chiral symmetry breaking effects may be present in actual calculations. For in-
stance, in the case of domain-wall fermions, the finiteness of the extra 5th dimension
implies that the decoupling of modes with different chirality is not exact, which produces
a residual nonzero quark mass myes in the chiral limit. The mixing with dimension-six
operators of different chirality is expected to be an O(m?2,) suppressed effect [431, 432]
that should be investigated on a case-by-case basis.

Before describing the results for By, we would like to reiterate a discussion presented
in previous FLAG reports about an issue related to the computation of the kaon bag
parameters through lattice-QCD simulations with Ny = 2 4 1 + 1 dynamical quarks. In
practice, this only concerns the calculations of the kaon B-parameters including dynam-
ical charm-quark effects in Ref. [52], that were examined in the FLAG 16 report. As
described in Sec. 6.1, the effective Hamiltonian in Eq. (90) depends solely on the operator
Q?%=2% in Eq. (91) —which appears in the definition of B in Eq. (98)— at energy scales
below the charm threshold where charm-quark contributions are absent. As a result, a
computation of Bx based on Ny =24 1+ 1 dynamical simulations will include an extra
sea-quark contribution from charm-quark loop effects for which there is at present no
direct evaluation in the literature.

When the matrix element of Q=2 is evaluated in a theory that contains a dynamical
charm quark, the resulting estimate for Bx must then be matched to the three-flavour
theory that underlies the effective four-quark interaction.? In general, the matching of
2+ 1-flavour QCD with the theory containing 2+ 1+ 1 flavours of sea quarks is performed
around the charm threshold. It is usually accomplished by requiring that the coupling
and quark masses are equal in the two theories at a renormalization scale p around m..
In addition, Bg should be renormalized and run, in the four-flavour theory, to the value
of u at which the two theories are matched, as described in Sec. 6.1. The corrections
associated with this matching are of order (E/m.)?, where E is a typical energy in the
process under study, since the subleading operators have dimension eight [433].

When the kaon-mixing amplitude is considered, the matching also involves the relation
between the relevant box diagrams and the effective four-quark operator. In this case,
corrections of order (E/m.)? arise not only from the charm quarks in the sea, but also
from the valence sector, since the charm quark propagates in the box diagrams. We note
that the original derivation of the effective four-quark interaction is valid up to corrections
of order (E/m.)?. The kaon-mixing amplitudes evaluated in the Ny =2+1 and 2+1+1
theories are thus subject to corrections of the same order in F/m, as the derivation of
the conventional four-quark interaction.

Regarding perturbative QCD corrections at the scale of the charm-quark mass on the
amplitude in Eq. (94), the uncertainty on 7; and n3 factors is of O(as(m.)?) [381, 382],

32We thank Martin Liischer for an interesting discussion on this issue.
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while that on 7y is of O(a(m.)?) [434].3% On the other hand, the corrections of order
(E/m.)? due to dynamical charm-quark effects in the matching of the amplitudes are
further suppressed by powers of as(m.) and by a factor of 1/N,, given that they arise
from quark-loop diagrams. In order to make progress in resolving this so far uncontrolled
systematic uncertainty, it is essential that any future calculation of By with Ny = 2 +
1 + 1 flavours properly addresses the size of these residual dynamical charm effects in a
quantitative way.

Another issue in this context is how the lattice scale and the physical values of the
quark masses are determined in the 241 and 2+ 1+1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark.

A recent study [226] using three degenerate light quarks, together with a charm quark,
indicates that the deviations between the Ny = 3 + 1 and the N; = 3 theories are consid-
erably below the 1% level in dimensionless quantities constructed from ratios of gradient
flow observables, such as tg and wy, used for scale setting. This study extends the nonper-
turbative investigations with two heavy mass-degenerate quarks [198, 200] which indicate
that dynamical charm-quark effects in low-energy hadronic observables are considerably
smaller than the expectation from a naive power counting in terms of ags(m.). For an
additional discussion on this point, we refer to Ref. [52]. Given the hierarchy of scales
between the charm-quark mass and that of By, we expect these errors to be modest.
The ETM 15 Ny = 2+ 14 1 Bk result does not include an estimate of this systematic
uncertainty. A more quantitative understanding will be required as the statistical uncer-
tainties in B will be reduced. Within this review we will not discuss this issue further.
However, we wish to point out that the present discussion also applies to Ny =2 +1+1
computations of the kaon BSM B-parameters discussed in Sec. 6.4.

A compilation of results for Bx with Ny =241+1,241 and 2 flavours of dynamical
quarks is shown in Tabs. 25 and 26, as well as Fig. 14. An overview of the quality of
systematic error studies is represented by the colour coded entries in Tabs. 25 and 26.
The values of the most relevant lattice parameters and comparative tables on the various
estimates of systematic errors have been collected in the corresponding Appendices of the
previous FLAG editions [2—4].

Since the last FLAG report, one new result for B appeared in RBC/UKQCD 24 [56]. 34
For the determination of By, the RBC/UKQCD Collaboration employs domain-wall
fermions at three lattice spacings spanning the range [0.07,0.11] fm. For the two coars-
est lattice spacings, simulations have been performed at the physical pion mass, whereas
for the finest lattice spacing, a pion mass of about 230 MeV has been used. Residual
chiral symmetry breaking effects induced by the finite extent of the 5th dimension in
the domain-wall fermion formulation have been checked and found to contribute to the
systematic uncertainty of the final estimate of Bi at the per-mille level. Finite-volume
effects are found to be negligible. The renormalization constants of the lattice operators
are determined nonperturbatively in two RI-SMOM schemes, namely (¢, ¢) and (v, v.),
corresponding to two different choices of renormalization conditions (see Ref. [12]). The
final values of the renormalization constants are obtained from the average over the results
of the two schemes. The error from the (v,,7,) scheme is used to quote the uncertainty
arising from the lattice computation. The renormalization constants in the RI-SMOM

33The results of Ref. [380], based on the use of u-t unitarity for the two corresponding perturbative factors,
also have an uncertainty of O(as(me)?) and O(as(m.)®). The estimates for the missing higher-order contri-
butions are, however, expected to be reduced with respect to the more traditional case where c-t unitarity is
used; for a discussion on the |ex| computation in the u-t unitarity, see the relevant discussion in Sec. 6.1.

34We also mention the report of an ongoing work [435] related to the calculation of By in which the relevant
operators are defined in the framework of gradient flow. A small flow time expansion method was applied in
order to compute, to 1-loop approximation, the finite matching coefficients between the gradient flow and the
MS schemes for the operators entering the Bx computation.
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schemes are computed at the renormalization scale p = 2 GeV. A nonperturbative step-
scaling procedure is used to run them to u = 3 GeV where the results are perturbatively
matched to the MS scheme. The continuum and physical point result for By is obtained
through a combined chiral and continuum extrapolation using NLO SU(2) chiral pertur-
bation theory. The spread between the result obtained as described above and the result
of a calculation performed directly at u = 3 GeV is taken as an estimate of the uncertainty
due to discretization effects. The dominant error of the RBC/UKQCD 24 computation of
By arises from the perturbative matching of the RI-SMOM schemes used in the lattice
computation to the MS scheme. This is estimated as half the difference of the results
obtained from the use of the two intermediate RI-SMOM schemes in the matching. In
this computation of Bk, a green star symbol is assigned to all FLAG quality criteria.
For a detailed description of previous By calculations we refer the reader to FLAG

16 [3].
We now give the FLAG averages for Bg for Ny =2+ 141,24 1, and 2 dynamical
flavours.
A
FIAG2024 Bk
T
I L FLAG average for Ny=2+1+1
N
I i ETM 15
z
—— FLAG average for N;=2+1
ﬁ RBC/UKQCD 24
H RBC/UKQCD 16
H | SWME 15A
— RBC/UKQCD 14B
T H H { SWME 14
:ﬁ; [ SWME 13A
= HH - SWME 13
—+—1 H—+— RBC/UKQCD 12A
H—H— Laiho 11
Hh | SWME 11A
H+— BMW 11
[ {1} | RBC/UKQCD 10B
1 SWME 10
[ Aubin 09
T Il FLAG average for Ny=2
z 1 1 ETM 12D
{1 H ETM 10A
0.70 0.75 0.80 0.85

Figure 14: Unquenched lattice results for the RGI B-parameter Bg. The grey bands indicate
our averages described in the text. For Ny = 24141 and Ny = 2 the FLAG averages coincide
with the results by ETM 15 and ETM 12D, respectively.

We begin with the Ny = 2 + 1 global average, which is estimated by employing
five different By results, namely BMW 11 [53], Laiho 11 [54], RBC/UKQCD 14B [12],
SWME 15A [55], and RBC/UKQCD 24 [56]. Moreover, we recall that the expression of €x
in terms of By is derived in the three-flavour theory (see Sec. 6.1). Our procedure is: first,
we combine in quadrature the statistical and systematic errors of each individual result
of the RGI B parameter Bk. A weighted average is then obtained from the set of results.
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For the final error estimate, we take correlations between different collaborations into ac-
count. Specifically, we consider the statistical and finite-volume errors of SWME 15A and
Laiho 11 to be correlated, since both groups use the asqtad ensembles generated by the
MILC Collaboration. Laiho 11 and RBC/UKQCD 14B both use domain-wall quarks in
the valence sector and employ similar procedures for the nonperturbative determination
of matching factors. Hence, we treat their quoted renormalization and matching uncer-
tainties as correlated. Moreover, we treat the results obtained by RBC/UKQCD 14B and
RBC/UKQCD 24 as fully correlated because part of the sea ensembles in the two calcu-
lations are common.?® In the calculation of the average, we incorporate the new FLAG
data-driven criterion (see Sec. 2.1.2) concerning the extrapolation to the continuum limit
which increases by approximately 3.7% the total error of the RBC/UKQCD 24 calcula-
tion. Following Schmelling’s procedure [203] to construct the global covariance matrix of
the results contributing to the average, we arrive at the following value, Bx = 0.7 533(85).
Since the fit implementing the weighted average has x?/dof = 1.142, according to the gen-
eral FLAG rule, we stretch the error by the square root of the reduced y? value. This
effect is mainly driven by the two most precise determinations of BK, corresponding to
RBC/UKQCD 24 and BMW 11, which differ at the 20 level. This procedure leads to the
following result:

Ny=2+1: By =0.7533(91)  Refs. [12, 53-56], (111)

After applying the NLO conversion factors BeK/B?(Q GeV) = 1.369 and EK/B?(?) GeV)
1.415 36, this becomes

Ny =2+1: B¥S5(2GeV) = 0.5503(66), BNS(3CGeV) = 0.5324(64), Refs. [12, 53-56].
(112)

Improvements in lattice calculations in recent years have led to a considerable reduc-
tion in statistical errors. This has implied that some of the results contributing to the
global average are nowadays statistically incompatible. Only by taking into account the
contributions to systemic uncertainties, both from the lattice calculations themselves and,
notably, from perturbative matching, can it be seen that the weighted average produces
a value of O(1) for the reduced y?2.

There is only a single result for Ny = 24141, computed by the ETM collaboration [52].
Since it is free of red tags, it qualifies to the following average,

Ny=2+4+1+1: By =0.717(18)(16),  Ref. [52]. (113)
Using the same conversion factors as in the three-flavour theory, this value translates into

Ny =2+1+1: B¥S(2GeV) = 0.524(13)(12), BNS(3GeV) = 0.507(13)(11), Ref. [(52].)
114
For Ny = 2 flavours the average is based on a single result, that of ETM 12D [57):

Ny =2: Bg = 0.727(22)(12), Ref. [57], (115)
which, using the same conversion factors as in the three-flavour theory, translates into

Ny =2: BMS(2GeV) = 0.531(16)(9), BMS5(3GeV) = 0.514(16)(8), Ref. [57].  (116)
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35However, due to partly different methodology in the analysis and the renormalization procedure the two
computations are considered as separate, and for this reason they are both included in the global average.

36We refer to FLAG 19 [4] for a discussion of the procedure followed in estimating the conversion factors
to MS at 2 GeV. In addition, for the computation of the conversion factor from RGI to the MS scheme at 3
GeV, which is new here, we have used the three-flavour Aqcp from FLAG 21 and the 4-loop formula for the
B-function of the strong coupling constant. The propagation error owing to the error of Aqcp is found to be
negligible compared to the total uncertainty of the Bx estimate.
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ETM 15 [52] 24141 A a 0.524(13)(12) 0.717(18)(16)"
RBC/UKQCD 24 [56] 2+1 A b 0.540(2)(20)2 0.7436(25)(78)
RBC/UKQCD 16 [58] 2+1 A ¢ 0.543(9)(13)2 0.744(13)(18)*
SWME 15A [55] 241 A P 0.537(4)(26) 0.735(5)(36)*
RBC/UKQCD 14B  [12] 2+1 A ¢ 0.5478(18)(110)2  0.7499(24)(150)
SWME 14 [385] 2+1 A P 0.5388(34)(266) 0.7379(47)(365)
SWME 13A [436] 241 A P 0.537(7)(24) 0.735(10)(33)
SWME 13 [437) 241 ¢ B 0.539(3)(25) 0.738(5)(34)
RBC/UKQCD 12A [229] 2+1 A ¢ 0.554(8)(14)2 0.758(11)(19)
Laiho 11 [54] 2+1 ¢ —  0.5572(28)(150) 0.7628(38)(205)*
SWME 11A [438] 241 A P 0.531(3)(27) 0.727(4)(38)
BMW 11 [53] 2+1 A d  0.5644(59)(58) 0.7727(81)(84)
RBC/UKQCD 10B [439] 2+1 A 0.549(5)(26) 0.749(7)(26)
SWME 10 [440]  2+1 A —0.529(9)(32) 0.724(12)(43)
Aubin 09 [441] 241 A — 0.527(6)(21) 0.724(8)(29)

The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of

the uncertainty.

a By is renormalized nonperturbatively at scales 1/a ~ 2.2-3.3 GeV in the Ny = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at 1-loop order at 3 GeV.

b By is renormalized nonperturbatively at a scale of 2.0 GeV in two RI/SMOM schemes for Ny = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. A direct computation
at 3 GeV is also used to estimate systematic uncertainties related to discretization effects. Conversion
to MS is at 1-loop order at 3 GeV.

¢ Bk is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Ny = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

d By is renormalized and run nonperturbatively to a scale of 3.5GeV in the RI/MOM scheme. At
the same scale, conversion at 1-loop order to MS is applied. Nonperturbative and NLO perturbative
running agrees down to scales of 1.8 GeV within statistical uncertainties of about 2%.

e Bk is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Ny = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

1 Br(MS,2GeV) and Bx are related using the conversion factor 1.369, i.e., the one obtained with

Ny =2+1.

Bk (MS, 2 GeV) value from a private communication with the authors. The first error is due to lattice

statistical and systematic uncertainties; the second error is associated with the perturbative truncation

uncertainty in matching to MS at a scale of 2 GeV.

By is obtained from Bg (MS, 3 GeV) using the conversion factor employed in Ref. [12].

By is obtained from the estimate for Bx (MS, 2 GeV) using the conversion factor 1.369.

Table 25: Results for the kaon B-parameter in QCD with Ny =2 +1+1 and Ny =2 +1,
together with a summary of systematic errors. Information about nonperturbative running
is indicated in the column “running,” with details given at the bottom of the table.
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ETM 10A  [442] 2 A g 0.533(18)(12)! 0.729(25)(17)

f Bk is renormalized nonperturbatively at scales 1/a ~ 2-3.7 GeV in the Ny = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [442, 443].

g Bk is renormalized nonperturbatively at scales 1/a ~ 2-3 GeV in the Ny = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [442, 443].

! Bx(MS,2GeV) and By are related using the conversion factor 1.369, i.e., the one obtained with Ny =
2+ 1.

Table 26: Results for the kaon B-parameter in QCD with Ny = 2, together with a summary
of systematic errors. Information about nonperturbative running is indicated in the column
“running,” with details given at the bottom of the table.

6.4 Kaon BSM B-parameters

We now consider the matrix elements of operators that encode the effects of physics
beyond the Standard Model (BSM) to the mixing of neutral kaons. In this theoretical
framework, both the SM and BSM contributions add up to reproduce the experimentally
observed value of ex. As long as BSM contributions involve heavy particles with masses
much larger than Aqcp, they will be short-distance dominated. The effective Hamiltonian
for generic AS = 2 processes including BSM contributions reads

5
Hirsam = Y Ci(w)Qi(p), (117)
i=1

where ()q is the four-quark operator of Eq. (91) that gives rise to the SM contribution
to ex. In the so-called SUSY basis introduced by Gabbiani et al. [444], the operators

Qo,...,Q5 are 37

Q2 = (5*(1 = 75)d*) (5°(1 — 5)d"),

Qs = (5°(1 = 5)d") (3°(1 — 75)d*),

Qs = (5*(1 = 75)d*) (5°(1 +75)d"),

Qs = (3°(1 — 75)d”) (3°(1 + 5)d?), (118)
where a and b are colour indices. In analogy to the case of By, one then defines the
B-parameters of o, ..., Q5 according to

Bi(n) = (K2 |Qip) K°) i=2,...,5 (119)

= N, (K9[595d] 0) (0|575d| K)

3TThanks to QCD parity invariance lattice computations for three more dimension-six operators, whose
parity conserving parts coincide with the corresponding parity conserving contributions of the operators @1, Q2
and @3, can be ignored.
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The factors {Na, ..., N5} are given by {—5/3,1/3,2,2/3}, and it is understood that B;(u)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [52, 56-58, 445]. Alternatively, one can
employ the chiral basis of Buras, Misiak and Urban [446]. The SWME collaboration
prefers the latter since the anomalous dimension that enters the RG running has been
calculated to 2-loop order in perturbation theory [446]. Results obtained in the chiral
basis can be easily converted to the SUSY basis via

BgUSY _ % (5B§hiral _ 3B§hiral) ) (120)

The remaining B-parameters are the same in both bases. In the following, we adopt the
SUSY basis and drop the superscript.

Older quenched results for the BSM B-parameters can be found in Refs. [447-449)].
For a nonlattice approach to get estimates for the BSM B-parameters see Ref. [450].

Estimates for By, ..., Bs have been reported for QCD with Ny = 2 (ETM 12D [57]),
Ny =2+1 (RBC/UKQCD 12E [445], SWME 13A [436], SWME 14C [451], SWME 15A [55],
RBC/UKQCD 16 [58, 452], RBC/UKQCD 24 [56]) and Ny =2+ 1+ 1 (ETM 15[52])
flavours of dynamical quarks. Since the publication of FLAG 19 [4] a single new work
Ref. [56] has appeared. The basic characteristics of this calculation have been reported
in the Bx section, see Sec. 6.3. As in the case of By, the dominant error for all the BSM
B-parameters arises from the systematic uncertainty associated to the truncation error
in the perturbative matching from the intermediate schemes to the MS scheme. This is
estimated as half the difference of the results obtained from the matching to MS of the
two intermediate schemes. The ratio of the BSM to SM matrix elements are also reported
in Ref. [56].

All the available results are listed and compared in Tab. 27 and Fig. 15. In general,
one finds that the BSM B-parameters computed by different collaborations do not show
the same level of consistency as the SM kaon-mixing parameter By discussed previously.
Control over the systematic uncertainties from chiral and continuum extrapolations as
well as finite-volume effects in Bs, ..., Bs is expected to be at a comparable level as that
for Bk, as far as the results by ETM 12D, ETM 15, SWME 15A and RBC/UKQCD 16
are concerned, since the set of gauge ensembles employed in both kinds of computations is
the same. However, the most recent results by RBC/UKQCD 24 with Ny = 2+ 1 flavours
are, in general, much more precise than the older ones. Notice that the calculation by
RBC/UKQCD 12E has been performed at a single value of the lattice spacing and a
minimum pion mass of 290 MeV.

As reported in RBC/UKQCD 16 [58] and RBC/UKQCD 24 [56], the comparison of
results obtained in the conventional RI-MOM and in two RI-SMOM schemes shows sig-
nificant discrepancies for some of the BSM B-parameters. Tensions are observed for the
cases of By and Bj, where the discrepancies between results obtained with RI-MOM and
RI-SMOM are at the level of 2.6 o and 4.5 o, respectively. The results of RBC/UKQCD 16
and RBC/UKQCD 24 lie closer to those of SWME 15A which rely on perturbative renor-
malization at 1-loop order. On the other hand, the results for By and Bjs obtained by
ETM 15, SWME 15A, RBC/UKQCD 16 and RBC/UKQCD 24 show a better level of
compatibility.

The findings by RBC/UKQCD 16 [58], RBC/UKQCD 17A [452] and RBC/UKQCD 24
[56] highlight the importance of carefully assessing the systematic effects on the implemen-
tation of the Rome-Southampton method used for nonperturbative renormalization. In
particular, the RI-MOM and RI-SMOM schemes differ in that the use of nonexceptional
kinematics, in the RI-SMOM scheme, removes the need to subtract the pseudo-Goldstone
boson pole contamination, as is required in the RI-MOM case. In addition, for each of
the schemes a specific analysis of the truncaction error in the perturbative matching to
MS must be carried out.
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ETM 15 [52] 2+1+1 A a 0.46(1)(3) 0.79(2)(5) 0.78(2)(4) 0.49(3)(3)
RBC/UKQCD 24 [56] 2+1 A b 0.4794(25)(35) 0.746(13)(17) 0.897(02)(10) 0.6882(78)(94)
RBC/UKQCD 16 [58] 2+1 A b 0.4838(7)(17)  0.743(14)(65) 0.920(12)(16) 0.707(8)(44)
SWME 15A [55] 241 A T —0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)
SWME 14C [451] 2+1 C t_ 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)
SWME 13A%  [436] 24+1 A f— 0.549(3)(28) 0.790(30)  1.033(6)(46) 0.855(6)(43)
RBC/ [445]2+1 A N b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E
ETM 12D 57 2 A c 047(2)(1)  0.78(4)(2)  0.76(2)(2)  0.58(2)(2)

T The renormalization is performed using perturbation theory at 1l-loop order, with a conservative
estimate of the uncertainty.

a B; are renormalized nonperturbatively at scales 1/a ~ 2.2-3.3 GeV in the Ny = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at 1-loop order at 3 GeV.

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV.

¢ B are renormalized nonperturbatively at scales 1/a ~ 2-3.7 GeV in the Ny = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

¥ The computation of By and Bs has been revised in Refs. [55] and [451].

Table 27: Results for the BSM B-parameters Bo, ..., B in the MS scheme at a reference scale
of 3 GeV. Information about nonperturbative running is indicated in the column “running,”
with details given at the bottom of the table.
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A nonperturbative computation of the running of the four-fermion operators contribut-
ing to the Bs, ..., Bs parameters has been carried out with two dynamical flavours using
the Schrodinger functional renormalization scheme [387]. Renormalization matrices of
the operator basis are used to build step-scaling functions governing the continuum-limit
running between hadronic and electroweak scales. A comparison to perturbative results
using NLO (2-loop order) for the four-fermion operator anomalous dimensions indicates
that, at scales of about 3 GeV, nonperturbative effects can induce a sizeable contribution
to the running. Similar conclusions are obtained on the basis of preliminary results for the
renormalization-group running of the complete basis of AF = 2 four-fermion operators
using Ny = 3 dynamical massless flavours in the Schrédinger setup [388].

A closer look at the calculations reported in ETM 15 [52], SWME 15A [55], RBC/UKQCD 16
[58], and RBC/UKQCD 24 [56] reveals that cutoff effects tend to be larger for the BSM
B-parameters compared to those of Bg. In order to take into account this effect in the
average analysis, we make use of the new FLAG data-driven criterion (see Sec. 2.1.2)
concerning the extrapolation to the continuum limit. In summary, we report that in the
average procedure, (a) for By the total errors by RBC/UKQCD 24 and RBC/UKQCD 16
have been inflated by a factor 2.6 and by 22%, respectively; (b) for Bz the total errors by
ETM 15, RBC/UKQCD 16 and RBC/UKQCD 24 have been inflated by 11%, 45% and
52%, respectively; (c) for By no error inflation is required; and (d) for Bj the total errors
by SWME 15A and RBC/UKQCD 16 have been inflated by 3% and 24%, respectively.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme
at scale 3GeV. For Ny = 24 1 our estimate is given by the average of the results from
SWME 15A, RBC/UKQCD 16, and RBC/UKQCD 24. In our analysis, the results in
RBC/UKQCD 16 and RBC/UKQCD 24, though obtained through partially different
analyses, are considered as fully correlated because some gauge ensembles are common
in the two computations. We find By = 0.488(12) (x?/dof = 1.58); B3 = 0.757(27)
(x?/dof = 0.17); By = 0.903(12) (x2?/dof = 1.36); Bs = 0.691(14) (x?/dof = 0.43).
Following the FLAG rule, for cases that have a value of the reduced x? greater than
unity, we use the square root of the latter to stretch the respective error. Hence our
averages are

Ny =2+1: (121)
B, = 0.488(15), Bs =0.757(27), By =0.903(14), Bs=0.691(14), Refs. [55, 56, 58].

For Ny =241+ 1 and Ny = 2, our estimates coincide—with one exception—with the
ones by ETM 15 and ETM 12D, respectively, since there is only one computation for each
case. Only for the case of By with Ny =241+ 1, owing to the application of the 0(amin)
criterion the error of the average estimate is inflated by about 11% with respect to the
ETM 15 reported value. Thus we quote

Ny=2+1+1: (122)
By = 0.46(1)(3), Bs=0.79(6), By =0.78(2)(4), Bs=0.49(3)(3), Ref. [52],

Ny =2: (123)
By =0.47(2)(1), Bs=0.78(4)(2), By =0.76(2)(2), Bs=0.58(2)(2), Ref. [57].

Based on the above discussion about the effects of employing different intermediate mo-
mentum subtraction schemes in the nonperturbative renormalization of the operators,
there is evidence that the discrepancy in the B4 and By results between Ny = 2,2+1+1,
and Ny = 241 calculations should not be directly attributed to an effect of the number of
dynamical flavours. To clarify the present situation, it would be important to perform a
direct comparison of results by the ETM collaboration obtained both with RI-MOM and
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RI-SMOM methods. A calculation based an on a different nonperturbative renormaliza-
tion scheme, such as the Schrodinger functional, would provide valuable information to
shed light on the current situation.

In closing, we encourage authors to provide the correlation matrix of the B; parameters—
as done in Ref. [56]—since this information is required in phenomenological studies of New
Physics scenarios.

B, B, B4 Bs FCAG2024
E —— —— il HEH our average for N;=2+1+1
S
z — — - o ETM 15
... _._ our average for N,=2+1
[ | RBC/UKQCD 24
& =1 —t‘—a RBC/UKQCD 16
I
= . SWME 15A
T F:!}—i SWME 14C
—O—Hh —— —— HH RBC/UKQCD 12E
- —— HIH our average for N¢=2
Il
z
| — L ETM 12D
0.4 0.5 0.65 0.85 0.7 0.9 0.4 0.6 0.8

Figure 15: Results for the BSM B-parameters defined in the MS scheme at a reference scale
of 3GeV (see Tab. 27).
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7 Charm-hadron decay constants and form factors

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, A. Vaquero

Leptonic and semileptonic decays of charmed D and D, mesons or A, and other charm
baryons occur via charged W-boson exchange, and are sensitive probes of ¢ — d and ¢ — s
quark flavour-changing transitions. Given experimental measurements of the branching
fractions combined with sufficiently precise theoretical calculations of the hadronic matrix
elements, they enable the determination of the CKM matrix elements |V 4| and |Ves|
(within the Standard Model) and a precise test of the unitarity of the second row of the
CKM matrix. Here, we summarize the status of lattice-QCD calculations of the charmed
leptonic decay constants. Significant progress has been made in charm physics on the
lattice in recent years, largely due to the availability of gauge configurations produced
using highly-improved lattice-fermion actions that enable treating the ¢ quark with the
same action as for the u, d, and s quarks.

This section updates the corresponding section in the last review (FLAG 21 [5]) for
results that appeared before April 30, 2024. As in FLAG 19 [4] and FLAG 21 [5], we
limit our review to results based on modern simulations with reasonably light pion masses
(below approximately 500 MeV). This excludes results with two flavours in the sea, even if
they use light pion masses. Ny = 2 results can still be checked in previous FLAG editions.

For the heavy-meson decay constants and mixing parameters, estimates of the quantity
0(@min) described in Sec. 2.1.2 are provided for all computations entering the final FLAG
averages or ranges. For heavy-hadron semileptonic-decay form factors, implementing this
data-driven continuum-limit criterion was found to be not feasible. The problem is that
these quantities are functions of the momentum transfer in addition to the other lattice
parameters, and many calculations are based on global fits whose reconstruction was not
possible.

Following our review of lattice-QCD calculations of D ,)-meson leptonic decay con-
stants and charm-hadron semileptonic form factors, we then interpret our results within
the context of the Standard Model. We combine our best-determined values of the
hadronic matrix elements with the most recent experimentally-measured branching frac-
tions to obtain [V4(4)| and test the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fp and fp,

In the Standard Model, and up to electromagnetic corrections, the decay constant fp,,,
of a pseudoscalar D or D, meson is related to the branching ratio for leptonic decays
mediated by a W boson through the formula

2
G%«“|V€q|2TD mj
. (s) p2 2 0
TfD(S)mEmD(s) 1-— mQD , (124)
(s)

B(D(s) — fl/g) =

where ¢ is d or s and V.4 (V) is the appropriate CKM matrix element for a D (D)
meson. The branching fractions have been experimentally measured by CLEO, Belle,
Babar and BES with a precision around 2.5-4.5% for both the D and the D,-meson
decay modes [274]. When combined with lattice results for the decay constants, they
allow for determinations of |V.,| and |[V4|.

The decay constants fp,,, are defined through the matrix elements of the axial current

(01A%,|Dq(p)) = ifp, P, - (125)

with ¢ = d, s and Af, = ¢y"v5q. Such matrix elements can be extracted from Euclidean
two-point functions computed on the lattice.
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Figure 16: Decay constants of the D and Ds mesons [values in Tab. 28 and Egs. (126-131)].
As usual, full green squares are used in the averaging procedure, pale green squares have
either been superseded by later determinations or are only published in Proceedings or have
not been published within the current deadline (April 30, 2024), while pale red squares do
not satisfy the criteria. The black squares and grey bands indicate our averages.

Results for Ny = 241 and 24 1 4 1 dynamical flavours are summarized in Tab. 28
and Fig. 16. Since the publication of FLAG 21, a handful of results for fp and fp, have
appeared, as described below. We consider isospin-averaged quantities, although, in a
few cases, results for fp+ are quoted (see, for example, the FNAL/MILC 11,14A and 17
computations, where the strong-isospin-breaking effect given by the difference between
fp and fp+ has been estimated to be around 0.5 MeV).

For the first time, we restrict the review here to results obtained using Ny = 241 and
241+ 1 dynamical flavours. No new results with N; = 2 appeared since 2019 and they
have been presented in previous FLAG reviews.

Another novelty is the re-inclusion of the quantity §(amin) described in the Introduc-
tion. Our working group introduced and applied this quantity in FLAG 13 [2], but it
was not applied in following reviews. As computations have become increasingly precise
and often dominated by systematic uncertainties, we believe that a closer scrutiny of the
continuum extrapolations is needed since such extrapolations usually produce one of the
largest systematic errors. Here, we provide (where possible) an estimate of §(amiy) for all
computations entering the final FLAG averages or ranges. Those estimates do not need
to be very precise as the natural size of the error on ¢(amin) is O(1).

Two new results appeared with Ny = 2 + 1. In Ref. [28] (ALPHA 23) maximally
twisted Wilson valence fermions (for light and heavy quarks) are implemented on a set
of ensembles of configurations generated within the CLS initiative using O(a)-improved
Wilson fermions. As a consequence of the maximal twist, observables in the charm sector
are free from O(am,.) discretisation effects. In addition the decay constants fp,, are
automatically normalized and do not require the computation of normalization factors.
Four different lattice spacings have been used in the continuum extrapolation, ranging
between 0.087 and 0.05 fm. Pion masses reach down to 200 MeV and volumes are such
that 3.9 < m,;L < 6.4. The uncertainties are dominated by statistics and the chiral-
continuum fits. Judging from the plots in Ref. [28], the values for d(amin) are around 1
for fp and around 3 for fp,.
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Collaboration Ref. Ny JITE IS fp I, fo./fp
ETM 21B [453] 24141 C 210.1(2.4) 248.9(2.0) 1.1838(115)
FNAL/MILC 17 VY [20] 24+1+1 A 212.1(0.6) 249.9(0.5) 1.1782(16)
FNAL/MILC 14A**  [21] 24141 A 212.6(0.4) (*}5)  249.0(0.3)(T}1)  1.1745(10)(*3))
ETM 14E [43] 24141 A 207.4(3.8) 247.2(4.1) 1.192(22)
ETM 13F [356] 2+14+1 C 202(8) 242(8) 1.199(25)
FNAL/MILC 13 [454] 24141 C 212.3(0.3)(1.0) 248.7(0.2)(1.0) 1.1714(10)(25)
FNAL/MILC 12B [455] 2+141 C 209.2(3.0)(3.6) 246.4(0.5)(3.6) 1.175(16)(11)
RQCD/ALPHA 24  [456] 2+1 P 208.4(0.7)(0.7)(1.1) 246.8(0.6)(0.6)(1.0) 1.1842(21)(22)(19)
ALPHA 23 [28] 2+1 A 211.3(1.9)(0.6) 247.0(1.9)(0.7) 1.177(15)(5)
xQCD 20A*T [457) 241 A W 213(5) 249(7) 1.16(3)
RBC/UKQCD 18A°Y [76] 241 P 1.1740(51)(*3%)
RBC/UKQCD 17 [61] 2+1 A 208.7(2.8) (1) 246.4(1.3)(F7)  1.1667(77)(3))
xQCD 140 [29] 241 A 254(2)(4)
HPQCD 12A [59] 241 A 208.3(1.0)(3.3) 246.0(0.7)(3.5) 1.187(4)(12)
FNAL/MILC 11 [60] 241 A 218.9(11.3) 260.1(10.8) 1.188(25)
PACS-CS 11 [458] 24+1 A MW % H 226(6)(1)(5) 257(2)(1)(5) 1.14(3)
HPQCD 10A [62] 241 A 213(4)* 248.0(2.5)
HPQCD/UKQCD 07 [46] 2+1 A 207(4) 241 (3) 1.164(11)
FNAL/MILC 05 [459] 2+1 A ] 201(3)(17) 249(3)(16) 1.24(1)(7)

* This result is obtained by using the central value for fp_/fp from HPQCD/UKQCD 07 and increasing the
error to account for the effects from the change in the physical value of 7.
** At 8 = 5.8, mxminL = 3.2 but this lattice spacing is not used in the final cont./chiral extrapolations.

VV Update of FNAL/MILC 14A. The ratio quoted is fp_/fp+ = 1.1749(16). In order to compare with
results from other collaborations, we rescale the number by the ratio of central values for fpi and fp. We
use the same rescaling in FNAL/MILC 14A. At the finest lattice spacing the finite-volume criterium would
produce an empty green circle, however, as checked by the authors, results would not significantly change by
excluding this ensemble, which instead sharpens the continuum limit extrapolation.

0OV Update of RBC/UKQCD 17.

ID Two values of sea pion masses.

1 Four valence pion masses between 208 MeV and 114 MeV have been used at one value of the sea pion
mass of 139 MeV.

Table 28: Decay constants of the D and Ds mesons (in MeV) and their ratio.

A second new computation with Ny = 2 4 1 has been performed by the RQCD-
ALPHA Collaboration [456] on a set of 49 gauge ensembles generated again within the
CLS effort. For this reason statistical errors between ALPHA 23 and RQCD/ALPHA 24
will be treated as 100% correlated when performing averages. Notice, however, that since
RQCD/ALPHA 24 was not yet published in a journal by the FLAG deadline, it is not
being considered in the averages for this review. In RQCD/ALPHA 24 nonperturbatively
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O(a)-improved Wilson fermions have been used both in the valence sector and the sea.®®

The simulations cover six different lattice spacings with 0.039 fm < a < 0.098 fm, pion
masses from 420 MeV down to 130 MeV and m, L ranging from 2.83 to 6.42. The largest
volume at m, = 130 MeV gives m.L = 4.05. In the discussion of the final errors the
uncertainty due to the scale setting is treated separately. That turns out to be the largest
contribution to the total error for fp and fp, (around 50%), while for the ratio of decay
constants statistical, systematic (chiral and continuum extrapolations) and scale-setting
uncertainties are of about the same size. The quantity 6(amin), as estimated from the
figures in [456] is around 1.
The updated Ny =24 1 FLAG averages read

Ny=2+1: fp = 210.4(1.5) MeV Refs. [28, 59-61], (126)

Ny=2+1: fp. = 247.7(1.2) MeV Refs. [28, 29, 60-62], (127)

Ny=2+1: ];DS = 1.174(0.007) Refs. [28, 59-61]. (128)
D

Those come from the results in HPQCD 12A [59], FNAL/MILC 11 [60] as well as
RBC/UKQCD 17 [61] and ALPHA 23 [28] concerning fp while for fp_ also the xQCD 14
[29] result contributes, and instead of the value in HPQCD 12A [59] the one in HPQCD 10A
[62] is used. In addition, the statistical errors between the results of FNAL/MILC and
HPQCD have been everywhere treated as 100% correlated since the two collaborations use
overlapping sets of configurations. The same procedure had been used in the past reviews.
Concerning the values of d(amiy) for older computations entering those estimates, they are
all smaller than 2 for the results before 2013, as discussed in the second FLAG review [2],
where that was used as a necessary condition to enter the averages. For RBC/UKQCD 17
d(amin) is estimated to be around 1.5, while for yQCD 14 it is not possible to assess the
value of 0(amin) from the published figures and tables.

For Ny = 2+ 1+ 1 only a Proceedings contribution to the 2021 Lattice Conference
by the ETM Collaboration [453] appeared containing new results. This ETM 21B result
extends ETM 14E [43] by including simulations closer to the physical point for light and
heavy quarks. Twisted-mass fermions at maximal twist are used in the sea, in order to
ensure automatic O(a) improvement. In the valence sector Osterwalder-Seiler fermions
are adopted for the strange and charm quarks to avoid mixing effects at O(a?). Three
different lattice resolutions between 0.095 fm and 0.069 fm have been used with mL at
the lightest pion mass (134 MeV) being around 3.7. Also in this case the final errors are
dominated by statistics and the chiral-continuum extrapolations. Although we do not
provide an estimate of d(amin) for results that do not enter the final averages, ETM 21B
makes an important observation in showing that the cutoff effects strongly depend on the
intermediate scaling variable used. In the case of fp,, when using wg, d(@min) would turn
out to be very large, while when using the strange-charm meson mass cutoff effects are
much reduced and 6(amin) is around 1.

Our global averages coincide with those in FLAG 21, Ref. [5], namely

Ny=2+1+1: fp = 212.0(0.7) MeV Refs. [20, 43], (129)

Nf=2+1+1: fp. = 249.9(0.5) MeV Refs. [20, 43], (130)

Ny=241+1: Ip. _ 1.1783(0.0016) Refs. [20, 43], (131)
D

where the error on the average of fp has been rescaled by the factor y/x?/dof = 1.22.
For the two computations entering the results above §(amin) is around 2 at most.

38The coefficient ba has been neglected because its nonperturbative value, computed in [460], turned out to
be compatible with zero for the relevant range of gauge couplings.
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Concerning the inclusion of QED effects, significant progress has been made in the
computation of form factors for radiative leptonic decays of D mesons.?” We do not
present results in detail here since they are not yet at the level to be reviewed according
to the FLAG criteria, however, such processes are important for two reasons. In the
region of soft-photon energies they are needed in order to compute the QED corrections
to leptonic decays. In that case they have to be combined with the contributions stemming
from virtual exchanges of photons between the meson and the charged lepton, in order
to remove infrared divergent terms. For hard photons radiative leptonic decays become
important probes of the internal structure of hadrons and therefore of physics Beyond the
Standard Model. The form factors appear in the decomposition of the hadronic matrix
element

H%th)=62“0/l#yJM?Xmﬁ$@M$AyNPQﬂ>7 (132)

with €], (k) the polarisation vector of the outgoing photon (with momentum k), p the
momentum of the generic pseudoscalar meson P and jj, and j%, the weak and elec-
tromagnetic currents, respectively. Such matrix elements can be extracted from suit-
able three-point correlation functions that can be computed on an Euclidean lattice. In
Ref. [461] a set of numerical methods is explored with the main goals of keeping system-
atic effects due to contributions from unwanted states under control and of optimizing the
signal. The study is performed on a single ensemble with 2 4+ 1 flavours of domain wall
fermions, a ~ 0.11 fm and m, ~ 340 MeV.

