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Abstract

Event-by-event fluctuations of the event-wise mean transverse momentum, ⟨pT⟩, of charged particles
produced in proton–proton (pp) collisions at

√

s = 5.02 TeV, Xe–Xe collisions at
√

sNN = 5.44 TeV,
and Pb–Pb collisions at

√
sNN = 5.02 TeV are studied using the ALICE detector based on the integral

correlator ⟪∆pT∆pT⟫. The correlator strength is found to decrease monotonically with increasing
produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and
Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple
power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed
deviation from power-law scaling is expected from transverse radial flow in semicentral to central
Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying
the events based on the transverse spherocity, S0, of the particle production at midrapidity, used as
a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events
feature a larger correlation strength than those with high spherocity (isotropic). The strength and
multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the
PYTHIA 8 and EPOS LHC models.

*See Appendix A for the list of collaboration members
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1 Introduction

Studies of event-by-event fluctuations of event-wise observables measured in heavy-ion collisions are of
great interest given that they probe the phase transition from quark–gluon plasma (QGP) to hadron gas
(HG) [1–8]. Of particular interest are fluctuations of the average transverse momentum (pT) of particles
measured event-by-event in a specific kinematic range. These fluctuations are expected to be sensitive to
energy fluctuations and, arguably, temperature variations of the matter produced in these collisions. In
turn, the magnitude of these fluctuations is nominally proportional to the heat capacity of the hot medium,
which is governed by the strong force as described by quantum chromodynamics (QCD) [9, 10]. As such,
the temperature fluctuations are predicted to sharply increase in the vicinity of the critical point and near
a cross-over phase transition boundary, as a result of a rapid change in the heat capacity of the medium
near this boundary [9]. Fluctuations of the mean pT, ⟨pT⟩, are also highly sensitive to the presence of
collective effects and the onset of thermalization in small systems. Measurements of ⟨pT⟩ fluctuations
are thus of great interest in the study of the hot and dense matter produced in heavy-ion collisions [3–5].

A significant number of measurements of ⟨pT⟩ fluctuations have already been carried out at SPS [11–14]
as well as at RHIC energies [15–21] based on a variety of observables. Traditionally, the measurement
of ⟨pT⟩ fluctuations is carried out in terms of the two-particle correlator, ⟪∆pT∆pT⟫, which measures
the particle momentum correlations based on deviates of pT relative to ⟨pT⟩ (discussed in Sec. 2). The
ALICE Collaboration reported a measurement in Pb–Pb collisions at a center-of-mass energy per nu-
cleon pair

√
sNN = 2.76 TeV [22] using the ⟪∆pT∆pT⟫ correlator. These prior measurements identified

the presence of finite dynamical fluctuations corresponding to non-vanishing ⟪∆pT∆pT⟫ correlations and
additionally studied the evolution of the strength of the correlator with collision centrality. The interpre-
tation of the observed fluctuations in terms of temperature fluctuations is, however, challenged by various
considerations which are discussed below.