In Ref. [462], which extends Ref. [463], the form factors for the decay Ds; — fuvpy
have been computed on four different ensembles of Ny = 2 4+ 1 + 1 gauge configurations
produced by the ETM Collaboration. Lattice spacings span the interval [0.056,0.09] fm
and quarks masses are close to their physical values. The full kinematical range, with
a cut B, > 10 MeV, is covered by the results. The structure-dependent contribution is
found to dominate the amplitude for ¢ = e, as opposed to the cases with £ = p and 7.
Since the point-like contribution is (helicity) suppressed by (mg/mp)?, a nonperturbative
computation of the form factors is of paramount importance for B mesons. An analysis
of the noise-to-signal ratio for the three-point functions is presented following the Parisi-
Lepage approach [464, 465] and a strategy to mitigate the problem is discussed. That
coincides with one of the methods studied, with different motivations, in Ref. [461].

7.2 Form factors for D — 7/v and D — K/v semileptonic decays

The SM prediction for the differential decay rate of the semileptonic processes D — 7wfv
and D — K/v can be written as

AT(D — Plv)  nEwG2Veo|? (¢* —m3)*\/ED —mb
dq? B 2473 q*m?%

2 2
[0 28 Y w3 w2 + S md e

2¢q 8¢
(133)

where x = d, s is the daughter light quark, P = m, K is the daughter light-pseudoscalar
meson, ¢ = e, u indicates the light charged lepton, Ep is the light-pseudoscalar meson
energy in the rest frame of the decaying D, and ¢ = (pp — pp) is the momentum of the
outgoing lepton pair. Here, we have included the short-distance electroweak correction

39The accuracy of the estimates presented here is often below the percent level and a first-principles compu-
tation of isospin-breaking corrections is therefore very desirable. However, for the determination of the CKM
matrix elements, the experimental accuracy on the branching ratios and hence on the products |ch|2 3 @
varies between 2.2% and 5%, see section 7.5.
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factor [466], whose value at u = mp is ngw = 1.009 [123]. The vector and scalar form
factors fy(q?) and fy(q?) parameterize the hadronic matrix element of the heavy-to-light
quark flavour-changing vector current V,, = v,c,

2 2 2 2
mp —mp my —mp

(PIV,ID) = f+(c?) (ppu +pp, - DM qp) O i e AL

and satisfy the kinematic constraint f; (0) = fo(0). Because the contribution to the decay
width from the scalar form factor is proportional to m%, within current precision standards
it can be neglected for £ = e, and Eq. (133) simplifies to

dU'(D — Pev)  ngywGs

T = T el VP () (135)

In models of new physics, decay rates may also receive contributions from matrix elements
of other parity-even currents. In the case of the scalar density (Zc), partial vector-current
conservation allows one to write its matrix elements in terms of f} and fy, while for tensor
currents T, = ZTo,,c a new form factor has to be introduced, viz.,

2
(PIT*|D) = o (Dbl — PEp) fr(47). (136)
Recall that, unlike the Noether current V,,, the operator 7}, requires a scale-dependent
renormalization.

Lattice-QCD computations of fy ¢ allow for comparisons to experiment to ascer-
tain whether the SM provides the correct prediction for the ¢?-dependence of dI'(D —
P(v)/dq?; and, subsequently, to determine the CKM matrix elements |Voq| and |Ves| from
Eq. (133). The inclusion of fr allows for analyses to constrain new physics. Currently,
state-of-the-art experimental results by CLEO-c [467] and BESIII [468, 469] provide data
for the differential rates in the whole ¢? range, with a precision of order 2-3% for the total
branching fractions in both the electron and muon final channels.

Calculations of the D — 7fy and D — K{v form factors typically use the same
light-quark and charm-quark actions as those of the leptonic decay constants fp and fp,.
Therefore, many of the same issues arise; in particular, considerations about cutoff effects
coming from the large charm-quark mass, or the normalization of weak currents, apply.
Additional complications arise, however, due to the necessity of covering a sizeable range
of values in ¢2:

e Lattice kinematics impose restrictions on the values of the hadron momenta. Be-
cause lattice calculations are performed in a finite spatial volume, the pion or kaon
three-momentum components can only take discrete values in units of 2r/L when
periodic boundary conditions are used. For typical box sizes in lattice D- and B-
meson form-factor calculations at heavier-than-physical pion masses, L ~ 2.5-3 fm;
thus, the smallest nonzero momentum in most of these analyses is |[pp| ~ 400
500 MeV. On the other hand, the ranges relevant for the semileptonic decays are
0 < || $940 MeV and 0 < |pk| < 1 GeV, respectively. Thus, when using periodic
boundary conditions, only a small number of allowed lattice momenta fall into this
range. As a consequence, many studies have incorporated the use of nonperiodic
“twisted” boundary conditions (tbc) [470, 471] in the valence fields used for the com-
putation of observables, which allows a continuous choice of momentum and hence
finer resolution of the ¢?-dependence [63, 472-476]. Note that more recent calcula-
tions [65, 123] include ensembles with physical pion masses and L = 5.5-5.75 fm,
so the momentum unit when using periodic boundary conditions is correspondingly
smaller, making the use of twisted boundary conditions less relevant.
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e Final-state pions and kaons can have energies 2 1 GeV, given the available kine-
matical range 0 < ¢% < ¢2., = (mp —mp)?. This makes the use of (heavy-meson)
chiral perturbation theory to extrapolate to physical light-quark masses potentially
problematic. This issue has become less relevant as modern calculations include

ensembles with physical light-quark masses.

e Accurate comparisons to experiment, including the determination of CKM parame-
ters, requires good control of systematic uncertainties in the parameterization of the
¢*>-dependence of form factors. While this issue is far more important for semilep-
tonic B decays, where it is harder to cover the kinematic range on the lattice, the
increase in experimental precision requires accurate work in the charm sector as well.
The parameterization of semileptonic form factors is discussed in detail in Appendix
B.2.

The first published Ny = 2 + 1 lattice-QCD calculation of the D — mfv and D —
K/{v form factors came from the Fermilab Lattice, MILC, and HPQCD collaborations
(FNAL/MILC 04) [477].%° This work uses asqtad-improved staggered sea quarks and light
(u, d, s) valence quarks and the Fermilab action for the charm quarks, with a single lattice
spacing of a =~ 0.12 fm, and a minimum RMS-pion mass of ~ 510 MeV, dictated by the
presence of fairly large staggered taste splittings. The vector current is normalized using a
mostly nonperturbative approach, such that the perturbative truncation error is expected
to be negligible compared to other systematics. Results for the form factors are provided
over the full kinematic range, rather than focusing just at ¢> = 0 as was customary in
most previous work, and fitted to a Becirevié¢-Kaidalov ansatz (calculations in the full
kinematic range had already been done earlier in the quenched approximation [478, 479]).
The publication of Ref. [477] predated the precise measurements of the D — K{v decay
width by the FOCUS [480] and Belle experiments [481], and showed good agreement
with the experimental determination of the shape of ff%K (¢%). Progress on extending
this work was reported in [482]; efforts are aimed at reducing both the statistical and
systematic errors in f f ~7(¢?) and f f ~K(¢%) by increasing the number of configurations
analyzed, simulating with lighter pions, and adding lattice spacings as fine as a ~ 0.045 fm.

The most precise published calculations of the D — 7fr and D — K{v form factors in
Ny =2+1 QCD are by the HPQCD collaboration (HPQCD 11 [64] and HPQCD 10B [66],
respectively). They are also based on Ny = 2 + 1 asqtad-improved staggered MILC con-
figurations, but use two lattice spacings a =~ 0.09 and 0.12 fm, and a HISQ action for
the valence u,d, s, and ¢ quarks. In these mixed-action calculations, the HISQ valence
light-quark masses are tuned so that the ratio m;/my is approximately the same as for the
sea quarks; the minimum RMS sea-pion mass ~ 390 MeV. Form factors are determined
only at ¢> = 0, by using a Ward identity to relate matrix elements of vector currents
to matrix elements of the absolutely normalized quantity (m. — m,){P|Zc|D) (where
x = u,d, s), and exploiting the kinematic identity fi(0) = fo(0) to yield fi(¢*> = 0) =
(me —my){P|Zc|D)/(m% —m%). A modified z-expansion (cf. Appendix B.2) is employed
to simultaneously extrapolate to the physical light-quark masses and the continuum and
to interpolate to ¢ = 0, and allow the coefficients of the series expansion to vary with
the light- and charm-quark masses. The form of the light-quark dependence is inspired
by xPT, and includes logarithms of the form m2log(m?2) as well as polynomials in the
valence-, sea-, and charm-quark masses. Polynomials in F k) are also included to pa-
rameterize momentum-dependent discretization errors. The number of terms is increased
until the result for f; (0) stabilizes, such that the quoted fit error for f(0) not only con-
tains statistical uncertainties, but also reflects relevant systematics. The largest quoted
uncertainties in these calculations are from statistics and charm-quark discretization er-
rors.

40Because only two of the authors of this work are members of HPQCD, and to distinguish it from other
more recent works on the same topic by HPQCD, we hereafter refer to this work as “FNAL/MILC.”
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The most recent Ny = 2 + 1 computation of D semileptonic form factors has been
carried out by the JLQCD collaboration, and so far only published in conference proceed-
ings; most recently in Ref. [483] (JLQCD 17B). They use their own Md&bius domain-wall
configurations at three values of the lattice spacing a = 0.080,0.055,0.044 fm, with sev-
eral pion masses ranging from 226 to 501 MeV (though there is so far only one ensemble,
with m, = 284 MeV, at the finest lattice spacing). The vector and scalar form factors
are computed at four values of the momentum transfer for each ensemble. The computed
form factors are observed to depend mildly on both the lattice spacing and the pion mass.
The momentum dependence of the form factors is fitted to a BCL z-parameterization (see
Appendix B.2) with a Blaschke factor that contains the measured value of the DZ‘S) mass
in the vector channel, and a trivial Blaschke factor in the scalar channel. The systematics
of this latter fit is assessed by a BCL fit with the experimental value of the scalar reso-
nance mass in the Blaschke factor. Continuum and chiral extrapolations are carried out
through a linear fit in the squared lattice spacing and the squared pion and 7. masses. A
global fit that uses hard-pion HMxPT to model the mass dependence is furthermore used
for a comparison of the form factor shapes with experimental data.*’ Since the compu-
tation is only published in proceedings so far, it will not enter our Ny = 2 + 1 average.*?
Another Ny = 2 + 1 calculation of the D — 7, D — K, and Dy — K form factors using
domain-wall fermions is currently being carried out by the RBC/UKQCD collaboration,
as reported in Ref. [485].

The first full computation of both the vector and scalar form factors in Ny =2+141
QCD was achieved by the ETM collaboration [63] (ETM 17D). Furthermore, they have
provided a separate determination of the tensor form factor, relevant for new-physics anal-
yses [476] (ETM 18). Both works use the available Ny = 2 + 1 + 1 twisted-mass Wilson
ensembles [264], totaling three lattice spacings down to a /= 0.06 fm, and a minimum pion
mass of 220 MeV. Matrix elements are extracted from suitable double ratios of correlation
functions that avoid the need of nontrivial current normalizations. Only one source-sink
separation per ensemble is used for the three-point functions, although the authors state
that this separation was optimized to achieve a balance between excited-state contami-
nation and statistical uncertainties. The use of twisted boundary conditions allows both
for imposing several kinematical configurations, and considering arbitrary frames that in-
clude moving initial mesons. After interpolation to the physical strange- and charm-quark
masses, the results for form factors are fitted to a modified z-expansion that takes into
account both the light-quark mass dependence through hard-pion SU(2) xPT [486], and
the lattice-spacing dependence. In the latter case, a detailed study of Lorentz-breaking
effects due to the breaking of rotational invariance down to the hypercubic subgroup is
performed, leading to a nontrivial momentum-dependent parameterization of cutoff ef-
fects. The z-parameterization (see Appendix B.2) itself includes a single-pole Blaschke
factor (save for the scalar channel in D — K, where the Blaschke factor is trivial), with
pole masses treated as free parameters. The final quoted uncertainty on the form factors
is about 5-6% for D — 7, and 4% for D — K. The dominant source of uncertainty is
quoted as statistical+fitting procedure+input parameters — the latter referring to the
values of quark masses, the lattice spacing (i.e., scale setting), and the LO SU(2) LECs.

The second Ny = 241+ 1 computation of f; and fy in the full kinematical range for
the D — Klv mode, performed by HPQCD, has been published in 2021 — HPQCD 21A
(Ref. [65]). This work uses MILC’s HISQ ensembles at five values of the lattice spacing,

411t is important to stress the finding in Ref. [484] that the factorization of chiral logs in hard-pion xPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use

to model the mass dependence of form factors can thus be questioned.

42The ensemble parameters quoted in Ref. [483] appear to show that the volumes employed at the lightest
pion masses are insufficient to meet our criteria for finite-volume effects. There is, however, a typo in the
table which results in a wrong assignment of lattice sizes, whereupon the criteria are indeed met. We thank

T. Kaneko for correspondence on this issue.

110



and pion masses reaching to the physical point for the three coarsest values of a. Vector
currents are normalized nonpertubatively by imposing that form factors satisfy Ward
identities exactly at zero recoil. Results for the form factors are fitted to a modified z-
expansion ansatz, with all sub-threshold poles removed by using the experimental value of
the mass shifted by a factor that matches the corresponding result at finite lattice spacing.
The accuracy of the description of the g?-dependence is crosschecked by comparing to a
fit based on cubic splines. Finite-volume effects are expected to be small, and chiral-
perturbation-theory-based estimates for them are included in the chiral fit. The impact
of frozen topology at the finest lattice spacing is neglected (the size of this effect was
later shown to be < 0.03% in a similar calculation [123]). The final uncertainty from the
form factors in the determination of |V.s| quoted in HPQCD 21A is at the 0.5% level, and
comparable to the rest of the uncertainty (due to the experimental error, as well as weak
and electromagnetic corrections); in particular, the precision of the form factors is around
seven times higher than that of the earlier Ny = 2+1+1 determination by ETM 17D. The
work also provides an accurate prediction for the lepton-flavour-universality ratio between
the muon and electron modes, where the uncertainty is overwhelmingly dominated by the
electromagnetic corrections. An extension of the work of HPQCD 21A to heavier quark
masses has also enabled the determination of the B — K form factors [487] (HPQCD 22),
and provides the tensor form factors for both B — K and D — K in addition to the
vector form factors.

In 2022, the FNAL/MILC collaboration completed another Ny = 24+1+1 computation
of fi and fy in the full kinematic ranges for D — Kflv, D — wly, and Ds — Klv —
FNAL/MILC 22 [123]. Like HPQCD 21A, this calculation uses the MILC HISQ ensembles
and renormalization using the vector Ward identity. This calculation does not include the
0.15 fm ensembles that were part of the HPQCD 21A analysis, and shares only one of the
two 0.12 fm ensembles used in HPQCD 21A. Compared to HPQCD 21A, FNAL/MILC 22
reaches a finer lattice spacing at the physical pion mass, 0.057 fm, while the ensemble at
the finest lattice spacing of 0.042 fm is common to both calculations. Overall, four of
the seven ensembles are shared, but FNAL/MILC 22 uses more configurations and source
positions on those ensembles. In FNAL/MILC 22, the chiral/continuum extrapolation
is performed using rooted staggered heavy-meson chiral perturbation theory prior to a
continuum BCL z expansion fit. This work also corrects the effects of the frozen topology
at the finest lattice spacing using chiral perturbation theory; the correction is found to be
< 0.03%.

Table 29 contains our summary of the existing calculations of the charm-meson semilep-
tonic form factors. Additional tables in Appendix C.4.1 provide further details on the
simulation parameters and comparisons of the error estimates. Recall that only calcula-
tions without red tags that are published in a refereed journal are included in the FLAG
average. For Ny = 2+ 1, only HPQCD 10B,11 qualify, which provides our estimate for
f+(¢> =0) = fo(¢® = 0). For Ny = 2+1+1, we quote as the FLAG estimate for f2=7(0)
the weighted average of the results by ETM 17D and FNAL/MILC 22, while for f£~5(0)
we quote the weighted average of the values published by ETM 17D, HPQCD 21A, and
FNAL/MILC 22:

D—m _
Ny =241 LK(O) = 0.666(29) Ref. [64], (137)
D=K(0) = 0.747(19) Ref. [66],
Ny =24141: FP277(0) = 0.6296(50) Refs. [63, 123, (138)
D=K(0) = 0.7430(27) Refs. [63, 65, 123].

In Fig. 17, we display the existing Ny = 2, Ny =241, and Ny = 2+ 1 4 1 results for
fP77(0) and fP7%(0); the grey bands show our estimates of these quantities.
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FNAL/MILC 22 [123] 24141 A 0.6300(51) 0.7452(31)
HPQCD 22 [487) 24141 A n/a 0.7441(40)
HPQCD 21A [65] 2+1+1 A n/a 0.7380(44)
HPQCD 20 [488] 2+1+1 A n/a n/a
ETM 17D, 18  [63, 476] 2+1+1 A 0.612(35) 0.765(31)
JLQCD 17B [483]  2+1 C 0.615(31)(F10)(F28)*  0.698(29)(18)(F32)*
HPQCD 11 [64]  2+1 A 0.666(29)
HPQCD 10B [66] 2+1 A 0.747(19)
FNAL/MILC 04  [477] 2+1 A EnHE 0.64(3)(6) 0.73(3)(7)

* The first error is statistical, the second from the ¢° — 0 extrapolation, the third from the chiral-
continuum extrapolation.

Table 29: Summary of computations of charmed-meson semileptonic form factors. Note that
HPQCD 20 (discussed in Sec. 7.4) addresses the B. — By and B, — B, transitions—hence
the absence of quoted values for fP~7(0) and fP~%(0)—while ETM 18 and HPQCD 22
provide computations of tensor form factors. The value for fP75(0) from HPQCD 22 [487]
is obtained as a by-product of the B — K analysis and is not independent from HPQCD 21A
[65]. FNAL/MILC 22 also provides results for the D, — K form factors in addition to the
D — K and D — « form factors [123].

In the case of Ny =2+ 1+ 1, we can also provide an analysis of the ¢*-dependence
of f1 and fy. FLAG 21 included a BCL fit to the ETM 17D and HPQCD 21 results for
the D — K form factors; this fit had a relatively poor x2/dof = 9.17/3 due to a tension
between the results from the two collaborations at large ¢2; for D — 7, only the ETM 17D
results were available at that time. Now, the FNAL/MILC 22 calculation [123] provides
new high-precision Ny = 24141 results for both D — K and D — 7 (as well as D, — K).
For D — K, we update our previous BCL fit to include the FNAL/MILC 22 results. We
consider the statistical correlations between the final HPQCD 21A and FNAL/MILC 22
results to be negligible, given that there is only partial overlap among the ensembles, the
source positions for the correlation functions are different, and the analyses are performed
with different fit methodologies. As in FLAG 21, we generate synthetic data from the
parameterizations provided by the collaborations. The inputs to our fit from ETM 17D
and HPQCD 21A are unchanged; for FNAL/MILC 22 we use four ¢ values because the
parameterization used in that reference is of higher order. In both cases, this includes
the kinematical endpoints ¢> = 0 and ¢> = (mp — mx)? of the semileptonic interval.
We fit the resulting dataset to a BCL ansatz (cf. Egs. (527) and (528)); the constraint
f+(0) = fo(0) is used to rewrite the highest-order coefficient af;, _; in fo in terms of the
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D— Klv(Ny=2+1+1)

values correlation matrix
aar 0.7953(53) 1. —-0.690759 —0.051101 —0.061092 0.501293  0.469810 0.132470
af | —1.0090(87) | —0.690759 1. —0.231861 0.133663 0.004097 0.149657 0.137516
a;r 0.22(59) | —0.051101 —0.231861 1. —0.113075 —0.095636 0.101738 0.238861
a;r 0.14(10) | —0.061092 0.133663 —0.113075 1. —0.109883 0.116543 0.112918
ad 0.7026(21) 0.501293 0.004097 —0.095636 —0.109883 1. 0.339786 —0.251322
ald 0.773(39) 0.469810 0.149657 0.101738 0.116543 0.339786 1. 0.589149
as 0.54(40) 0.132470 0.137516 0.238861 0.112918 —0.251322 0.589149 1.

Table 30: Coefficients for the Nt = 4, N = 4 z-expansion of the Ny =2+ 1+1FLAG
average for the D — K form factors f; and fy, and their correlation matrix. The inputs are
from ETM 17D, HPQCD 21A, and FNAL/MILC 22. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.1.

other Ny 4 Ny—1 coefficients. In both form factors, we include nontrivial Blaschke factors,
with pole masses set to the experimental values of the D} (for the vector channel) and D%,
(scalar channel) masses found in the PDG [225]. We take flavour averages of charged and
neutral states for the D and K masses. Our external input is thus mp = 1.87265 GeV,
my = 495.644 MeV, mp. = 2.1122 GeV, and mp-, = 2.317 GeV. As aresult of including
the new FNAL/MILC 22 data points, we found it necessary to increase the order of the
z expansion from Ny = Ny = 3 (as used in FLAG 21) to N = Ny = 4. The fit has
x?/dof ~ 2.39 (due to the tension between the ETM 17D results at high ¢? and the
results from the other two collaborations, and due to a slight tension between the results
from HPQCD 21A and FNAL/MILC 22 in fj) and we have scaled the uncertainties of all
parameters by a factor of 1/x?/dof & 1.55. The results are quoted in full in Tab. 30 and
illustrated in Fig. 18.

As can be seen in Fig. 19 of Ref. [123], for D — 7 there is a very large tension between
the ETM 17D and FNAL/MILC 22 results at high ¢2, in the same direction as the tension
also seen for D — K. In this case, the tension is so significant that attempting BCL fits
to average the ETM 17D and FNAL/MILC 22 results gives values of x2/dof of order
100. We are concerned about possible excited-state contamination in ETM 17D, but the
authors of ETM 17D stated that there is no evidence of an uncontrolled systematic effect;
the tension remains unexplained. We therefore do not quote any results for the D — =
form factors away from ¢ = 0.
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(see Tab. 29).
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Figure 18: The form factors f (¢?) and fy(¢?) for D — K{v plotted versus z (left panel) and
q? (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred Nt = N° = 4 BCL fit
(seven parameters).
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7.3 Form factors for A. and =. semileptonic decays

The motivation for studying charm-baryon semileptonic decays is two-fold. First, these
decays allow for independent determinations of |V.s|. Second, given that possible new-
physics contributions to the ¢ — sfv weak effective Hamiltonian are already constrained
to be much smaller compared to b — wfv and b — séf, charm-baryon semileptonic decays
allow testing the lattice techniques for baryons that are also employed for bottom-baryon
semileptonic decays (see Sec. 8.6) in a better-controlled environment.

The amplitudes of the decays A, — Afv receive contributions from both the vector
and the axial components of the current in the matrix element (A|5v*(1 — 5)c|A.), and
can be parameterized in terms of six different form factors fi, fo, f1, 9+, 90, g1 — see,
e.g., Ref. [489] for a complete description.

The computation in Meinel 16 [490] uses RBC/UKQCD Ny = 2 + 1 DWF ensembles,
and treats the ¢ quarks within the Columbia RHQ approach. Two values of the lattice
spacing (a =~ 0.11, 0.085 fm) are considered, with the absolute scale set from the Y(25)-
T(1S5) splitting. In one ensemble, the pion mass m, ~ 139 MeV is at the physical point,
while for other ensembles it ranges from 295 to 352 MeV. Results for the form factors
are obtained from suitable three-point functions, and fitted to a modified z-expansion
ansatz that combines the ¢g?-dependence with the chiral and continuum extrapolations.
The paper predicts for the total rates in the e and p channels

T(A. — AeTr,)
|Ves |2

L(Ae — Aptyy,)
[Ves|?

=0.2007(71)(74) ps—*,
(139)
= 0.1945(69)(72) ps ',

where the uncertainties are statistical and systematic, respectively. In combination with
the recent experimental determination of the total branching fractions by BESIII [491,
492], it is possible to extract |V.4| as discussed in Sec. 7.5 below.

Lattice results are also available for the A, — N form factors, where N is a neutron or
proton [493]. This calculation uses the same lattice actions but a different set of ensembles
with parameters matching those used in the 2015 calculation of the A, — p form factors
in Ref. [494] (cf. Sec. 8.6). Predictions are given for the rates of the ¢ — d semileptonic
decays A. — nlTv,; these modes have not yet been observed. Reference [493] also studies
the phenomenology of the flavour-changing neutral-current decay A, — putu~. As is
typical for rare charm decays to charged leptons, this mode is dominated by long-distance
effects that have not yet been calculated on the lattice and whose description is model-
dependent.

The authors of Zhang 21 [495] also performed a first lattice calculation of the 2, — E
form factors and extracted |V.s|, with still large uncertainties, from the recent Belle mea-
surement of the =. — ¢, branching fractions [496]. This calculation uses only two
ensembles with 241 flavours of clover fermions, with lattice spacings of 0.108 and 0.080 fm
and nearly identical pion masses of 290 and 300 MeV. The results are extrapolated to the
continuum limit but are not extrapolated to the physical pion mass. No systematic un-
certainty is estimated for the effect of the missing chiral extrapolation. A new calculation
of the 2, — E form factors using domain-wall fermions is in progress [497].

The calculations discussed so far in this section all have J¥ = %Jr baryons in the
final state. A first lattice calculation of the form factors for a charm-baryon semileptonic
decay to a J¥ = 37 baryon, A, — A*(1520)¢* vy, is also available: Meinel 21B [498]. The
calculation was done using three RBC/UKQCD ensembles with 2 + 1 flavours of domain-
wall fermions, with a ~ 0.11, 0.08 fm and pion masses in the range from approximately
300 to 430 MeV. Chiral-continuum extrapolations linear in m2 and a? were performed,
with systematic uncertainties estimated using higher-order fits. Finite-volume effects
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and effects associated with the strong decays of the A*(1520) are not quantified. The
calculation was done in the A*(1520) rest frame, where the cubic symmetry is sufficient
to avoid mixing with unwanted lower-mass states.

A summary of the lattice calculations of charm-baryon semileptonic-decay form factors
is given in Tab. 31.
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y 8 §
F & ¥ g &
%) ‘Z‘ir Q Q x> ~o
I~ > & & X
S § < X S Q%
§§6 5§85
Ffas ¢
S S > g ol
Process Collaboration Ref. Ny g & T F &<
Ac — A*(1520)¢vy  Meinel 21B  [498] 2+1 A [ ]
E. > Sy Zhang 21  [495] 241 P m n
Ac — nly Meinel 17 [493] 241 A [ ]
Ae — Av Meinel 16~ [490] 2+1 A

Table 31: Summary of computations of charmed-baryon semileptonic form factors. The
rationale for the M rating of finite-volume effects in Meinel 21B (despite meeting the
criterion based on the minimum pion mass) is that the unstable nature of the final-state
baryons was neglected in the analysis.

7.4 Form factors for charm semileptonic decays with heavy spec-
tator quarks

Two other decays mediated by the ¢ — sfv and ¢ — dlv transitions are B. — Bsfv and
B, — By, respectively. At present, there are no experimental results for these processes,
but it may be possible to produce them at LHCb in the future. The HPQCD Collaboration
has recently computed the form factors for both of these B. decay modes with Ny =
2+ 141 [488]. The calculation uses six different MILC ensembles with HISQ light,
strange, and charm quarks, and employs the PCAC Ward identity to nonperturbatively
renormalize the ¢ — s and ¢ — d currents. Data were generated for two different choices of
the lattice action for the spectator b quark: lattice NRQCD on five of the six ensembles,
and HISQ on three of the six ensembles (cf. Sec. 8 for a discussion of different lattice
approaches used for the b quark). For the NRQCD calculation, two of the ensembles have
a physical light-quark mass, and the lattice spacings are 0.15 fm, 0.12 fm, and 0.09 fm.
The heavy-HISQ calculation is performed only at m;/ms = 0.2, and at lattice spacings of
0.12 fm, 0.09 fm, and 0.06 fm. The largest value of the heavy-HISQ mass used is 0.8 in
lattice units on all three ensembles, which does not reach the physical b-quark mass even
at the finest lattice spacing.

Form-factor fits are performed using z-expansions (see Appendix B.2) modified to
include a dependence on the lattice spacing and quark masses, including an expansion in
the inverse heavy quark mass in the case of the heavy-HISQ approach. The parameters
ty are set to (mp, + mp,)? even though the branch cuts start at (mp + mg)? or
(mp + my)?, as also noted by the authors. The variable z is rescaled by a constant.
The lowest charmed-meson poles are removed before the z-expansion, but this still leaves
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the branch cuts and higher poles below ¢,. As a consequence of this structure, the good
convergence properties of the z-expansion are not necessarily expected to apply. Fits are
performed (i) using the NRQCD data only, (ii) using the HISQ data only, and (iii) using
the NRQCD data, but with priors on the continuum-limit form-factor parameters equal
to the results of the HISQ fit. The results from fits (i) and (ii) are mostly consistent, with
the NRQCD fit having smaller uncertainties than the HISQ fit. Case (iii) then results in
the smallest uncertainties and gives the predictions (for massless leptons)

F(Bc — BSE+V4)

= 1.738(55) x 107 MeV,

[Ves|?
(B, — BO¢+
( F/ ; Ye) _ 999(12) x 1011 MeV, (140)
cd
(B, — Byl+ 2
( c 5£ V[)|‘/Cd| 20759(44)

(B, — Bt v,)|Ves|?

We note that there is a discrepancy between the NRQCD and HISQ results in the case of
fo(Be — B?), and the uncertainty quoted for method (iii) does not cover this discrepancy.
However, this form factor does not enter in the decay rate for massless leptons.

7.5 Determinations of |V, and |V.s| and test of second-row CKM
unitarity

We now use the lattice-QCD results for the charm-hadron decays to determine the CKM
matrix elements |V.4| and |V.,| in the Standard Model.

For the leptonic decays, we use the latest experimental averages from the Particle Data
Group [274] (see Sec. 72.3.1)

Ip|Vea| = 45.82(1.10) MeV,  fp,|Ves| = 243.5(2.7) MeV, (141)

where the errors include those from nonlattice theory, e.g., estimates of radiative cor-
rections to lifetimes [499]. Also, the values quoted by the Particle Data Group are ob-
tained after applying the correction factor nZy, = 1.018, due to universal short-distance
electroweak contributions [466], to the branching ratios. Hadronic-structure-dependent
electromagnetic corrections to the rate have not been computed on the lattice for the case
of D) mesons, while they have been calculated for pion and kaon decays [217, 220]. The
errors given above include a systematic uncertainty of 0.7% estimated as half the size of
the applied radiative corrections.

By combining these with the averaged Ny = 241 and 2 + 1 + 1 results for fp and
fp. in Egs. (126-130), we obtain

Vg = 0.2161(7)(52)
[Ves| = 0.974(2)(11)

Voa| = 0.2178(16)(52)
Ves| = 0.983(5)(11)

Ny =2+1+1: { [D(s) — fv, Refs. [20, 43]], (142)

Ny =2+1: { [D(s) = fv, Refs. [28, 29, 59-62]], (143)

where the errors shown are from the lattice calculation and experiment (plus nonlattice
theory), respectively. For the Ny = 2+ 1 and the Ny = 24 1 + 1 determinations, the
uncertainties from the lattice-QCD calculations of the decay constants are significantly
smaller than the experimental uncertainties in the branching fractions.

For D-meson semileptonic decays, in the case of Ny = 2+ 1 there are no changes with
respect to FLAG 21 other than the inclusion of the short-distance electroweak correction
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and a systematic uncertainty due to missing long-distance QED corrections; the only
works entering the FLAG averages are HPQCD 10B/11 [64, 66], which provide f£7(0)
and fPK(0). We use these results in combination with the HFLAV averages for the
combinations f(0)ngw|Vez| [308],

T (0)npw [Vea| = 0.1426(18),  f7 (0)nmw|Ves| = 0.7180(33), (144)
and obtain

Ny =2+ 1: |Vea| = 0.2121(92)(29)(21) [D — 7lv, Ref. [64]], (145)

Ny =2+ 1: |Vos| = 0.958(25)(5)(10) [D — K{v,Ref. [66]], (146)

where the uncertainties are lattice, experimental (plus nonlattice theory), and missing
long-distance QED corrections (estimated to be 1%), respectively.

For Ny =241+ 1, we update our BCL fit to the binned D — K/{v differential decay
rates by adding the FNAL/MILC 22 inputs for f,(¢?) and fy(¢?) at four ¢ values (the
ETM 17D and HPQCD 21A inputs remain unchanged). The experimental datasets we
include are unchanged with respect to FLAG 21 and are three different measurements
of the D’ — K~ eTv, mode by BaBar (BaBar 07, Ref. [500]), CLEO-c¢ (CLEO 09/0,
Ref. [467]), and BESIII (BESIII 15, Ref. [501]); CLEO-c (CLEO 09/+, Ref. [467]) and
BESIII measurements of the D* — K%%v, mode (BESIII 17, Ref. [502]); and the recent
first measurement of the D® — K~ u*v, mode by BESIII, Ref. [503]. There is also a
Belle dataset available in Ref. [504], but it provides results for parameterized form factors
rather than partial widths, which implies that reverse modelling of the ¢?-dependence of
the form factor would be needed to add them to the fit, which involves an extra source of
systematic uncertainty; it is, furthermore, the measurement with the largest error. Thus,
we will drop it. The CLEO collaboration provides correlation matrices for the systematic
uncertainties across the channels in their two measurements; the latter are, however, not
available for BESIII, and, therefore, we will conservatively treat their systematics with a
100% correlation, following the same prescription as in the HFLAV review [308]. Since
all lattice results have been obtained in the isospin limit, we average over the D° and
D electronic modes. The parameterization of the form factors we use here is the same
as in the lattice-only fit discussed in Sec. 7.2, and we again increase the order of the z
expansion (with respect to FLAG 21) to N* = N° = 4. In contrast to FLAG 21, we
now include the short-distance electroweak correction n&y, [466] in the calculation of the
differential decay rate, using ngw = 1.009 [123]. The fit has x?/dof ~ 1.66 and we have
scaled all uncertainties by a factor of /x?/dof &~ 1.29. The results for the z-expansion
parameters and |V.s|, as well as their correlation matrix, are given in Tab. 32, and a plot
of the differential decay rates is shown in Fig. 19. For D — nlv, we do not use the lattice
results away from ¢? = 0 as discussed in Sec. 7.2. To extract |Vq|, we instead combine the
average for fP7(0) from ETM 17D and FNAL/MILC 22 with the HFLAV result (144).
Thus, we obtain

Ny =2+1+1: |Vog| = 0.2245(33)(22)  [D — 7w, Ref. [63, 123]], (147)
Ny =241+1: [Voo| = 0.9592(50)(96)  [D — Kév,Ref. [63, 65, 123]],  (148)

where the two uncertainties correspond, respectively, to the combined lattice-QCD and
experimental errors, and an estimate of the size of missing long-distance QED corrections,
taken to be 1% following Ref. [123]. Note that FNAL/MILC 22 [123] also determined |V4|
from Dy — K{v using a BESIII measurement [505], with the result

Ny =2+41+1: |Vog| =0.258(15)(03)  [Ds — Kfv,Ref. [123]], (149)

where the large uncertainty is dominated by the experimental measurement.
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Figure 19: Our fits to the D — K/v differential decay rates used to determine |V |, with
experimental inputs from Refs. [467, 500-503] and lattice inputs from ETM17D [63], HPQCD
21A [65], and FNAL/MILC 22 [123].

D— Kty (Ny=2+1+1)

values correlation matrix
ag' 0.7896(38) 1.  —0.555568 —0.069722 —0.021610 0.587914  0.646372 0.247552 0.795354
a'l*' —0.945(51) | —0.555568 1. —0.303470 0.102546  —0.014576  0.043616 0.036587  —0.280176
a;' 0.29(49) | —0.069722  —0.303470 1. —0.109799 —0.092179 0.107676 0.243102  —0.033821
ag,f' 0.257(84) | —0.021610 0.102546  —0.109799 1. —0.112476 0.104107 0.101692  —0.003737
ag 0.7029(18) 0.587914  —0.014576  —0.092179  —0.112476 1. 0.341851 —0.256955 0.554412
a(f 0.748(32) 0.646372 0.043616 0.107676 0.104107 0.341851 1. 0.578012 0.651080
ag 0.11(33) 0.247552 0.036587 0.243102 0.101692  —0.256955  0.578012 1. 0.279081
[Ves| 0.9592(50) 0.795354  —0.280176 —0.033821 —0.003737 0.554412  0.651080 0.279081 1.

Table 32: Coefficients for the Nt = N? = 4 z-expansion simultaneous fit of the D — K
form factors fy and fy and |Vs| to the D — K/{v differential decay rates and the ETM 17D,
HPQCD 21A, and FNAL/MILC 22 lattice results. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.1.
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For A, — Alv, there are new experimental results for the electronic and muonic
branching fractions from BESIII, published in 2022 and 2023 [506, 507]. In addition,
the world average of the A, lifetime has been updated in the 2024 Review of Particle
Physics to 75, = (202.6 4 1.0) x 1071% s, following a new precise measurement by Belle
IT [508]. Using these results together with the lattice-QCD predictions of Meinel 16 for
T'(Ae = Av)/|Ves|? [490], and including the factor of nay, (not done in Ref. [490]), we
obtain

Ny =2+ 1: |Voo| = 0.929(24)(16)(2)(9)  [Ac — Alw, Ref. [490]], (150)

where the uncertainties are from the lattice calculation, from the A, — Afv branching
fractions, from the A. lifetime, and from the missing long-distance QED corrections,
respectively.

In Fig. 20, we summarize the results for |V.4| and |V,;| from leptonic and semileptonic
decays, and compare them to determinations from neutrino scattering (for |V4| only) and
global fits assuming CKM unitarity (see [225, 396]). For both |V4| and |Vs|, the errors
in the direct determinations from leptonic and semileptonic decays are approximately one
order of magnitude larger than the indirect determination from CKM unitarity.

In order to provide final estimates, we average the available results from the different
processes separately for each value of Ny and obtain

Vea| = 0.2229(64)
Vs| = 0.9667(96)

V.a| = 0.2165(49)
|Ves| = 0.973(14)

Ny=2+1+1: { [FLAG average, Refs. [20, 43, 65, 123]], (151)

Ny =2+1: { [FLAG average, Refs. [28, 29, 59-62, 64, 66, 490]] ,

(152)

where the errors include both theoretical and experimental uncertainties, and scale factors
equal to /x?/dof of 1.88 and 1.26 have been included for [Ve4|n;=241+1 and |Ves|n, =211,
respectively. These averages also appear in Fig. 20, and are compatible with the values
from the CKM global fit based on unitarity [396] within at most 1.50. The slight increases
in the uncertainties of the Ny = 2 + 1 + 1 averages compared to FLAG 21 are due to
the inclusion of QED systematic uncertainties (treated as 100% correlated between the
different processes) and the scale factors. The large scale factor for |V4| Ny=2+1+1 is caused
by the Dy — K{v result that has large uncertainty but also a considerably higher central
value. Removing this result would change the average to |Veq|n;—2414+1 = 0.2214(44).

Using the lattice determinations of |V.4| and |V | in Egs. (151), (152) and |Vg| = 0.04,
we can test the unitarity of the second row of the CKM matrix. We obtain

Nf =24 1+41: [Voa? + [Ves|* + Ve |* — 1 = —0.01(2)
[FLAG average, Refs. [20, 43, 65, 123]], (153)
Ny =2+1: [Veal® + [Ves|* + [Vep|* = 1 = 0.00(3)
[FLAG average, Refs. [28, 29, 59-62, 64, 66, 490]]. (154)
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Figure 20: Comparison of determinations of |V4| and |V.s| obtained from lattice methods
[Eqs. (142), (143), (145), (146), (147), (148), (149), (150), (151), (152)] with a nonlattice
determination from neutrino scattering (for |V,4| only) [225] and with the Standard-Model
predictions from a global fit assuming CKM unitarity [396].
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8 Bottom-hadron decays and mixings

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, A. Vaquero

Exclusive (semi)leptonic decays and mixing processes of B(5) mesons play a crucial
role in flavour physics. In particular, they contain important information for the investi-
gation of the b—d unitarity triangle in the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
and provide ideal probes of physics beyond the Standard Model. The charged-current
decay channels B* — [Ty, and B® — 7w~ Ity;, where I* is a charged lepton with v; being
the corresponding neutrino, are essential in extracting the CKM matrix element |V,
Similarly, the B to D) semileptonic transitions can be used to determine |V,p|. Flavour-
changing neutral-current (FCNC) processes, such as B — K® ¢t~ and Bgsy — e,
occur only beyond the tree level in weak interactions and are suppressed in the Standard
Model. Therefore, these processes could be sensitive to new physics, since heavy par-
ticles can contribute to the loop diagrams. FCNC processes are also suitable channels
for the extraction of the CKM matrix elements involving the top quark, which appears
in loop contributions. The decays B — D™)/fv and B — K®)¢¢ can also be used to
test lepton flavour universality by comparing results for £ = e, u and 7. In particular,
anomalies have been seen in the ratios R(D™*) = B(B — D"1v)/B(B — D™v), .,
and R(K®)) = B(B — K®puu)/B(B — K®*ee), although the latter are no longer sta-
tistically significant. In addition, the neutral Bg(,)-meson mixings are FCNC processes
and are dominated by the 1-loop “box” diagrams containing the top quark and the W
bosons. Thus, using the experimentally measured neutral Bg s -meson oscillation frequen-
cies, AMy(,), and the theoretical calculations for the relevant hadronic mixing matrix
elements, one can obtain |Vi4| and |Vis| in the Standard Model.