In small collision systems, one expects that the magnitude of the correlator ⟪∆pT∆pT⟫ should be pri-
marily determined by elementary particle production processes such as string fragmentation, hadronic
resonance decays, and jets. The overall correlation strength measured in small collision systems should
thus depend on the relative abundance of these processes and the relative strengths of the correlator for
each of these processes. Correlations in large collision systems, on the other hand, should additionally
depend on the number of individual nucleon–nucleon (or parton–parton) collisions and whether these
produce collective phenomena or feature rescatterings of the particles they produce. For collisions in-
volving independent nucleon–nucleon collisions, one expects that the strength of the correlator should
evolve in inverse proportion to the number of sources of correlated particles, which is generally ex-
pected in a dilution scenario. The dilution results from the superposition of approximately independent
particle-emitting sources, i.e., independent nucleon–nucleon collisions with no rescatterings of secon-
daries [23, 24]. This translates into an inverse dependence of the magnitude of the correlator on the
average density of charged particles, ⟨dNch/dη⟩, produced in a given interval of collision centrality and
pseudorapidity (η). Although prior observations of ⟪∆pT∆pT⟫ at RHIC and LHC have shown that
the magnitude of this correlator decreases monotonically from peripheral to central collisions, a siz-
able deviation from the ⟨dNch/dη⟩ scaling behavior was observed in semicentral to central collisions
of large systems [17, 22, 25]. Fluctuations of the system energy (temperature) can evidently contribute
to additional transverse momentum fluctuations and to a relative increase of ⟪∆pT∆pT⟫, but a num-
ber of other mechanisms could potentially also explain the observed behavior. These include the onset
of collectivity and thermalization [26, 27], string percolation [28], as well as initial-state energy den-
sity fluctuations [29–31]. Among these, the role of radial flow, well established from measurements of
single-particle pT distributions, may explain much of the deviation from inverse density scaling [26].
However, whether this deviation can be understood quantitatively on the basis of the aforementioned
scenarios remains an open question. It is thus of interest to compare the collision centrality dependence
of ⟪∆pT∆pT⟫ observed in large collision systems with that found in elementary proton–proton (pp) col-
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lisions. As stated above, in nucleus–nucleus (A–A) collisions, one expects that the scaling is primarily
driven by the number of (binary) nucleon–nucleon (or possibly parton–parton) interactions resulting in
an approximate linear scaling with the total produced multiplicity density. Such scaling is seemingly not
expected in pp collisions, but one can nonetheless expect that the magnitude of ⟪∆pT∆pT⟫ should evolve
with the number of underlying correlated sources, whether these arise from string fragmentation, jet pro-
duction, or multipartonic interactions. One must then examine in detail how the strength of ⟪∆pT∆pT⟫

evolves with the particle density in both heavy-ion and pp collisions. Additionally, since stronger cor-
relations are expected from the collimated particle production arising from the hadronization of jets, it
is also of interest to compare the strength of the correlator in pp collisions by separating events with a
pronounced back-to-back jet topology from events featuring approximately transversely isotropic parti-
cle distributions. This particular study is performed based on the transverse spherocity variable known
to be sensitive to the transverse event shape [32–34], which gives information on how the particles are
distributed perpendicularly to the collision axis.

This paper presents measurements of event-by-event fluctuations of the event-wise mean transverse mo-
mentum, ⟨pT⟩, of charged particles produced in pp collisions at

√

s = 5.02 TeV, Xe–Xe collisions at
√

sNN = 5.44 TeV, and Pb–Pb collisions at
√

sNN = 5.02 TeV as a function of charged-particle multiplic-
ity recorded using the ALICE detector at the LHC. The primary goal of the measurements is to examine
how the strength of the ⟪∆pT∆pT⟫ correlator evolves with the collision energy by comparing to previous
results from Pb–Pb collisions at

√

s = 2.76 TeV and the collision system size, and determine whether this
evolution can be understood quantitatively based on existing models. Additionally, since the presence
of jet constituents is likely to influence the magnitude of the measured correlations, particularly in small
collision systems, this work also includes an analysis of the strength of the ⟪∆pT∆pT⟫ correlator in pp
collisions based on the transverse shape of events (discussed in Sec. 2.3).

The paper is organized as follows: Sec. 2 presents a summary of the techniques used to evaluate the
transverse momentum correlator ⟪∆pT∆pT⟫ and derived quantities used in this work. It also includes
a short discussion of the definition and techniques used towards measurements of the evolution of the
⟪∆pT∆pT⟫ correlation strength with the transverse event shape in pp collisions. Details of the experi-
mental methods and techniques used to determine systematic uncertainties are discussed in Sec. 3. The
main results are presented in Sec. 4 and compared with those of previous measurements and model
predictions. The paper is concluded with a summary in Sec. 5.

2 Observable definitions

The formal definition of the ⟪∆pT∆pT⟫ correlator in terms of two-particle density is introduced in
Sec. 2.1. In this work, ⟪∆pT∆pT⟫ is measured based on an event-wise estimator and the method of
moments presented in Sec. 2.2. The transverse spherocity estimator is defined in Sec. 2.3.

2.1 Definition of ⟪∆pT∆pT⟫
Nominally, studies of average pT fluctuations are carried out based on the integral correlator ⟪∆pT1∆pT2⟫

(see Refs. [26, 35, 36]) defined according to the following formula

⟪∆pT1∆pT2⟫ ≡
∫ ρ2(pT1, pT2)∆pT1∆pT2 dpT1dpT2

∫ ρ2(pT1, pT2)dpT1dpT2
, (1)

where ρ2(pT1, pT2) represents a two-particle density. This function is expressed in terms of the transverse
momenta pT1 and pT2 of two particles.

The term ∆pTi = pTi −⟪pT⟫, where i = 1, 2, represents the transverse momentum deviates of particles 1
and 2, of a given pair, relative to the inclusive average ⟪pT⟫. The inclusive average ⟪pT⟫ is defined
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according to

⟪pT⟫ ≡
∫ ρ1(pT)pTdpT

∫ ρ1(pT)dpT
, (2)

in which ρ1(pT) is the inclusive single-particle density.

2.2 Measurement method

The measurements of ⟪∆pT1∆pT2⟫ are obtained based on an event-wise statistical estimator [22, 36]
defined according to

⟪∆pT1∆pT2⟫ = ⟨
∑

Nch
i, j=1;i≠ j(pTi−⟪pT⟫)(pT j −⟪pT⟫)

Nch(Nch−1)
⟩, (3)

with the event-wise average transverse momentum

⟪pT⟫ =
1

Nch

Nch

∑

i=1
pTi. (4)

In these equations, Nch represents the total number of charged particles measured within a single event,
and pT,i and pT, j denote the transverse momenta of the ith and jth particles, respectively, with i, j =
1, . . . ,Nch, and i ≠ j to avoid self-correlations. The average is said to be an event-wise average because
the sum of the product of deviates is divided by the number of pairs of particles in each event. The
angle bracket, ⟪O⟫, represents the average of the event-wise observable ⟨O⟩ computed over an event en-
semble of interest. In this analysis, values of the correlator ⟪∆pT1∆pT2⟫ were determined for minimum
bias event samples and for specific classes of the events selected based on their charged-particle multi-
plicity measured in forward and backward detectors (see Sec. 3). Additionally, the pp collisions were
categorized into event subsets based on a measurement of their transverse spherocity defined in Sec. 2.3.

Computationally, it is advantageous to reformulate the analysis of ⟪∆pT1∆pT2⟫ with the introduction of
an event-wise variable Qn defined according to

Qn =
Nch

∑

i=1
(pTi)

n, (5)

where pTi represents the transverse momentum of particles, i = 1, . . . ,Nch, used in the measurement of
⟪∆pT1∆pT2⟫. One verifies that ⟪∆pT1∆pT2⟫ can be readily computed, according to [37], as

⟪∆pT1∆pT2⟫ = ⟨
(Q1)

2
−Q2

Nch(Nch−1)
⟩−⟨

Q1

Nch
⟩

2

. (6)

This analytic approach [37] simplifies the computations, thus significantly reducing the analysis time,
especially in high-multiplicity events. In order to study the particle-density dependence of the correlator
and minimize smearing effects associated with broad bin widths, the analysis is performed in narrow
intervals of the charged-particle multiplicity detected at forward rapidity (i.e., the forward detector ac-
ceptance as described in Sec. 3).

In the absence of particle correlations, i.e., for purely Poissonian fluctuations of the event-wise ⟨pT⟩,
the correlator ⟪∆pT1∆pT2⟫ vanishes. However, it acquires a finite value, either positive or negative,
when the transverse momenta of the produced particles are correlated. Note that both the numerator
and the denominator of ⟪∆pT1∆pT2⟫ are proportional to the square of the particle detection efficiency
making ⟪∆pT1∆pT2⟫ robust against particle losses [22], i.e., efficiencies approximately cancel out in
measurements of ⟪∆pT1∆pT2⟫. However, the cancellation is not perfect, particularly if the detection
efficiency depends on the pT of particles.
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The ⟪∆pT1∆pT2⟫ correlator measures particle momentum correlations based on deviates relative to the
mean momentum. In heavy-ion collisions, the mean momentum is known to depend in part on collective
effects and more particularly, radial flow [38]. One thus expects ⟪∆pT1∆pT2⟫ to depend on the mag-
nitude of radial flow. This dependence can be largely suppressed by formulating the results in terms
of the dimensionless quantity