At the Large Hadron Collider, decays of b quarks can also be probed with A, and other
bottom baryons, which can provide complementary constraints on physics beyond the
Standard Model. The most important processes are the charged-current decays Ay, — pfv
and Ay — A, and the neutral-current decay A, — ALT0~.

Accommodating the light quarks and the b quark simultaneously in lattice-QCD
computations is a challenging endeavour. To incorporate the pion and the b hadrons
with their physical masses, the simulations have to be performed using the lattice size
L = L/a ~ O(10%), where a is the lattice spacing and L is the physical (dimensionful) box
size. The most ambitious calculations are now using such volumes; however, many ensem-
bles are smaller. Therefore, in addition to employing chiral perturbation theory for the
extrapolations in the light-quark mass, current lattice calculations for quantities involving
b hadrons often make use of effective theories that allow one to expand in inverse powers of
mp. In this regard, two general approaches are widely adopted. On the one hand, effective
field theories such as Heavy-Quark Effective Theory (HQET) and Nonrelativistic QCD
(NRQCD) can be directly implemented in numerical computations. On the other hand,
a relativistic quark action can be improved a la Symanzik to suppress cutoff errors, and
then re-interpreted in a manner that is suitable for heavy-quark physics calculations. This
latter strategy is often referred to as the method of the Relativistic Heavy-Quark Action
(RHQA). The utilization of such effective theories inevitably introduces systematic un-
certainties that are not present in light-quark calculations. These uncertainties can arise
from the truncation of the expansion in constructing the effective theories (as in HQET
and NRQCD), or from more intricate cutoff effects (as in NRQCD and RHQA). They can
also be introduced through more complicated renormalization procedures, which often
lead to significant systematic effects in matching the lattice operators to their continuum
counterparts. For instance, due to the use of different actions for the heavy and the light
quarks, it is more difficult to construct absolutely normalized bottom-light currents.

Complementary to the above “effective theory approaches”, another popular method is
to simulate the heavy and the light quarks using the same (typically Symanzik-improved)
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lattice action at several values of the heavy-quark mass mj, with am, < 1 and my < my.
This enables one to employ HQET-inspired relations to extrapolate the computed quanti-
ties to the physical b mass. When combined with results obtained in the static heavy-quark
limit, this approach can be rendered into an interpolation, instead of extrapolation, in
my,. The discretization errors are the main source of the systematic effects in this method,
and very small lattice spacings are needed to keep such errors under control.

In recent years, it has also been possible to perform lattice simulations at very fine
lattice spacings and treat heavy quarks as fully relativistic fermions without resorting to
effective field theories. Such simulations are, of course, very demanding in computing
resources.

Because of the challenge described above, efforts to obtain reliable, accurate lattice-
QCD results for the physics of the b quark have been enormous. These efforts include
significant theoretical progress in formulating QCD with heavy quarks on the lattice. This
aspect is briefly reviewed in Appendix A.1.3 of FLAG 19 [4].

In this section, we summarize the results of the B-meson leptonic decay constants,
the neutral B-mixing parameters, and the semileptonic form factors of B mesons and Ay
baryons, from lattice QCD. To focus on the calculations that have strong phenomeno-
logical impact, we limit the review to results based on modern simulations containing
dynamical fermions with reasonably light pion masses (below approximately 500 MeV).

For heavy-meson decay constants and mixing parameters, estimates of the quantity
8(amin) described in Sec. 2.1.2 are provided, where possible, for all computations entering
the final FLAG averages or ranges. For heavy-hadron semileptonic-decay form factors,
implementing this data-driven continuum-limit criterion was found to be not feasible.
The problem is that these quantities are functions of the momentum transfer in addition
to the other lattice parameters, and many calculations are based on global fits whose
reconstruction was not possible.

Following our review of B(,)-meson leptonic decay constants, the neutral B-meson mix-
ing parameters, and semileptonic form factors, we then interpret our results within the
context of the Standard Model. We combine our best-determined values of the hadronic
matrix elements with the most recent experimentally-measured branching fractions to ob-
tain |V| and |Ve|, and compare these results to those obtained from inclusive semilep-
tonic B decays.

8.1 Leptonic decay constants fp and fp,

The B- and Bs-meson decay constants are crucial inputs for extracting information from
leptonic B decays. Charged B mesons can decay to a lepton-neutrino final state through
the charged-current weak interaction. On the other hand, neutral B, mesons can decay
to a charged-lepton pair via a FCNC process.

In the Standard Model, the decay rate for B(J;) — {7y, is described by a formula
identical to Eq. (124), with D) replaced by By, Ip,., replaced by fp,,, and the relevant
CKM matrix element V., replaced by Vi,

2

mBS m2

[(Bs) — lvg) = 87;>G%f,%(s>|%q|2m§ (1 — m/ ) . (155)
Bs)

The only two-body charged-current B-meson decay that has been observed so far is
BT — 77y, which has been measured by the Belle and Babar collaborations [509, 510].
Both collaborations have reported results with errors around 20%. These measurements
can be used to extract |V,;| when combined with lattice-QCD predictions of the corre-
sponding decay constant, but the experimental uncertainties currently preclude a precise
determination.
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Neutral Bj(,)-meson decays to a charged-lepton pair Bg(s) — ¢+¢~ is a FCNC process,
and can only occur at 1-loop in the Standard Model. Hence these processes are expected
to be rare, and are sensitive to physics beyond the Standard Model. The corresponding
expression for the branching fraction has the form

" G2, o ? 2 2, 2 my
B(B, —»(7¢{7) = Ly (|—— ViV 1-4 156
(Bq ) = 7B, - (47rsin2 @W) mB, 5, |ViyVigl "mi mQBq , (156)

where the light quark ¢ = s or d, 7p, is the mean meson lifetime, and the function Y’
includes NLO QCD and electro-weak corrections that depend on the strong coupling ag
and the weak mixing angle Oy, [378, 511]. Evidence for the B, — ptpu~ decay was
first observed by the LHCDb [512] and CMS collaborations, and a combined analysis was
presented in 2014 in Ref. [513]. In 2020, the ATLAS [514], CMS [515] and LHCb [516]
collaborations reported their measurements from a preliminary combined analysis as [517]

B(B—putp™) < 1.9x 107! at 95% CL,
B(B, = ptp™) = (2.697937) x 1072, (157)

which are compatible with the Standard Model predictions within approximately 2 stan-
dard deviations [518]. More recently, updated observations have been reported by the
LHCD collaboration [519] and the CMS collaboration [520], but these results do not im-
prove on the precision of the combined analysis.*? We note that the errors of these results
are currently too large to enable a precise determination of |Vi4| and |Vig].

The related radiative leptonic decay, B, — uTu =7, is another FCNC process that is
sensitive to new physics and is expected to occur at a comparable rate to B, — ptpu~.
Recent searches for this decay by the LHCbD collaboration found an upper limit of [519, 522]

B(By — ptp™y) < 2.0 x 1079 at 95% CL, (158)

in the kinematic region m,, > 4.9 GeV. The dominant hadronic contributions are pa-
rameterized by local form factors and by nonlocal resonance contributions, which have
been estimated using light-cone sum rules [523], QCD-inspired models [524, 525], and from
models of the transition form factors based on lattice calculations of the Dy meson, assum-
ing vector-meson dominance [526]. The first lattice calculation of the local form factors
were reported in [527]. The form factors provide a reasonable estimate of the decay rate
for large di-muon invariant mass, ¢ > (4.15GeV)?, where long-distance contributions
are expected to be subdominant. Improved determinations of the branching fraction at
lower di-muon invariant masses requires a systematic and quantitative treatment of the
resonance region.

The rare leptonic BT — £+ 1,7y decay is proportional to |V,;|? and has been constrained
by the CLEO [528], BaBar [529], and Belle Collaborations [530, 531]. The most stringent
constraint, in the region E, > 1 GeV, is [531]

B(BY — (Tvpy) < 3.0 x 107 at 90% CL. (159)

This branching fraction can be expressed in terms of form factors that are yet to be
directly determined on the lattice but have been modelled using QCD sum rules and
dispersive approaches combined with an expansion in Aqcp/mp and Aqep/E, [532]. At
leading order in this expansion, the branching fraction depends only on the light-cone
distribution amplitude of the B meson. At present, this channel is primarily viewed
as providing experimental constraints on the light-cone distribution amplitude. Direct

“3The PDG quotes the branching fraction B(B° — uTp™) < 1.5x 107! at 90% CL [274]. Ref. [521] obtains
B(B® — ptp) = (0.56 & 70) x 107*° using a correlated global analysis.
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calculations of this distribution amplitude from lattice QCD are now feasible with recent
theoretical developments [533, 534] and, in combination with experimental data, would
provide a novel method for the determination of |V,;|?.

The decay constants fp, (With ¢ = u,d, s) parameterize the matrix elements of the
corresponding axial-vector currents Ag‘q = by*~5q analogously to the definition of fp, in
Sec. 7.1:

(01A"|By(p)) = vy, fB, - (160)
For heavy-light mesons, it is convenient to define and analyse the quantity
®p, = f,\/MB, (161)

which approaches a constant (up to logarithmic corrections) in the mp, — oo limit,
because of heavy-quark symmetry. In the following discussion, we denote lattice data
for @, and the corresponding decay constant f, obtained at a heavy-quark mass m; and
light valence-quark mass my as ®py and fy;, to differentiate them from the corresponding
quantities at the physical b and light-quark masses.

The SU(3)-breaking ratio fp,/fg is of phenomenological interest, because many sys-
tematic effects can be partially reduced in lattice-QCD calculations of this ratio. The
discretization errors, heavy-quark-mass tuning effects, and renormalization/matching er-
rors may all be partially reduced.

This SU(3)-breaking ratio is, however, still sensitive to the chiral extrapolation. Pro-
vided the chiral extrapolation is under control, one can then adopt fg,/fs as an input in
extracting phenomenologically-interesting quantities. In addition, it often happens to be
easier to obtain lattice results for fp, with smaller errors than direct calculations of fp.
Therefore, one can combine the Bs-meson decay constant with the SU(3)-breaking ratio
to calculate fg. Such a strategy can lead to better precision in the computation of the
B-meson decay constant, and has been adopted by the ETM [36, 73] and the HPQCD col-
laborations [70]. An alternative strategy to the direct calculation of fg., used in Ref. [75],
is to obtain the Bs-meson decay constant by combining the Ds-meson decay constant
with the ratio fp_/fp..

It is clear that the decay constants for charged and neutral B mesons play different
roles in flavour-physics phenomenology. Knowledge of the B*-meson decay constant fp+
is essential for extracting |V,;| from leptonic BT decays. The neutral B-meson decay
constants fpo and fp, are inputs to searches for new physics in rare leptonic B° decays.
In view of this, it is desirable to include isospin-breaking effects in lattice computations
for these quantities and to provide lattice results for both fg+ and fgo. With the high
precision of recent lattice calculations, isospin splittings for B-meson decay constants can
be significant, and will play an important role in the foreseeable future.

A few collaborations have reported fg+ and fgo separately by taking into account
strong isospin effects in the valence sector, and estimated the corrections from electromag-
netism [20, 60, 67, 72]. The Ny = 24141 strong isospin-breaking effect was computed in
HPQCD 13 [67] (see Tab. 33 in this subsection). However, since only unitary points (with
equal sea- and valence-quark masses) were considered in HPQCD 13 [67], this procedure
only correctly accounts for the effect from the valence-quark masses, while introducing a
spurious sea-quark contribution. The decay constants fg+ and fpo are also separately
reported in FNAL/MILC 17 [20] by taking into account the strong-isospin effect. The
FNAL/MILC results were obtained by keeping the averaged light sea-quark mass fixed
when varying the quark masses in their analysis procedure. Their finding indicates that
the strong isospin-breaking effects, fg+ — fp ~ 0.5 MeV, could be smaller than those
suggested by previous computations. One would have to take into account QED effects in
the B-meson leptonic decay rates to properly use these results for extracting phenomeno-
logically relevant information.** Currently, errors on the experimental measurements of

44Gee Ref. [283] for a strategy that has been proposed to account for QED effects.
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these decay rates are still very large. In this review, we will therefore concentrate on the
isospin-averaged result fp and the Bs-meson decay constant, as well as the SU(3)-breaking
ratio st /fB

The status of lattice-QCD computations for B-meson decay constants and the SU(3)-
breaking ratio, using gauge-field ensembles with light dynamical fermions, is summarized
in Tabs. 33 and 34. Figs. 21 and 22 contain the graphical presentation of the collected
results and our averages. Most results in these tables and plots have been reviewed in
detail in FLAG 19 [4] and in FLAG 21 [5]. Here, we describe the new results that have
appeared since January 2021.

We also review the continuum-limit quantity, é(amin ), described in Sec. 2. We estimate,
where possible, §(amin) for results entering the FLAG averages of fg, f5., and f5_/f5, but
we do not use §(amin) for averaging. We include estimates of §(apin) for those calculations
that explicitly provide the relevant data in the manuscript.

As lattice calculations of leptonic decays have become statistically more precise, re-
sults are often dominated by systematic uncertainties. The continuum extrapolation is
frequently the largest source of systematic uncertainty for lattice calculations of heavy
quarks, for which the heavy-quark discretization can introduce effects of the O(am)™,
and a more quantitative measure of discretization effects is a useful guide to the quality
of the continuum extrapolation. For the lattice calculations of leptonic decay constants
of bottom hadrons that appear in this review, the continuum-limit quantity should be
interpreted with caution, because many final results are quoted from combined chiral-
continuum extrapolations and, typically, more recent computations do not quote numer-
ical values for the leptonic decay constants at the finest lattice spacings. Moreover, the
finest ensembles may not be at, or close to, the physical pion mass. Thus, we generally
quote our estimations of §(amin) to one significant figure because the natural size of the
uncertainty on §(amin) is O(1).

FIAG2024 fg [MeV] FIAG2024 fg, [MeV]
: our average for Ne=24+1+1 our average for Ni=2+1+1
T FNAL/MILC 17 * Frezzotti 24
~ HPQCD 17A + FNAL/MILC 17
4 ETM 168 5 HPQCD 17A
ETM 13E = ETM 16B
HPQCD 13 ETM 13E
HPQCD 13
our average for Ny=2+1
RBC/UKQCD 14 1 our average for Ny=2+1
- — RBC/UKQCD 14 2 _ o RBC/UKQCD 14
& L RBC/UKQCD 14A + L RBC/UKQCD 14A
I — RBC/UKQCD 13A (stat. err. only) T RBC/UKQCD 13A (stat. err. only)
4 — HPQCD 12 = HPQCD 12
HPQCD 12/ 11A HPQCD 11A
FNAL/MILC 11 FNAL/MILC 11
HPQCD 09 HPQCD 09
—— our average for Ny=2 —— our average for Ny=2
—— ALPHA 14 —+—H— Balasubramamian 19
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il —— ETM 13B, 13C i —t{ ALPHA 13
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Figure 21: Decay constants of the B and Bs mesons. The values are taken from Tab. 33 (the
fB entry for FNAL/MILC 11 represents fp+). The significance of the colours is explained in
Sec. 2. The black squares and grey bands indicate our averages in Eqs. (162), (165), (168),
(163), (166) and (169).

There have been no new Ny = 2 calculations of fg, fg,, or fg,/fs. Therefore, our
averages for these quantities stay the same as those in FLAG 21 [5]. Our estimates for
the continuum-limit quantity §(amin) are d(amin) = 0.01 for fp, in Ref. [73]. Data do not
permit estimates of the continuum-limit quantity for fp and fp_/fp from Ref. [73], but
discretization effects are generally small. From Ref. [74] we obtain §(amin) = 0.6 for fg,
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Collaboration Ref. Ny QQCS) T &S IB+ fBo /B iz}
Frezzotti 24 [527] 2+141 P - - - 224.5(5.0)
FNAL/MILC 17 [20] 2+14+1 A 189.4(1.4) 190.5(1.3) 189.9(1.4) 230.7(1.2)
HPQCD 17A [68] 24141 A - - 196(6)  236(7)
ETM 16B [36] 2+1+1 A - - 193(6)  229(5)
ETM 13E [535] 2+1+1 C - - 196(9)  235(9)
HPQCD 13 [67) 2+14+1 A 184(4) 188(4) 186(4)  224(5)
RBC/UKQCD 14 [72] 2+1 A 195.6(14.9) 199.5(12.6) — 235.4(12.2)
RBC/UKQCD 14A [71]2+1 A - - 219(31)  264(37)
RBC/UKQCD 13A [536] 241  C - - 191(6)Zae 233(5)Sat
HPQCD 12 [70] 241 A - - 191(9)  228(10)
HPQCD 12 [70] 2+1 A - - 189(4)>  —
HPQCD 11A [69] 2+1 A - - - 225(4)Y
FNAL/MILC 11 [60] 2+1 A 197(9) - - 242(10)
HPQCD 09 (78] 2+1 A - - 190(13)*  231(15)*
Balasubramamian 19° [75] 2 A - - - 215(10)(2)(%3)
ALPHA 14 [74] 2 A - - 186(13)  224(14)
ALPHA 13 [537] 2 C - - 187(12)(2) 224(13)
ETM 13B, 13C! [73, 538] 2 A - - 189(8)  228(8)
ALPHA 12A [539] 2 C - - 193(9)(4) 219(12)
ETM 12B [540] 2 C - - 197(10)  234(6)
ALPHA 11 [541] 2 C - - 174(11)(2) —
ETM 11A [272] 2 A - - 195(12)  232(10)
ETM 09D [542] 2 A - - 194(16)  235(12)

°Statistical errors only.

20btained by combining fz, from HPQCD 11A with fp,/fs calculated in this work.

VThis result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio me/ms ~ 0.2.
*This result uses an old determination of r1 = 0.321(5) fm from Ref. [120] that has since been superseded.
1Obtained by combining fp,, updated in this work, with fg./fp,, calculated in this work.

tUpdate of ETM 11A and 12B.

Table 33: Decay constants of the B, BT, BY and Bs; mesons (in MeV). Here fp stands
for the mean value of fp+ and fpo, extrapolated (or interpolated) in the mass of the light
valence-quark to the physical value of m,q.

d(amin) = 0.3 for fp., and §(amin) = 0.3 for fp./fp. Finally, d(amin) = 2.6 for fp, in

[75).
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Collaboration Ref. Ny FETE &~ fe./fe+ fB./fso [B./fB
FNAL/MILC 17 [20] 24141 A 1.2180(49) 1.2109(41) —
HPQCD 17A [68] 24141 A - - 1.207(7)
ETM 16B [36] 24141 A - - 1.184(25)
ETM 13E [535] 24+1+1 C - - 1.201(25)
HPQCD 13 [67] 24141 A 1.217(8)  1.194(7)  1.205(7)
QCDSF/UKQCD/CSSM 22 [543] 241 C - — 1.159(15)(T79)
RBC/UKQCD 18A [76] 2+1 P - - 1.1949(60) (-1%5)
RBC/UKQCD 14 [72] 241 A 1.223(71) 1.197(50) —
RBC/UKQCD 14A [71] 241 A - — 1.193(48)
RBC/UKQCD 13A [536] 2+1 C - - 1.20(2)8at
HPQCD 12 [70] 2+1 A - - 1.188(18)
FNAL/MILC 11 [60] 241 A 1.229(26) — -
RBC/UKQCD 10C [544] 241 A E ®H H - - 1.15(12)
HPQCD 09 [78] 241 A - - 1.226(26)
ALPHA 14 [74] 2 A - - 1.203(65)
ALPHA 13 [537] 2 C - - 1.195(61)(20)
ETM 13B, 13C' [73, 538] 2 A - - 1.206(24)
ALPHA 12A [539] 2 C - - 1.13(6)
ETM 12B [540] 2 C - — 1.19(5)
ETM 11A [272] 2 A - - 1.19(5)

®Statistical errors only.
tUpdate of ETM 11A and 12B.

Table 34: Ratios of decay constants of the B and Bs mesons (for details see Tab. 33).

Our averages of the Ny = 2 results are:

Nf=21

fB =188(7) MeV Refs. [73, 74],
fB. = 225.3(6.6) MeV Refs. [73-75],
];BS = 1.206(0.023) Refs. [73, 74)].
B

(162)
(163)

(164)

Two new Ny = 2+ 1 calculations of fp,/fp were presented in conference proceedings
after the publication of FLAG 21 [5]. Only one of these calculations, Ref. [543], provides a
preliminary quantitative result. In Tab. 34, this result is labelled QCDSF/UKQCD/CSSM
22 [543]. The second work, Ref. [545], is described in the text below, but not listed in
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Figure 22: Ratio of the decay constants of the B and By mesons. The values are taken from
Tab. 34. Results labelled as FNAL/MILC 17 1 and FNAL/MILC 17 2 correspond to those
for fp,/fpo and fp,/fp+ reported in FNAL/MILC 17. The significance of the colours is
explained in Sec. 2. The black squares and grey bands indicate our averages in Eqs. (164),
(167), and (170).

Tab. 34.

In QCDSF/UKQCD/CSSM 22 [543] the QCDSF/UKQCD/CSSM collaboration pre-
sented the ratio of decay constants, fp,/fp, using Ny = 2 4+ 1 dynamical ensembles
generated using nonperturbatively O(a)-improved clover-Wilson fermions. Four lattice
spacings, of a = 0.082, 0.074, 0.068, and 0.059 fm, were used, with pion masses ranging
from 155 to 468 MeV, and lattice sizes between 2.37 and 4.35 fm. The light-quark masses
were tuned using the QCDSF procedure [546], for fixing the light- and strange-quark
masses. Quark masses were chosen to keep the value of the SU(3) flavour-singlet mass,
m = (2my + ms)/3, constant. Heavy quarks were simulated with a relativistic heavy-
quark (RHQ) action, with bare-quark masses chosen to keep the SU(3) flavour-singlet
mass, X3 = (2Mp, + Mp,)/3, constant. The bare parameters of the RHQ action were
chosen to ensure that the masses and hyperfine splitting of the Xp and Xp« mesons
reproduce the properties of the physical, spin-averaged Xp and Xp- [547].

The chiral extrapolation was performed using both linear and quadratic terms in
(M2/M% — 1) and assuming that the SU(3) flavour breaking does not depend on the lat-
tice spacing. The reported value for the ratio of decay constants assumes that the renor-
malization parameters for light- and strange-quark currents are approximately equal, but
this is only true near the SU(3)-symmetric point. Effects of the order of 1-2% are expected
near the physical point and calculations of the relevant parameters on near-physical en-
sembles are underway. Tests of O(a?) discretization effects indicate little dependence and
the final results are quoted from the subset of ensembles with m,L > 4 and assuming no
dependence on a?. Tests of heavy-quark mistuning effects indicate that the ratio of decay
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constants are minimally affected.

The RBC/UKQCD collaboration described ongoing efforts to calculate pseudoscalar
and vector heavy-meson decay constants in Ref. [545], using Ny = 2+1 dynamical ensem-
bles generated using Domain Wall Fermions (DWF). Four lattice spacings, of a = 0.11,
0.083, 0.071, and 0.063 fm were used, with pion masses ranging from 267 to 433 MeV,
and lattice sizes between 2.0 and 3.4 fm. Light and strange quarks were simulated with
the Shamir DWF discretization and charm quarks were simulated with Moébius DWF ac-
tion. These discretizations correspond to two different choices for the DWF kernel. The
Mdbius DWF are loosely equivalent to Shamir DWF at twice the extension in the fifth
dimensions [12]. Ref. [545] presents a preliminary analysis with a two-step procedure. The
first step corrects for strange-quark-mass mistunings and the second applies NLO SU(2)
heavy-meson chiral perturbation theory to carry out a chiral-continuum extrapolation us-
ing various fit Ansétze to enable a full systematic error analysis. This analysis is ongoing
at time of publication.

The results of Refs. [543] and [545] have not been published and therefore neither cal-
culation is included in our average. Thus, our averages remain the same as in FLAG 21 [5],

Ny=2+1: f5 = 192.0(4.3) MeV Refs. [60, 69-72], (165)

Ny=2+41: fB. = 228.4(3.7) MeV Refs. [60, 69-72], (166)

Ny=2+1: J;i =1.201(0.016) Refs. [60, 70-72, 76]. (167)
B

Our estimates for the continuum-limit quantity §(amin) for the results entering the
FLAG averages for the Ny = 2 + 1 bottom-hadron leptonic decay constants, and their
ratio, are: 6(amin) = 5.6 and 0(amin) = 7.4 for fp, and fp, respectively, in Ref. [60];
d(amin) = 1.5 for fp in Ref. [69]; 0(amin) = 0.01 and §(amin) = 0.6 for fp, and fg,
respectively, in Ref. [70]; §(amin) = 1.9 and §(amin) = 2.3 for fp, and fp, respectively,
in Ref. [71]; and 0(amin) = 1.7 for fp_ in Ref. [72]. For fp_/fp we obtain approximately
d(amin) = 0.4 for [60], approximately 2 for [70] and [71], 3 for [72], and around 0.5 for [76].

No new Ny =2+ 1+ 1 calculations of fg and fp,/fp have appeared since FLAG 21.
There has been one new calculation of fp ,, in Ref. [527], labelled Frezzotti 24 in Tab. 33.

As part of the determination of the form factors for the radiative leptonic decay
Bs — putu~, the decay constant fp, was determined in Ref. [527]. This work used
ensembles with Ny = 2 + 1 + 1 clover-Wilson twisted-mass fermions at maximal twist.
Four lattice spacings, ranging from 0.057 to 0.091 fm, were included and pion masses
spanned a range from 137 to 175 MeV. The heavy-strange meson was simulated using
clover-Wilson twisted-mass fermions at a range of heavy-strange masses, extrapolated up
to the physical B; mass. Ref. [527] determined fr, from both two-point functions and the
spatial part of the axial hadronic tensor to better constrain the continuum limit because
these determinations differ only by discretization effects. The results from both methods
were simultaneously extrapolated to the continuum limit at fixed values of the heavy-
strange meson mass My, , with six different fit variations for each of the five values of
My, . The results of each fit were combined using the Akaike Information Criterion [548]
and the corresponding continuum decay constants were then extrapolated to the physical
B, mass. The extrapolation in the heavy-strange mass was carried out using a fit form
guided by HQET, with modifications to account for the anomalous dimension of the axial
current in HQET and and the matching between QCD and HQET.

Ref. [527] has not been published at the time of publication of this review. Therefore,
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our averages for fg, fp,, and fp,/fp remain the same as in FLAG 21 [5],

Ny=2+1+1: f5 = 190.0(1.3) MeV Refs. [20, 36, 67, 68], (168)

Ny=241+1: fp. = 230.3(1.3) MeV Refs. [20, 36, 67, 68], (169)

Ny=2+1+1: B, _ 1.209(0.005) Refs. [20, 36, 67, 68). (170)
B

The data reported in the calculations that appear in these averages do not permit
estimates of 6(amin)-

The PDG presented averages for the Ny = 241 and Ny = 241 + 1 lattice-QCD
determinations of the isospin-averaged fg, fg, and fp,/fp in 2024 [274]. The Ny =2+1
and Ny = 2 + 1+ 1 lattice-computation results used in Ref. [274] are identical to those
included in our current work, and the averages quoted in Ref. [274] are those determined
in [4] and [5].

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model through 1-loop box diagrams
to lowest order in the electroweak theory, similar to those for short-distance effects in
neutral kaon mixing. The effective Hamiltonian is given by

2AB=2SM _ G2 M, Fol 4 FIgs . -
eff - 1672 ( d 1+ s 1) + C., ( )
with ) )

Qf = [0y (1 = 75)a] [byu(1 = 5)d] , (172)

where g = d or s. The short-distance function ]-'g in Eq. (171) is much simpler compared
to the kaon mixing case due to the hierarchy in the CKM matrix elements. Here, only
one term is relevant,

FJ =], So(x) (173)
where

Ag = VigVivs (174)
and where Sp(z¢) is an Inami-Lim function with z; = m?/M3,, which describes the basic
electroweak loop contributions without QCD [378].
The transition amplitude for Bg with ¢ = d or s can be written as

G2 M2
= 1FG7T2W [/\quQ(l‘t)ngB]

) (giuﬂ)z> %/(Mo)exp{/og(u) N (;EZ; N &2)}

X (BYIQK(mIBY) + he. (175)

(BOIHAP=2|B)

where Q% () is the renormalized four-fermion operator (usually in the NDR scheme of
MS). The running coupling g, the 3-function 3(g), and the anomalous dimension of the
four-quark operator (g) are defined in Egs. (95) and (96). The product of p-dependent
terms on the second line of Eq. (175) is, of course, p-independent (up to truncation errors
arising from the use of perturbation theory). The explicit expression for the short-distance
QCD correction factor 725 (calculated to NLO) can be found in Ref. [371].

For historical reasons the B-meson-mixing matrix elements are often parameterized in
terms of bag parameters defined as

(BY Q4| B9)

Bp, (1) =
= g,

(176)
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The renormalization-group-independent (RGI) B parameter B is defined as in the case of
the kaon, and expressed to 2-loop order as

with Bo, 51, 70, and 1 defined in Eq. (97). Note, as Eq. (175) is evaluated above the
bottom threshold (m;, < p < my), the active number of flavours here is Ny = 5.

Nonzero transition amplitudes result in a mass difference between the CP eigenstates
of the neutral B-meson system. Writing the mass difference for a B) meson as Amy, its
Standard Model prediction is

GZm?2,mp R
o Mgl So (@) 13, B, (178)

where A, is defined in Eq. (174). Experimentally, the mass difference is determined from
the oscillation frequency of the CP eigenstates. The frequencies are measured precisely
with an error of less than a percent. Many different experiments have measured Amyg,
but the current average [225] is dominated by the LHCbH experiment. For Amg the exper-
imental average is again dominated by results from LHCb [225] and the precision reached
is about one per mille. With these experimental results and lattice-QCD calculations of
f%q EBq, Atg can be determined. In lattice-QCD calculations the flavour SU(3)-breaking

ratio

f&.Bs,
f3,Bs,
can be obtained more precisely than the individual B,-mixing matrix elements because
statistical and systematic errors cancel in part. From ¢2, the ratio |V;4/Vis| can be deter-
mined and used to constrain the apex of the CKM triangle.

Neutral B-meson mixing, being loop-induced in the Standard Model, is also a sensitive
probe of new physics. The most general AB = 2 effective Hamiltonian that describes
contributions to B-meson mixing in the Standard Model and beyond is given in terms of
five local four-fermion operators:

Amg =

&= (179)

Hamom = ZC o7, (180)

q=d,s i=1

where Q5 is defined in Eq. (172) and where

QF = [b(1 —5)q) [b(1 —7s)q],  QF = [6*(1 —5)d”] [B°(1 —5)q"]
Qf = [b(1 = 75)q] [b(1 + 5)q] » Qf = [b*(1 - 75)(1B] [56(1 +75)¢%] , (181)

with the superscripts «, 8 denoting colour indices, which are shown only when they are
contracted across the two bilinears. There are three other basis operators in the AB = 2
effective Hamiltonian. When evaluated in QCD, however, they give identical matrix el-
ements to the ones already listed due to parity invariance in QCD. The short-distance
Wilson coefficients C; depend on the underlying theory and can be calculated perturba-
tively. In the Standard Model only matrix elements of Qf contribute to Am,, while all
operators do, for example, for general SUSY extensions of the Standard Model [444]. The
matrix elements or bag parameters for the non-SM operators are also useful to estimate
the width difference AI'y between the CP eigenstates of the neutral B meson in the Stan-
dard Model, where comblnatlons of matrix elements of Q , and Qq contribute to AT,
at O(1/my) [549, 550].

In this section, we report on results from lattice-QCD calculations for the neutral B-

meson mixing parameters Bp,, Bg_, f5,1\/Bs,, [8.\/Bp, and the SU(3)-breaking ratios
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Bp./Bp, and ¢ defined in Egs. (176), (177), and (179). The results are summarized in
Tabs. 35 and 36 and in Figs. 23 and 24. Additional details about the underlying simu-
lations and systematic error estimates are given in Appendix C.5.2. Some collaborations
do not provide the RGI quantities B B, but quote instead Bg ()5 NPR. In such cases,
we convert the results using Eq. (177) to the RGI quantities quoted in Tab. 35 with a
brief description for each case. More detailed descriptions for these cases are provided
in FLAG13 [2]. We do not provide the B-meson-matrix elements of the other operators
Qy_5 in this report. They have been calculated in Ref. [73] for the Ny = 2 case and in
Refs. [79, 551] for Ny =2+ 1.

%
S
,\:y Q)
oF &8
SRR N
TS $&
Y QO OGS
TR §¥%
S
ST & LTS
STy oL
S8 385
Collaboration Ref. Ny Y FEF fBa\/ BBy fB.\/ BB, Bs, Bg,
HPQCD 19A [T7)2+1+1A 210.6(5.5) 256.1(5.7) 1.222(61)  1.232(53)
FNAL/MILC 16 [79] 2+1 A 227.7(9.5) 274.6(8.4) 1.38(12)(6)°1.443(88)(48)°
RBC/UKQCD 14A [71] 241 A 240(15)(33)290(09)(40)1.17(11)(24) 1.22(06)(19)
FNAL/MILC 11A [551] 2+1 C 250(23)7  2091(18)1  — -
HPQCD 09 [78] 241 Ao oV 216(15)*  266(18)*  1.27(10)*  1.33(6)*
HPQCD 06A [552] 2+1 AMM - 281(21) - 1.17(17)
ETM 13B 73] 2 A 216(6)(8) 262(6)(8) 1.30(5)(3) 1.32(5)(2)
ETM 12A, 12B  [540,553] 2 C - - 1.32(8)°  1.36(8)°
©

PDG averages of decay constant fgo and fp, [204] are used to obtain these values.

T Reported f3B at u = my, is converted to RGI by multiplying the 2-loop factor 1.517.

While wrong-spin contributions are not included in the HMrSyPT fits, the effect is expected to be
small for these quantities (see description in FLAG 13 [2]).

This result uses an old determination of 71 = 0.321(5) fm from Ref. [120] that has since been superseded,
which however has only a small effect in the total error budget (see description in FLAG 13 [2]) .

¢ Reported B at u = m;, = 4.35 GeV is converted to RGI by multiplying the 2-loop factor 1.521.

Table 35: Neutral B- and Bg-meson mixing matrix elements (in MeV) and bag parameters.

Let us mention that our averages here have no updates from the previous review
[5]. The new addition to this subsection is that we review a measure of continuum-limit
quality (amin) for each result that is included in the average. We used this quantity for
the continuum-limit criterion for heavy-quark related quantities in FLAG 13 [2]. This time
we only quote the value for information and we do not use it when calculating averages.

There are no new results for Ny = 2 reported after FLAG 16 [3]. In this category, one
work (ETM 13B) [73] passes the quality criteria. A description of this work can be found
in FLAG 13 [2] where it did not enter the average as it had not appeared in a journal.
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Figure 23: Neutral B- and Bg-meson-mixing matrix elements and bag parameters [values in

Tab. 35 and Eqs. (182), (185), (188), (183), (186), (189)].
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Collaboration Ref. Ny { ¢ 9 ¥4 I3 Bg, /Bg,
HPQCD 19A [77] 24141 A 1.216(16) 1.008(25)
RBC/UKQCD 18A [76]  2+1 P 1.1939(67)(F95,)  0.9984(45)(189)
FNAL/MILC 16 [79] 241 A 1.206(18) 1.033(31)(26)°
RBC/UKQCD 14A [71] 241 A 1.208(41)(52) 1.028(60)(49)
FNAL/MILC 12 [554] 241 A 1.268(63) 1.06(11)
RBC/UKQCD 10C [544]  2+1 A EE = 1.13(12) -
HPQCD 09 (78]  2+1 A v 1.258(33) 1.05(7)
ETM 13B (73] 2 A 1.225(16)(14)(22)  1.007(15)(14)
ETM 12A, 12B  [540, 553] 2 C 1.21(6) 1.03(2)

© PDG average of the ratio of decay constants fp, /fgo [204] is used to obtain the value.
V' Wrong-spin contributions are not included in the HMrSyPT fits. As the effect may not be negligible,
these results are excluded from the average (see description in FLAG 13 [2]).

Table 36: Results for SU(3)-breaking ratios of neutral By- and Bs-meson-mixing matrix
elements and bag parameters.
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Figure 24: The SU(3)-breaking quantities { and Bp,/Bp, [values in Tab. 36 and Egs. (184),
(187), (190)].

This is the only result available for Ny = 2, so we quote their values as our estimates

fB,\/ By, = 216(10) MeV  fp.\/Bp, = 262(10) MeV  Ref. [73], (182)

Ny=2: Bp, = 1.30(6) Bp, =1.32(5) Ref. [73], (183)
€ =1.225(31) Bg./Bg, = 1.007(21) Ref. [73].  (184)

The continuum-limit measure, §(amin), cannot be estimated for the ETM 13B results
for Bp, because the relevant continuum-limit information is not provided. For the other
quantities of ETM 13B, §(amin) ~ 0.1 (Bg,), 2 (¢£) and 0.7 (Bp, /Bg,).

For Ny = 241 the results that enter our averages for Ny = 2+1 are FNAL/MILC 16 [79],
which had been included in the averages at FLAG 19 [4], RBC/UKQCD 14A [71], included
in the averages at FLAG 16 [3], and HPQCD 09 [78] for which a description is available
in FLAG 13 [2]. The work in RBC/UKQCD 18A [76] on the flavour SU(3)-breaking
ratios, whose description can be found in FLAG 21 [5], has not been published yet and
therefore do not enter into the averages. Thus, the averages for Ny = 24-1 are unchanged:

Ny =2+1:
de\/Bin = 225(9) MeV st\/BTgS =274(8)MeV  Refs. [71, 78, 79], (185)
Bg, = 1.30(10) Bp, =1.35(6) Refs. [71, 78, 79],  (186)
€ =1.206(17) Bg./Bp, = 1.032(38) Refs. [71, 79].  (187)

Here all the above equations have not been changed from FLAG 19. The averages were
obtained using the nested averaging scheme described in Sec. 2.3.2, due to a nested cor-
relation structure among the results. Details are discussed in the FLAG 19 report [4].
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We estimate §(amin) ~ 2 for both Bp, and Bp, of FNAL/MILC 16. Data are not
available in FNAL/MILC 16 to estimate 0(amiy) for the ratio of the bag parameters. Since

the fg, 1/ BBS, de\/EBd and & are quantities derived using PDG estimates of the decay
constants and their ratio, we do not provide an estimate of d(amin) of these quantities.

For RBC/UKQCD 14A, §(amim) ~ 0.7 (f,\/Bs,), 1.3 (f5.1/Bg.), 0.3 (€), 0.3 (Bg,),

0.4 (Bp,) and 0 (Bg,/Bg,). For HPQCD 09, §(amin) =~ 0.8 (fz, @), 3 (f, \/BTgS),
0.3 (€), at most 1 (Bg,), 0.8 (Bp,) and 1 (Bp,/Bg,).

We note that, for Ny = 2 + 1, there is an on-going study involving the JLQCD and
RBC/UKQCD collaborations, with initial results reported in the Lattice 2021 proceed-
ings [555]. These results utilize coarse lattices at the physical point from RBC/UKQCD
along with very fine lattices from JLQCD (up to a~! = 4.5 GeV) with unphysical pion
masses, both using domain-wall fermions.

The only result available for Ny = 2+ 1+ 1 is HPQCD 19A [77], which uses MILC
collaboration’s HISQ ensembles and NRQCD for the b quark. A detailed description can
be found in the previous review [5]. We quote their values as the FLAG estimates

Ny =2+1+1:

fB.\/ By, = 210.6(5.5) MeV  fp \/Bp, = 256.1(5.7) MeV  Ref. [77],  (188)

Bp, = 1.222(61) Bp, =1.232(53) Ref. [77],  (189)
€ =1.216(16) Bg./Bp, = 1.008(25) Ref. [77].  (190)

We estimate §(amin) ~ 0.1 for Bp_, 1 for Bp,/Bp, and at most 1 for Bp,. The other
quantities are derived ones using the estimates of decay constants in FNAL/MILC 17.

We note that the above results with the same Ny (e.g., those in Eqgs. (188-190)) are all
correlated with each other, due to the use of the same gauge-field ensembles for different
quantities. The results are also correlated with the averages obtained in Sec. 8.1 and
shown in Egs. (162)—(164) for Ny = 2, Egs. (165)—(167) for Ny = 2+ 1 and Eqgs. (168)-
(170) for Ny = 2+4141. This is because the calculations of B-meson decay constants and
mixing quantities are performed on the same (or on similar) sets of ensembles, and results
obtained by a given collaboration use the same actions and setups. These correlations
must be considered when using our averages as inputs to unitarity triangle (UT) fits. For

this reason, if one were for example to estimate st\/Es from the separate averages of
f5. (Eq. (166)) and B, (Eq. (186)) for Ny = 2 4 1, one would obtain a value about one
standard deviation below the one quoted above in Eq. (185). While these two estimates
lead to compatible results, giving us confidence that all uncertainties have been properly
addressed, we do not recommend combining averages this way, as many correlations would
have to be taken into account to properly assess the errors. We recommend instead
using the numbers quoted above. In the future, as more independent calculations enter
the averages, correlations between the lattice-QCD inputs to UT fits will become less
significant.