√

⟪∆pT1∆pT2⟫/⟪pT⟫, indicated as the normalized transverse momentum
correlator. The use of a dimensionless observable features a number of additional advantages: inde-
pendence from uncertainties on the momentum scale, partial independence from the magnitude of ⟨pT⟩,
and further reduction of sensitivity to the dependence of the particle detection and reconstruction ef-
ficiency on the transverse momentum [22]. The results reported here are thus presented in terms of
√

⟪∆pT1∆pT2⟫/⟪pT⟫, in lieu of ⟪∆pT1∆pT2⟫. Note that at variance with prior notations [17], the double
bracket notation is used to clearly denote that the correlator is measured as an event ensemble average
of the average pair-wise ∆pT∆pT measured event-by-event. The measurement carried out in this work is
otherwise equivalent to those reported earlier in Ref. [22].

2.3 Definition of the transverse spherocity

In small collision systems, particularly in pp collisions, the many specific processes contributing to par-
ticle production have varying (fluctuating) contributions from one collision to another. Some collisions
may thus feature sizable contributions from minijets (created by hard QCD scatterings at intermediate pT)
or jets, while other may be dominated by “soft" multipartonic interactions. Given that, on average, these
processes feature different momentum scales and produced multiplicities, it is of interest to examine the
relative role they play in influencing the strength of the ⟪∆pT1∆pT2⟫ correlator. This is accomplished by
further classifying pp collisions based on their transverse shape estimated with the transverse spherocity
observable, S0 [33].

The observable, S0, is defined according to

S0 =
π

2

4
min

n̂=(nx,ny,0)

⎛

⎜
⎜
⎜
⎜

⎝

Nch

∑

i=1
p̂Ti × n̂

Nch

∑

i=1
p̂Ti

⎞

⎟
⎟
⎟
⎟

⎠

2

, (7)

where p̂Ti represents transverse momentum unit vectors. The orientation of n̂, a two-dimensional unit
vector of momentum in the transverse (xy) plane, perpendicular to the beam axis, is chosen such that S0 is
minimized on an event-by-event basis. By construction, S0 ranges from 0 for pencil-like (jetty) events to
a maximum of 1 for circularly symmetric events in the transverse plane, i.e., transversely isotropic events.
For this analysis, the pT-unweighted definition of transverse spherocity (pT = 1) is used to quantify the
topology in the azimuthal plane [39].

3 Data analysis

The data samples used in this analysis were collected by the ALICE experiment during the data-taking
periods with pp collisions at

√

s = 5.02 and 13 TeV in 2015, Pb–Pb collisions at
√

sNN = 5.02 TeV in
2015, and Xe–Xe collisions at

√
sNN = 5.44 TeV in 2017. The data were acquired with a minimum bias

trigger requiring coincident signals in the two scintillator arrays of the V0 detector covering forward
(V0A, 2.8 < η < 5.1) and backward (V0C,−3.7 < η < −1.7) pseudorapidity intervals. The V0 detector
helps to reject the beam-induced background via V0 timing cuts. Detailed descriptions of the ALICE
detectors, its components, and their performance, have been reported in Refs. [40, 41].

Charged-particle multiplicities measured with the V0 detectors were additionally used to divide the mea-
sured datasets into several multiplicity classes expressed as percentiles of the total hadronic cross section:
eleven in Pb–Pb [42] and Xe–Xe [43] collisions, and nine in pp collisions. These classes were used to
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characterize the ⟨pT⟩ fluctuations with respect to the produced charged-particle multiplicity in pp colli-
sions. In heavy-ion collisions, the charged-particle multiplicity is related to the impact parameter, which
is the distance in the transverse plane between the centers of the colliding nuclei, of Xe–Xe and Pb–Pb
collisions.