8.3 Semileptonic form factors for B decays to light flavours

The Standard Model differential rate for the decay B(y) — P{v involving a quark-level
b — u transition is given, at leading order in the weak interaction, by a formula analogous
to the one for D decays in Eq. (133), but with D — B(,) and the relevant CKM matrix
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Again, for ¢ = e, i the contribution from the scalar form factor f; can be neglected, and
one has a similar expression to Eq. (135), which, in principle, allows for a direct extraction
of |Vip| by matching theoretical predictions to experimental data. However, while for D
(or K) decays the entire physical range 0 < ¢ < ¢2,, can be covered with moderate
momenta accessible to lattice simulations, in B — mfv decays one has ¢, ~ 26 GeV?
and only part of the full kinematic range is reachable. As a consequence, obtaining |Vy|
from B — wlv is more complicated than obtaining |V,q(,)| from semileptonic D-meson
decays.

In practice, lattice computations are restricted to large values of the momentum trans-
fer ¢> (see Sec. 7.2) where statistical and momentum-dependent discretization errors can
be controlled, which in existing calculations roughly cover the upper third of the kinemat-
ically allowed ¢? range.*> Since, on the other hand, the decay rate is suppressed by phase
space at large g2, most of the semileptonic B — 7 events are observed in experiment at
lower values of ¢2, leading to more accurate experimental results for the binned differential
rate in that region.?® It is, therefore, a challenge to find a window of intermediate values
of ¢ at which both the experimental and lattice results can be reliably evaluated.

State-of-the-art determinations of CKM matrix elements, say, |V,s|, are obtained from
joint fits to lattice and experimental results, keeping the relative normalization |V,|? as
a free parameter. This requires, in particular, that both experimental and lattice data for
the ¢?>-dependence be parameterized by fitting data to specific ansétze, with the ultimate
aim of minimizing the systematic uncertainties involved. This plays a key role in assessing
the systematic uncertainties of CKM determinations, and will be discussed extensively in
this section. A detailed discussion of the parameterization of form factors as a function
of ¢ can be found in Appendix B.2.

8.3.1 Form factors for B — wlv

The semileptonic decay process B — wlv enables the determination of the CKM matrix
element |V,,;| within the Standard Model via Eq. (191). Early results for B — wfv form
factors came from the HPQCD [557] and FNAL/MILC [558] collaborations (HPQCD 06
and FNAL/MILC 08A).

Our 2016 review featured a significantly extended calculation of B — wfr from
FNAL/MILC [124] (FNAL/MILC 15) and a new computation from RBC/UKQCD [125]
(RBC/UKQCD 15). In 2022, the JLQCD collaboration published another new calculation
using Mobius Domain Wall fermions — JLQCD 22 [126]. FNAL/MILC and RBC/UKQCD
continue working on further new calculations of the B — 7 form factors and have reported
on their progress at the annual Lattice conferences and the 2020 Asia-Pacific Symposium

45The variance of hadron correlation functions at nonzero three-momentum is dominated at large Euclidean
times by zero-momentum multiparticle states [556]; therefore the noise-to-signal grows more rapidly than for
the vanishing three-momentum case.

46Upcoming data from Belle II are expected to significantly improve the precision of experimental results,
in particular, for larger values of ¢2.
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for Lattice Field Theory. The results are preliminary or blinded, so not yet ready for in-
clusion in this review. FNAL/MILC is using Ny = 241+1 HISQ ensembles with a ~ 0.15,
0.12, 0.088 fm, 0.057 fm, with Goldstone-pion mass down to its physical value [559, 560].
The RBC/UKQCD Collaborations have added a new Mobius-domain-wall-fermion en-
semble with a & 0.07 fm and m, ~ 230 MeV to their analysis [561]. In addition, HPQCD
using MILC ensembles had published the first Ny = 2 + 1 + 1 results for the B — wfv
scalar form factor, working at zero recoil (¢? = ¢2,,) and pion masses down to the phys-
ical value [562]; this adds to previous reports on ongoing work to upgrade their 2006
computation [563, 564]. Since this latter result has no immediate impact on current |Vys|
determinations, which come from the vector-form-factor-dominated decay channels into
light leptons, we will from now on concentrate on the Ny = 2 + 1 determinations of the
¢*>-dependence of B — 7 form factors.

Both the HPQCD 06 and the FNAL/MILC 15 computations of B — 7fv ampli-
tudes use ensembles of gauge configurations with Ny = 2 + 1 flavours of rooted stag-
gered quarks produced by the MILC collaboration; however, FNAL/MILC 15 makes
a much more extensive use of the currently available ensembles, both in terms of lat-
tice spacings and light-quark masses. HPQCD 06 has results at two values of the lat-
tice spacing (a ~ 0.12, 0.09 fm), while FNAL/MILC 15 employs four values (a =
0.12, 0.09, 0.06, 0.045 fm). Lattice-discretization effects are estimated within heavy-
meson rooted staggered chiral perturbation theory (HMrSxPT) in the FNAL/MILC 15
computation, while HPQCD 06 quotes the results at a ~ 0.12 fm as central values and
uses the a ~ 0.09 fm results to quote an uncertainty. The relative scale is fixed in both
cases through the quark-antiquark potential-derived ratio r1/a. HPQCD 06 set the ab-
solute scale through the T 25-15 splitting, while FNAL/MILC 15 uses a combination of
fr and the same T splitting, as described in Ref. [60]. The spatial extent of the lattices
employed by HPQCD 06 is L ~ 2.4 fm, save for the lightest-mass point (at a ~ 0.09 fm)
for which L ~ 2.9 fm. FNAL/MILC 15, on the other hand, uses extents up to L ~ 5.8 fm,
in order to allow for light-pion masses while keeping finite-volume effects under control.

Indeed, while in the HPQCD 06 work the lightest RMS pion mass is 400 MeV, the
FNAL/MILC 15 work includes pions as light as 165 MeV—in both cases the bound
myL 2 3.8 is kept. Other than the qualitatively different range of MILC ensembles used
in the two computations, the main difference between HPQCD 06 and FNAL/MILC 15 lies
in the treatment of heavy quarks. HPQCD 06 uses the NRQCD formalism, with a 1-loop
matching of the relevant currents to the ones in the relativistic theory. FNAL/MILC 15
employs the clover action with the Fermilab interpretation, with a mostly-nonperturbative
renormalization of the relevant currents, within which the overall renormalization factor
of the heavy-light current is written as a product of the square roots of the renormal-
ization factors of the light-light and heavy-heavy temporal vector currents (which are
determined nonperturbatively) and a residual factor that is computed using 1-loop per-
turbation theory. (See Tab. 37; full details about the computations are provided in tables
in Appendix C.5.3.)

The RBC/UKQCD 15 computation is based on Ny = 2+ 1 DWF ensembles at two
values of the lattice spacing (a &~ 0.12, 0.09 fm), and pion masses in a narrow interval
ranging from slightly above 400 MeV to slightly below 300 MeV, keeping m,.L 2 4.
The scale is set using the 2~ baryon mass. Discretization effects coming from the light
sector are estimated in the 1% ballpark using HMxPT supplemented with effective higher-
order interactions to describe cutoff effects. The b quark is treated using the Columbia
RHQ action, with a mostly nonperturbative renormalization of the relevant currents.
Discretization effects coming from the heavy sector are estimated with power-counting
arguments to be below 2%. The collaboration has also reported on progress toward an
improved calculation that adds a third, finer lattice spacing [565].

The JLQCD 22 calculation is using Mébius Domain Wall fermions, including for the
heavy quark, with a ~ 0.08, 0.055, and 0.044 fm and pion masses down to 230 MeV.
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The relative scales are set using the gradient-flow time t(l)/ 2 /a, with the absolute scale
té/ ? taken from Ref. [115]. All ensembles have m,L 2 4.0. The bare heavy-quark masses
satisfy amg < 0.7 and reach from the charm mass up to 2.44 times the charm mass.
The form factors are extrapolated linearly in 1/mg to the bottom mass. For the lower
range of the quark masses, the vector current is renormalized using a factor Zy, obtained
from position-space current-current correlators. For heavier quark masses, \/Zv,, Zv,, is
used, where Zy,,, is the renormalization factor of the flavour-conserving temporal vector
current, determined using charge conservation. This corresponds to mostly nonperturba-
tive renormalization with tree-level residual matching factors, but the residual matching
factors are expected to be close to 1 and approach this value exactly in the continuum
limit. We therefore assign a o rating for renormalization.

Given the large kinematical range available in the B — 7 transition, chiral extrapola-
tions are an important source of systematic uncertainty: apart from the eventual need to
reach physical pion masses in the extrapolation, the applicability of yPT is not guaran-
teed for large values of the pion energy E,. Indeed, in all computations E, reaches values
in the 1 GeV ballpark, and chiral-extrapolation systematics is the dominant source of
errors. FNAL/MILC uses SU(2) NLO HMrSxPT for the continuum-chiral extrapolation,
supplemented by NNLO analytic terms and hard-pion xPT terms [486];*" systematic un-
certainties are estimated through an extensive study of the effects of varying the specific
fit ansatz and/or data range. RBC/UKQCD and JLQCD use SU(2) hard-pion HMyPT
to perform their combined continuum-chiral extrapolations, and obtain estimates for sys-
tematic uncertainties by varying the ansatze and ranges used in fits. HPQCD performs
chiral extrapolations using HMrSxPT formulae, and estimates systematic uncertainties
by comparing the result with the ones from fits to a linear behaviour in the light-quark
mass, continuum HMyPT, and partially quenched HMrSyPT formulae (including also
data with different sea and valence light-quark masses).

FNAL/MILC 15, RBC/UKQCD 15, and JLQCD 22 describe the g?-dependence of f
and fy by applying a BCL parameterization to the form factors extrapolated to the con-
tinuum limit, within the range of values of ¢ covered by data. (A discussion of the various
parameterizations can be found in Appendix B.2.) RBC/UKQCD 15 and JLQCD 22 gen-
erate synthetic data for the form factors at some values of ¢? (evenly spaced in z) from
the continuous function of ¢? obtained from the joint chiral-continuum extrapolation,
which are then used as input for the fits. After having checked that the kinematical
constraint f, (0) = fo(0) is satisfied within errors by the extrapolation to ¢*> = 0 of the
results of separate fits, this constraint is imposed to improve fit quality. In the case of
FNAL/MILC 15, rather than producing synthetic data a functional method is used to
extract the z-parameterization directly from the fit functions employed in the continuum-
chiral extrapolation. In the case of HPQCD 06, the parameterization of the ¢>-dependence
of form factors is somewhat intertwined with chiral extrapolations: a set of fiducial values
{Ef(rn)} is fixed for each value of the light-quark mass, and fy ¢ are interpolated to each

of the E7(r"); chiral extrapolations are then performed at fixed E, (i.e., m, and ¢* are var-
ied subject to E;=constant). The interpolation is performed using a Ball-Zwicky (BZ)
ansatz [566]. The g*>-dependence of the resulting form factors in the chiral limit is then de-
scribed by means of a BZ ansatz, which is cross-checked against Becirevic-Kaidalov (BK)
[567], Richard Hill (RH) [568], and Boyd-Grinstein-Lebed (BGL) [569] parameterizations
(see Appendix B.2), finding agreement within the quoted uncertainties. Unfortunately,
the correlation matrix for the values of the form factors at different ¢? is not provided,
which severely limits the possibilities of combining them with other computations into a
global z-parameterization.

4TIt is important to stress the finding in Ref. [484] that the factorization of chiral logs in hard-pion yPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use
to model the mass dependence of form factors can thus be questioned.

139



T 3
% Q& -NO/Q & &
< & s £ X
Y Y '& e & (\‘;(7
) é" ) o X & >
§ &S5 L F g
s £FF S s
F &I SsEs
¥ I oS e & &8 0§
F &g & s F
Collaboration Ref. Ny Q O RS L~ o
JLQCD 22 [126] 2+1 A BCL
FNAL/MILC 15 [124] 241 A BCL
RBC/UKQCD 15[125] 2+1 A BCL
HPQCD 06 [657] 241 A n/a

Table 37: Results for the B — mfr semileptonic form factor.

The different ways in which the current results are presented do not allow a straight-
forward averaging procedure. RBC/UKQCD 15 only provides synthetic values of f, and
fo at a few values of ¢ as an illustration of their results, and FNAL/MILC 15 does not
quote synthetic values at all. In both cases, full results for BCL z-parameterizations de-
fined by Eq. (527) are quoted. In the case of HPQCD 06, unfortunately, a fit to a BCL
z-parameterization is not possible, as discussed above.

In order to combine these form factor calculations, we start from sets of synthetic
data for several ¢* values. HPQCD 06, RBC/UKQCD 15, and JLQCD 22 directly pro-
vide this information; FNAL/MILC 15 present only fits to a BCL z-parameterization
from which we can easily generate an equivalent set of form factor values. It is impor-
tant to note that in both the RBC/UKQCD 15 and JLQCD 22 synthetic data and the
FNAL/MILC z-parameterization fits the kinematic constraint at ¢> = 0 is automatically
included (in the FNAL/MILC 15 case the constraint is manifest in an exact degeneracy
of the (a;7,a%) covariance matrix). Due to these considerations, in our opinion, the most
accurate procedure is to perform a simultaneous fit to all synthetic data for the vector
and scalar form factors. Unfortunately, the absence of information on the correlation in
the HPQCD 06 result between the vector and scalar form factors even at a single ¢ point
makes it impossible to include consistently this calculation in the overall fit. In fact, the
HPQCD 06 and FNAL/MILC 15 statistical uncertainties are highly correlated (because
they are based on overlapping subsets of MILC Ny = 2+1 ensembles) and, without knowl-
edge of the f1 — fo correlation we are unable to construct the HPQCD 06-FNAL/MILC 15
off-diagonal entries of the overall covariance matrix.

In conclusion, we will present as our best result a combined vector and scalar form
factor fit to the FNAL/MILC 15, RBC/UKQCD 15, and JLQCD 22 results that we treat
as completely uncorrelated.

The resulting data set is then fitted to the BCL parameterization in Eqgs. (527) and
(528). We assess the systematic uncertainty due to truncating the series expansion by
considering fits to different orders in z. In Fig. 25 (left), we show (1 — ¢%/m%.)f+(¢%)
and fy(q?) versus z; Fig. 25 (right) shows the full form factors versus ¢?. The fit has
x?%/dof = 43.6/12 with N* = N° = 3. The poor quality of the fit is caused by tensions
between the results from the different collaborations; in particular in the slopes of fy,
which are very constrained due to strong correlations between data points. We have
therefore rescaled the uncertainties of the z parameters by 1/x2/dof = 1.9. We point out
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B—)?T(NfZQ—I-l)

Central Values Correlation Matrix
ag 0.423 (21) 1 —0.00466 —0.0749  0.402 0.0920
al —0.507 (93) —0.00466 1 0.498  —0.0556  0.659
ag —0.75 (34) —0.0749 0.498 1 —0.152  0.677
ad 0.561 (24) 0.402 —0.0556  —0.152 1 —0.548
a) —1.42 (11) 0.0920 0.659 0.677 —0.548 1

Table 38: Coefficients and correlation matrix for the N* = N? = 3 z-expansion fit of the
B — 7 form factors f, and fy. The coefficient af is fixed by the fi(¢> = 0) = fo(¢®> = 0)
constraint. The chi-square per degree of freedom is x2/dof = 43.6/12 and the errors on the
z-parameters have been rescaled by \/x2/dof = 1.9. The lattice calculations that enter this
fit are taken from FNAL/MILC 15 [124], RBC/UKQCD 15 [125] and JLQCD 22 [126]. The
parameterizations are defined in Egs. (527) and (528). The form factors can be reconstructed

using parameterization and inputs given in Appendix B.3.2.

that tensions in the form factors, especially in fj, might be an artifact associated with the
basis of form factors employed to take the continuum limit, as explained in Appendix B.2.
The outcome of the five-parameter N* = N° = 3 BCL fit to the FNAL/MILC 15,
RBC/UKQCD 15, and JLQCD 22 calculations is shown in Tab. 38.

The fit shown in Tab. 38 can therefore be used as the averaged FLAG result for the
lattice-computed form factor f(¢%). The coefficient a3 can be obtained from the values
for af—aj using Eq. (526). The coefficient a3 can be obtained from all other coefficients
imposing the f,(¢?> = 0) = fo(¢q®> = 0) constraint. We emphasize that future lattice-
QCD calculations of semileptonic form factors should publish their full statistical and
systematic correlation matrices to enable others to use the data. It is also preferable to
present a set of synthetic form-factor data equivalent to the z-fit results, since this allows
for an independent analysis that avoids further assumptions about the compatibility of
the procedures to arrive at a given z-parameterization.*® It is also preferable to present
covariance/correlation matrices with enough significant digits to calculate correctly all
their eigenvalues.

8.3.2 Form factors for B — plv

Another process sensitive to |V,p| is B — pfv, with experimental data available from
Babar, Belle, and Belle II [138, 141, 570]. Early lattice calculations of the B — pfv form
factors were done in the quenched approximation and assumed the p resonance to be stable
under the strong interaction [571, 572]. A proper treatment of the p final state requires
a lattice calculation of the B — wnfv (P wave) form factors as a function of both ¢ and
7w invariant mass using the Lellouch-Liischer finite-volume method [573-583], followed
by analytic continuation to the p resonance pole. Early lattice results for the B — nwwlv
P-wave vector form factor at m, =~ 320 MeV were reported in Refs. [584, 585].

“®Note that generating synthetic data is a trivial task, but less so is choosing the number of required points

and the ¢? values that lead to an optimal description of the form factors.
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Figure 25: The form factors f (¢?) and fo(q?) for B — 7fv plotted versus z (left panel) and
q? (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N* = N? = 3 BCL fit (five
parameters).

8.3.3 Form factors for B, — K/v

Similar to B — wflr, measurements of B, — K/{v decay rates enable determinations of
the CKM matrix element |V,;| within the Standard Model via Eq. (191). From the lattice
point of view, the two channels are very similar. As a matter of fact, By — K/{v is actually
somewhat simpler, in that the kaon mass region is easily accessed by all simulations making
the systematic uncertainties related to chiral extrapolation smaller. Lattice calculations
of the B, — K form factors are available from HPQCD 14 [127], RBC/UKQCD [125, 128]
(RBC/UKQCD 15 and RBC/UKQCD 23), and FNAL/MILC 19 [586].

The HPQCD 14 computation uses ensembles of gauge configurations with Ny =2 +1
flavours of asqtad rooted staggered quarks produced by the MILC collaboration at two
values of the lattice spacing (a¢ & 0.12, 0.09 fm), for three and two different sea-pion
masses, respectively, down to a value of 260 MeV. The b quark is treated within the
NRQCD formalism, with a 1-loop matching of the relevant currents to the ones in the
relativistic theory, omitting terms of O(asAqcp/ms). The HISQ action is used for the
valence s quark. The continuum-chiral extrapolation is combined with the description of
the g*-dependence of the form factors into a modified z-expansion (cf. Appendix B.2) that
formally coincides in the continuum with the BCL ansatz. The dependence of form factors
on the pion energy and quark masses is fitted to a 1-loop ansatz inspired by hard-pion
xPT [486], that factorizes out the chiral logarithms describing soft physics.

The FNAL/MILC computation (FNAL/MILC 19) coincides with HPQCD 14 in using
ensembles of gauge configurations with Ny = 2 4 1 flavours of asqtad rooted staggered
quarks produced by the MILC collaboration, but only one ensemble is shared, and a
different valence regularization is employed; we will thus treat the two results as fully
independent from the statistics point of view. FNAL/MILC 19 uses three values of the
lattice spacing (a ~ 0.12, 0.09, 0.06 fm); only one value of the sea pion mass and the
volume is available at the extreme values of the lattice spacing, while four different masses
and volumes are considered at a = 0.09 fm. Heavy quarks are treated within the Fermi-
lab approach. HMrSxPT expansion is used at next-to-leading order in SU(2) and leading
order in 1/Mp, including next-to-next-to-leading-order (NNLO) analytic and generic dis-
cretization terms, to perform continuum-chiral extrapolations. Hard kaons are assumed
to decouple, i.e., their effect is reabsorbed in the SU(2) LECs. Continuum- and chiral-
extrapolated values of the form factors are fitted to a z-parametrization imposing the
kinematical constraint fi(0) = fp(0). See Tab. 39 and the tables in Appendix C.5.3 for
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RBC/UKQCD 23* [128] 2+1 A BGLS
FNAL/MILC 19 [586] 2+1 A BCL
RBC/UKQCD 15  [125] 241 A BCL
HPQCD 14 [127] 2+1 A BCL'

* Supersedes RBC/UKQCD 15.
§ generalized as discussed in Ref. [587].
t Results from modified z-expansion.

Table 39: Summary of lattice calculations of the By — K /v semileptonic form factors.

full details.

The RBC/UKQCD 15 computation [125] had been published together with the B —
mlv computation discussed in Sec. 8.3.1, all technical details being practically identical.
The RBC/UKQCD 23 computation [128] (which considers B; — K/{v only) differs from
RBC/UKQCD 15 by the addition of one new ensemble with a third, finer lattice spacing
that also has a lower pion mass than the other ensembles, updated scale setting and
updated tuning of mg and of the RHQ parameters, and a change of the form-factor basis
in which the chiral-continuum extrapolation is performed (previously: f; and fi, now: fy
and fp). RBC/UKQCD 23 [128] furthermore uses a new method to perform extrapolations
of the form factors to the full ¢? range with unitarity bounds, taking into account that
the dispersive integral ranges only of an arc of the unit circle instead of the full circle
[587, 588]. However, we do not use these extrapolations in performing our average and
instead use the synthetic data points provided in RBC/UKQCD 23 [128]. This allows users
of our average to impose their own dispersive bounds in phenomenological applications if
desired, since such bounds should be imposed only once.

In order to combine the results for the g>-dependence of the form factors from the three
collaborations, we will follow a similar approach to the one adopted above for B — 7/,
and produce synthetic data from the preferred fits quoted in the papers (or use the
synthetic data provided in the paper), to obtain a dataset to which a joint fit can be
performed. Note that the kinematic constraint at ¢> = 0 is included in all three cases;
we will impose it in our fit as well, since the synthetic data will implicitly depend on
that fitting choice. However, it is worth mentioning that the systematic uncertainty of
the resulting extrapolated value f1(0) = fo(0) can be fairly large, the main reason being
the required long extrapolation from the high-¢? region covered by lattice data. While
we stress that the average far away from the high-¢? region has to be used carefully, it
is possible that increasing the number of z coefficients beyond what is sufficient for a
good description of the lattice data and using unitarity constraints to control the size of
additional terms, might yield fits with a more stable extrapolation at very low ¢>. We
plan to include said unitarity analysis into the next edition of the FLAG review. It is,
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B, — K (Ny =2+1)

Central Values Correlation Matrix

ag 0.370(21) 1. 0.2781 —0.3169 —0.3576 0.6130 0.3421 0.2826
af —0.68(10) 0.2781 1. 0.3672 0.1117 0.4733 0.8487 0.8141
ag 0.55(48) —0.3169 0.3672 1. 0.8195 0.3323 0.6614 0.6838
as 2.11(83) —0.3576 0.1117 0.8195 1. 0.2350 0.4482 0.4877
ad 0.234(10) 0.6130 0.4733  0.3323 0.2350 1. 0.6544 0.5189
a? 0.135(86) 0.3421  0.8487 0.6614 0.4482  0.6544 1. 0.9440
a9 0.20(35) 0.2826  0.8141  0.6838 0.4877 0.5189 0.9440 1.

Table 40: Coefficients and correlation matrix for the N* = N = 4 z-expansion of the
Bs — K form factors fy and fy. The coefficient aj is fixed by the f1(¢*> = 0) = fo(¢® = 0)
constraint. The chi-square per degree of freedom is x?/dof = 3.82 and the errors on the
z-parameters have been rescaled by \/x?/dof = 1.95. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.3.

however, important to emphasize that joint fits with experimental data, where the latter
accurately map the ¢2 region, are expected to be safe.

Our fits employ a BCL ansatz with t, = (Mp + M,)? and to = t; — \/t. (ty —t_),
with t_ = (Mp, — Mk)?. Our pole factors will contain a single pole in both the vec-
tor and scalar channels, for which we take the mass values Mp« = 5.32465 GeV and
Mp-+) =5.68 GeV.* The constraint f, (0) = fo(0) is imposed by expressing the coef-
ficient b%,o,l in terms of all others. The outcome of the seven-parameter N* = N° =4
BCL fit, which we quote as our preferred result, is shown in Tab. 40. The fit has a
chi-square per degree of freedom x?/dof = 3.82. Following the PDG recommendation,
we rescale the whole covariance matrix by x?/dof: the errors on the z-parameters are
increased by 1/x?/dof = 1.95 and the correlation matrix is unaffected. The parameters
shown in Tab. 40 provide the averaged FLAG results for the lattice-computed form factors
f+(q?) and fy(q?). The coefficient af can be obtained from the values for af—a3 using
Eq. (526). The fit is illustrated in Fig. 26.°° As can be seen in Fig. 26, the large value
of x?/dof is caused by a significant tension between the lattice results from the differ-
ent collaborations for fp. Compared to the FLAG 21 fit that used RBC/UKQCD 15,
the tension has increased as the RBC/UKQCD results for fy have shifted upward. The
tension indicates that the uncertainties have been underestimated in at least some of the
calculations. One possible, at least partial, explanation was offered by the authors of
RBC/UKQCD 23 [128], who found that the results for fy shift upward when performing
the chiral/continuum extrapolation directly for fo and f, rather than fj and f, as was
done in RBC/UKQCD 15 and FNAL/MILC 19. Using fy and f4 is argued to be the bet-
ter choice because these form factors have definite J* quantum numbers for the bound
states producing poles in ¢2, and the chiral-continuum extrapolation fit functions include
these poles. More details on the problems associated with taking the chiral/continuum

““These are the values used in the FNAL /MILC 19 determination, while HPQCD 14 and
RBC/UKQCD 15 use Mg« (o4+) = 5.6794(10) GeV and Mp«o4) = 5.63 GeV, respectively. They also em-
ploy different values of ¢4 and to than employed here, which again coincide with FNAL/MILC 19’s choice.

"Note that in FLAG 19 [4] we had adopted the threshold ¢4 = (Mp, +Mx)? rather than t = (Mp+ My)>.
This change impacted the z-range which the physical ¢ interval maps onto. We also point out that, in the
FLAG 19 version of Fig. 26, the three synthetic fo data points from HPQCD were plotted incorrectly, but this
did not affect the fit.

144




06 [AG2024 S 35 [LAG2024
[ fo average ] £ fo average ii
L i average ] [ i average
ii f+ HPQCD 14 +=— ] 30 f+ HPQCD 14 +m— -
05 1 f+ RBC/UKQCD 23 +—4— | [ f+ RBC/UKQCD 23 +a—i +1
t f+ FNAL/MILC 19 —o— - [ f+ FNAL/MILC 19 +e— b
. F E ) fo HPQCD 14 +—0— - 25 F fo HPQCD 14 +—0— e
a r fo RBC/UKQCD 23 54— [ fo RBC/UKQCD 23 F-a— ]
= 04 [ gi fo FNAL/MILC 19 +o0—f ] El: fo FNAL/MILC 19 —o0— ]
T r ] = 20 ]
) > £ [ ]
ST ¢ 1 L osE 4 E
L 03 R T ]
S 55 % ] 10 - =
02 [oF o o 3 ] i x 25
[ 1 05 - s % © .
01 Dbt b 1] 0_0:““\”"\HH\HH\H‘:
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0 5 10 15 20
Z(qzatom) ' [GCVZ]

Figure 26: The form factors f (¢%) and fo(q?) for By — K/{v plotted versus z (left panel) and
q? (right panel). In the left plot, we remove the Blaschke factors. See text for a discussion
of the data sets. The grey and salmon bands display our preferred NT = N9 = 4 BCL fit
(seven parameters).

extrapolation in the f| and f, basis can be found in Appendix B.2.

A number of new calculations of the B, — K form factors are underway. The JLQCD
collaboration is using a fully-relativistic approach with Mébius domain-wall fermions [589)].
FNAL/MILC is pursuing two new calculations with HISQ light quarks, one of which uses
Fermilab b quarks [590] and the other uses HISQ b quarks [591].

We will conclude by pointing out progress in the application of the npHQET method to
the extraction of semileptonic form factors, reported for B, — K transitions in Ref. [592],
which extends the work of Ref. [593]. This is a methodological study based on CLS Ny = 2
ensembles at two different values of the lattice spacing and pion masses, and full 1/m,
corrections are incorporated within the npHQET framework. Emphasis is on the role
of excited states in the extraction of the bare form factors, which are shown to pose an
impediment to reaching precisions better than a few percent.

8.3.4 Form factors for rare and radiative B-semileptonic decays to
light flavours

Lattice-QCD input is also available for some exclusive semileptonic decay channels involv-
ing neutral-current b — ¢ transitions at the quark level, where ¢ = d, s. Being forbidden
at tree level in the SM, these processes allow for stringent tests of potential new physics;
simple examples are B — K*v, B — K")/{*t{~ or B — n/*{~ where the B meson (and
therefore the light meson in the final state) can be either neutral or charged.

The corresponding SM effective weak Hamiltonian is considerably more complicated
than the one for the tree-level processes discussed above: after integrating out the top
quark and the W boson, as many as ten dimension-six operators formed by the product
of two hadronic currents or one hadronic and one leptonic current appear.®’ Three of
the latter, coming from penguin and box diagrams, dominate at short distances and
have matrix elements that, up to small QED corrections, are given entirely in terms of
B — (7, K, K*) form factors. The matrix elements of the remaining seven operators can
be expressed, up to power corrections whose size is still unclear, in terms of form factors,
decay constants and light-cone distribution amplitudes (for the 7, K, K* and B mesons)
by employing OPE arguments (at large di-lepton invariant mass) [595, 596] and results
from QCD factorization (at small di-lepton invariant mass) [597]. In conclusion, the most

®1See, e.g., Ref. [594] and references therein.
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FNAL/MILC 15D [131] 241 A BCL
HPQCD 13E [130] 241 A BCL

Table 41: Summary of lattice calculations of the B — K semileptonic form factors.

important contributions to all of these decays are expected to come from matrix elements
of current operators (vector, tensor, and axial-vector) between one-hadron states, which
in turn can be parameterized in terms of a number of form factors (see Ref. [598] for a
complete description).

In channels with pseudoscalar mesons in the final state, the level of sophistication of
lattice calculations is similar to the B — 7 case. Early calculations of the vector, scalar,
and tensor form factors for B — K¢*¢~ by HPQCD 13E [130] and FNAL/MILC 15D
[131] were performed with Ny = 2 + 1 flavours and EFT-based heavy-quark actions.
FNAL/MILC 15E also determined the form factors for B — w¢T¢~ [129]. Recently,
HPQCD completed a new calculation of the B — K form factors with Ny =2 +1+1
flavours and HISQ b quarks (HPQCD 22) [487]. In the following, we present an average
of the two Ny = 2 + 1 calculations and a comparison with HPQCD’s new Ny =2+4+1+1
results. Details of the calculations are provided in Tab. 41 and in Appendix C.5.4.

The Ny = 2 + 1 calculations both employ MILC asqtad ensembles. HPQCD 13E
[599] and FNAL/MILC 15D [600] have also companion papers in which they calculate the
Standard Model predictions for the differential branching fractions and other observables
and compare to experiment. The HPQCD computation employs NRQCD b quarks and
HISQ valence light quarks, and parameterizes the form factors over the full kinematic
range using a model-independent z-expansion as in Appendix B.2, including the covariance
matrix of the fit coefficients. In the case of the (separate) FNAL/MILC computations,
both of them use Fermilab b quarks and asqtad light quarks, and a BCL z-parameterization
of the form factors.

FNAL/MILC 15E [129] includes results for the tensor form factor for B — 7¢*¢~ not
included in previous publications on the vector and scalar form factors (FNAL/MILC 15)
[124]. Nineteen ensembles from four lattice spacings are used to control continuum and
chiral extrapolations. The results for N, = 4 z-expansion of the tensor form factor and
its correlations with the expansions for the vector and scalar form factors presented in
Table IT of Ref. [129], which we consider the FLAG estimate, are shown in Tab. 42. Partial
decay widths for decay into light leptons or 7+ 7~ are presented as a function of ¢2. The
former is compared with results from LHCb [601], while the latter is a prediction.

The averaging of the HPQCD 13E and FNAL/MILC 15D Ny = 2 + 1 results for the
B — K form factors is similar to our treatment of the B — 7 and By, — K form factors.
In this case, even though the statistical uncertainties are partially correlated because of
some overlap between the adopted sets of MILC ensembles, we choose to treat the two
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B—)?T(Nf:2—{—l)

Central Values Correlation Matrix
al 0.393(17) 1.000 0.400 0.204 0.166
al —0.65(23) 0.400 1.000 0.862 0.806
al —0.6(1.5) 0.204 0.862 1.000 0.989
al 0.1(2.8) 0.166 0.806 0.989 1.000

Table 42: Coefficients and correlation matrix for the N7 = 4 z-expansion of the B — 7 form
factor fr. Results taken from Table II of Ref. [129].

calculations as independent. The reason is that, in B — K, statistical uncertainties are
subdominant and cannot be easily extracted from the results presented by HPQCD 13E
and FNAL/MILC 15D. Both collaborations provide only the outcome of a simultaneous
z-fit to the vector, scalar and tensor form factors, that we use to generate appropriate
synthetic data. We then impose the kinematic constraint f, (¢> = 0) = fo(¢®> = 0) and
fit to a (Nt = N° = N7 = 3) BCL parameterization. The functional forms of the
form factors that we use are identical to those adopted in Ref. [600].>> The results of
the fit are presented in Tab. 43. The fit is illustrated in Fig. 27. Note that the average
for the fr form factor appears to prefer the FNAL/MILC 15D synthetic data. This
happens because we perform a correlated fit of the three form factors simultaneously (both
FNAL/MILC 15D and HPQCD 13E present covariance matrices that include correlations
between all form factors). We checked that the average for the fr form factor, obtained
neglecting correlations with fy and f,, is a little lower and lies in between the two data
sets. There is still a noticeable tension between the FNAL/MILC 15D and HPQCD 13E
data for the tensor form factor; indeed, a standalone fit to these data results in x2, =

red

7.2/3 = 2.4, while a similar standalone joint fit to fi and fo has x2, = 9.2/7 = 1.3.

red

Finally, the global fit that is shown in the figure has x2, = 18.6/10 = 1.86.

The new Ny =2+1+1 HPQCD 22 calculation of the B — K form factors [487] uses
the HISQ action for all quarks including the b quark, which allows the determination of
the vector- and axial-vector-current renormalization factors using Ward identities. The
tensor current is renormalized using RI-SMOM. The calculation is performed for multiple
lighter-than-physical values of the heavy-quark mass and six different lattice spacings
down to 0.044 fm; at the finest lattice spacing, the heavy-light pseudoscalar mass reaches
approximately 0.94Mp pnys. Three of the eight ensembles used have an approximately
physical pion mass. The form factors in the physical limit are extracted from a modified
BCL z-expansion fit with terms incorporating dependence on the heavy-quark mass, light
and strange-quark masses, lattice spacing, and cover the entire ¢* range. The paper [487]
includes supplemental files with the form-factor parameters and a Python code that can
be used to reconstruct the form factors. The form factors are shown in Fig. 27 with the
dark-shaded bands and are seen to be consistent with our average of the older Ny =2 +1
results. The Ny = 2+ 1 + 1 form factors are substantially more precise at low ¢® and
somewhat less precise at high ¢?. Standard-Model predictions B — K¢*¢~ and B — Kvv
using these form factors are presented in a separate paper [603].

Lattice computations of form factors in channels with a vector meson in the final
state face extra challenges with respect to the case of a pseudoscalar meson: the state is
unstable, and the extraction of the relevant matrix element from correlation functions is

52Note in particular that not much is known about the sub-threshold poles for the scalar form factor.
FNAL/MILC 15D includes one pole at the B3, mass as taken from the calculation in Ref. [602].
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B— K (Nf=2+1)

Central Values Correlation Matrix
aa“ 0.471 (14) 1 0.513 0.128 0.773 0.594 0.613 0.267 0.118
af —0.74 (16) 0.513 1 0.668 0.795 0.966 0.212 0.396 0.263

ad 0.32 (71 0.128 0.668 1 0.632 0.768 —0.104 0.0440 0.187
2

ad 0.301 (10 0.773 0.795  0.632 1 0.864 0.393  0.244 0.200
0

a? 0.40 (15) 0.594 0.966 0.768  0.864 1 0.235 0.333 0.253

al 0.455 (21) 0.613 0.212 —-0.104 0.393 0.235 1 0.711  0.608

al —1.00 (31) 0.267 0.396 0.0440 0.244 0.333 0.711 1 0.903

al —0.9 (1.3) 0.118 0.263 0.187 0.200 0.253 0.608  0.903 1

Table 43: Coefficients and correlation matrix for the N* = NY = N7 = 3 z-expansion of
the B — K form factors fi, fo and fr for Ny = 2 + 1. The coefficient a3 is fixed by the
f+(q? = 0) = fo(¢* = 0) constraint. The chi-square per degree of freedom is x?/dof = 1.86
and the errors on the z-parameters have been rescaled by +/x?/dof = 1.36. The form factors
can be reconstructed using parameterization and inputs given in Appendix B.3.4.

significantly more complicated; xyPT cannot be used as a guide to extrapolate results at
unphysically-heavy pion masses to the chiral limit. While field-theory procedures to take
resonance effects into account are available [573-583], they have not yet been implemented
in the available computations of B — K™ and similar form factors, which therefore suffer
from uncontrolled systematic errors (however, new calculations using these procedures are
underway [585]).%

As a consequence of the complexity of the problem, the level of maturity of these
computations is significantly below the one present for pseudoscalar form factors. There-
fore, we only provide a short guide to the existing results. Horgan et al. have obtained
the seven form factors governing B — K*¢T¢~ (as well as those for By — ¢¢*¢~ and
for the charged-current decay B, — K*fv) in Ref. [604] using NRQCD b quarks and
asqtad staggered light quarks. In this work, they use a modified z-expansion to simul-
taneously extrapolate to the physical light-quark masses and fit the ¢>-dependence. As
discussed above, the unstable nature of the vector mesons was not taken into account.
Horgan et al. use their form-factor results to calculate the differential branching fractions
and angular distributions and discuss the implications for phenomenology in a compan-
ion paper [605]. An update of the form factor fits that enforces endpoint relations and
also provides the full correlation matrices can be found in Ref. [606]. Finally, prelimi-
nary results on B — K*/*¢~ and Bs — ¢¢T¢~ by RBC/UKQCD have been reported in
Refs. [607-609).

8.4 Semileptonic form factors for B — D) (v and B — DE*S)EV

The semileptonic processes B,y — D(4)fv and B,y — DE‘S fv have been studied exten-
sively by experimentalists and theorists over the years. They allow for the determination
of the CKM matrix element |Vg|, an extremely important parameter of the Standard
Model. The matrix element V., appears in many quantities that serve as inputs to CKM
unitarity-triangle analyses and reducing its uncertainties is of paramount importance. For

53In cases such as B — D* transitions, that will be discussed below, this is much less of a practical problem
due to the very narrow nature of the resonance.

149



example, when eg, the measure of indirect CP violation in the neutral kaon system, is
written in terms of the parameters p and 7 that specify the apex of the unitarity triangle,
a factor of |V|* multiplies the dominant term. As a result, the errors coming from |Ve|
(and not those from B ) are now the dominant uncertainty in the Standard Model (SM)
prediction for this quantity.

8.4.1 B — D, decays

The decay rate for B — D{v can be parameterized in terms of vector and scalar form
factors in the same way as, e.g., B — wlv (see Sec. 8.3). The quantities directly studied
are the form factors h4 defined by

(D(pp)licy,b| B(pr))
mpmp

= hy(w)(vs +vp)y + ho(w)(vp —vp),,  (192)

which are related to the standard vector and scalar form factors by

1+

Fuld?) = 5ot |hew) = 1) = 516 (199)
o) = V| T )+ T )] (194

where 7 = mp/mp, ¢* = (pp — pp)?, vy = p'y/ma (A = D, B) are the four-velocities of
the heavy mesons and w = vp -vp = (m% +m2% — ¢%)/(2mpmp).
The differential decay rate can then be written as

dFBfﬁDoz—;, _G%m?]p
dw T 4873

(mp +mp)*(w® = 1)*2lnew [* Ve |*IG(w) P, (195)

where ngw = 1.0066 is the 1-loop electroweak correction [466]. This formula does not
include terms that are proportional to the lepton mass squared, which can be neglected
for £ = e, p.

Until recently, most unquenched lattice calculations for B — D/{v decays focused
on the form factor at zero recoil GZ?P (1), which can then be combined with exper-
imental input to extract |Vg|. The main reasons for concentrating on the zero-recoil
point are that (i) the decay rate then depends on a single form factor, and (ii) there
are no O(Agep/mq) contributions due to Luke’s theorem [610]. Since HQET sets
limy,, 00 GF7P(1) = 1 [611-613], high precision calculations of GB7P(1) are possi-
ble [614-616]. The application of these HQET developments to lattice calculations leads
to a better control of the systematic errors, especially at zero recoil [617, 618]. In partic-
ular, the zero-recoil form factor can be computed via a double ratio in which most of the
current renormalization cancels and heavy-quark discretization errors are suppressed by
an additional power of Aqcp/mg [619].

Early computations of the form factors for B — D{fv decays include Ny = 241 results
by FNAL/MILC 04A and FNAL/MILC 13B [622, 623] for G~ (1) and the Ny = 2 study
by Atoui et al. [624], that in addition to providing GB7P (1) explored the w > 1 region.
This latter work also provided the first results for By, — D¢ ¢r amplitudes, again including
information about the momentum-transfer dependence. In 2014 and 2015, full results for
B — D{v at w > 1 were published by FNAL/MILC 15C [132] and HPQCD 15 [133].
These works also provided full results for the scalar form factor, allowing analysis of the
decay with a final-state 7. In FLAG 19 [4], we included new results for Bs — D¢fv form
factors over the full kinematic range for Ny = 2+ 1 from HPQCD (HPQCD 17 [620] and
Ref. [625]). Recently, HPQCD published new calculations of the By — D, form factors
in the full kinematic range [134] (HPQCD 19), now using MILC’s HISQ Ny =2+ 1+1
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Collaboration Ref. Ny § & T ¢ & < w = 1 form factor / ratio
HPQCD 15, HPQCD 17[133, 620]  2+1 A GB7P(1)  1.035(40)
FNAL/MILC 15C [132] 2+1 A GB7P(1)  1.054(4)(8)
HPQCD 19 [134] 2+141 A GB==Ps(1)  1.071(37)
HPQCD 15, HPQCD 17[133, 620] 2+1 A GB:=Ps(1)  1.068(40)
FNAL/MILC 21 [136] 2+1 A FE=DT (1) 0.909(17)
JLQCD 23 [137]  2+1 A FE=ZPT(1)  0.887 (14)
HPQCD 23 [135] 2+14+1 A FE=PY(1)  0.903(14)
HPQCD 23 [135] 2+1+1 A FB=Di(1) 0.8970(92)
HPQCD 15, HPQCD 17[133, 620]  2+1 A GB==Ps(1)  1.068(40)
HPQCD 20B [621] 24141 A n/a n/a
HPQCD 15, HPQCD 17[133, 620]  2+1 A R(D) 0.300(8)
FNAL/MILC 15C [132] 2+1 A R(D) 0.299(11)
FNAL/MILC 21 [136] 2+1 A R(D*) 0.265(13)
JLQCD 23 [137]  2+1 A R(D*) 0.252(22)
HPQCD 23 [135] 24141 A R(D*) 0.273(15)
HPQCD 23 [135] 2+14+1 A R(D2) 0.266(9)

* The rationale for assigning a Orating is discussed in the text.

Table 44: Lattice results for mesonic processes involving b — ¢ transitions. The form factor
G is defined in Eqgs. (192, 193), the form factor F is defined in Egs. (202, 212), and the ratios
R are defined in Eq. (222). Note that the results for FB=P"(1), FP=D:(1), R(D*) and
R(D?) have been obtained using the results of the BGL fits described in the text and do not
necessarily coincide with the results presented by the individual collaborations.
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ensembles and using the HISQ action also for the b quark, reaching up to my, = 4m,
(unrenormalized mass) in their finest ensemble.?® This calculation has recently been used
by LHCb to determine |V | [626, 627], as discussed further in Sec. 8.9.

In the discussion below, we mainly concentrate on the latest generation of results,
which allows for an extraction of |V,| that incorporates information about the ¢>-dependence
of the decay rate (cf. Sec. 8.9).

We will first discuss the Ny = 2+1 computations of B — D{v by FNAL/MILC 15C and
HPQCD 15, both based on MILC asqtad ensembles. Full details about all the computa-
tions are provided in Tab. 44 and in the tables in Appendix C.5.5.

The FNAL/MILC 15C study [132] employs ensembles at four values of the lattice
spacing ranging between approximately 0.045 fm and 0.12 fm, and several values of the
light-quark mass corresponding to pions with RMS masses ranging between 260 MeV and
670 MeV (with just one ensemble with MEMS ~ 330 MeV at the finest lattice spacing).
The b and ¢ quarks are treated using the Fermilab approach.

The hadronic form factor relevant for experiment, G(w), is then obtained from the
relation G(w) = v4rf,(¢?)/(1 +r). The form factors are obtained from double ratios
of three-point functions in which the flavour-conserving current renormalization factors
cancel. The remaining matching factor to the flavour-changing normalized current is
estimated with 1-loop lattice perturbation theory. In order to obtain hi(w), a joint
continuum-chiral fit is performed to an ansatz that contains the light-quark mass and
lattice-spacing dependence predicted by next-to-leading order HMrSyPT, and the leading
dependence on m, predicted by the heavy-quark expansion (1/m? for hy and 1/m, for
h_). The w-dependence, which allows for an interpolation in w, is given by analytic
terms up to (1 —w)?, as well as a contribution from the logarithm proportional to g%. ..
The total resulting systematic error, determined as a function of w and quoted at the
representative point w = 1.16 as 1.2% for fy and 1.1% for fo, dominates the final error
budget for the form factors. After f, and fy have been determined as functions of w
within the interval of values of ¢? covered by the computation, synthetic data points are
generated to be subsequently fitted to a z-expansion of the BGL form, cf. Sec. 8.3, with
pole factors set to unity. This in turn enables one to determine |V;| from a joint fit of
this z-expansion and experimental data. The value of the zero-recoil form factor resulting
from the z-expansion is

GB7P(1) = 1.054(4) stat (8)sys - (196)

The HPQCD computations HPQCD 15 and HPQCD 17 [133, 620] use ensembles at
two values of the lattice spacing, a = 0.09, 0.12 fm, and two and three values of light-
quark masses, respectively. The b quark is treated using NRQCD, while for the ¢ quark
the HISQ action is used. The form factors studied, extracted from suitable three-point
functions, are

<D( )(pD(s) |V |B(S H2MB(9) f”S s <D(s)(pD(S))|Vk|B(s)> = \/QMB( )pD( ) (S) )
(197)
where V), is the relevant vector current and the By, rest frame is chosen. The standard

54The ratio showed here is the ratio between the bare masses, which are inputs of the lattice action. The
ratio between the renormalized masses of the quarks is usually very different from the ratio of bare masses. In
order to tune the bare heavy-quark masses so they result in physical values of the renormalized quark masses,
one normally tries to find out the value of the bare mass that results in a heavy meson with the right physical
mass.
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vector and scalar form factors are retrieved as

S 1 S S
fJ(r) :\/WiB(s) [fl\ )+ (Mg, — ED(S>)f(L)] . (198)
S V 2MB s S S
£ ZW {(MBM —Ep,))f 4 (Mg, — E%)(S))fi) : (199)
B Ds)

The currents in the effective theory are matched at 1-loop to their continuum counterparts.
Results for the form factors are then fitted to a modified BCL z-expansion ansatz [569],
that takes into account simultaneously the lattice spacing, light-quark masses, and ¢2-
dependence. For the mass dependence, NLO chiral logarithms are included, in the form
obtained in hard-pion xPT (see footnote 41). As in the case of the FNAL/MILC 15C com-
putation, once fy and fy have been determined as functions of ¢2, |Ve| can be determined
from a joint fit of this z-expansion and experimental data. The papers quote for the zero-
recoil vector form factor the result

GP7P(1) = 1.035(40)  GP=7P=(1) = 1.068(40) . (200)

The HPQCD 15 and FNAL/MILC 15C results for B — D differ by less than half a
standard deviation (assuming they are uncorrelated, which they are not as some of the
ensembles are common) primarily because of lower precision of the former result. The
HPQCD 15 central value is smaller by 1.8 of the FNAL/MILC 15C standard deviations
than the FNAL/MILC 15C value. The dominant source of errors in the | V| determination
by HPQCD 15 are discretization effects and the systematic uncertainty associated with
the perturbative matching.

In order to combine the form-factor determination of HPQCD 15 and the one of
FNAL/MILC 15C into a lattice average, we proceed in a similar way as with B — wfv
and By — K/lv above. FNAL/MILC 15C quotes synthetic values for each form factor
at three values of w (or, alternatively, ¢?) with a full correlation matrix, which we take
directly as input. In the case of HPQCD 15, we use their preferred modified z-expansion
parameterization to produce synthetic values of the form factors at five different values
of ¢* (three for f, and two for fy). This leaves us with a total of six (five) data points
in the kinematical range w € [1.00, 1.11] for the form factor fi (fp). As in the case of
B — wlv, we conservatively assume a 100% correlation of statistical uncertainties between
HPQCD 15 and FNAL/MILC 15C. We then fit this data set to a BCL ansatz, using t, =
(Mpgo + Mp=)? ~51.12 GeV? and tg = (Mpo + Mp=)(v/Mpo — /Mp=)? ~ 6.19 GeVZ.
In our fits, pole factors have been set to unity, i.e., we do not take into account the
effect of sub-threshold poles, which is then implicitly absorbed into the series coefficients.
The reason for this is our imperfect knowledge of the relevant resonance spectrum in this
channel, which does not allow us to decide the precise number of poles needed.?® This, in
turn, implies that unitarity bounds do not rigorously apply, which has to be taken into
account when interpreting the results (cf. Appendix B.2).

With a procedure similar to what we adopted for the B — 7 and B, — K cases, we
impose the kinematic constraint at ¢*> = 0 by expressing the aQy, _, coefficient in the z-
expansion of fj in terms of all the other coefficients. As mentioned above, FNAL/MILC 15C
provides synthetic data for f, and fy including correlations; HPQCD 15 presents the
result of simultaneous z-fits to the two form factors including all correlations, thus en-
abling us to generate a complete set of synthetic data for f, and fy. Since both calcu-
lations are based on MILC ensembles, we then reconstruct the off-diagonal HPQCD 15-
FNAL/MILC 15C entries of the covariance matrix by conservatively assuming that sta-

%5 As noted above, this is the same approach adopted by FNAL/MILC 15C in their fits to a BGL ansatz.
HPQCD 15, meanwhile, uses one single pole in the pole factors that enter their modified z-expansion, using
their spectral studies to fix the value of the relevant resonance masses.
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B—D(Nf=2+1)

ay, | Central Values Correlation Matrix

ag 0.896 (10) 1 0.423 —0.231 0.958 0.596
af —7.94 (20) 0.423 1 0.325  0.498 0.919
ay 51.4 (3.2) —0.231 0.325 1 —0.146  0.317
ad 0.7821 (81) 0.958 0.498 —0.146 1 0.593
af —3.28 (20) 0.596 0919 0317  0.593 1

Table 45: Coefficients and correlation matrix for the Nt = N? = 3 z-expansion of the
B — D form factors f; and fo. The chi-square per degree of freedom is x?/dof = 4.6/6 =
0.77. The lattice calculations that enter this fit are taken from FNAL/MILC 15C [132] and
HPQCD 15 [133]. The form factors can be reconstructed using parameterization and inputs
given in Appendix B.3.5.
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Figure 28: The form factors f,(q?) and fo(¢?) for B — D/{v plotted versus z (left panel)
and ¢? (right panel). See text for a discussion of the data sets. The grey and salmon bands
display our preferred N* = N° = 3 BCL fit (five parameters).

tistical uncertainties are 100% correlated. The FNAL/MILC 15C (HPQCD 15) statis-
tical error is 58% (31%) of the total error for every fi value, and 64% (49%) for every
fo one. Using this information we can easily build the off-diagonal block of the over-
all covariance matrix (e.g., the covariance between [fi(¢})lrnar and [fo(g3)upqep is
(8[f+(g})]rnar x 0.58) (8]fo(q3)lupqep x 0.49), where §f is the total error).

For our central value, we choose an N*T = N® = 3 BCL fit, shown in Tab. 45.
The coefficient a3 can be obtained from the values for aj—aj using Eq. (526). We find
x?%/dof = 4.6/6 = 0.77. The fit, which is dominated by the FNAL/MILC 15C calculation,
is illustrated in Fig. 28.

Let us finally discuss the most recent results for B; — D, form factors, obtained by the
HPQCD collaboration using MILC’s Ny = 241+ 1 ensembles in Ref. [134] (HPQCD 19).
Three values of the lattice spacing are used, including a very fine ensemble at a ~ 0.044 fm;
the pion mass is kept fixed at around 300 MeV, and in addition at the coarser a ~ 0.09 fm
lattice an ensemble with the physical pion mass is included. The scalar current needs
no renormalization because of the Partial Conservation of the Vector Current (PCVC)
relation, while the vector current is nonperturbatively normalized by imposing a condition
based on the PCVC relation at zero recoil. Heavy quarks are treated in a fully relativistic
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By — Dy (Np=2+1+1)

a’, | Central Values Correlation Matrix

ad 0.666(12) 1 0.62004  0.03149 1 0.03973  0.00122

a? —0.26(25) 0.62004 1 0.36842  0.62004 0.12945  0.00002

a9 —0.1(1.8) 0.03149 0.36842 1 0.03149 0.22854 —0.00168
ad —0.075(12) 1 0.62004  0.03149 1 0.03973  0.00122

al —3.24(45) 0.03973 0.12945 0.22854  0.03973 1 0.11086

ag 0.7(2.0) 0.00122 0.00002 —0.00168 0.00122 0.11086 1

Table 46: Coeflicients and correlation matrix for the z-expansion of the By, — D, form factors
f+ and fo. These results are a reproduction of Table VIIT of Ref. [134] (HPQCD 19). The
form factors can be reconstructed using parameterization and inputs given in Appendix B.3.6.

fashion through the use of the HISQ regularization, employing bare values of the quark
mass up to amjp = 0.8 for the extrapolation to the physical b point.

Results for the form factors are fitted to a modified z-expansion ansatz, based on a
BCL ansatz with a Blaschke factor containing one sub-threshold pole, tuned to reproduce
the lattice-spacing and heavy-quark-mass-dependent mass of the corresponding resonance.
The final error budget is equally dominated by statistics and the combined effect of the
continuum and heavy quark mass extrapolations, which correspond to 1.1% and 1.2%
uncertainties, respectively, for the scalar form factor at zero recoil. The total uncertainty
of the latter is thus below 2%, which remains true in the whole ¢ range. The uncertainty
of f, is somewhat larger, starting at around 2% at ¢> = 0 and increasing up to around
3.5% at zero recoil.

One important matter of concern with this computation is the use of the a ~ 0.044 fm
ensemble with periodic boundary conditions, which suffers from severe topology freezing.
Other than possible implications for statistical uncertainties, the lack of topology fluc-
tuations are expected to significantly enhance finite-volume effects, which are no longer
exponential in m, L, but become power-like in the spatial volume. The authors neglect
the impact of finite-volume effects in the computation, with a twofold argument: for the
two coarser lattice spacings, the impact of pion-mass-related corrections on the heavy-
meson states involved is presumably negligible; and, for the finest ensemble, the estimate
of finite-volume effects on the D, decay constant obtained in Ref. [180] turns out to be
very small, a result which is presumed to extend to form factors. It is however unclear
whether the latter argument would really hold, since the computation in Ref. [180] does
show that the expected effect is heavily observable-dependent, reaching, e.g., more than
1% for fp. We have, therefore, concluded that our standard criteria for finite-volume
effects cannot be applied at the finest lattice spacing, and opted to assign rating to
them.

We thus proceed to quote the final result of HPQCD 19 as the FLAG estimate for the
Ny =2+1+4+1 By = D, form factors. The preferred fit is a constrained BCL form with
the imposition of the kinematical constraint fy(0) = fo(0), carried through 22 for fu and
23 for f.. Both form factors contain just one sub-threshold pole, to which the masses
Mp: = 6.329 GeV and Mp,, = 6.704 GeV, respectively, have been assigned. The fit
parameters and covariance matrix, quoted in Table VIII of Ref. [134], are reproduced in
Tab. 46.

There are ongoing efforts in these channels from several collaborations. The JLQCD

155



collaboration is working on a B — D analysis at nonzero recoil using the domain-wall
action for heavy and light quarks [628]. The FNAL/MILC collaborations are working on
two parallel calculations of the form factors of the B(,) — D(,) channels sharing the same
light-quark action, but with different heavy-quark actions [591].

8.4.2 By — DE“S) decays

The community has been focusing on the decays with final vector states, By — Dfs),
because of increasing availability of high-quality experimental data. The decay rate for
B — D*{v involves a spin-1 hadron in the final-state whose vector and axial-vector current
matrix elements require the introduction of four form factors:

(D*|V,|B) 5
—h g€ v 0P 201
\/m V(’LU)S'U, BE Up UB ( )
D*|A,|B
;\/% = ha, (W)(1 +w)e™ — ha,(w)e* -vpvp, — ha,(W)e" -vpUD~,. (202)
where w = vp-vpe = (Mm% +m%. — ¢?)/(2mpmp+). As has become customary, we

further express the four form factors hy, 4, 4,4, in terms of the form factors g, f, F1 and
F; as follows (see, for instance, Eq. (31) of Ref. [135]):

hy

" mpyr (203)
f=mpV/r(l+w)ha, , (204)
Fy=mpVr(l+w) [(w —1)ha, — (w—1)(rha, + ha,)] (205)
= %{(14—11))}1,41 + (rw —1)ha, —l—(r—w)hAS] . (206)

One can then write the differential decay rate as [629, 630]

AU s peey  Mgw3mpmp- 3 o )
= —1(1-2 G|V,
dwdcvdcldx 4(471')4 \/107( wr+r ) F| b|

X {(1 —a)?s2H? + (14 ¢)?s2H? + 4s7c2H — 2782 cos(2x)Hy H-

—4s;(1 — ¢;)sycy cos xHy Ho + 4s;(1 + ¢;) sy, cos YH_Hg | (207)

where ¢, = cosb,, s, =sinf,, ¢; = cos b, s; = sin ;. The angles 0,, ; and y parameterize
the kinematics of the three-body final state (see, for instance, Fig. 3 of Ref. [144]). The
helicity amplitudes Hy o have simple expressions in terms of the form factors g, f and £}
(see, for instance, Eq. (13) of Ref. [144)):

Hy= —L | (208)
/?
Hy=fFmpmp-Vw?—1g. (209)

For the calculation of the ratio of the semileptonic rates in the 7 and £ = e, u channels, it
is necessary to consider the differential dI'/dw decay rate for nonzero lepton mass:*°

2

dl' 5, pr4p 22 2 mgé 2 mf

T BoDr _ 12y UE 2 _1(1-"%
dw Voo PGtz agms’ VY q>

2
3,25 22 1)F§] . (210)

2 2
x{ 1+ L q—(Hi—FHE%—mQBHg)—F r :
2¢> ) m% 2 ¢2

6This formula can be found, for instance, in Eq. (7) of Ref. [136]. Note that in Ref. [136] the normalizations
of the helicity amplitudes H+ o differ from those adopted here.
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In the limit of vanishing lepton mass, Eq. (210) reduces to

2,3
drB—%DO*g—D _GFmD*

2D JZETD (1 — e )2 — 1) e Vs () F ()P (211)

The function x(w) in Eq. (211) depends on the recoil w and the meson masses, and reduces
to unity at zero recoil [594]. In particular, the normalization factor x(w) [594] is defined
in such a way that at zero recoil

)
2\/mpmp~

Unquenched lattice calculations for B — D*/v decays have focused on the form factors
at zero recoil FB7P"(1) until a few years ago (see, for instance, FNAL/MILC 08 [631],
FNAL/MILC 14 [632], HPQCD 17B [633, 634]); these can then be combined with exper-
imental input to extract |Vip|. The situation mirrors that of the channel B — Dfv: at
the zero-recoil point a single form factor is enough to calculate the decay rate and Luke’s
theorem [610] guarantees the absence of O(Agcp/mg) corrections. By heavy-quark sym-
metry, lim,, o FE7P7(1) = 1 [611-613], since in that limit there is no distinction
between heavy quarks. The calculation of higher-order corrections to this value has been
systematically addressed in several publications [614-616, 635], and also applied to lattice
calculations [617, 618]. On the lattice, the zero recoil form factor of this channel can
also be computed via a double ratio, cancelling most of the current renormalization and
suppressing heavy-quark discretization errors by an additional power of Agcp/mg [636].
The situation has dramatically improved recently, and now data away from the zero-recoil
region is available from several sources. For that reason, we mainly concentrate on the
latest generation of results in the discussion below, which allows for an extraction of |Vg|
that incorporates information about the ¢2-dependence of the decay rate (cf. Sec. 8.9).

Extraction of the form factors away from the zero-recoil point is quite challenging. The
polarization of the D* plays a key role in the correlation functions, as shown in Eq. (202).
One can build the following double ratio:

F(1) =ha,(1) = (212)

(D*(p,e.)ey.750[B(0)) (B(0)|by1ysc|D*(p.£1))

(D*(0)|cv4¢|D*(0)) (B(0)[b4b| B(0)) o [ha, (W), (213)

RAI (p) =

which is proportional to |h4, (w)|?, as long as the D* is transversally polarized (the spatial
components of €, are perpendicular to p) and parallel to the axial current, which displays
only spatial components (v, is parallel to the spatial components of €, ). At zero recoil,
Eq. (213) greatly simplifies to give

R, (0) = [ha, (. (214)

Hence, an alternative to directly computing Eq. (213) is to evaluate Eq. (214), and then
compute the following ratio

(D" (B,1)lev.1 150 B(0))
(D*(0.2)[y,75b/B(0))

which gives h4, (w)/ha, (1) times extra factors that must be removed. Other form factors
can be extracted by considering other polarizations and components of the axial current
in Eq. (202), as well as the vector current. Normally, all the form factors are referenced
to ha, (w), therefore any systematics associated to the extraction of h 4, (w) are carried
over to the remaining form factors.

Currently, there are two Ny = 2 + 1 calculations of the B — D*{v form factors. One
comes from the FNAL/MILC collaborations [136] (FNAL/MILC 21). It uses 15 MILC

4, =

(215)
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Ny = 2 + 1 ensembles generated with asqtad staggered quarks in the sea. The bottom
and charm quarks are simulated using the clover action with the Fermilab interpretation,
and they are tuned to their physical masses by using the D, and the By mesons as
references. This implies that the renormalization cannot be fully nonperturbative. The
collaboration employs a clever scheme that computes ratios where the largest component
of the renormalization factors cancels out, leaving a small component that is computed
perturbatively. The MILC ensembles employed span five lattice spacings, ranging from
a ~ 0.15 fm to a ~ 0.045 fm, and as many as five values of the light-quark masses per
ensemble (though just one at the finest lattice spacing). Results are then extrapolated to
the physical, continuum/chiral, limit employing staggered, heavy-light meson xPT.

The D* meson is not a stable particle in QCD and decays predominantly into a D
plus a pion. Nevertheless, heavy-light meson yPT can be applied to extrapolate lattice
simulation results for the B — D*/v form factor to the physical light-quark mass. The
D* width is quite narrow, 0.083(2) MeV for the D**(2010) and less than 2.1 MeV for
the D*9(2007) [274], making this system much more stable and long lived than the p or
the K* systems. Therefore it is appropriate to consider the D* as a stable particle on
the lattice, at the current level of precision. The fact that the D* — D mass difference
is close to the pion mass leads to the well-known “cusp” in R4, just above the physical
pion mass [636—638]. This cusp makes the chiral extrapolation sensitive to values used in
the xPT formulas for the D* D coupling gp+p-. In order to take this sensitivity into
account, the FNAL/MILC collaboration includes this coupling in their fits as an input
prior gp+pr = 0.53+0.08, but they do not analyze the impact of such a prior in the final
result. By looking at their previous calculation at zero recoil [632] (FNAL/MILC 14),
which used the same ensembles and statistics, we estimate a subpercent increase in the
total uncertainty for ha, (1).

The final result presented in Ref. [136] (FNAL/MILC 21) is provided as synthetic data
points for the four form factors in the HQET basis, {ha,, ha,,ha,, hv }, at three different
values of the recoil parameter, and a full covariance matrix. The result at zero recoil is

Ny =2+1: FB7P7(1) =0.909(17)  [FNAL/MILC 21 [136]] (216)

making up a total error of 1.9%.The largest systematic uncertainty comes from discretiza-
tion errors followed by effects of higher-order corrections in the chiral perturbation theory
ansatz.

The JLQCD collaboration has published the other Ny = 241 study of the B — D*{v
form factors away from the zero recoil point — JLQCD 23 [137]. Their calculation is based
on nine Ny = 2+ 1 Mobius domain-wall ensembles, using the same action for the valence,
heavy quarks b and c¢. The ensembles cover three different lattice spacings, starting from
0.080 fm down to 0.044 fm, and several pion masses ranging from ~ 230 MeV to ~ 500
MeV. The charm-quark mass is always physical, whereas the largest value of the bottom-
quark mass reached is &~ 3m, (unrenormalized mass) in their finest ensemble. Each
ensemble features at least 3 different values of the bottom-quark mass, but in the coarsest
ensemble only mg ~ 1.5m, is reached. In terms of lattice units, the bottom-quark mass
never exceeds amg S 0.7, and the final result does not significantly change if only data
with amg < 0.5 (or equivalently mg < 2.0m.) is employed. The three-point functions
leading to the form factors are evaluated for four source-sink separations to eliminate
excited states, to properly control the excited-states contamination, and also the effects
of possible topological freezing are carefully analyzed to rule out finite-volume effects.
The renormalization scheme employed to renormalize the axial and vector currents is
equivalent to a mostly nonperturbative renormalization scheme at tree level. However,
the properties of the Domain-Wall action establish that Z4 = Zy at finite lattice spacing.
Hence, we expect large cancellations of renormalization factors in ratios like Eq. (213).
Also, discretization errors in the coefficients are expected to behave better than O(a) for
the same reason.
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Physical data is obtained after performing combined chiral-continuum and heavy-
quark-mass extrapolations, which employs an approximate estimator for the covariance
matrix, due to the low statistics of the input data and the large number of parameters
involved (heavy- and light-quark masses, and lattice spacings). The ansatz for the ex-
trapolation is motivated by heavy-light meson xPT and HQET, and the collaboration
uses the same value for the D* D7 coupling gp+pr as the FNAL/MILC collaboration,
gp~pr = 0.53 £ 0.08, but instead of including it as a prior in the fit, they estimate the
systematics associated to the coupling by shifting the central value by +o. The uncer-
tainty arising from this choice is not provided, although it is explicitly stated that it is
small.

The collaboration provides three synthetic data points per form factor in the BGL
basis, {g, f, F1, Fa} as their final result of their extrapolation, along with a full covariance
matrix. The result at zero recoil is not directly provided, but their BGL fit results in the
following value,

Ny =2+1: FB=P (1) = 0.887(14)  [JLQCD 23 [137]]. (217)

For Ny = 2+ 1 + 1 there is only one calculation away from the zero-recoil point,
by the HPQCD collaboration [135] — HPQCD 23. They use five MILC HISQ ensembles
and the HISQ action for both the light and the heavy quarks, reaching up to my = 4m,
(unrenormalized mass) in their finest ensemble. The lattice spacings range from 0.090 fm
down to 0.044 fm, and the pion masses are physical in two of the ensembles, whereas the
rest use values m, ~ 320 MeV. They calculate the form factors for three or four bare
values of the heavy-quark mass, depending on the ensemble, topping at amg < 0.8. For
the three-point functions, three different source-sink separations are evaluated, and the
currents are renormalized nonperturbatively using the PCAC/PCVC relations and, for
the tensor current, the RI-SMOM scheme. The renormalization factors are interpolated
for some correlators in one of the coarsest ensembles, and they are estimated for the
finest ensemble with a physical pion mass, adding a conservative 1% error. As in previous
analyses of HPQCD with a similar setup, the impact of fixing the topological charge in
the finest ensembles is not discussed; nonetheless, it has been pointed out that the impact
on the form factors of MILC ensembles with nonequilibrated topological charge is below
0.1% [123]. An important difference of this analysis from the Ny = 2 + 1 ones is the
inclusion of twisted boundary conditions to reach larger values of the recoil parameter.
As a result, HPQCD 23 offers data in the whole recoil range, as opposed to the other
analyses, which are limited to the range w € [1.0,1.2]. The constraint between the form
factors at maximum recoil then is naturally satisfied with great precision without any
need to impose it. This feature also allows them to include higher powers of (w — 1)
in the chiral-continuum extrapolation to model the recoil parameter dependence. Using
BGL-inspired priors, the collaboration includes terms up to (w — 1)19, steming from a z
expansion up to z%.

HPQCD 23 provides five synthetic data points per form factor, of which only three
are completely independent, in the HQET basis, along with the full covariance matrix.
The zero-recoil value of the decay amplitude is

Ny =2+1+1: FB2P7(1) =0.903(14)  [HPQCD 23 [135]], (218)

in agreement with the value from FNAL/MILC 21, but with a slightly smaller total error,
1.6%. The largest systematic uncertainty comes from the treatment of the heavy quark.

We use synthetic data points provided by FNAL/MILC 21 [136], JLQCD 23 [137], and
HPQCD 23 [135] to fit the form factors g, f, F1, and F5 using a BGL parameterization.
We adopt the same outer functions, poles, and z definition as in Sec. 5.1 of Ref. [136]. In
particular, we impose the kinematic constraints at zero and maximal recoil (see Eqs.(72,
73) of Ref. [136]) by eliminating the coefficients aj' and af?. We also do not adopt
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Figure 29: The form factors g, f, F1 and F» for B — D*{v as a function of w. The red (blue)
band displays our preferred (Ng, Nt, Nr,, Ng,) = (2,3,3,2) BGL fit (eight parameters) to
Ny =241 (2+1+1) lattice data. The constraints at zero and maximum recoil are imposed
exactly. No use of unitarity constraints and priors has been made.

priors for any of the coefficients and do not impose unitarity constraints. We found that
a fit with (Ng, Ny, Nr,, Np,) = (2,3, 3,2) provides an adequate description of the lattice
data.5” The results of the fits are presented in Tab. 47 and in Fig. 29. The two Ny =2+1
calculations of FNAL/MILC 21 [136] and JLQCD 23 [137] are quite compatible and the
combined fit yields x2,, /dof = 15.0/16. We present the fit result for the Ny =2+ 1+ 1
calculation of JLQCD 23 [137] in order to allow for a direct comparison between the
coefficients of the Ny =2+ 1 and Ny = 2 + 1+ 1 fits. For completeness, we present the
result for FB7P7(1) as extracted from the fits in Tab. 47:

Np=2+1: FB2P7(1) = 0.894(10)  [FLAG average, Refs. [136, 137]]  (219)
Ny =2+4+1+1: FEZP7(1) = 0.899(14) [FLAG average, Refs. [135]]. (220)

Calculations in the By — D} channel are relatively recent. The first calculations at
zero recoil were done by the HPQCD collaboration in 2017 and 2019 [634, 639] (HPQCD 17B
and HPQCD 19B). In 2021, the same collaboration published the first study of the form
factors of this channel at nonzero recoil [640] (HPQCD 21B), using four Ny =2+ 1+1
MILC ensembles and the HISQ regularization for both sea and valence quarks, including
the b quark. The lattice spacings range from 0.090 fm to 0.044 fm, and one of the coarsest

57T Adequate in the sense that the coefficients do not change much when adding more terms in the z expan-
sion, but any extra coefficient becomes unphysically large with equally large errors. Hence, our choice is the
maximum number of coefficients that can be reasonably determined with the given data without including
extra information, like unitarity constraints.
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Figure 30: The form factors g, f, Fi, and Fy for B; — D?{v as a function of w. The blue
band displays our preferred (Ng, N¢, Nr,, Np,) = (2,3,3,2) BGL fit (eight parameters) to
Ny = 2+1+1 lattice data. The constraints at zero and maximum recoil are imposed exactly.
No use of unitarity constraints and priors has been made.

ensembles features a physical pion mass, whereas the rest are generated with m, ~ 320
MeV. Correlators are generated for each ensemble at three/four values of the bare-quark
mass, never exceeding amg < 0.8, and the maximum heavy-quark mass simulated is
mq ~ 4m. (nonrenormalized). Momentum is injected using twisted boundary conditions,
which allows them to calculate the form factors directly at large values of the recoil param-
eter. This calculation was recently superseded by a combined study of the By — DEKS)
channels by HPQCD 23 [135], adding one more ensemble and increasing statistics. The
details have already been outlined earlier in this section. Five points of synthetic data are
provided per form factor in the HQET basis, of which only three are independent. The
full covariance matrix is also provided. We adopt a BGL parameterization of the g, f,
Fy, and F; form factors (defined in exact analogy to the B — D* case), in which all outer
functions and poles are identical to the B — D* case (we take the By and D¥ masses
from Ref. [205]). The results of a (Ny, Ny, N, Nr,) = (2,3,3,2) BGL fit are presented
in table 48 and Fig. 30. The result for F2+7P: (1) as extracted from the fits in Tab. 48:

Nf=2+1+1: FB:7Pi(1) = 0.8972(92)  [FLAG average, Refs. [135]].  (221)

There are still ongoing efforts on both the B — D* and the B; — D} channels, and
we can expect improvements in the coming years. The FNAL/MILC collaborations are
working in two different calculations in parallel for B — D*, mainly differing on the
heavy-quark action: one calculation uses Fermilab heavy quarks, whereas the other uses
the HISQ action for the ¢ and the b quarks. Both calculations employ the HISQ action
for the light sector [591]. The LANL-SWME collaboration is working on a different
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B — D* (Nj =2+1)

coeff Central Values Correlation Matrix
a'g 0.03132(93) 1 0.1331 0.1786 0.03800 0.006578 0.06997 0.1061 0.03250
a517 -0.057(26) 0.1331 1 0.001304 0.2425 0.1505 0.1342 0.1966 0.2331
ag 0.01208(14) 0.1786 0.001304 1 -0.02370 0.09098 0.04710 0.1573 0.1161
a{ 0.0135(72) 0.03800 0.2425 -0.02370 1 -0.3968 0.6172 -0.01165 0.5136
a£ -0.08(27) 0.006578 0.1505 0.09098 -0.3968 1 -0.2518 0.1880 -0.05661
afl -0.0032(18) 0.06997 0.1342 0.04710 0.6172 -0.2518 1 -0.1105 0.6653
agl -0.014(25) 0.1061 0.1966 0.1573 -0.01165 0.1880 -0.1105 1 0.5974
an -0.188(44) 0.03250 0.2331 0.1161 0.5136 -0.05661 0.6653 0.5974 1
B—D" (Ny=2+1+1)
coeff Central Values Correlation Matrix
ng 0.0313(24) 1 —0.2881 0.03326 0.005143 —0.003518 —0.0003942 —0.001025 0.003804
a“i’ —0.132(98) —0.2881 1 0.01495 0.02987 0.02563 0.02484 —0.02985 —0.009483
ag 0.01214(19) 0.03326 0.01495 1 0.001692 —0.01134 —0.1117 —0.01767 —0.03966
a{ 0.009(16) 0.005143 0.02987 0.001692 1 —0.3074 0.1676 0.05497 0.2621
aé‘ —0.29(56) —0.003518 0.02563 —0.01134 —0.3074 1 —0.01802 0.1236 0.1412
af‘l —0.0092(47) —0.0003942 0.02484 —0.1117 0.1676 —0.01802 1 —0.4098 0.01588
(12F1 —0.03(12) —0.001025 —0.02985 —0.01767 0.05497 0.1236 —0.4098 1 0.8568
afz —0.26(14) 0.003804 —0.009483 —0.03966 0.2621 0.1412 0.01588 0.8568 1

Table 47: Coeflicients and correlation matrix for the (Ng, Ny, Np,, Np,) = (2,3, 3,2) BGL fit
to the B — D* form factors g, f, Fy, and F» for Ny =2+ 1 and Ny = 2+ 1+ 1. The form
factors can be reconstructed using parameterization and inputs given in Appendix B.3.7.

Bs — DY (Nf =2+ 1+1)

coeff Central Values Correlation Matrix
a'g 0.02014(95) 1 —0.4283 0.04426 0.002476 —0.01136 —0.001803 —0.009667 —0.006326
a‘({ —0.031(39) —0.4283 1 0.01871 0.01076 0.02903 0.04063 —0.03435 —0.007384
a[{ 0.005675(59) 0.04426 0.01871 1 —0.09446 0.08079 —0.09292 0.02436 0.02441
a{ 0.0146(59) 0.002476 0.01076 —0.09446 1 —0.6784 0.1714 —0.08797 0.03112
a£ —0.23(24) —0.01136 0.02903 0.08079 —0.6784 1 —0.1764 0.1529 0.08188
afl —0.0004(16) —0.001803 0.04063 —0.09292 0.1714 —0.1764 1 —0.7279 —0.3342
a§1 —0.038(46) —0.009667 —0.03435 0.02436 —0.08797 0.1529 —0.7279 1 0.8368
an —0.134(50) —0.006326 —0.007384 0.02441 0.03112 0.08188 —0.3342 0.8368 1

Table 48: Coeflicients and correlation matrix for the (Ng, Ny, Np,, Np,) = (2,3, 3,2) BGL fit
to the B, — Dj form factors g, f, Fi, and I for Ny = 2+ 1+ 1. The form factors can be
reconstructed using parameterization and inputs given in Appendix B.3.8.

calculation, using MILC HISQ ensembles and the Oktay-Kronfeld action for the heavy
sector [641].

8.4.3 Lepton-flavour-universality ratios R(D™)) and R(Dg*))

The availability of results for the scalar form factor fo for B — D/v amplitudes allows
us to study interesting observables that involve the decay in the 7 channel. One such
quantity is the ratio

B(B — DE:))TZ/)

RID() = 5
©° " B(B - D))

with £=e,pu, (222)

which, in the Standard Model, depends only on the form factors and hadron and lepton
masses. Indeed, the recent availability of experimental results for R(D) has made this
quantity particularly relevant in the search for possible physics beyond the Standard
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Model. The most recent HFLAV average reads (see Ref. [148] and the Moriond 2024
update):

R(D)exp = 0.342(26) . (223)

Using the FLAG average of the B — D form factors discussed above and presented
in Table 45, we find R(D)ELAG = (.2038(38). The ratio R(D) requires the integral of the
branching ratios for ¢ = e, u, 7 over the whole phase space. Since lattice simulations are
sensitive mostly to relatively large ¢2 values, lattice-only calculations of R(D) rely on the
extrapolation of the form factors to low ¢ and are especially sensitive to the choice of
parameterization. In order to estimate this source of systematics, we repeated the fit using
the parameterization adopted by HPQCD in Ref. [133]. The main difference with respect
to our default paremeterization is the inclusion of Blaschke factors for the form factors
f+ and fo located at M = Mp- = 6.330(9) GeV and My = 6.420(9) GeV; additionally,
the parameter ¢, is set to (mp — mp)?. Using five coefficients (a{il3 and af , with a§

fixed by the f4(¢% = 0) = fo(q> = 0) condition) we find R(D)'F2°P = 0.3009(38) which

lat
deviates from R(D)ELAG by 1.4 0. To take this potential source of systematic uncertainty

into account we rescale accordingly the uncertainty of our default fit and obtain:
Ny =2+1: R(D)ja, = 0.2938(54) [FLAG average, Refs. [132, 133]]. (224)

This result is about 1.50 lower than the current experimental average [148] for this quan-
tity. It has to be stressed that achieving this level of precision critically depends on the
reliability with which the low-¢? region is controlled by the parameterizations of the form
factors.

HPQCD 17 also computes values for R(Dy), the analog of R(D) with both heavy-light
mesons containing a strange quark. The earlier calculation using NRQCD b quarks gives

Ny =2+1: R(Dy)i = 0.301(6)  [620]. (225)

The newer calculation with HISQ b quarks, HPQCD 19, yields the somewhat more precise
value

Ny =2+41+1: R(Dy)ae = 0.2987(46)  [134]. (226)

A similar ratio R(D*) can be considered for B — D* transitions. As a matter of fact,
the experimental value of R(D*) is significantly more precise than the one of R(D). The
most recent HFLAV average reads (see Ref. [148] and the Moriond 2024 update):

R(D*)exp = 0.287(12) . (227)

The recent developments in decays with vector products have yielded a variety of new
lattice results for this LFU ratio. For Ny = 2 + 1 in the sea, the Fermilab lattice and
MILC collaborations (FNAL/MILC 21) report the value

Ny =2+1: R(D*)ja = 0.265(13)  [136], (228)

which is around 1.50 lower than the current experimental average [148].
The JLQCD collaboration has obtained the following value (JLQCD 23)

Ny =2+ 1: R(D")1ae = 0.252(22)  [137]. (229)

Their result is compatible with the FNAL/MILC 21 value, but it increases the tension
with the experimental average up to 1.60, in spite of the larger error.
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The HPQCD collaboration has also computed this ratio using Ny =241 + 1 config-
urations, obtaining (HPQCD 23)

Ny =2+41+1: R(D*)a = 0.273(15)  [135], (230)

which is closer to the current HFLAV average, but still lower by 1.30.

Using the results of the Ny =2+ 1 (FNAL/MILC 21 and JLQCD 23) [136, 137] and
Ny =2+1+1 (HPQCD 23) [135] fits summarized in Tab. 47, we calculate the following
values for the ratio R(D*):

Ny =24 1: R(D")jay = 0.2582(51) [FLAG average, Refs. [136, 137]],  (231)
Ny =2+1+1: R(D")1as = 0.275(15) [FLAG average, Ref. [135]].  (232)

The HPQCD 23 analysis also covered the By — D7 channel, and for the first time a
result for the R(D?¥) ratio is provided

Ny =2+1: R(D})1ae = 0.266(9)  [135]. (233)

Using the results of the Ny =241+ 1 HPQCD 23 [135] fits summarized in Tab. 48, we
calculate the following values for the ratio R(D?):

Ny =241+ 1: R(D})iat = 0.2637(69) [FLAG average, Ref. [135]]. (234)

8.4.4 Fragmentation fraction ratio fs/fy

Another area of immediate interest in searches for physics beyond the Standard Model is
the measurement of B, — p*pu~ decays, recently studied at the LHC. One of the inputs
required by the LHCb analysis is the ratio of B, meson (¢ = d, s) fragmentation fractions
fs/fa, where f, is the probability that a ¢ quark hadronizes into a B;. This ratio can
be measured by writing it as a product of ratios that involve experimentally measurable
quantities, cf. Refs. [642, 643]. One of the factors is the ratio fos)(Mﬁ)/féd)(M?() of
scalar form factors for the corresponding semileptonic meson decay, which is where lattice
input becomes useful.

A dedicated Ny = 2 + 1 study, FNAL/MILC 12C [644] addresses the ratios of scalar
form factors £\?(¢2),*® and quotes:

$(M2)/fP(ME) = 1.046(44)(15),  f§(M2)/ 7 (M2) = 1.054(47)(17),  (235)

™

where the first error is statistical and the second systematic. The more recent results from
HPQCD 17 [620] are:

F&O (M2 £V (ME) = 1.00062), 87 (M2)/£57 (M2) = 1.006(62). (236)

Results from both groups lead to fragmentation fraction ratios fs/fq that are consistent
with LHCDb’s measurements via other methods [643].

8.5 Semileptonic form factors for B. — (7., J/1{)lv decays

In a recent publication, HPQCD 20B [621] provided the first full determination of B, —
J /9 form factors, extending earlier preliminary work that also covered B, — 7., Refs. [645,
646]. While the latter employed both NRQCD and HISQ actions for the valence b quark,
and the HISQ action for the ¢ quark, in HPQCD 20B the HISQ action is used throughout
for all flavours. The setup is the same as for the By — D, computation discussed above,

%8 This work also provided a value for R(D), now superseded by FNAL/MILC 15C [132].
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HPQCD 19; we refer to the entries for the latter paper in summary tables for details. The
flavour-singlet nature of the final state means that there are contributions to the relevant
three-point functions from disconnected Wick contractions, which are not discussed in the
paper.

Both the J/v and the 7. are unstable resonances, and the correct approach on the
lattice would involve treating the J/t¢ and the 7. as such. However, as in the case of the
D* meson, their widths are very narrow (93(2) keV for the J/v¢ and 30.5(5) keV for the
n.). Hence, we can consider them as stable particles on the lattice.

In the J/1 case, since the hadron in the final state has vector quantum numbers, the
description of the hadronic amplitude requires four independent form factors, which in
Ref. [621] have been chosen as

_ _ 2iV (¢?)
/ i B — UV PO _* / /
(J/(p', N]eyb| B, (p)) 7MBC+MJ/¢E e (0, Np,po
e* /’)\ .
1 Ve 8B (0) =2 Ao(a?) L g
* €* p/>>‘ -q

+ (M, + M) Ar(g%) [6 “p' ) — ((172)(]”}
* 2 2

— Ag(P) L #, %) g [p’“rp’“ Ms. M']/wq”},

Mg, + Mjyy q?
(237)

where €, is the polarization vector of the J/i¢ state. The computed form factors are
fitted to a z-parameterization-inspired ansatz, where coefficients are modified to model
the lattice-spacing and the heavy- and light-mass dependences, for a total of 280 fit
parameters. In the continuum and at physical kinematics only 16 parameters survive, as
each form factor is parameterized by an expression of the form

3
1
F(q2) = a'nzn7 (238)
P(q?) ,;
where the pole factor is given by

P(¢®) =[] 2(¢* Mp), (239)
k

with {M}.} a different set of pole energies below the BD* threshold for each set of J¥
quantum numbers, taken from a mixture of experimental results, lattice determinations,
and model estimates. The values used (in GeV) are

0™ : 6.275, 6.872, 7.25;

17 : 6.335, 6.926, 7.02, 7.28; (240)

17 6.745, 6.75, 7.15, 7.15.

The outcome of the fit, that we quote as a FLAG estimate, is

ago ai ag a3
V [ 0.1057(55) —0.746(92) 0.10(98)  0.006(1.000)
A0 | 0.1006(37) —0.731(72)  0.30(90)  —0.02(1.00)
Al | 0.0553(19) —0.266(40)  0.31(70) 0.11(99)
A2 | 0.0511(91) —0.22(19) —0.36(82) —0.05(1.00)
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The correlation matrix for the coefficients is provided in Tables XIX-XXVII of Ref. [621].
Using these form factors, the following Standard-Model prediction for the lepton-flavour
ratio R(J/1) is obtained:

[(Bf — J/prrv,)
L(BE — J/¢ ptvy)

R(J/{)at = =0.2582(38), Ny =2+141[647].  (241)

8.6 Semileptonic form factors for A, — (p, Ag*))&? decays

The b — ¢fv and b — wlp transitions can also be probed in decays of A, baryons. With
the LHCb experiment, the final state of A, — puv is easier to identify than that of
B — wup [648], and the first determination of |Vy|/|Ves| at the Large Hadron Collider
was performed using a ratio of Ay, — puv and Ay — A ub decay rates [649] (cf. Sec. 8.10).

The amplitudes of the decays A, — plv and A, — A v receive contributions from
both the vector and the axial-vector components of the current in the matrix elements
(play*" (1 — v5)b|Ap) and (A.|éy*(1 — v5)b|Ap). The matrix elements split into three form
factors fy, fo, f1 mediated by the vector component of the current, and another three
form factors g4, go, g1 mediated by the axial-vector component—see, e.g., Ref. [489] for
a complete description. Given the sensitivity to all Dirac structures, measurements of
the baryonic decay rates also provides useful complementary constraints on right-handed
couplings beyond the Standard Model [649].

To date, only one unquenched lattice-QCD computation of the A, — p and A, — A,
form factors with physical heavy-quark masses has been published: Detmold 15 [494].
This computation uses RBC/UKQCD N; = 2+ 1 DWF ensembles, and treats the b and ¢
quarks within the Columbia RHQ approach. The renormalization of the currents is carried
out using a mostly nonperturbative method, with residual matching factors computed
at one loop. Two values of the lattice spacing (a =~ 0.11, 0.085 fm) are considered,
with the absolute scale set from the T(25)-Y(1S5) splitting. Sea-pion masses lie in a
narrow interval ranging from slightly above 400 MeV to slightly below 300 MeV, keeping
my,L 2 4; however, lighter pion masses are considered in the valence DWF action for
the u,d quarks. The lowest valence-valence pion mass is 227(3) MeV, which leads to a
B rating of finite-volume effects. Results for the form factors are obtained from suitable
three-point functions, and fitted to a modified z-expansion ansatz that combines the ¢2-
dependence with the chiral and continuum extrapolations. The main results of the paper
are the predictions (errors are statistical and systematic, respectively)

1 [%ex dD(A v
Cour(15GeV?) = / W = DTV g2 _ 19 31(76)(77) ps—', (242)
1

Vinl* Ji5 Geve dq?
1 [%ax dD(Ay = Aep™ 5, B
npo1Gev?) = i [ SRS B g —sataoe et (20
_ 2
M = 1.471(95)(109), (244)
Cauun (7GeV?)

which are the input for the LHCb analysis. Predictions for the total rates in all possible
lepton channels, as well as for ratios similar to R(D) (cf. Sec. 8.4) between the 7 and
light-lepton channels are also available, in particular,

I'(A A.T7D
R(Ac)_ (b—> T 1/7-)

= (A 5 Aoy = 0.3328(74)(70). (245)

Datta 2017 [650] additionally includes results for the A, — A. tensor form factors h,

hi, hy, hy, based on the same lattice computation as Detmold 15 [494]. The main focus
of Datta 2017 is the phenomenology of the A, — A.77, decay and how it can be used to
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constrain contributions from beyond the Standard Model physics. Unlike in the case of
the vector and axial-vector currents, the residual matching factors of the tensor currents
are set to their tree-level value. While the matching systematic uncertainty is augmented
to take this fact into account, the procedure implies that the tensor current retains an
uncanceled logarithmic divergence at O(as).

Progress with next-generation lattice calculations of the Ay, — p and Ay, — A, form
factors was reported in Ref. [651].

Recently, first lattice calculations have also been completed for A semileptonic de-
cays to negative-parity baryons in the final state. Such calculations are substantially
more challenging and have not yet reached the same level of precision. Meinel 21 [652],
which was updated in Meinel 21B [498], considers the decays A, — A%(2595)¢0 and

Ay — A%(2625)¢p, where the A%(2595) and A(2625) are the lightest charm baryons with

17 and JP = 37, respectively. These decay modes may eventually

isospin 0 and J* = 5 5

provide new opportunities to test lepton-flavour universality at the LHC, but are also very
interesting from a theoretical point of view. The lattice results for the form factors may
help tighten dispersive constraints in global analyses of b — ¢ semileptonic decays [653],
and may provide new insights into the internal structure of the negative-parity heavy
baryons and their description in heavy-quark-effective-theory [654, 655]. The A%(2595)
and A*(2625) are very narrow resonances decaying through the strong interaction into
Acmm. The strong decays are neglected in Meinel 21 and Meinel 21B [498, 652]. The
calculation was performed using the same lattice actions as previously for A, — A, albeit
with newly tuned RHQ parameters. Only three ensembles are used, with a ~ 0.11, 0.08 fm
and pion masses in the range from approximately 300 to 430 MeV, with valence-quark
masses equal to the sea-quark masses. Chiral-continuum extrapolations linear in m?2 and
a? are performed, with systematic uncertainties estimated using higher-order fits. Finite-
volume effects and effects associated with the strong decays of the A%’s are not quantified.
The calculation is done in the A} rest frame, where the cubic symmetry is sufficient to
avoid mixing with unwanted lower-mass states. As a consequence, the calculation is lim-
ited to a small kinematic region near the zero-recoil point w = 1. On each ensemble,
lattice data were produced for two values of w — 1 of approximately 0.01 and 0.03. The
final results for the form factors are parameterized as linear functions of w — 1 and can
be found in Meinel 21B [498] and associated supplemental files.

8.7 Semileptonic form factors for A, — A/

The decays Ay, — ALT¢~ are mediated by the same underlying b — s¢T¢~ FCNC transi-
tion as, for example, B — K/T¢~ and B — K*¢7¢~, and can therefore provide additional
information on the hints for physics beyond the Standard Model seen in the meson decays.
The A baryon in the final state decays through the weak interaction into pr~ (or nz?),
leading to a wealth of angular observables even for unpolarized Ay. When including the
effects of a nonzero Ay polarization, A, — A(— pr~ )£~ decays are characterized by five
angles leading to 34 angular observables [656], which have been measured by LHCb in the
bin ¢? € [15,20] GeV? [657]. Given that the A is stable under the strong interactions, the
Ap — A form factors parametrizing the matrix elements of local 5I'b currents can be cal-
culated on the lattice with high precision using standard methods. Of course, the process
Ay — AL also receives contributions from nonlocal matrix elements of four-quark and
quark-gluon operators in the weak effective Hamiltonian combined with the electromag-
netic current. As with the mesonic b — s¢™¢~ decays, these contributions cannot easily
be calculated on the lattice and one relies on other theoretical tools for them, including
the local OPE at high ¢? and a light-cone OPE / QCD factorization at low ¢2.
Following an early calculation with static b quarks [658], Detmold 16 [659] provides
results for all ten relativistic A, — A form factors parametrizing the matrix elements of
the local vector, axial-vector and tensor b — s currents. The lattice setup is identical
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to that used in the 2015 calculation of the A, — p form factors in Detmold 15 [494],
and similar considerations as in the previous section thus apply. The lattice data cover
the upper 60% of the ¢ range, and the form factors are extrapolated to the full ¢2
range using BCL z-expansion fits. This extrapolation is done simultaneously with the
chiral and continuum extrapolations. The caveat regarding the renormalization of the
tensor currents also applies here. Progress with next-generation lattice calculations of the
Ap — A form factors was reported in Ref. [651].

Reference [660] uses the lattice results for the A, — A form factors together with
the experimental results for A, — A(— pr~)uTp~ from LHCD [657, 661] to perform
fits of the b — sp™p~ Wilson coefficients and of the A, polarization parameter. Given
the uncertainties (which are still dominated by experiment), the results for the Wilson
coefficients are presently consistent both with the Standard-Model values and with the
deviations seen in global fits that include all mesonic decays [521, 662].

As with the b — ¢ semileptonic form factors, a first lattice calculation, Meinel 2020
[663] (updated in Meinel 21B [498]), was also completed for a b — s transition to a
negative-parity baryon in the final state, in this case the A*(1520) with J¥ = %_

calculation has yet been published for the strange J* = %_ final states, which would be

the broader and even more challenging A*(1405)/A*(1380) [225]). The A*(1520) decays
primarily to pK~/nK°, ¥, and An7 with a total width of 15.6 + 1.0 MeV [225] . The
analysis of the lattice data again neglects the strong decays and does not quantify finite-
volume effects, and is again limited to a small kinematic region near ¢2,,.. The results of
Meinel 2020 are superseded by Meinel 21B [498], in which the fits to the lattice data were
improved by including exact endpoint relations in the form-factor parametrizations.

(no

g
¥ & §
$ & & F
F & F § &
S &5 S @ ROg
s £5F s
s & F T T &
S F 5 o £
g §F £ ¥ s
Process Collaboration Ref. Ny § & ¥ & &3
Ay — AZ(2625) " Meinel 21B [198] 2+1 A n
Ay — AZ(2595) "5 Meinel 21B [198] 2+1 A n
Ay — A5(2625) 0" Meinel 21 [652] 241 A n
Ay — A5(2595) 05 Meinel 21 [652] 241 A n
Ay — A*(1520) £+~ Meinel 21B [498] 241 A n
Ay — A*(1520) €16~ Meinel 20 (663 2+1 A n
Ay = Al Detmold 16 [659] 2+1 A n
Ay = pl™ iy Detmold 15 [494] 2+1 A |
Ay = Al g Detmold 15, Datta 17 [494, 650] 2+1 A [ |

Table 49: Summary of computations of bottom-baryon semileptonic form factors (see also
Refs. [658, 664] for calculations with static b quarks). The rationale for the M rating of
finite-volume effects in Meinel 20, Meinel 21, and Meinel 21B (despite meeting the O criterion
based on the minimum pion mass) is that the unstable nature of the final-state baryons was
neglected in the analysis.
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8.8 Determination of |V,

We now use the lattice-determined Standard Model transition amplitudes for leptonic
(Sec. 8.1) and semileptonic (Sec. 8.3) B-meson decays to obtain exclusive determinations
of the CKM matrix element |V,;|. In this section, we describe the aspect of our work that
involves experimental input for the relevant charged-current exclusive decay processes.
The relevant formulae are Egs. (155) and (191). Among leptonic channels the only input
comes from B — 7v,, since the rates for decays to e and p have not yet been measured.
In the semileptonic case, we only consider B — m/v transitions (experimentally measured
for ¢ = e, ).

We first investigate the determination of |V,;| through the B — 7v, transition. The
experimental measurements of the branching fraction of this channel, B(B~ — 77 ), have
not been updated since the publication of FLAG 16 [3]. The status of the experimental
results for this branching fraction, summarized in Tab. 50, is unchanged from FLAG 16 [3].
Our corresponding values of |V,| are unchanged from FLAG 19 [4].

Collaboration Tagging method B(B~ — 77 p) x 104
Belle [665] Hadronic 0.727321 +0.11
Belle [510] Semileptonic 1.25+£0.28 £0.27
BaBar [509] Hadronic 1.831053 4 0.24
BaBar [666] Semileptonic 1.7£0.8+0.2

Table 50: Experimental measurements for B(B~ — 7~ v). The first error on each result is
statistical, while the second error is systematic.

It is obvious that all the measurements listed in Tab. 50 have significance smaller than
50, and the large uncertainties are dominated by statistical errors. These measurements
lead to the averages of experimental measurements for B(B~ — 7v) [509, 510],

B(B™ — 7)) x 10* = 0.91 +0.22 from Belle, (246)
= 1.79 £+ 0.48 from BaBar, (247)
= 1.06 £ 0.33 average, (248)

where, following our standard procedure, we perform a weighted average and rescale the
uncertainty by the square root of the reduced chi-squared. Note that the Particle Data
Group [274] did not inflate the uncertainty in the calculation of the averaged branching
ratio.

Combining the results in Eqs. (246-248) with the experimental measurements of the
mass of the 7-lepton and the B-meson lifetime and mass we get

|[Vws|fe = 0.724+0.09 MeV from Belle, (249)
= 1.01 +£0.14 MeV from BaBar, (250)
= 0.77+£0.12 MeV average, (251)
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which can be used to extract |V,,;| using the averages in Egs. (162), (165) and (168), viz.,

|Vip| = 3.83(14)(48) x 107®  [B — 7v,, Belle], (252)

Ny =2: |V| = 5.37(20)(74) x 10 [B — Tv,, Babar], (253)

|Vip| = 4.10(15)(64) x 107%  [B — Tv,, average], (254)

|Vius| = 3.75(8)(47) x 1073 [B — v, Belle], (255)

Ny =2+ 1: |Vip| = 5.26(12)(73) x 107*  [B — 7., Babar], (256)
|Vis| = 4.01(9)(63) x 1073 [B — v, average], (257)

|Vip| = 3.79(3)(47) x 107*  [B — Tv,, Belle], (258)

Ny =2+1+1: V| =5.32(4)(74) x 10™*  [B — Tv,, Babar], (259)
|Vip| = 4.05(3)(64) x 107®  [B — Tv,, average], (260)

where the first error comes from the uncertainty in fp and the second comes from ex-
periment. The experimental branching fractions do not yet meet the five-sigma discovery
threshold and the relative uncertainties are significantly larger than the radiative elec-
troweak corrections. Therefore, in line with the Particle Data Group [274] and in contrast
to the D(5) decays, we do not include in these results the electroweak corrections.

Let us now turn our attention to semileptonic decays. The experimental value of
|Vus| f+(¢%) can be extracted from the measured branching fractions for B — n*¢v or
B* — 7% by applying Eq. (191).5° We then determine |V,;| by performing fits to the
constrained BCL z-parameterization of the form factor fy(¢?) given in Eq. (527). This
can be done in two ways: one option is to perform separate fits to lattice and experimental
results, and extract the value of |Vy;| from the ratio of the respective ag coefficients; a
second option is to perform a simultaneous fit to lattice and experimental data, leaving
their relative normalization |V,;| as a free parameter. We adopt the second strategy,
because it combines the lattice and experimental input in a more efficient way, leading to
a smaller uncertainty on |Vyp|.

The available state-of-the-art experimental input consists of five data sets: three un-
tagged measurements by BaBar (6-bin [138] and 12-bin [139]) and Belle [140], all of which
assume isospin symmetry and provide combined B® — 7~ and BT — 70 data; and the
two tagged Belle measurements of B® — 7% (13-bin) and B~ — 7° (7-bin) [141]. Includ-
ing all of them, along with the available information about cross-correlations, will allow
us to obtain a meaningful final error estimate.’ The lattice input data set will be that
discussed in Sec. 8.3.

We perform a constrained BCL fit of the vector and scalar form factors (this is nec-
essary in order to take into account the fi(¢> = 0) = fo(¢*> = 0) constraint) together
with the combined experimental data sets. We find that the error on |V,;| stabilizes
for Nt = NY = 3. The result of the combined fit is presented in Tab. 51. The fit
has a chi-square per degree of freedom x?/dof = 116.7/62 = 1.88. Following the PDG
recommendation, we rescale the whole covariance matrix by x2/dof: the errors on the
z-parameters are increased by /x?/dof = 1.37 and the correlation matrix is unaffected.
The value of |Vy,3| which we obtain is:

Ny =2+1: |Vyp| = (3.61 £0.16) x 10~
[B — wlv, FLAG average, Refs. [124-126, 138-141]]. (261)

In Fig. 31, we show both the lattice and experimental data for (1 — ¢?/m%.)f+(¢?) as

®Since £ = e, u the contribution from the scalar form factor in Eq. (191) is negligible.
08ee, e.g., Sec. V.D of Ref. [124] for a detailed discussion.
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B — mly (Ny =2+1)

Central Values Correlation Matrix
V.| x 103 3.61 (16) 1 —-0.812 —-0.108 0.128 —0.326 —0.151
ag 0.425 (15) —0.812 1 —0.188 —0.309  0.409  0.00926
af —0.441 (39) —0.108 —0.188 1 —0.498 —0.0343 0.150
ag —0.52 (13) 0.128  —0.309 —0.498 1 —0.190 0.128
ad 0.560 (17) —0.326  0.409 —0.0343 —0.190 1 —0.772
a? —1.346 (53) —0.151 0.00926  0.150 0.128  —0.772 1

Table 51: Value of |V,|, coefficients for the N* = N? = NT = 3 z-expansion of the
B — w form factors fi and fy, and their correlation matrix. The chi-square per degree
of freedom is x?/dof = 116.7/62 = 1.88 and the errors on the fit parameters have been
rescaled by /x?/dof = 1.37. The lattice calculations that enter this fit are taken from
FNAL/MILC 15 [124], RBC/UKQCD 15 [125] and JLQCD 22 [126]. The experimental inputs
are taken from BaBar [138, 139] and Belle [140, 141]. The form factors can be reconstructed
using parameterization and inputs given in Appendix B.3.2.

a function of z(¢?), together with our preferred fit; experimental data has been rescaled
by the resulting value for |V,;|?. It is worth noting the good consistency between the
form-factor shapes from lattice and experimental data. This can be quantified, e.g., by
computing the ratio of the two leading coefficients in the constrained BCL parameteriza-
tion: the fit to lattice form factors yields af /ag = —1.20(23) (cf. the results presented in
Sec. 8.3.1), while the above lattice+experiment fit yields af /af = —1.039(94).

Finally we combine the Ny = 2+1 determinations of |V,;| from B — 7v and B — wlv
in Egs. (257) and (262) and obtain:

Ny =2+41: |Vip| = (3.63 £0.16) x 1072
[B — (wlv,7v), FLAG average,
Refs. [60, 69-72, 124-126, 138-141, 509, 510]]. (262)

Our results are summarized in Tab. 52 and in Fig. 35, where we also show the PDG
inclusive determination [V, |inct = (4.1340.12exp = 70115, .0 £0.18 Amoder) X 1072 [274] (the
Amodel error has been added in Ref. [274] to account for the spread in results obtained

using different theoretical models).

8.9 Determination of |V,

We now combine the lattice-QCD results for the B — D®) form factors with all avail-
able experimental information on B — D®) ¢y (¢ = e, u) semileptonic decays to obtain
determinations of the CKM matrix element V| in the Standard Model.

For B — D we perform a joint fit to the available lattice data, i.e., the Ny =241
FNAL/MILC 15C [132] and HPQCD 15 [133] calculations discussed in Sec. 8.4, and state-
of-the-art experimental determinations. We combine the Belle measurement [143], which
provides partial integrated decay rates in 10 bins in the recoil parameter w, with the 2010
BaBar data set in Ref. [142], which quotes the value of GZ7P (w)nrw|Ve| for 10 values
of w.5' The fit is dominated by the more precise Belle data. Given this, and the fact that

61We thank Marcello Rotondo for providing the 10 bins result of the BaBar analysis.
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Figure 31: Lattice and experimental data for f277(¢%) and f@~™(¢?) versus z (left panel)
and ¢? (right panel). Experimental data has been rescaled by the value for |V,;| found from
the joint fit. Green symbols denote lattice-QCD points included in the fit, while blue and
indigo points show experimental data divided by the value of |V,;| obtained from the fit. The
grey and orange bands display the preferred N* = N = 3 BCL fit (five z-parameters and
’Vub’)-

from |Vip| x 103
FLAG average for Ny =2 +1 B — wly 3.61(16)
FLAG average for Ny =2+ 1 B — v 4.01(64)
FLAG average for Ny =2 +1 B — (wlv, Tv) 3.63(16)
FLAG average for Ny =2+ 1+1 B — Tv 4.05(64)
PDG 2023 B — Xulv 4.13(26)

Table 52: Results for |V,;|. The averages involving B — mfv and B — 7v can be found
in Egs. (261), (257), (262) and (260); all uncertainties have been added in quadrature. The
inclusive average is taken from PDG [274]. The lattice calculations for the B — m form
factors are taken from Refs. [124-126], for fp at Ny =241 from Refs. [60, 69-72] and for fg
at Ny =2+ 141 from Refs. [20, 36, 67, 68].

only partial correlations among systematic uncertainties are to be expected, we will treat
both data sets as uncorrelated.? The formula for the differential B — D{v branching
ratio is given in Eq. (195).

A constrained (N* = N° = 3) BCL fit using the same ansatz as for lattice-only data
in Sec. 8.4 yields our average:

Ny =2+1: |V =40.0(1.0) x 10?
[B — Dlv, FLAG average, Refs. [132, 133, 142, 143]]. (263)

The fit has a chi-square per degree of freedom x?/dof = 20.0/25 = 0.80. The result of
the full fit, including the correlation matrix between |V,| and the BCL coefficients is

52We have checked that results using just one experimental data set are compatible within 1o. In the case
of BaBar, we have taken into account the introduction of some EW corrections in the data.
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B — Div (N =2+1)

Central Values Correlation Matrix
[V, | x 103 40.0 (1.0) 1.00 —0.525 —-0.339 0.0487 —0.521 —0.433
ag 0.8946 (94) —0.525  1.00 0.303 —0.351 0.953 0.529
ay —8.03 (16) —0.339 0.303 1.00 0.203 0.375 0.876
ag 50.1 (3.1) 0.0487 —0.351  0.203 1.00 —0.276 0.196
ad 0.7804 (75) —0.521  0.953 0.375  —0.276 1.0 0.502
a? —3.38 (16) —0.433  0.529 0.876 0.196 0.502 1.0

Table 53: Value of |V,|, coefficients for the N* = N z-expansion of the B — D form factors
f+ and fo, and their correlation matrix. The coefficient a3 is fixed by the f1 (¢? = 0) = fo(q* =
0) constrain. The chi-square per degree of freedom is x?/dof = 20.0/25 = 0.80. The lattice
calculations that enter this fit are taken from FNAL/MILC 15C [132] and HPQCD 15 [133].
The experimental inputs are taken from BaBar [142] and Belle [143]. The form factors can
be reconstructed using parameterization and inputs given in Appendix B.3.5.
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Figure 32: Lattice and experimental data for f f_)D (¢%) and fB7P(¢?) versus z (left panel)
and ¢? (right panel). Green symbols denote lattice-QCD points included in the fit, while blue
and indigo points show experimental data divided by the value of |V,;| obtained from the fit.
The grey and orange bands display the preferred Nt = N° = 3 BCL fit (five z-parameters
and |Vp|).

presented in Tab. 53 and illustrated in Fig. 32. In passing, we note that, if correlations
between the FNAL/MILC and HPQCD calculations are neglected, the |Vg| central value
rises to 40.3 x 1073 in nice agreement with the results presented in Ref. [667].

Finally, using the fit results in Tab. 53, we extract a value for R(D) which includes
both lattice and experimental information:

Ny =2+ 1: R(D)jat+exp = 0.2955(32)
[FLAG average, Refs. [132, 133, 142, 143]]. (264)
Note that we do not need to rescale the uncertainty on R(D)iattexp because, after the
inclusion of experimental B — D{v (¢ = e, u) results, the shift in central value caused by

using a different parameterization is negligible (see the discussion above Eq. (224)). For
B — D*, we perform a joint fit to all available lattice and experimental data. On the
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lattice side, we consider separately the two Ny = 2+ 1 calculations FNAL/MILC 21 [136]
and JLQCD 23 [137] and the single Ny = 24+ 1+ 1 HPQCD 23 [135] calculation. On
the experimental side, the situation is more complicated because we need to combine the
following results.

e The Belle untagged measurement [144] of the differential B® — D*~¢*y, partial
width.

e The Belle tagged measurement [145] of the normalized differential B — D*{v, partial
width (averaged over the B~ and B° modes).

e The Belle IT tagged measurement [146] of the normalized differential B — D**(~ 1,
partial width.

e The Belle II tagged branching ratio measurement BR(B? — D*t/~1,) = (4.922 +
0.023 4 0.220)% [146].

e A modified HFLAV world average for the branching ratio of B° — D**¢~, mode
in which the contributions from the Belle untagged [144] (already included in the
differential results we use) and Belle II tagged [147] (superseded by the Belle II
tagged result [146] which we include separately) measurements have been removed.
Using the results from Table 69 of Ref. [148], we calculate BR(B® — D*T(~iy) =
(5.12 4+ 0.19)% where a PDG rescaling factor 1.36 has been applied.

e The HFLAV world average BR(B~ — D*%¢~ ;) = (5.58 £ 0.07stat £ 0.215y5¢ ) % [148]
(which is not included in the Belle tagged shape-only measurement).

The theoretical predictions for the differential B — D*{v rate binned over the variables
w, cosf,, cosf; and y are obtained easily via direct integration of Eq. (210). One small
subtlety is the inclusion of the so-called Coulomb factor (1 + ) for final states involving
two charged particles, i.e., only for BR(B® — D**¢~ ;). Regarding the fit methodology,
we chose not to use any prior nor to impose unitarity constraints on the BGL coefficients.
The Belle untagged analysis [144] presents the data in 10 bins of each kinematical variable;
since the integral over the bins in each of the four distributions are identical, we remove
the last bin in each of the three angular distributions. Moreover, we marginalize over
Npo, the number of B® mesons in the data sample, thus properly correlating its impact
over all the distributions and over the electron and muon modes.

The results of this global fit are presented in Tab. 54. The chi-square per degree of
freedom of the two fits are x?/dof = 216/160 = 1.35 for Ny = 2 4+ 1 and x?/dof =
200/148 = 1.35 for Ny =2+ 1+ 1 (the difference in the degrees of freedom is simply due
to the presence of two sets of lattice synthetic data, each comprised of 12 points, for the
Ny = 2+ 1 case). Note that we have rescaled all the errors by /x?/dof following the
standard PDG recipe. In particular, we find:

Ny =2+ 1: |Vay| = 39.23(65) x 1073

[B — D*fv, FLAG average, Refs. [136, 137, 144-146, 148]], (265)
Ny =241+ 1: |Vap| = 39.44(89) x 107°
[B — D*lv, FLAG average, Refs. [135, 144-146, 148]] . (266)

In Fig. 33, we show the form factors obtained from combining lattice and experimental
results. In Fig. 34, we present a comparison of the four normalized differential distributions
extracted from the experimental data, from the individual lattice results and from the
combined lattice plus experiment fit.% The top (bottom) four panels correspond to
Ny =241 (2+1+1). Direct inspection of these distributions shows quite a good

53For the Belle untagged case [144] we produce the normalized binned distributions by inverting the electron
and muon response matrices and averaging over the leptons. Note that these distributions are presented for
illustrative purpose only.
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B — D* (Ny =2+1)

coeff Central Values Correlation Matrix
[Vep| x 10° 39.23(65) 1 ~0.3552 ~0.1269 ~0.6672 ~0.3260 0.2331 —0.2412 0.1118 ~0.08658
ag 0.03036(72) —0.3552 1 —0.4976 0.3645 —0.0009317  —0.02169 0.1026 —0.02327  —0.09817
a"ll —0.083(21) —0.1269 —0.4976 1 0.02961 0.1874 —0.2543 0.08161 —0.03930 0.1177
a({ 0.01213(15) —0.6672 0.3645 0.02961 1 —0.08990 0.07897 —0.08767 0.07594 —0.09589
a{ 0.0234(64) —0.3260 —0.0009317 0.1874 —0.08990 1 —0.8384 0.4660 —0.2491 0.3552
aé —0.59(16) 0.2331 —0.02169 —0.2543 0.07897 —0.8384 1 —0.2414 0.07961 —0.2880
afl 0.00141(97) —0.2412 0.1026 0.08161 —0.08767 0.4660 —0.2414 1 —0.9135 —0.06385
(L§1 —0.005(17) 0.1118 —0.02327 —0.03930 0.07594 —0.2491 0.07961 —0.9135 1 0.2820
afl —0.093(17) —0.08658 —0.09817 0.1177 —0.09589 0.3552 —0.2880 —0.06385 0.2820 1
B — D* (Ny =24+ 1+1)
coeff Central Values Correlation Matrix
[Vep| % 103 39.44(89) 1 —0.1717 —0.06581 —0.7257 —0.4981 0.4426 —0.2473 0.08156 —0.2155
ag 0.0311(21) —0.1717 1 —0.9267 0.1121 —0.004683 0.1735 0.1230 —0.003372 0.07094
af —0.125(75) —0.06581 —0.9267 1 0.09615 0.1018 —0.2899 —0.03844 —0.03789 —0.03009
a[{ 0.01207(21) —0.7257 0.1121 0.09615 1 0.01430 —0.04137 —0.03342 0.02486 0.07847
a{ 0.023(12) —0.4981 —0.004683 0.1018 0.01430 1 —0.9267 0.2522 0.03052 0.3601
a£ —0.55(31) 0.4426 0.1735 —0.2899 —0.04137 —0.9267 1 —0.06981 —0.1655 —0.3503
afl 0.0016(14) —0.2473 0.1230 —0.03844 —0.03342 0.2522 —0.06981 1 —0.9270 —0.1678
afl —0.008(27) 0.08156 —0.003372 —0.03789 0.02486 0.03052 —0.1655 —0.9270 1 0.3148
afl —0.090(48) —0.2155 0.07094 —0.03009 0.07847 0.3601 —0.3503 —0.1678 0.3148 1

Table 54: [Vy|, coeflicients and correlation matrix for the (Ny, Ny, N, Ng,) = (2,3,3,2)
BGL fit to the B — D* form factors g, f, F7 and F5 for Ny =2+ 1 and Ny =2+ 1+ 1. The
form factors can be reconstructed using parameterization and inputs given in Appendix B.3.7.

agreement (as already evidenced by the relatively good chi-square per degree of freedom
of the fits) albeit with some tensions in some of the shapes. In particular, the normalized
distributions extracted from Ny = 2+ 1 and Ny = 2 4 1 + 1 results tend to deviate
from the measured ones along similar patterns: deficit at large w, excess at large cos8,,
flatter distribution in cos 6. The tensions in the Ny = 24141 are only apparently more
pronounced because of the larger lattice uncertainties.

Finally, using the fit results in Tab. 54, we extract a value for R(D*) which includes
both lattice and experimental information:

N =24 1: R(D*)aprexp = 0.2505(11)

[FLAG average, Refs. [136, 137, 144146, 148]], (267)
Ny =2+1+1: R(D")atsexp = 0.2506(17)
[FLAG average, Refs. [135, 144-146, 148]] . (268)

Before discussing the combination of the above |V| results, we note that the LHCb
Collaboration recently reported the first determination of |Vg| at the Large Hadron Col-
lider using Bs — D ptv, and By — D*~ ptv, decays [626, 627]. The differential decay
rates, in combination with the Ny = 24141 HPQCD 19 [134] and HPQCD 19B [639]
lattice results for ffs_’Ds and FBs7D:(1), were analyzed using either the CLN or BGL
form-factor parameterizations. The result for |V ;| from the BGL fit is [627]

Ny =24+1+1:|Vy|=(41.7£08+09+1.1)x 107>  [B, — D~ utv,, LHCb] ,
(269)

where the first two uncertainties are the statistical and systematic experimental uncer-
tainties, and the third is due to the external inputs used, including the lattice inputs.
The LHCD analysis used ratios to the reference decay modes B® — D~ pty, and BY —
D*~pty,, whose branching fractions are used as input in the form of the Particle Data
Group averages of measurements by other experiments [404]. The result (269) is therefore
correlated with the determinations of |V| from B — D and B — D* semileptonic decays.
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Figure 33: The form factors g(¢?), f(¢?), Fi(¢?), and Fy(q?) for B — D*{v plotted as a
function of w. The red (blue) band displays our preferred (Ny, Ny, N, Np,) = (2,3,3,2)
BGL fit (eight parameters) to experimental and Ny = 2+ 1 (2 4+ 1 + 1) lattice data. The
constraints at zero and maximum recoil are imposed exactly. No use of unitarity constraints
and priors has been made.
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Figure 34: Normalized differential decay rates with respect to the variables w, cos 6;, cos 8, and
X- The red (blue) band displays our preferred (Ng, N¢, Np,, Np,) = (2,3, 3,2) BGL fit (eight
parameters) obtained from lattice calculations with (without) the inclusion of experimental
data. The constraints at zero and maximum recoil are imposed exactly. No use of unitarity
constraints and priors has been made. The top and bottom four distributions are obtained
using Ny = 2+ 1 and Ny = 2 + 1 + 1 lattice calculations, respectively.
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from |Vip| x 103

FLAG average for Ny =2 +1 B — D*lv 39.23(65)
FLAG average for Ny =2+ 1 B — Dlv 40.0(1.0)
FLAG average for Ny =2 +1 B — (D, D*)tv 39.45(56)
FLAG average for Ny =2+1+1 B — D*{v 39.44(89)
LHCb result for Ny =2+ 1+ 1 (BGL) By, — DVt 41.7(0.8)(0.9)(1.1)
Bordone et al. B — X Alv 42.16(51)

Table 55: Results for [V|. The lattice calculations for the B — D form factors at Ny =2+1
are taken from FNAL/MILC 15 [124], RBC/UKQCD 15 [125] and JLQCD 22 [126]; for the
B — D* form factors at Ny = 2 + 1 from FNAL/MILC 21 [136] and JLQCD 23 [137]; for
the B — D* form factors at Ny = 241+ 1 from HPQCD 23 [135]. The LHCb result using

By — Dg*)ﬁu decays [134, 626, 627, 639], as well as the inclusive average obtained in the
kinetic scheme from Ref. [668] are shown for comparison. In the LHCb result, the first two
uncertainties are the statistical and systematic experimental uncertainties, and the third is
due to the external inputs used, including the lattice inputs.

Given the challenges involved in performing our own fit to the LHCb data, we do not,
at present, include the LHCD results for By — D, ptv, and B, — Di pty, in our
combination of |V

We now proceed to combine the two Ny = 241 determinations of |V from exclusive
B — D and B — D* semileptonic decays. To this end, we include an estimate the
correlation between the statistical lattice uncertainties on |Vcb|gfj [2,+1 (FNAL/MILC and

HPQCD) and |Vcb|gf_i:2)—f1 (FNAL/MILC), because they are based on the same MILC
configurations (albeit on different subsets). An estimate of this correlation is complicated
due to the difficulty of disentangling lattice and experimental sources of uncertainties in
a global BGL fit. Here we follow an approximate procedure which relies on estimating
these correlations by looking at the B — D and B — D* form factors at zero recoil,
GB=P(1) and FB=P7(1). The inclusion of these correlations has a very small impact on
the average, thus providing an a posteriori justification for this approximate method. We
obtain:

Ny =2+ 1: |V = 39.45(56) x 103
[B — (D, D*)¢v, FLAG average,
Refs. [132, 133, 136, 137, 142-146, 148]]. (270)

Our results are summarized in Tab. 55, which also shows the inclusive determination of
|V.p| = 42.16(51) x 1072 [668] for comparison, and are illustrated in Fig. 35.64

4This determination of |V.p| is also adopted by the PDG [274].
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8.10 Determination of |V,,/V,| from A, decays
In 2015, the LHCb Collaboration reported a measurement of the ratio [649]

s AB(Ay = pp” )

/ @
RBF (Ab) — 152GeV2 q , (271)
Tmax dAB(Ay — Aot D) - o
2 dq
7 GeV? dg

which, combined with the lattice QCD prediction from Ref. [494] (Detmold 15) discussed
in Sec. 8.6 yields a determination of |Vy;,/Vey|. The LHCb analysis uses the decay A, —
pK7 to reconstruct the A, and requires the branching fraction B(A. — pK ) of this decay
as an external input. Using the latest world average of B(A. — pKm) = (6.28 + 0.32)%
[225] to update the LHCb measurement gives [308]

Rpr(Ap) = (0.92 4 0.04 4 0.07) x 1072, (272)

Cpnz (15GeV?)

and, combined with the lattice QCD prediction for G

discussed in Sec. 8.6,

Vn/ Vip| = 0.079 & 0.004 1. & 0.004 exep.- (273)

We remind the reader that the lattice calculation for the form factor ratio currently has
a W rating; thus we will not use the result in Eq. (273) in the global [V, Vi) fit.

8.11 Determination of |V,;,/V,| from By decays
More recently, LHCD reported the measurements [669)

dq2

/7G6V2 dB(B, — K~ )
q,

2 —m?2 dq2
RBF(BS, IOW) = == £

B(Bs — D3 utv,)
= (1.66+0.12) x 1073, (274)

q?nax:(nLBs _77”()2 dB(Bs — K_,U/+VH«) 2
dg
7

. GeV?2 dg?
Foe(By, high) = B(B. — Di yi,,)
s s m

= (3.254+0.28) x 1073, (275)

B(B, -+ K~ ptuy,)
B(Bs = Ds ptvy,)
= (4.89£0.33) x 1072, (276)

RBF(BS, all) =

Using our average of the Bs; — K form factors from lattice QCD as discussed in Sec. 8.3.3,
we obtain the Standard-Model predictions

1 [TV ar(B, —» K-t
/ (B = KZpuv,) (2.51£0.62) ps~,  (277)

Vsl Joz,,=m3 dg?
2 2
1 Tmax=(mBs —mK)” QT B, —» K—ut
IV|2/ ( Tm? HV) (024051 ps~!, (278
ub 7 GeV?2
1
WF(BS%K_M“'VM) = (6.5+1.1)ps . (279)
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For the denominator, we use the By — D, form factors from Ref. [134] (HPQCD 19),
which yields

1

WF(BS —Dyuty,) = (9.15+0.37) ps . (280)

cb
Since the form factor shape is most reliably constrained by the lattice data only at high-
q?, the most reliable determination of the ratio |V,;/Vs| is obtained by using LHCb
measurements limited to the high-¢? region. The result which we obtain and which is
used in the combination presented in Sec. 8.12, reads:

|Vub|
|Veb|

(high) = 0.0861 £ 0.0057 144, & 0.0038 exp. - (281)

For reference, the corresponding CKM ratio obtained at low-¢? and in the whole ¢? regions
are, |Vip|/|Vep|(low) = 0.0779 £ 0.0098 14, + 0.0028 exp. and |Vip|/|Ves|(all) = 0.0828 £
0.00701a¢. & 0.0028 cxp., Tespectively.

8.12 Summary: |V,;| and |V,

FLAG2024 IV plx103 FLAG2024 IVplx103
I ~  m , B-t(BaBar)
x —. B-1v (Belle) _ - FLAG average
1 B—1v (average) b )
= < - B—D"¢v
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T | B—atv
93 v .m+ B—tv(BaBar)
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Figure 35: Left: Summary of |V,;| determined using: i) the B-meson leptonic decay branching
fraction, B(B~ — 7~ v), measured at the Belle and BaBar experiments, and our averages for
fp from lattice QCD; and ii) the various measurements of the B — mwfv decay rates by Belle
and BaBar, and our averages for lattice determinations of the relevant vector form factor
f+(q?). The inclusive result is taken from PDG [274]. Right: Same for determinations of |V|
using semileptonic decays. The inclusive result is taken from Ref. [668].

In Fig. 36, we present a summary of determinations of |V;| and |Vg| from B —
(m, DNy, B, — (K,D,)fv (high ¢*> only), B — 7v and Ay — (p,A.)lv, as well as
the results from inclusive B — X, .fv decays. Currently, the determinations of V¢, from
B — D* and B — D decays are quite compatible; however, a sizeable tension involving
the extraction of Vi, from inclusive decays remains. Note that constraints on |V, /V.,|
from baryon modes are displayed but, in view of the rating in Tab. 49, are not included in
the global fit. As discussed in Sec. 8.9, experimental inputs used in the extraction of |Vg|
from B, — D" tw decays [626, 627] given in Eq. (269) are highly correlated with those
entering the global (|Vis],|Ves|) fit described in this section. Given these correlations and
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the challenges in reproducing the LHCb analysis, for the time being we do not include
the result Eq. (269) into the global fit.

In the globlal fit we include an estimate of the correlations between the |V,;| and
|Vep| determinations from semileptonic B decays. We conservatively assume 100% corre-
lation between the statistical lattice uncertainties on (1) |Vis| (FNAL/MILC), |V |p—D
(FNAL/MILC and HPQCD) and |Vep|p—p+~ (FNAL/MILC) and (2) |Vis| (JLQCD) and
[Vev|B—p (JLQCD). Due to the difficulty of disentangling statistical lattice uncertainties
in the three BGL fits for B — (w, D, D*), we follow the same approximate procedure
described at the end of Sec. 8.9 and estimate the correlations by looking at the zero-recoil
form factors f, (0), FE7P(1) and FPP"(1). The results of the fit are

Vol = 39.46(53) x 1072, (282)
|V.p] = 3.60(14) x 1072 | (283)
p—value = 0.66 , (284)

with a 0.36 correlation coefficient. For reference, the fit without the inclusion of any
correlation between the various lattice calculations yield |V, | = 39.50(51) x 1073, |V ,| =
3.60(13) x 1072 with a 0.09 correlation coefficient (the latter does not vanish because of
the inclusion of |V,,;/Vep| from By — (K, Dg)lv decays).

The inclusive determinations read |V, |inc = (42.164+0.51) x 1073 [670] and |V, ; [incs =
(413 £ 012 £ 015, +0.18Amoder) x 1072 [274].
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Figure 36: Summary of |V, and |V| determinations. The black solid and dashed lines
correspond to 68% and 95% C.L. contours, respectively. The result of the global fit
(which does not include [V,,/V,| from baryon modes nor |Vy| from By — Dg*)ﬁl/) is
(V| Vo) = (39.46 £ 0.53,3.60 £ 0.14) x 1073 with a p-value of 0.66. The lattice and
experlmental results that contribute to the various contours are the following. B — wlv:
lattice (FNAL/MILC 15 [124], RBC/UKQCD 15 [125], and JLQCD 22 [126]) and experi-
ment (BaBar [138, 139] and Belle [140, 141]). B — D/{v: lattice (FNAL/MILC 15C [132]
and HPQCD 15 [133]) and experiment (BaBar [142] and Belle [143]). B — D*/v: lattice
(FNAL/MILC 21 [136], JLQCD 23 [137], HPQCD 23 [135]) and experiment (Belle [144, 145],
Belle II [146], HFLAV [148]). B — 7v: lattice (N = 2 4+ 1 + 1 determination of
fB in Eq. (168) [20, 36, 67, 68]) and experiment (BaBar [510] and Belle [509]). Bs; —
K{v/By — Dylv: lattice (HPQCD 14 [127], RBC/UKQCD 23 [128], FNAL/MILC 19 [586],
HPQCD 19 [134]) and experiment (LHCb [669]). Ay, — plv/Ay — Aclv: lattice
(Detmold 15 [494]) and experiment (LHCb [649]). Bs — Div/Bs — Dglv: lattice
(HPQCD 19 [134] and HPQCD 19B [639]) and experiment (LHCb [626, 627]). The in-
clusive determinations are taken from Refs. [225, 308, 668] and read (|V,],|V,

b‘)lncl -
(42.16 £ 0.51,4.13 + 0.26) x 1073,
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9 The strong coupling oy

Authors : L. Del Debbio, P. Petreczky, S. Sint

9.1 Introduction

The strong coupling o (u) = gs(u)?/(47) defined at scale y, is the parameter that deter-
mines the strength of strong interactions in the Standard Model. It plays a key role in
the understanding of QCD and in its application to collider physics, where it is ubiqui-
tous in calculations of physical processes, e.g., at the LHC. For example, the parametric
uncertainty from a; is one of the dominant sources of uncertainty in the Standard Model
predictions for the Higgs boson [671] and top quark cross sections, see, e.g., Ref. [672].
In order to fully exploit the experimental results that will be collected during the high-
luminosity run of the LHC in the near future, it is mandatory to reduce the uncertainty
on a, below 1%. Similarly, high-accuracy determinations of this coupling will help in
understanding the stability of the vacuum of the Standard Model and will yield one of the
essential boundary conditions for completions of the Standard Model at high energies [673—
680]. At this level of precision, it becomes imperative to have a robust understanding of
systematic errors. Lattice simulations are ideally placed to play a central role in this
quest. In the following we try to summarize the main features of the lattice approach in
a way that we hope is understandable by nonexperts. For recent, complementary review
articles, we refer the reader to Refs. [681, 682].
In order to determine the running coupling at scale p

=2
gs (1)
! == 285
=52 (285)
we should first “measure” a short-distance quantity Q at scale p either experimentally
or by lattice calculations, and then match it to a perturbative expansion in terms of a
running coupling, conventionally taken as ogg(i),

Q(p) = crogs(p) + coogrg () + -+ . (286)

We note that in some cases also a lowest-order constant term, cg, may be present; in
the following, we always assume that such a term has been subtracted on both sides
and absorbed in a re-definition of Q(u). We distinguish between phenomenological and
lattice determinations of oy, the essential difference being the origin of the values of Q in
Eq. (286). The basis of phenomenological determinations are experimentally measurable
cross sections or decay widths from which Q is defined. These cross sections have to be
sufficiently inclusive and at sufficiently high scales such that perturbation theory can be
applied. Often hadronization corrections have to be used to connect the observed hadronic
cross sections to the perturbative ones. Experimental data at high p, where perturbation
theory is progressively more precise, usually have increasing experimental errors, not least
due to the very smallness of as(1). Hence, it is not easy to find processes that allow one to
follow the p-dependence of a single Q(u) over a range where as(u) changes significantly
and precision is maintained. Note also that determinations of «y from experimental
data at hadron colliders necessarily require a simultaneous fit of the Parton Distribution
Functions (PDFs) [683], making the whole procedure more complicated and prone to
systematic errors.

In contrast, in lattice gauge theory, one can design Q(u) Euclidean short-distance
quantities that are not directly related to experimental observables. This allows us to
follow the u-dependence until the perturbative regime is reached and nonperturbative
“corrections” are negligible. The only experimental input for lattice computations of «;
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are the masses or decay constants of hadrons, which fixes the overall energy scale of the
theory and the quark masses. Therefore, experimental errors are completely negligible
and issues such as hadronization do not occur. We can construct many short-distance
quantities that are easy to calculate nonperturbatively in lattice simulations with small
statistical uncertainties. We can also simulate at parameter values that do not exist
in nature (for example, with unphysical quark masses between bottom and charm) to
help control systematic uncertainties. These features mean that precise results for ag
can be achieved with lattice-gauge-theory computations. Further, as in phenomenological
determinations, the different methods available to determine oy in lattice calculations
with different associated systematic uncertainties enable valuable cross-checks. Practical
limitations are discussed in the next section, but a simple one is worth mentioning here.
Experimental results (and therefore the phenomenological determinations) of course have
all quarks present, while in lattice gauge theories in practice only the lighter ones are
included and one is then forced to use the matching at thresholds, as discussed in the
following subsection.

It is important to keep in mind that the dominant source of uncertainty in most
present day lattice-QCD calculations of oy are from the truncation of continuum/lattice
perturbation theory and from discretization errors. Perturbative truncation errors are
of particular concern because they often cannot easily be estimated from studying the
data itself. Perturbation theory provides an asymptotic series and the size of higher-order
coefficients can sometimes turn out to be larger than suggested by naive expectations
based on power counting from the behaviour of lower-order terms. We note that per-
turbative truncation errors are also the dominant source of uncertainty in several of the
phenomenological determinations of a.

The various phenomenological approaches to determining the running coupling con-
stant, a%(M z) are summarized by the Particle Data Group [225]. The PDG review lists
five categories of phenomenological results used to obtain the running coupling: using
hadronic 7 decays, hadronic final states of e*e™ annihilation, deep inelastic lepton—nucleon
scattering, electroweak precision data, and high-energy hadron-collider data. Excluding
lattice results, the PDG, in their most recent update [274], quotes the weighted average
as

ol (Mz) = 01175(10), PDG 2024 [274] (287)

compared to a%(MZ) = 0.1176(11) of the older PDG 2020 [225]. For a general overview
of the various phenomenological and lattice approaches see, e.g., Ref. [672]. The extraction
of a, from 7 data, which is one of the most precise and thus has a large impact on
the nonlattice average in Eq. (287), is especially sensitive to the treatment of higher-
order perturbative terms as well as the treatment of nonperturbative effects. This is

important to keep in mind when comparing our chosen range for a%(M z) from lattice

determinations in Eq. (402) with the nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of o, and Aqcp

Despite the fact that the notion of the QCD coupling is initially a perturbative concept,
the associated A-parameter is nonperturbatively defined,

A

1 es(gs (1)),

_ gs 1 1 b
() = (bog?)-bi/ (23— 1/(200g?) _/ d _bh
©s(Js) (bogs) o’e exp o x B(z) + bord bR J

(288)
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provided that 5(gs) = ,uaggil(j‘) is the full renormalization group function in the (mass-

independent) scheme which defines gs. The first two coefficients, by and by, in the pertur-
bative expansion

B(x) ~ bz —bya® + ..., (289)

are scheme-independent (“universal”) and given by

b0(471T)2<11§ f>, b1(47lr)4<102:;8 f>. (290)

In the MS scheme, the coefficients of the B-function have been calculated up to 5-loop
order, i.e., by, bs and by are known [241, 684—687].

As a renormalization-group-invariant quantity, the A-parameter is p-independent.
However, it does depend on the renormalization scheme albeit in an exactly computable
way: A perturbative change of the coupling from one mass-independent scheme S to
another (taken here to be the MS scheme) takes the form

2 2 1,2
gars() = g3 () (1 + Vg () +...) (291)
where cgi), 1 > 1 are finite coefficients. Performing this change in the expression for the
A-parameter at a large scale p, so that higher-order terms can be neglected, one obtains
the exact relation between the respective A-parameters of the two schemes,

A = Ag exp [cgU /(2b0)] . (292)

Note that this exact relation allows us to nonperturbatively define Agg, by starting from
any nonperturbatively defined scheme S for which cél) is known. Given the high-order
knowledge (5-loop by now) of By then means that the errors in agyg(mz) correspond
almost completely with the errors of Ag. We will therefore mostly discuss them in that
way. Starting from Eq. (288), we have to consider (i) the error of gZ(p) (denoted as
(%)AQS ) and (ii) the truncation error in Bg (denoted as (52 ). Concerning (ii),

7)trunc
(n1)
g9

note that knowledge of ¢, '’ for the scheme S means that 8g is known to n; +1 loop order;
by, is known. We thus see that in the region where perturbation theory can be applied,
the following errors of Ag (or consequently Ajg) have to be considered

AA _ Dag(p)
<A)Aas = Srboade < [+ O] (203)
<AAA)mmc = kag (1) + O(ag™ (), (294)

where the pre-factor k depends on b, 41 and in typical good schemes such as MS it is
numerically of order one. Statistical and systematic errors such as discretization effects
contribute to Aag(u). In the above we dropped a scheme subscript for the A-parameters
because of Eq. (292).

By convention agg is usually quoted at a scale i = Mz where the appropriate effective
coupling is the one in the five-flavour theory: a@(M 7). In order to obtain it from a result
with fewer flavours, one connects effective theories with different number of flavours as
discussed by Bernreuther and Wetzel [688]. For example, one considers the MS scheme,
matches the 3-flavour theory to the four-flavour theory at a scale given by the charm-quark
mass [689-691], runs with the 5-loop S-function [241, 684—-687] of the four-flavour theory
to a scale given by the b-quark mass, and there matches to the five-flavour theory, after
which one runs up to u = Mz with the five-loop S-function. For the matching relation at
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a given quark threshold we use the mass m, which satisfies m, = m%f) (m.), where T is
the running mass (analogous to the running coupling). Then
r—1(m) = gy, (ma) x [1+0 % g3, (m.) + >t 937 ()] (295)
n>2
with [689, 691, 692]
o= 1 (296)
2T (am?)2 727
1 82043 564731 2633
t3 = — — Ny—1 2
K (472)3 | 27648 G+ Toaa16 ~ 31104V )} ’ (297)
1
ty = W [5.170347 —1.009932(Ny — 1) — 0.021978 (Ny — 1)2] , (298)

(where (3 is the Riemann zeta-function) provides the matching at the thresholds in the
MS scheme. Often the software packages RunDec [693, 694] or the more recent one,
REvolver [695], are used for quark-threshold matching and running in the MS-scheme.

While to, t3, t4 are numerically small coefficients, the charm-threshold scale is also
relatively low and so there are nonperturbative uncertainties in the matching procedure,
which are difficult to estimate but which we assume here to be negligible. This is sup-
ported by nonperturbative tests [200], where perturbative decoupling relations in the MS
scheme were shown to quantitatively describe decoupling at the few permille level, down
to the charm-quark region. Obviously there is no perturbative matching formula across
the strange “threshold”; here matching is entirely nonperturbative. Model-dependent ex-
trapolations of g%, from Ny = 0,2 to Ny = 3 were done in the early days of lattice gauge
theory. We will include these in our listings of results but not in our estimates, since such
extrapolations are based on untestable assumptions.

9.1.2 Overview of the review of a;

We begin by explaining lattice-specific difficulties in Sec. 9.2.1 and the FLAG criteria
designed to assess whether the associated systematic uncertainties can be controlled and
estimated in a reasonable manner. These criteria remain unchanged since the FLAG 19
report, as there has still not been sufficiently broad progress to make them more stringent.
However, in this report we have implemented a systematic scale variation to help assess
systematic errors due to the truncation of the perturbative series. Scale variations are
widely used in phenomenology and its application to lattice determinations has been
advocated in Ref. [681]. We explain the procedure at the end of this introduction and,
where possible, we will quote corresponding results.

We then discuss, in Sec. 9.3 — Sec. 9.9, the various lattice approaches and results from
calculations with Ny = 0, 2, 2+1, and 24141 flavours. For lattice approaches with neither
a new result nor a result passing all FLAG criteria, we refer to the discussion in previous
FLAG reports. In particular, this regards determinations of a, from QCD vertices and
from the eigenvalue spectrum of the Dirac operator.

Since FLAG 21, the strategy of nonperturbative renormalization by decoupling, as
introduced by the ALPHA collaboration in Ref. [696], produced a new result for ;. It is
important to realize that this method shifts the perspective on results for the A-parameter
with unphysical flavour numbers, in particular for Ny = 0: Such results can be related to
Ny > 0 results by a nonperturbative matching calculation. We therefore made an effort
to review Ny = 0 results, some of which are now over 20 years old. In particular, we also
included a new section on the gradient-flow (GF) coupling in infinite space-time volume,
even though only results for Ny = 0 exist at the moment.
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After the discussion of the various lattice methods, we proceed, in Sec. 9.10, with the
averages together with our best estimates for a%. These are currently determined from
three- and four-flavour QCD simulations only, however, with the decoupling result also
relying on the Ny = 0 A-parameter as input. Therefore, we discuss results for the Ny = 0
A-parameter in some detail, in addition to the physical cases with Ny = 3, 4 and 5, where
the latter is derived from Ny = 3 and 4 results by the standard perturbative evolution

across the bottom-quark threshold.

9.1.3 Additions with respect to the FLAG 21 report

Since the FLAG 21 report there were two new papers on Ny = 3:
Petreczky 20 [81] from heavy-quark current two-point functions (Sec. 9.8).
ALPHA 22 [80] from the decoupling method (Sec. 9.4).

In Ny =0 QCD, there are a number of additional works:

Bribian 21 [697], from step-scaling with the twisted periodic gradient-flow coupling
(Sec. 9.3).

Hasenfratz 23 [698] and Wong 23 [699] from the GF scheme in infinite volume
(Sec. 9.9)

Chimirri 23 [700] from heavy-quark current two-point functions (Sec. 9.8)
Brambilla 23 [197], from the force between static quarks (Sec. 9.5)

9.2 General issues

9.2.1 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of as published in peer-reviewed journals,
and that use NNLO or higher-order perturbative expansions, to obtain our final range in
Sec. 9.10. We also, however, introduce further criteria designed to assess the ability to
control important systematics, which we describe here. Some of these criteria, e.g., that
for the continuum extrapolation, are associated with lattice-specific systematics and have
no continuum analogue. Other criteria, e.g., that for the renormalization scale, could in
principle be applied to nonlattice determinations. Expecting that lattice calculations will
continue to improve significantly in the near future, our goal in reviewing the state-of-
the-art here is to be conservative and avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical ampli-
tudes or Euclidean correlation functions which are free from UV and IR divergences and
have a well-defined continuum limit. Examples include the force between static quarks
and two-point functions of quark-bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns obtaining the scale p in
physical units (GeV), given its value, apu, in lattice units. Ideally one compares the lattice
result for some hadron mass aMyp,q with the known experimental result for My.q to
determine a and thus g in physical units. Alternatively, convenient intermediate scales
such as /Tg, wo, 70, 71, [115, 365, 701, 702] can be used if their relation to an experimental
dimensionful observable is established. For more details we refer to Sec. 11 on scale setting
in this FLAG report. The low-energy scale u needs to be computed at the same lattice
spacings (i.e., the same bare couplings) where Q is determined, at least as long as one
does not use the step-scaling method (see below). This induces a practical difficulty given
present computing resources. In the determination of the low-energy reference scale the
volume needs to be large enough to avoid finite-size effects. On the other hand, in order
for the perturbative expansion of Eq. (286) to be reliable, one has to reach sufficiently high
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values of p, i.e., short enough distances. To avoid uncontrollable discretization effects the
lattice spacing a has to be accordingly small. This means

L > hadron size ~ AééD and 1/a>p, (299)
(where L is the box size) and therefore
L/a>> H/AQCD . (300)

The currently available computer power, however, limits L/a, typically to L/a = 32 — 96.
Unless one accepts compromises in controlling discretization errors or finite-size effects,
this means one needs to set the scale p according to

1 << Ljax Agep  ~ 10 — 30GeV . (301)

(Here <« or >> means at least one order of magnitude smaller or larger.) Therefore, u
can be 1 — 3 GeV at most. This raises the concern whether the asymptotic perturbative
expansion truncated at 1-loop, 2-loop, or 3-loop in Eq. (286) is sufficiently accurate.
There is a finite-size scaling method, usually called step-scaling method, which solves this
problem by identifying 4 = 1/L in the definition of Q(u), see Sec. 9.3.

For the second step after setting the scale p in physical units (GeV), one should
compute Q on the lattice, Qj.¢(a, 1) for several lattice spacings and take the continuum
limit to obtain the left hand side of Eq. (286) as

Qp) = li_r&) Qlat(a, p) with p fixed. (302)

This is necessary to remove the discretization error.

Here it is assumed that the quantity Q has a continuum limit, which is regularization-
independent. The method discussed in Sec. 9.7, which is based on the perturbative expan-
sion of a lattice-regulated, divergent short-distance quantity Wi, (a) differs in this respect
and must be treated separately.

In summary, a controlled determination of o s needs to satisfy the following:

1. The determination of «; is based on a comparison of a short-distance quantity Q
at scale y with a well-defined continuum limit without UV and IR divergences to a
perturbative expansion formula in Eq. (286).

2. The scale pu is large enough so that the perturbative expansion in Eq. (286) is precise
to the order at which it is truncated, i.e., it has good asymptotic convergence.

3. If Qis defined by physical quantities in infinite volume, one needs to satisfy Eq. (300).

4. Nonuniversal quantities, i.e., quantities that depend on the chosen lattice regular-
ization and do not have a nontrivial continuum limit need a separate discussion, see
Sec. 9.7.

Conditions 2. and 3. give approximate lower and upper bounds for u respectively. It
is important to see whether there is a window to satisfy 2. and 3. at the same time. If
it exists, it remains to examine whether a particular lattice calculation is done inside the
window or not.

Obviously, an important issue for the reliability of a calculation is whether the scale
1 that can be reached lies in a regime where perturbation theory can be applied with
confidence. However, the value of p does not provide an unambiguous criterion. For
instance, the Schrédinger Functional, or SF coupling (Sec. 9.3) is conventionally taken at
the scale p = 1/L, but one could also choose p = 2/L. Instead of 1 we therefore define
an effective aeg. For schemes such as SF (see Sec. 9.3) or gq (see Sec. 9.5) this is directly
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the coupling of the scheme. For other schemes such as the vacuum polarization we use
the perturbative expansion Eq. (286) for the observable Q to define

et = Qfcy . (303)

As mentioned earlier, if there is an ag-independent term it should first be subtracted.
Note that this is nothing but defining an effective, regularization-independent coupling, a
physical renormalization scheme. For ease of notation, here and in what follows we denote
by o the coupling agg(pe) that appears in Eq. (286).

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder R, (Q) = Q—>", c;a’. of a truncated perturbative
expression Q ~ >, c;a’ cannot just be estimated as a perturbative error ka**. The
error is nonperturbative. Often one speaks of “nonperturbative contributions”, but non-
perturbative and perturbative cannot be strictly separated due to the asymptotic nature
of the series (see, e.g., Ref. [703]).

Still, we do have some general ideas concerning the size of nonperturbative effects.
The known ones such as instantons or renormalons decay for large p like inverse powers
of p and are thus roughly of the form

exp(—vy/as), (304)
with some positive constant «v. Thus we have, loosely speaking,
Q = cras + caa? + ... e + 0@ + Ofexp(—v/as)) . (305)

For small ay, the exp(—y/as) is negligible. Similarly the perturbative estimate for the
magnitude of relative errors in Eq. (305) is small; as an illustration for n = 3 and ag = 0.2
the relative error is ~ 0.8% (assuming coefficients |c,+1/c1| ~ 1).

For larger values of o5 nonperturbative effects can become significant in Eq. (305). An
instructive example comes from the values obtained from 7 decays, for which ay ~ 0.3.
Here, different applications of perturbation theory (fixed order and contour improved) each
look reasonably asymptotically convergent but the difference does not seem to decrease
much with the order (see, e.g., the contribution by Pich to Ref. [704]; see, however, also
the discussion in Refs. [705, 706]). In addition, nonperturbative terms in the spectral
function may be nonnegligible even after the integration up to m, (see, e.g., Refs. [707],
[708]). All of this is because «; is not really small.

Since the size of the nonperturbative effects is very hard to estimate one should try
to avoid such regions of the coupling. In a fully controlled computation one would like
to verify the perturbative behaviour by changing o, over a significant range instead of
estimating the errors as ~ a”*! . Some computations try to take nonperturbative power
‘corrections’ to the perturbative series into account by including such terms in a fit to the
p-dependence. We note that this is a delicate procedure, as a term like, e.g., as(u)? is
hard to distinguish from a 1/u? term when the p-range is restricted and statistical and
systematic errors are present. We consider it safer to restrict the fit range to the region
where the power corrections are negligible compared to the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination
of a:

e Renormalization scale

all data points relevant in the analysis have aqg < 0.2
all data points have a.g < 0.4 and at least one aeg < 0.25

m otherwise

e Perturbative behaviour
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verified over a range of a factor 4 change in o} without power corrections or
alternatively ol < 3Aaes/(8mboaZy) is reached
agreement with perturbation theory over a range of a factor (3/2)% in al}
possibly fitting with power corrections or alternatively aly < Aaen/(8mboa’s)
is reached

m otherwise

Here Ace is the accuracy cited for the determination of ae and n is the loop order
to which the connection of aeg to the MS scheme is known. Recall the discussion
around Egs. (293,294); the B-function of g is then known to (n; + 1)-loop order.%3

e Continuum extrapolation

At a reference point of aeg = 0.3 (or less) we require

three lattice spacings with pa < 1/2 and full O(a) improvement,
or three lattice spacings with pa < 1/4 and 2-loop O(a) improvement,
or pa < 1/8 and 1-loop O(a) improvement
three lattice spacings with pa < 3/2 reaching down to pa = 1 and full O(a)
improvement,
or three lattice spacings with pua < 1/4 and 1-loop O(a) improvement
m otherwise

In addition to the above criteria we have looked at scale variations as a general means to
assess perturbative behaviour (cf. subsection below). Continuum extrapolations are often
not the primary concern in determinations of as. Where appropriate we will evaluate the
new FLAG data-driven criterion, by which the distance of the data to the continuum-
extrapolated value is measured in units of the quoted error. If the observable is Q(a) with
an extrapolated continum value Q(0) + AQ we look at the size of

JA— |Q(0) _Q(amin)|
min AQ N

(306)

Some scepticism is warranted if d,;, exceeds 3 or so, although there may be cases where
this can be justified. While we keep the core FLAG criteria unchanged, our general
assessment will be informed by these measures.

We also need to specify what is meant by u. Here are our choices:

step scaling : pu=1/L,
heavy quark-antiquark potential : p=2/r,

observables in position space : u=1/|z|,
observables in momentum space : pu=gq,
moments of heavy-quark currents : p = 2m,,
Cradient-Flow (GF) scheme in infinite volume : p=1/V8t, (307)

where |z| is the Euclidean norm of the four-vector z, ¢ is the magnitude of the momentum,
M. is the heavy-quark mass (in the MS scheme with Ny quarks, including the heavy-
quark flavour) and usually taken around the charm-quark mass. The parameter ¢ denotes
the gradient-flow time. We note again that the above criteria cannot be applied when

50Once one is in the perturbative region with aegs, the error in extracting the A-parameter due to the

n1

truncation of perturbation theory scales like o, as discussed around Eq. (294). In order to detect/control
such corrections properly, one needs to change the correction term significantly; we require a factor of four for
. An exception to the above is the situation where the correction terms are

and a factor (3/2)? for a

small anyway, i.e., it & (AA/A)trunc < (AA/A)aa = Acver /(8mbos) is reached.
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regularization-dependent quantities Wit (a) are used instead of Q(u). These cases are
specifically discussed in Sec. 9.7.

In principle one should also account for electro-weak radiative corrections. However,
both in the determination of o at intermediate scales p and in the running to high scales,
we expect electro-weak effects to be much smaller than the presently reached precision.
Such effects are therefore not further discussed.

The attentive reader will have noticed that bounds such as pa < 3/2 or at least
one value of aeg < 0.25 which we require for a are not very stringent. There is a
considerable difference between © and . We have chosen the above bounds, unchanged
since FLAG 16, as not too many current computations would satisfy more stringent ones.
Nevertheless, we believe that the criteria already give reasonable bases for estimates
of systematic errors. An exception may be Cali 20 [84], which is discussed in detail in
Sec. 9.6.

In anticipation of future changes of the criteria, we expect that we will be able to
tighten our criteria for inclusion in the average, and that many more computations will
reach the present s rating in one or more categories.

In addition to our explicit criteria, the following effects may influence the precision of
results:

Topology sampling: In principle a good way to improve the quality of determinations
of ay is to push to very small lattice spacings thus enabling large p. It is known that
the sampling of field space becomes very difficult for the HMC algorithm when the lattice
spacing is small and one has the standard periodic boundary conditions. In practice, for
all known discretizations the topological charge slows down dramatically for a ~ 0.05 fm
and smaller [117, 153, 156-160]. Open boundary conditions solve the problem [161] but
are not frequently used. Since the effect of the freezing on short-distance observables is
not known, we also do need to pay attention to this issue. Remarks are added in the text
when appropriate.

Quark-mass effects: We assume that effects of the finite masses of the light quarks
(including strange) are negligible in the effective coupling itself where large, perturbative,
1 is considered.

Scale setting: The scale does not need to be very precise, since using the lowest-order
B-function shows that a 3% error in the scale determination corresponds to a ~ 0.5%
error in as(Mz). Since the errors of scale determinations are now typically at the 1-2
percent level or better, the corresponding error in as(Mz) will remain subdominant for
the foreseeable futre.

Other limits/extrapolations: Besides the continuum limit and the infinite-volume ex-
trapolation of hadronic observables, further limits may be required, depending on the
method employed. An obvious case is the large-mass extrapolation in the decoupling
method. While in this case, an effective theory can be deployed to derive plausible fit
functions, this is less clear in other cases. An example is the infinite space-time volume
extrapolation in the GF scheme, which is needed to make contact with the available per-
turbative calculations. One would expect the volume dependence to be quite different
at low and high energies, and there may be a complicated intermediate regime. System-
atic uncertainties are then much harder to quantify and our approach necessarily is on a
case-by-case basis. Data-driven criteria like the new FLAG continuum-limit criterion are
considered, however, these may fail if the data does not sufficiently overlap with the true
(and possibly unknown) asymptotic regime.

9.2.2 Physical scale

Since FLAG 19, a new FLAG working group on scale setting has been established. We
refer to Sec. 11 for definitions and the current status. Note that the error from scale
setting is sub-dominant for current o, determinations.
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A popular scale choice has been the intermediate rg scale, and its variant ri, which
both derive from the force between static quarks, see Eq. (338). One should bear in mind
that their determination from physical observables also has to be taken into account. The
phenomenological value of rg was originally determined as rg = 0.49 fm through potential
models describing quarkonia [701]. Of course the quantity is precisely defined, indepen-
dently of such model considerations. But a lattice computation with the correct sea-quark
content is needed to determine a completely sharp value. When the quark content is not
quite realistic, the value of ry may depend to some extent on which experimental input is
used to determine (actually define) it.

The latest determinations from two-flavour QCD are 19 = 0.420(14)-0.450(14) fm by
the ETM collaboration [190, 709], using as input f, and fx and carrying out various
continuum extrapolations. On the other hand, the ALPHA collaboration [710] deter-
mined ro = 0.503(10) fm with input from fk, and the QCDSF collaboration [711] cites
0.501(10)(11) fm from the mass of the nucleon (no continuum limit). Recent determina-
tions from three-flavour QCD are consistent with r = 0.313(3) fm and ro = 0.472(5) fm
[47, 122, 712]. Due to the uncertainty in these estimates, and as many results are based
directly on 7o to set the scale, we shall often give both the dimensionless number 79 Az,
as well as Ay In the cases where no physical rg scale is given in the original papers or
we convert to the rg scale, we use the value ro = 0.472 fm. In case r; Ayg is given in the
publications, we use r¢/r; = 1.508 [712], to convert, which remains well consistent with
the update [117] neglecting the error on this ratio. In some, mostly early, computations
the string tension, /o was used. We convert to ry using r3c = 1.65 — 7/12, which has
been shown to be an excellent approximation in the relevant pure gauge theory [713, 714].

The more recent gradient-flow scales to, wy are very attractive alternatives to rg, as
their determination is much simpler within a given simulation and most collaborations
quote their values. The main downside are potentially large cutoff effects. We intend
to transition from rg to ¢o. In this report we start by reporting Ny = 0 results both
with 79 and with /8%y, where we use as conversion factor the central value of \/8to/r¢ =
0.9435(97) from Dalla Brida 19 [696]. A general discussion of the various scales is given
in the scale-setting section of this FLAG report, cf. Sec. 11.

9.2.3 Studies of truncation errors of perturbation theory

As discussed previously, we have to determine «; in a region where the perturbative
expansion for the S-function, Eq. (289) in the integral Eq. (288), is reliable. In principle
this must be checked, and is difficult to achieve as we need to reach up to a sufficiently high
scale. A recipe routinely used to estimate the size of truncation errors of the perturbative
series is to study the dependence on the renormalization scale of an observable evaluated at
a fixed order in the coupling, as the renormalization scale is varied around some ‘optimal’
scale piy, from p = p./2 to 2u,. For examples, see Ref. [681].

Alternatively, or in addition, the renormalization scheme chosen can be varied, which
investigates the perturbative conversion of the chosen scheme to the perturbatively defined
MS scheme and in particular ‘fastest apparent convergence’ when the ‘optimal’ scale is
chosen so that the O(a?) coefficient vanishes.

The ALPHA collaboration in Ref. [715] and ALPHA 17 [716], within the SF approach
defined a set of v-schemes for which the 3-loop (scheme-dependent) coefficient of the /-
function for Ny = 2+1 flavours was computed to be b5 = —(0.064(27) +1.259(1)v)/(4)3.

The standard SF scheme has v = 0. For comparison, b5™> = 0.324/(47)3. A range of scales
from about 4 GeV to 128 GeV was investigated. It was found that while the procedure
of varying the scale by a factor 2 up and down gave a correct estimate of the residual
perturbative error for v =~ 0...0.3, for negative values, e.g., v = —0.5, the estimated
perturbative error is much too small to account for the mismatch in the A-parameter of
~ 8% at as = 0.15. This mismatch, however, did, as expected, still scale with o™ with
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n; = 2. In the schemes with negative v, the coupling a, has to be quite small for scale
variations of a factor 2 to correctly signal the perturbative errors.

For a systematic study of renormalization-scale variations as a measure of perturbative
truncation errors in various lattice determinations of g, we implement scale variations
following the proposal in Ref. [681]. Scale variations are commonly used in phenomenology
as a tool to investigate truncations errors. While they cannot give a precise estimate of the
truncation errors, they provide a simple, quantitative test that can be uniformly applied
to all observables. Furthermore, the implementation proposed in Ref. [681] does not rely
on lattice data. The only inputs are the coefficients of the perturbative expansion of a.g,
so that, in principle, an estimate of the truncation errors can be done before embarking
in a numerical simulation. Here we shall summarize briefly the methodology, provide the
coefficients of the perturbative expansions for the observables of interest in this review,
and compute the corresponding truncation errors.

Methodology The use of scale variations for the determination of the missing higher-
order uncertainties relies on a simple observation, namely that the scale p that appears
on the left-hand side of Eq. (286) does not need to match the scale at which the running
coupling constant is computed on the right-hand side of the same equation. Eq. (286) can
be rewritten, with the same level of precision, as

n

Q) = crags(i) + 3 ch()ags(W)* + O (ags(W)™™) . (s=p//w).  (308)
k=2

The coeflicients
k—1
cr(s) = Z C;c,f loge(s) , (309)
£=0

for k > 2, are determined from the coefficients ¢ in Eq. (286) using the recursion

ko = Ck, (310)
k—1
2 ) .

C;f,e = zZ](‘lW)k ka—j—lc;',e_u (311)
j=1

where b,, are the coefficients of the beta function defined in Eq. (289). The dependence
on s, and therefore on the scale 1/, is entirely due to the truncation of the perturbative
expansion. Denoting the truncated series by

QM (1) = crags (W) + ) ch(s)ags()" (312)
k=2

it is possible to show that the scale-variation procedure described below yields a sensible
estimate of the truncation error

On = ‘Q(M) = Q" ()] (313)

see, e.g., the discussion in Ref. [717]. Formally,
/ a (TL) / n\n+1 314
W @ i) o angs ()™ (314)

showing that scale variations capture the correct size of the truncation error, at least
parametrically.
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Implementation The implementation of the scale variations proceeds as follows.

1. We assume a value for A%, e.g., the current best estimate in FLAG. Given this
value, we compute the corresponding value of aygg(srefit) (at fixed Ny = 3) where p
is the scale associated to the observable Q. Typical choices are spef = 1 Or Sy = S¥,
the latter being the scale of fastest apparent convergence. Similarly, we also compute
the value of a%(M 7). All these values are computed using the running of the strong
coupling, the value of AB) as the unique input, in addition to the MS charm- and

MS
bottom-quark masses at their own scale, m." (m.) and mf’)(mb), respectively and

myg.

2. Using Eq. (312), we compute the value Q¢ of the observable by imposing that it
coincides with its truncated expansion,

Oret = Q(n)(/iz Srefu) ) (315>

where spor s is the scale associated to the observable as shown explicitly in Eq. (286).
By construction, using the value Qef, setting s = syef, and solving Eq. (312), we
recover for agrg(srefit) the value obtained in step 1. Hence, we interpret Qs as the
value of the observable that yields the value of a%(M 7) in step 1, when performing
the usual extraction of the strong coupling.

3. We use Eq. (312) again, but this time set s = syer/2, 25er, to extract agg(sp) by
solving

Qret = Q(n) (4, 508 . (316)

Because the expansion is truncated, the value obtained here for agg(sp) is differ-
ent from the one obtained by running the coupling from the value of agg(srerst)
computed in step 2.

4. Using agg(sp) as the initial condition, we run the strong coupling constant and

compute oz%(M 7). The difference between this value and the value computed
in step 1 is used as an estimate of the uncertainty due to the truncation of the

perturbative expansion.

Typically scale variations are performed by multiplying and dividing the reference
scale by a factor 2. For some determinations, where the perturbative matching is done at
a few GeV, dividing the scale by a factor of 2 yields a low scale where perturbation theory
is clearly no longer applicable and therefore the scale variation yields an artificially large
error. In these cases, we consider only the variation obtained by multiplying the reference
scale by a factor 2. To be more specific, we define the following quantities.

(5(4)(sref): The renormalization scale s,.¢@ is multiplied and divided by a factor two. We
quote a symmetric error by averaging the difference between the results obtained
with the scales s..fQ and 2s..¢@Q, and the difference between the results obtained
with scales Syef/2 X @ and s,r@. Note however that in some cases the error is
markedly asymmetric. We will quote the differences as a percentage deviation from
the reference value of ag(myz).

d(2)(8ref): The renormalization scale is multipied by a factor two only. The error () (sref)
is simply the difference between the two results obtained with the two scales, again
taken as a percentage deviation from the reference value of a(mz).

We also explore two common choices, namely s,of = 1 and s.of = s*, the scale of fastest
apparent convergence, i.e., the scale at which ¢ (s*) = 0.
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Perturbative coefficients The coefficients of the perturbative expansion for the
observables of interest in this review are summarized in Tab. 56. For each observable we
report the number of coefficients that are available for the perturbative expansion, the
scale at which the perturbative matching is done, the list of coefficients and the relevant

references.
Observable n; (loops) Q@ [GeV] perturbative coefficients References
Step-scaling 2 80 ~1.37520070, 0.57120172 [718, 719]
3 1.5 —0.0485502, 0.687447, 0.818808 [720-724]
Potential 2.5 same as line above, ) changed
5.0 same as line above, @ changed
3 2.0 —1.4346, 0.16979, 3.21120 [725]
Vacuum polarization 4.0 [726]
1.3 [84]
—log W11 2 4.4 —0.87811924, 4.20161085 [727, 728]
—log Wiz /uf 4.4 0.79128076, 3.18658638
HQ 74 2 Me —0.07762325, 0.07957445 [729-731]
HQ r4 2Me same as line above, @) changed
HQ r¢ 2me 0.77386542, —0.08560363
HQ rs 2me 1.08917060, 0.20034888
GF coupling 9 1/\/87 1.09778674 + 0.007555192 Ny 1365, 732]

—0.98225 — 0.069913 Ny + ().0()1872234Nf2

Table 56: Summary of the coeflicients of the perturbative expansion of the observables dis-
cussed in this review as a power series in agg. We assume that the observables are normalized
so that ¢; = 1 and we only quote the coefficients starting from co. The coefficients are com-
puted for Ny = 3, unless the explicit dependence on the number of flavours is given. For each
observable, we quote the number of coefficients that are known analytically and the scale
of perturbative matching to the MS scheme. Note that for the GF coupling there are two

coefficients, reported as functions of Ny, over two separate lines.

9.3 «, from Step-Scaling Methods

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (299). It is in principle
independent of the particular boundary conditions used and was first developed with
periodic boundary conditions in a two-dimensional model [733].

The essential idea of the step-scaling strategy is to split the determination of the
running coupling at large p and of a hadronic scale into two lattice calculations and
connect them by ‘step scaling’. In the former part, we determine the running coupling
constant in a finite-volume scheme in which the renormalization scale is set by the inverse
lattice size 4 = 1/L. In this calculation, one takes a high renormalization scale while
keeping the lattice spacing sufficiently small as

p=1/L~10...100GeV, a/L<1. (317)

In the latter part, one chooses a certain g2, = §*(1/Lmax), typically such that L.y is
around 0.5-1 fm. With a common discretization, one then determines Ly.x/a and (in a
large volume L > 2-3 fm) a hadronic scale such as a hadron mass, \/fp/a or ro/a at the
same bare parameters. In this way one gets numbers for, e.g., Liax/r0 and by changing
the lattice spacing a carries out a continuum-limit extrapolation of that ratio.
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In order to connect §*(1/Lmpax) to g2(u) at high u, one determines the change of the
coupling in the continuum limit when the scale changes from L to L/s, where s is a scale
factor, set to s = 2 in most applications. Then, starting from L = L.« one iteratively
performs k steps to arrive at p = s¥/Lyay. This part of the strategy is called step scaling.
Combining these results yields g2(u) at g = 8% (10/Lumax) 7o ', where 7y stands for the
particular chosen hadronic scale.

At present most applications in QCD use Schrodinger functional boundary condi-
tions [384, 734] and we discuss this below in a little more detail. (However, other bound-
ary conditions are also possible, such as twisted periodic boundary conditions for the
gauge fields and the discussion also applies to them.) An important reason is that these
boundary conditions avoid zero modes for the quark fields and quartic modes [735] in
the perturbative expansion in the gauge fields. Furthermore the corresponding renor-
malization scheme is well studied in perturbation theory [719, 736, 737] with the 3-loop
[-function and 2-loop cutoff effects (for the standard Wilson regularization) known.

In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet
boundary conditions at time ¢t = 0 and t = T. These break translation invariance and
permit O(a) counter terms at the boundary through quantum corrections. Therefore, the
leading discretization error is O(a). Improving the lattice action is achieved by adding
counter terms at the boundaries whose coefficients are denoted as ¢, ¢;. In practice, these
coefficients are computed with 1-loop or 2-loop perturbative accuracy. A better precision
in this step yields a better control over discretization errors, which is important, as can
be seen, e.g., in Refs. [713, 738].

Also computations with Dirichlet boundary conditions do in principle suffer from the
insufficient change of topology in the HMC algorithm at small lattice spacing. However,
in a small volume the weight of nonzero charge sectors in the path integral is exponen-
tially suppressed [739] and in a Monte Carlo run of typical length very few configurations
with nontrivial topology should appear.5¢ Considering the issue quantitatively Ref. [740]
finds a strong suppression below L ~ 0.8 fm. Therefore the lack of topology change of the
HMC is not a serious issue for the high-energy regime in step-scaling studies. However, the
matching to hadronic observables requires volumes where the problem cannot be ignored.
Therefore, Ref. [741] includes a projection to zero topology into the definition of the cou-
pling. A very interesting comparison of the step-scaling approach for a (Q = 0)-projected
coupling and its unprojected version was recently carried out in Ref. [742], with Ny = 0
and twisted periodic boundary conditions for the gauge field. A new parallel-tempering
approach to relate systems with different boundary conditions was used. The results
validate the = 0 approach, in that step scaling in large volume (where contributions
from @ # 0 configurations are sizeable) leads, within errors, to indistinguishable results,
once the couplings are properly matched. We note also that a mix of Dirichlet and open
boundary conditions is expected to remove the topology issue entirely [743] and may be
considered in the future.

Apart from the boundary conditions, the very definition of the coupling needs to
be chosen. We briefly discuss in turn, the two schemes used at present, namely, the
‘Schrédinger Functional’ (SF) and ‘Gradient Flow’ (GF) schemes.

The SF scheme is the first one, which was used in step-scaling studies in gauge theories
[384]. Inhomogeneous Dirichlet boundary conditions are imposed in time,

A(@)]zo=0 = Ck,  Ap(@)|zo=1 = C}, (318)

for k = 1,2,3. Periodic boundary conditions (up to a phase for the fermion fields) with

56We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.
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period L are imposed in space. The matrices

LCy, = idiag(n — 7/3,—n/2,—n/2 4+ 7/3)
LCy, = idiag(— (n+m),n/2+ 7/3,n/2 + 21/3),

just depend on the dimensionless parameter 7. The coupling gsg is obtained from the
n-derivative of the effective action,

127
(0nSly=0) = = - (319)
9SF

For this scheme, the finite c!(;), Eq. (291), are known for ¢ = 1,2 [719, 737].

More recently, gradient-flow couplings have been used frequently because of their small
statistical errors at large couplings (in contrast to gsr, which has small statistical errors
at small couplings). The gradient flow is introduced as follows [365, 744]. Consider the
flow gauge field B,,(t,z) with the flow time ¢, which is a one-parameter deformation of
the bare gauge field A, (x), where B, (t, ) is the solution to the gradient-flow equation

0:B,(t,x) = D,G,.(t x),
Guy = 0uB,—0,B,+ B, B, (320)

with initial condition B, (0,2) = A,(x). The renormalized coupling is defined by [365]
() = NEEG)] e (321)

with A" = 1672/3 + O((a/L)?) and where E(t, ) is the action density given by

1
E(t,z) = szv(t’ z)GY, (¢, ). (322)
In a finite volume, one needs to specify additional conditions. In order not to introduce
two independent scales one sets

V8t =L, (323)

for some fixed number ¢ [745]. Schrédinger functional boundary conditions [746] or twisted
periodic boundary conditions [697, 747, 748] have been employed. Matching of the GF
coupling to the MS-scheme coupling is known to 1-loop for twisted boundary conditions
with zero quark flavours and SU(3) group [748] and to 2-loop with SF boundary conditions
with zero quark flavours [749]. The former is based on a MC evaluation at small couplings
and the latter on numerical stochastic perturbation theory.%”

9.3.2 Discussion of computations

In Tab. 57 we give results from various determinations of the A-parameter. For a clear
assessment of the Ny-dependence, the last column also shows results that refer to a com-
mon hadronic scale, rg. As discussed above, the renormalization scale can be chosen large
enough such that a; < 0.2 and the perturbative behaviour can be verified. Consequently
only ¥ is present for these criteria except for early work where the n; = 2 loop correction
to MS was not yet known and we assigned a ®m concerning the renormalization scale.
With dynamical fermions, results for the step-scaling functions are always available for at
least a/L = pa =1/4,1/6,1/8. All calculations have a nonperturbatively O(a) improved

57For a variant of the twisted periodic finite volume scheme the 1-loop matching has been computed analyt-
ically [750].
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S @ &
SyFs
> R N
g & & §
SR
Collaboration Ref. Ny § & & & scle Axis[MeV] rolss
ALPHA 10A [751] 4 A only running of «; in Fig. 4
Perez 10 [752] 4 C only step-scaling function in Fig. 4
ALPHA 17 [85] 241 A VBl = 0.415fm  341(12) 0.816(29)
PACS-CS 09A [86] 2+1 A m, 371(13)(8)(F9,)#  0.888(30)(18)(+%,)1
A m, 345(59)## 0.824(141)"
ALPHA 12° [710] 2 A fx 310(20) 0.789(52)
ALPHA 04 [753] 2 A =m ro = 0.5 fm? 245(16)(16)8 0.62(2)(2)8
ALPHA 01A [754] 2 A only running of a; in Fig. 5

Bribian 21 [697] 0 A o = 0.5fm 249.4(8.0) 0.632(20)
Nada 20 [755] O A consistency checks for [756], same gauge configurations
Dalla Brida 19[756] 0 A ro = 0.5fm 260.5(4.4) 0.660(11)
Ishikawa 17 [748] 0 A ro, [\/7] 253(4)(F13)T 0.606(9)(F21)*
CP-PACS 04%[738] 0 A only tables of gZp
ALPHA 98'" [757] 0 A ro = 0.5fm 238(19) 0.602(48)
Liischer 93 [736] 0 A ro = 0.5fm 233(23) 0.590(60) 8¢

#

Tt
88

+

Result with a constant (in a) continuum extrapolation of the combination Lmaxm,.

In conversion from Ayg to moAyg and vice versa, ro is taken to be 0.472 fm.

Result with a linear continuum extrapolation in a of the combination Lyaxm,.

Supersedes ALPHA 04.

The Ny = 2 results were based on values for r9/a which have later been found to be too small by [710].
The effect will be of the order of 10-15%, presumably an increase in Arg. We have taken this into
account by a m in the renormalization scale.

This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well
as the scale setting of ALPHA 98.

Uses data of Liischer 93 and therefore supersedes it.

Converted from ag(37r, ') = 0.1108(25).

Also Agrs/v/@ = 0.532(8)(T27) is quoted.

—5

Table 57: Results for the A-parameter from computations using step scaling of the SF-
coupling. Entries without values for A computed the running and established perturbative
behaviour at large p.

action in the bulk. For the discussed boundary O(a) terms this is not so. In most recent
calculations 2-loop O(a) improvement is employed together with at least three lattice
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spacings.%® This means a for the continuum extrapolation. In other computations
only 1-loop ¢; was available and we arrive at ©. We note that the discretization errors
in the step-scaling functions of the SF coupling are usually found to be very small, at the
percent level or below. However, the overall desired precision is very high as well, and
the results in CP-PACS 04 [738] show that discretization errors at the below percent level
cannot be taken for granted. In particular with staggered fermions (unimproved except
for boundary terms) few-percent effects are seen in Perez 10 [752].

In the work by PACS-CS 09A [86], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with
the collaboration, the continuum extrapolation linear in a, as given in the second line of
PACS-CS 09A [86] results in Tab. 57. After perturbative conversion from a three-flavour
result to five flavours (see Sec. 9.2.1), they obtain

ol (Mz) = 0.118(3). (324)

In Ref. [85], the ALPHA collaboration determined Al(\% combining step scaling in
géF in the lower-scale region ppaq < p < o, and step scaling in ggF for higher scales
po < pu < ppr. Both schemes are defined with SF boundary conditions. For g&p a
projection to the sector of zero topological charge is included, Eq. (322) is restricted to
the magnetic components, and ¢ = 0.3. The scales pnaq, po, and pupr are defined by
G&r (phaa) = 11.3, g3p(po) = 2.012, and ppr = 1640 which are roughly estimated as

1/Linax = fthaa =~ 0.2 GeV, pg~4 GeV, ppr ~ 70 GeV. (325)

Step scaling is carried out with an O(a)-improved Wilson quark action [758] and Liischer-
Weisz gauge action [759] in the low-scale region and an O(a)-improved Wilson quark
action [760] and Wilson gauge action in the high-energy part. For the step scaling using
steps of L/a — 2L/a, three lattice sizes L/a = 8,12, 16 were simulated for g4 and four
lattice sizes L/a = (4,)6,8,12 for g2r. The final results do not use the small lattices

given in parenthesis. The parameter A% is then obtained via

ABL

A% — MS X HPT X Fhad X f7rK ) (326)
UPT HMhad Jrk ~~
—— N—— SN~ experimental data

perturbation theory  stepscaling large volume simulation

where the hadronic scale frx is frx = %(QfK + fr) = 147.6(5) MeV. The first factor on
the right-hand side of Eq. (326) is obtained from agp(ppr) which is the output from SF
step scaling using Eq. (288) with asr(upT) = 0.1 and the 3-loop S-function and the exact
conversion to the MS-scheme. The second factor is essentially obtained from step scaling
in the GF scheme and the measurement of g2x (1) (except for the trivial scaling factor of
16 in the SF running). The third factor is obtained from a measurement of the hadronic
quantity at large volume.

A large-volume simulation is done for three lattice spacings with sufficiently large
volume and reasonable control over the chiral extrapolation so that the scale determination
is precise enough. The step scaling results in both schemes satisfy renormalization criteria,
perturbation theory criteria, and continuum-limit criteria just as previous studies using
step scaling. So we assign green stars for these criteria.

The dependence of A, Eq. (288) with 3-loop [-function, on «g and on the chosen
scheme is discussed in [715]. This investigation provides a warning on estimating the
truncation error of perturbative series. Details are explained in Sec. 9.2.3.

58With 2-loop O(a) improvement we here mean c¢; including the go term and & with the g2 term. For gluonic
observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g%a).
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The result for the A-parameter is A% = 341(12) MeV, where the dominant error
comes from the error of agp(upr) after step scaling in the SF scheme. Using 4-loop

matching at the charm and bottom thresholds and 5-loop running one finally obtains
o) (Mz) = 0.11852(84) . (327)

Several other results do not have a sufficient number of quark flavours or do not yet
contain the conversion of the scale to physical units (ALPHA 10A [751], Perez 10 [752]).

Thus no value for a%(M 7) is quoted.

The computation of Ishikawa et al. [748] is based on the gradient-flow coupling with
twisted boundary conditions [747] (TGF coupling) in the pure gauge theory. Again they
use ¢ = 0.3. Step scaling with a scale factor s = 3/2 is employed, covering a large
range of couplings from ag = 0.5 to as ~ 0.1 and taking the continuum limit through
global fits to the step-scaling function on L/a = 12,16, 18 lattices with between 6 and 8
parameters. Systematic errors due to variations of the fit functions are estimated. Two
physical scales are considered: ro/a is taken from [713] and oa? from [236] and [761].
As the ratio Argr/Agg has not yet been computed analytically, Ref. [748] determines
the 1-loop relation between gsg and grgr from MC simulations performed in the weak
coupling region and then uses the known Agr/Agg. Systematic errors due to variations
of the fit functions dominate the overall uncertainty.

Two extensive Ny = 0 step-scaling studies have been carried out in Dalla Brida 19 [756]
and by Nada and Ramos [755]. They use different strategies for the running from mid to
high energies, but use the same gauge configurations and share the running at low energies
and matching to the hadronic scales. These results are therefore correlated. However,
given the comparatively high value for roAgg, it is re-assuring that these conceptually
different approaches yield perfectly compatible results within errors of similar size of
around 1.5% for /8toAgg = 0.6227(98), or, alternatively roAgg = 0.660(11).

In Dalla Brida 19 [756] two GF-coupling definitions with SF-boundary conditions are
considered, corresponding to (colour-) magnetic and electric components of the action
density respectively. The coupling definitions include the projection to @ = 0, as was also
done in [85]. The flow-time parameter is set to ¢ = 0.3, and both Zeuthen and Wilson
flow are measured. Lattice sizes range from L/a = 8 to L/a = 48, covering up to a factor
of 3 in lattice spacings for the step-scaling function, where both L/a and 2L/a are needed.
Lattice effects in the step-scaling function are visible but can be extrapolated using global
fits with a? errors. Some remnant O(a) effects from the boundaries are expected, as
their perturbative cancellation is incomplete. These O(a) contaminations are treated as
a systematic error on the data, following [85], and are found to be subdominant. An
intermediate reference scale o is defined where a = 0.2, and the scales above and
below are analyzed separately. Again this is similar to [85], except that here GF-coupling
data is available also at high energy scales. The GF S-functions are then obtained by
fitting to the continuum extrapolated data for the step-scaling functions. In addition, a
nonperturbative matching to the standard SF coupling is performed above p..f for a range
of couplings covering a factor of 2. The nonperturbative S-function for the SF scheme
can thus be inferred from the GF [-function. It turns out that GF schemes are very
slow to reach the perturbative regime. Particularly the A-parameter for the magnetic GF
coupling shows a large slope in a2, which is the parametric uncertainty with known 3-loop
B-function. Also, convincing contact with the 3-loop S-function is barely seen down to
« = 0.08. This is likely to be related to the rather large 3-loop S-function coefficients,
especially for the magnetic GF scheme [749]. In contrast, once the GF couplings are
matched nonperturbatively to the SF scheme the contact to perturbative running can
be safely made. It is also re-assuring that in all cases the extrapolations (linear in o?)
to a = 0 for the A-parameters agree very well, and the authors argue in favour of such
extrapolations. Their data confirms that this procedure yields consistent results with the
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SF scheme for v = 0, where such an extrapolation is not required.

The low-energy regime between o and a hadronic scale pp,q is covered again using
the nonperturbative step-scaling function and the derived S-function. Finally, contact be-
tween pp.q and hadronic scales £y and rg is established using five lattice spacings covering
a factor up to 2.7. The multitude of cross checks of both continuum limit and perturba-
tive truncation errors make this a study which passes all current FLAG criteria by some
margin. The comparatively high value for rgAgg found in this study must therefore be
taken very seriously.

In Nada 20 [755], Nada and Ramos provide further consistency checks of [756] for
scales larger than p,er. The step-scaling function for ¢ = 0.2 is constructed in two steps, by
determining first the relation between couplings for ¢ = 0.2 and ¢ = 0.4 at the same L and
then increasing L to 2L keeping the flow time fixed (in units of the lattice spacing), so that
one arrives again at ¢ = 0.2 on the 2L volume. The authors demonstrate that the direct
construction of the step-scaling function for ¢ = 0.2 would require much larger lattices in
order to control the continuum limit at the same level of precision. The consistency with
[756] for the A-parameter is therefore a highly nontrivial check on the systematic effects
of the continuum extrapolations. The study obtains results for the A-parameter (again
extrapolating to a = 0) with a similar error as in [756] using the low-energy running
and matching to the hadronic scale from that reference. For this reason and since gauge
configurations are shared between both papers, these results are not independent of [756],
so Dalla Brida 19 will be taken as representative for both works.

Since FLAG 21 a new step-scaling result with Ny = 0 has appeared in Bribian 21 [697].
It uses the gradient flow in a volume with twisted periodic boundary conditions for the
gauge field. The volume has two shorter directions by a factor of 3; however, a re-
interpretation as a symmetric physical volume is possible using internal degrees of freedom
of the gauge field. This is a state-of-the-art step-scaling result, the main problem being
the poor perturbative behaviour of the gradient-flow coupling. Since the 3-loop S-function
is not known, the parametric uncertainty in estimates of the A-parameter is of O(«) and
is quite large. The problem is by-passed by matching nonperturbatively to the SF scheme,
which leads to stable estimates vs. a?, and the result is VtoAsrg = 0.603(17), or, in units
of the Sommer scale, 79Ayg = 0.632(20). All FLAG criteria are passed with #, and the
data-driven criterion for the continuum limit is irrelevant in this case.

Scale variations. With a perturbative matching at p ~ 80 GeV, we have computed
the change in the determination of agg(Mz) under scale variations as explained above.
The systematic errors obtained from scale variations are

5ty =01%, 6y =02% 6y =0.2%. (328)

Because the perturbative matching is performed at a high-energy scale, the systematic
error obtained from scale variations is negligible.

9.4 The decoupling method

The ALPHA collaboration has proposed and pursued a new strategy to compute the A
parameter in QCD with Ny > 3 flavours based on the simultaneous decoupling of Ny > 3
heavy quarks with RGI mass M [696]. We refer to [682] for a pedagogical introduction.
Generically, for large quark mass M, a running coupling in a mass-dependent renormal-
ization scheme

(. MY = g2 () Nr=) 1+ O (1/M*) (329)

can be represented by the corresponding Ny = 0 coupling, up to power corrections in
1/M. The leading power is usually k& = 2, however renormalization schemes in finite
volume may have k = 1, depending on the set-up. For example, this is the case with
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standard SF or open boundary conditions in combination with a standard mass term. In
practice such boundary contributions can be made numerically small by a careful choice of
the scheme’s parameters. In principle, power corrections can be either (u/M)* or (A/M)F.
Fixing p = fidec, €.g., by prescribing a value for the mass-independent coupling, such that
tdec/A = O(1) thus helps to reduce the need for very large M. Defining §°(jtdee, M) = uns
at fixed §2(ptdec, M = 0), Eq. (329) translates to a relation between A-parameters, which
can be cast in the form,

AL M AL
Hdec N¢=0 —
ul\js P e a0 ) = A%S A () + O,
MS ’ (330)

with the function ¢, as defined in Eq. (288), for scheme s and Ny = 0. A crucial
observation is that the function P, which gives the ratios of A-parameters AQ/ A%),
can be evaluated perturbatively to a very good approximation [198, 200]. Equation (329)
also implies a relation between the couplings in mass-independent schemes, in the theories
with Ny and zero flavours, respectively. In the MS scheme this relation is analogous to

Eq. (295),

_(Ny=0 2 (N, 2 (N
[gl(wsf )(m*)] = [g&—g)(m*)] xC (gﬁd—;)(m*)) ; (331)
where the evaluation of the coupling is done at the scale m, = m%)(,u = m,). This

removes the leading 1-loop correction of O(g?) in the expansion of the function, C(g) =
1 + c29* + O(g%), which is known up to 4-loop order [689-692, 762]. The mass scale

m, is in one-to-one correspondence with the RGI mass M, and g*(y) = g% )(m*) can
thus be considered a function of y = MMr)/ A%). The function P(y) can be evaluated
perturbatively in the MS scheme, as the ratio,
Ny=0
P2 (9 )Vl )))
P(y) = . (332)

w%)(g*(y))
Note that perturbation theory is only required at the scale set by the heavy-quark mass,
which works better the larger M can be chosen. Given the function P(y), the LHS of
Eq. (330) can be inferred from a Ny = 0 computation of the RHS in the scheme s, if
the argument \/uns of ¢! is known (and the ratio Agmg/As for the scheme s). The main
challenge then consists in the computation of the mass-dependent coupling u); for large
masses.

9.4.1 Discussion of computations

To put the decoupling strategy to work, ALPHA 22 [80] uses N; = 3, so that information
from [85] can be used. Using the massless GF coupling in finite volume from this project,
Hdec is defined through g&p(fdec) = 3.949, and thus known in physical units, fiqec =
789(15) MeV. Imposing this condition for lattice sizes between L/a = 12 to L/a = 48, a
corresponding sequence of S-values between 4.302 and 5.174 is obtained (the lattice action
is the same as used by CLS, there for much coarser lattice spacings at 5 < 3.85). Using the
available information on nonperturbative mass renormalization [246], six values for the
O(a)-improved RGI quark masses are considered at each of these S-values, such that the
ratio z = M/ pqec are close to 2, 4, 6, 8, 10, and 12. While great care is taken to implement
nonperturbative O(a) improvement, there is only perturbative 1-loop information on by,
which parameterizes a mass-dependent rescaling of the bare coupling,

36 = 95(1+ bg(go)amy),  bglgo) = 0.012 x Nygg + O(gp).-
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Here, mq denotes the subtracted bare quark mass, related to M by a renormalization
factor of O(1) at the relevant lattice spacings. Consistent O(a) improvement requires that
B = 6/32 be kept fixed as the quark mass is varied. The authors of ALPHA 22 here assume
a 100% uncertainty of the perturbative by-estimate, which is treated as a systematic error
(cf. below). At the chosen quark-mass parameters, the GF coupling with doubled time
extent, T'= 2L, is measured. This GFT coupling is used in order to minimize effects from
the time boundaries, which introduce linear effects in 1/M in the decoupling relation, and
also residual lattice effects linear in a. Both of these effects are monitored and found to be
negligible. The continuum limit is then taken, either separately for each z-value, or using
a global fit to all z-values z > 2, which turns out too small to be useful in the large-M limit
(cf. Fig. 9.4.1). The lattice effects are fitted to O(a?), including an [agg(1/a)]" term, as
expected from Symanzik’s effective theory with RG improvement [763-767]. The global
fit uses the combined arguments from heavy-quark and Symanzik effective theories to
separate the leading-(aM)? effects with yet another logarithmic correction term. Cuts in
the data are considered for (aM)? < 0.25 and (aM)? < 0.16. The continuum-extrapolated
values include a systematic error due to the uncertainty in b,. The fits are repeated for
different choices of I' and I in intervals constrained by the effective heavy-quark and
Symanzik theories, and the variation is used as an estimate of systematic effects due to
the possible presence of such non-power-like cutoff effects. The continuum extrapolated
GF'T coupling defines the starting point for the Ny = 0 running. Before the GF running
can be used, a matching from the GFT to GF scheme is done to high precision in the
Ny = 0 theory. The running in Ny = 0 is taken from Dalla Brida 19 [756] and the results
are then inserted into the Eq. (330), for each of the available M-values. This defines
“effective” A-parameters, equal to the asymptotic value up to 1/M? effects. Taking the
z — oo limit (again allowing for a logarithmic correction with exponent I';,) then yields
the final result, with the scale set using /¢y from Ref. [114],

AL = 336(10)(6)s, (3)r,, MeV = 336(12) MeV (333)

which translates to as(mz) = 0.11823(84). Despite some common elements with ALPHA
17, the authors emphasize that the decoupling method is largely independent, with the
overlap in squared error amounting to 28 percent. This is due to the fact that the error
in ALPHA 17 is dominated by the Ny = 3 step-scaling procedure at high energy, and this
part is completely replaced by the Ny = 0 result by Dalla Brida 19 [756]. ALPHA 22 also
give the covariance matrix between both results which allows for combining both results
with correlations taken into account.

The FLAG criteria are only indirectly applicable; decoupling relies on the step-scaling
analysis with Ny = 0 in Dalla Brida 19 [756], which passes all FLAG criteria (cf. Sect. 9.3).
Except for the (well-established, cf. Refs. [198, 200]) perturbative evaluation of the func-
tion P(y), perturbation theory is only applied in the Ny = 0 theory at very high energy,
which yields a s for perturbative behaviour and renormalization scale. Using the FLAG
criterion for continuum extrapolations (the constraint on values of a.g is not applicable
here) the relevant scale is M, and the continuum extrapolations are based on data cut
at aM < 0.5 or aM < 0.4, which leaves 3-4 values satisfying this cut even at the largest
mass of O(10 GeV). A remaining uncertainty of O(aM) due to a perturbative estimate
of by is treated as a systematic uncertainty, so that full O(a) improvement is expected
to be realized within the errors. This is confirmed by—mnow available—nonperturbative
data on b, [768], and we use * for continuum extrapolations. With these errors the
distance of the extrapolated result is less than one sigma away from the last data point,
i.e., d(min) =~ 1 for the data-driven criterion.

Final remark: The decoupling method offers scope for a further error reduction, by
using the result for b, and both, improved scale setting and improved Ny = 0 step-scaling
results.
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Figure 37: The decoupling limit M — oo in ALPHA 22, Ref. [80].
In Tab. 58 we list the result.
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ALPHA 22 [80] 241 A Vio [114]  336(12)* 0.804(29) *

* a%(MZ) = 0.11823(84); roAgg determined using ro = 0.472 fm

Table 58: Decoupling result.

9.5 «a, from the potential at short distances

9.5.1 General considerations

The basic method was introduced in Ref. [769] and developed in Ref. [770]. The force
or potential between an infinitely massive quark and antiquark pair defines an effective

coupling constant via

F(r) = dv(r) _ CFO‘qq(T) '

dr r2
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The coupling can be evaluated nonperturbatively from the potential through a numerical
differentiation, see below. In perturbation theory one also defines couplings in different
schemes oy, ay via

ay(r) > av(Q)
V(ir)y=-Cp . or V(Q)=-Cp 0z
where one fixes the unphysical constant in the potential by lim,_, ., V' (r) = 0, which is
compatible with fixed-order perturbation theory. V(Q) is the Fourier transform of V(r).
Nonperturbatively, the subtraction of a constant in the potential introduces an additional
renormalization constant, the value of V(r.ef) at some distance rr. Perturbatively, it is
believed to entail a renormalon ambiguity. In perturbation theory, the different definitions
are all simply related to each other, and their perturbative expansions are known including
the o, atlogas and o log ag, a2 (log as)? terms [720, 722, 723, 771-777].
The potential V(r) is determined from ratios of Wilson loops, W (r,t), which behave
as

(335)

<W(7“,t)> — |Co‘26_V(T)t + Z |cn|2e—Vn(r)t , (336)
n#0

where t is taken as the temporal extension of the loop, r is the spatial one and V,, are
excited-state potentials. To improve the overlap with the ground state, and to suppress
the effects of excited states, ¢ is taken large. Also various additional techniques are used,
such as a variational basis of operators (spatial paths) to help in projecting out the ground
state. Furthermore some lattice-discretization effects can be reduced by averaging over
Wilson loops related by rotational symmetry in the continuum.

In order to reduce discretization errors it is of advantage to define the numerical

derivative giving the force as
F(T’I) — M7 (337)
a
where 71 is chosen so that at tree level the force is the continuum force. F(rp) is then
a ‘tree-level improved’ quantity and similarly the tree-level improved potential can be
defined [778].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform of the
perturbative expansion is then matched to lattice data.

Finally, as was noted in Sec. 9.2.1, a determination of the force can also be used to
determine the scales rg, 1, by defining them from the static force by

raF(rg) = 1.65, riF(r))=1. (338)

9.5.2 Discussion of computations

In Tab. 59, we list results of determinations of roAyg (together with Ay using the scale
determination of the authors).

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [770]
and Bali 92 [789] who used aqq, Eq. (334), as explained above, but not in the tree-level
improved form. Rather a phenomenologically determined lattice-artifact correction was
subtracted from the lattice potentials. The comparison with perturbation theory was on
a more qualitative level on the basis of a 2-loop S-function (n; = 1) and a continuum
extrapolation could not be performed as yet. A much more precise computation of agq
with continuum extrapolation was performed in Refs. [713, 778]. Satisfactory agreement
with perturbation theory was found [778] but the stability of the perturbative prediction
was not considered sufficient to be able to extract a A parameter.
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S5 §F 0§
S 5§ 5 g
g & F §
Collaboration Ref. Ny g @& g & scale Ayis[MeV]  roAyg
Ayala 20 [82] 2+1 A r1 = 0.3106(17) fm®  338(13) 0.802(31)
TUMQCD 19 [83] 241 A 1 =0.3106(17) fm® 314716 0.745(*3%)
Takaura 18 [779,780] 2+1 A = Vo = 0.1465(25)fm® 334(10)(*32)% 0.799(51) "
Bazavov 14 [781] 241 A r1 = 0.3106(17) fm® 315(F1%)¢ 0. 746(+42)
Bazavov 12 [782] 2+1 A t #  ro = 0.468 fm 295(30) * 0.70(7)**
Karbstein 18 [783] 2 A ro = 0.420(14) fm®  302(16) 0.643(34)
Karbstein 14 [784] 2 A ro = 0.42 fm 331(21) 0.692(31)
ETM 11C [785] A ro = 0.42 fm 315(30)8 0.658(55)
Brambilla 23 [197] © A V/8to = 0.9569(66)ro 0.657133
Husung 20 [786] 0O C no quoted value for Ayg
Husung 17 [787] 0 C ro = 0.50 fm 232(6) 0.590(16)
Brambilla 10 [788] 0 A l 266(13)* 0.637(T52)1
UKQCD 92 [770] 0 A tHoom Vo =0.44 GeV 256(20) 0.686(54)
Bali 92 [789] 0O A Tt om Vo = 0.44 GeV 247(10) 0.661(27)

o

SO}

[}

* K

Tt

++

Scale determined from to in Ref. [115].
all(Myz) = 0.1179(7)(113).

Determination on lattices with m~L = 2.2 —2.6. Scale from r; [117] as determined from f in Ref. [47].
Al (1.5 GeV) = 0.336(1}?), all(My) = 0.1166("§?).
Scale determined from fr, see [190}
Since values of aes within our designated range are used, we assign a despite values of aeg up to
et = 0.5 being used.
Since values of 2a/r within our designated range are used, we assign a although only values of
2a/r > 1.14 are used at aeg = 0.3.
Using results from Ref. [712].
aL(1.5GeV) = 0.326(19), alL(Mz) = 0.1156(*23).
Both potential and 79/a are determined on a small (L = 3.2r) lattice.
Uses lattice results of Ref. [713], some of which have very small lattice spacings where according to
more recent investigations a bias due to the freezing of topology may be present.
Our conversion using ro = 0.472 fm.
We give a O because only a NLO formula is used and the error bars are very large; our criterion does
not apply well to these very early calculations.

Table 59: Short-distance potential results.

In Brambilla 10 [788] the same quenched lattice results of Ref. [778] were used and a
fit was performed to the continuum potential, instead of the force. Perturbation theory to
n; = 3 loop was used including a resummation of terms a2 (asIn o)™ and ol (agInag)™.
Close agreement with perturbation theory was found when a renormalon subtraction was
performed. Note that the renormalon subtraction introduces a second scale into the
perturbative formula which is absent when the force is considered.
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Bazavov 14 [781] updates Bazavov 12 [782] and modifies this procedure somewhat.
They consider the perturbative expansion for the force. They set u = 1/r to eliminate
logarithms and then integrate the force to obtain an expression for the potential. The
resulting integration constant is fixed by requiring the perturbative potential to be equal
to the nonperturbative one exactly at a reference distance 1. and the two are then
compared at other values of r. As a further check, the force is also used directly.

For the quenched calculation of Brambilla 10 [788] very small lattice spacings, a ~
0.025 fm, were available from Ref. [778]. For ETM 11C [785], Bazavov 12 [782], Karbstein
14 [784] and Bazavov 14 [781] using dynamical fermions such small lattice spacings are
not yet realized (Bazavov 14 reaches down to a ~ 0.041fm). They all use the tree-level
improved potential as described above. We note that the value of Ajg in physical units
by ETM 11C [785] is based on a value of g = 0.42 fm. This is at least 10% smaller than
the large majority of other values of rg. Also the values of ro/a on the finest lattices
in ETM 11C [785] and r1/a for Bazavov 14 [781] come from rather small lattices with
maL &~ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [784] reanalyzes the data
of ETM 11C [785] by first estimating the Fourier transform V (p) of V (r) and then fitting
the perturbative expansion of V(p) in terms of ays(p). Of course, the Fourier transform
requires some modelling of the r-dependence of V(r) at short and at large distances.
The authors fit a linearly rising potential at large distances together with string-like
corrections of order 7—™ and define the potential at large distances by this fit.5° Recall
that for observables in momentum space we take the renormalization scale entering our
criteria as p = ¢, Eq. (307). The analysis (as in ETM 11C [785]) is dominated by the data
at the smallest lattice spacing, where a controlled determination of the overall scale is
difficult due to possible finite-size effects. Karbstein 18 [783] is a reanalysis of Karbstein
14 and supersedes it. Some data with a different discretization of the static quark is
added (on the same configurations) and the discrete lattice results for the static potential
in position space are first parameterized by a continuous function, which then allows for
an analytical Fourier transformation to momentum space.

Similarly also for Takaura 18 [779, 780] the momentum space potential V(Q) is the
central object. Namely, they assume that renormalon/power-law effects are absent in
V(Q) and only come in through the Fourier transformation. They provide evidence that
renormalon effects (both u = 1/2 and u = 3/2) can be subtracted and arrive at a nonper-
turbative term k A2 r?. Two different analyses are carried out with the final result taken
from “Analysis II”. Our numbers including the evaluation of the criteria refer to it. To-
gether with the perturbative 3-loop (including the o log s term) expression, this term is
fitted to the nonperturbative results for the potential in the region 0.04fm < r < 0.35fm,
where 0.04fm is r = a on the finest lattice. The nonperturbative potential data origi-
nates from JLQCD ensembles (Symanzik-improved gauge action and Mobius domain-wall
quarks) at three lattice spacings with a pion mass around 300 MeV. Since at the maxi-
mal distance in the analysis we find agg(2/r) = 0.43, the renormalization-scale criterion
yields a m. The perturbative behaviour is © because of the high orders in perturbation
theory known. The continuum-limit criterion yields a

One of the main issues for all these computations is whether the perturbative running
of the coupling constant has been reached. While for Ny = 0 fermions Brambilla 10
[788] reports agreement with perturbative behaviour at the smallest distances, Husung 17
(which goes to shorter distances) finds relatively large corrections beyond the 3-loop aqq-
For dynamical fermions, Bazavov 12 [782] and Bazavov 14 [781] report good agreement
with perturbation theory after the renormalon is subtracted or eliminated.

A second issue is the coverage of configuration space in some of the simulations, which

59Note that at large distances, where string breaking is known to occur, this is not any more the ground-state
potential defined by Eq. (336).
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use very small lattice spacings with periodic boundary conditions. Affected are the small-
est two lattice spacings of Bazavov 14 [781] where very few tunnelings of the topological
charge occur [117]. With present knowledge, it also seems possible that the older data by
Refs. [713, 778] used by Brambilla 10 [788] are partially obtained with (close to) frozen
topology.

The computation in Husung 17 [787], for Ny = 0 flavours, first determines the coupling
géq(r, a) from the force and then performs a continuum extrapolation on lattices down
to a ~ 0.015 fm, using a step-scaling method at short distances, r/rg S 0.5. Using the
4-loop (99 function this allows roAqq to be estimated, which is then converted to the MS
scheme. o = 0gq ranges from ~ 0.17 to large values; we give for renormalization
scale and for perturbative behaviour. The range ap = 2a/r =~ 0.37-0.14 leads to a

in the continuum extrapolation. Recently these calculations have been extended in
Husung 20 [786]. A finer lattice spacing of ¢ = 0.01 fm (scale from o = 0.5 fm) is reached
and lattice volumes up to L/a = 192 are simulated (in Ref. [787] the smallest lattice
spacing is 0.015 fm). The Wilson action is used despite its significantly larger cutoff effects
compared to Symanzik-improved actions; this avoids unitarity violations, thus allowing
for a clean ground-state extraction via a generalized eigenvalue problem. Open boundary
conditions are used to avoid the topology-freezing problem. Furthermore, new results
for the continuum approach are employed, which determine the cutoff dependence at
O(a?) including the exact coupling-dependent terms, in the asymptotic region where the
Symanzik effective theory is applicable [765]. An ansatz for the remaining higher-order
cutoff effects at O(a?) is propagated as a systematic error to the data, which effectively
discards data for r/a < 3.5. The large-volume step-scaling function with step factor 3/4
is computed and compared to perturbation theory. For agq > 0.2 there is a noticeable
difference between the 2-loop and 3-loop results. Furthermore, the ultra-soft contributions
at 4-loop level give a significant contribution to the static Q@Q force. While this study
is for Ny = 0 flavours it does raise the question whether the weak-coupling expansion
for the range of r-values used in present analyses of « is sufficiently reliable. Around
0qq ~ 0.21 the differences get smaller but the error increases significantly, mainly due

to the propagated lattice artifacts. The dependence of A"MLS:O\/% on af’lq is very similar
to the one observed in the previous study but no value for its agq — 0 limit is quoted.
Husung 20 [786] is more pessimistic about the error on the A parameter stating the relative
error has to be 5% or larger, while Husung 17 quotes a relative error of 3%.

In 2+1-flavour QCD two new papers appeared on the determination of the strong
coupling constant from the static quark anti-quark potential after the FLAG 19 report
(82, 83]. In TUMQCD 19 [83]7° the 2014 analysis of Bazavov 14 [781] has been extended by
including three finer lattices with lattice spacing a = 0.035, 0.030 and 0.025 fm as well as
lattice results on the free energy of static quark anti-quark pair at nonzero temperature.
On the new fine lattices the effect of freezing topology has been observed, however, it
was verified that this does not affect the potential wi