Measurements of ⟨pT⟩ fluctuations were based on charged-particle tracks reconstructed with the ITS and
the Time Projection Chamber (TPC). The analysis was further restricted to particles emitted within the
pseudorapidity range ∣η ∣ < 0.8 and the transverse momentum range 0.15 < pT < 2 GeV/c. The selection
on pT is designed to focus the analysis of soft particle production in the “bulk" while minimizing contri-
butions from the fragmentation of jets. The pseudorapidity range is selected to ensure uniform particle
detection efficiency.

The events with a reconstructed primary vertex within 10 cm of the nominal interaction point along the
beam direction (∣Vz∣ < 10 cm) are chosen to ensure uniform acceptance in pseudorapidity in ∣η ∣ < 0.8 for
the ITS. Additionally, events were considered in the analysis if at least one accepted charged particle
contributed to the reconstruction of the primary vertex. Furthermore, events featuring more than one
reconstructed primary interaction vertex were rejected to suppress the possibility of event pile-up. In all,
13 million, 1.4 million, and 104 million events passed the above criteria and were retained towards the
analysis of ⟨pT⟩ fluctuations from Pb–Pb, Xe–Xe, and pp (

√

s = 5.02 TeV) collisions, respectively.

Individual charged-particle tracks were also subjected to track-quality selection criteria and to specific
selections to limit the analysis to primary particles, i.e., particles with a mean proper lifetime τ larger
than 1 cm/c, which are either produced directly in the interaction, or from decays of particles with τ

smaller than 1 cm/c, restricted to decay chains leading to the interaction [44]. In pp collisions, the
analysis was limited to charged tracks with a minimum of NTPC = 70 reconstructed space points in the
TPC, out of a maximum of 159, whereas in Pb–Pb and Xe–Xe collisions, a pT-dependent cut, NTPC = 70
+ 1.5 × pT

GeV/c , was applied to further limit the probability of split tracks which is more relevant for events
with high hit occupancy in the TPC. This occurs when a single particle is reconstructed as multiple
separate tracks. Additionally, in order to suppress secondary charged particles, the track distance-of-
closest-approach (DCA) to the reconstructed primary interaction vertex was limited to ∣dz∣ < 1 cm in the
longitudinal direction and ∣dxy∣ < 1 cm in the transverse direction in Pb–Pb and Xe–Xe collisions. Finally,
the DCA selection criteria, ∣dz∣ < 2 cm and ∣dxy∣ < 0.0182 + 0.0350 /p1.01

T cm, with pT expressed in units
of GeV/c were used to minimize contamination from secondary particles in pp collisions [45].

Charged particles selected for the determination of S0 were measured within the TPC and the ITS and
required to have transverse momentum pT > 0.15 GeV/c and lie within the pseudorapidity interval ∣η ∣ <
0.8. The event shape-dependent analysis was further restricted to events featuring a minimum of five
charged particles, Nch ≥ 5, to ensure that the notion of transverse topology (a.k.a. transverse event shape)
is meaningful. The analysis of ⟪∆pT1∆pT2⟫ was carried out as a function of the strength of S0 and is
reported for jetty events and isotropic events, based on two spherocity event classes corresponding to the
lowest and top 20 percentile of all accepted events, respectively.

A comprehensive analysis was conducted to understand the impact of the detector response and analysis
procedure on the measured observables, utilizing simulations based on different Monte Carlo event gen-
erators and on the GEANT3 [46] transport code, including a detailed description of the ALICE detector
components and their performance. Observables of interest were computed at the generator level, i.e.,
directly based on the output of event generators, and at the detector level, i.e., based on the output of
the reconstruction of simulated events. Ratios of the detector-level and generator-level results were con-
sidered in what is known as a closure test. The generator level computation involves no particle losses
and no resolution smearing, whereas the reconstructed level includes both losses and smearing effects,
as well as potential sources of contamination of the signal (poorly reconstructed tracks, tracks resulting
from secondary particles, etc.). The event generators used for the MC closure tests were HIJING [47]
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for Pb–Pb and Xe–Xe collisions, and PYTHIA8 [48] for pp collisions. From the analysis of the closure
test, it was found that the detector-level results matched those obtained at the generator level within 2%.
This difference was assigned as a systematic uncertainty, as discussed in Sec. 3.1.

The overall good closure obtained from the simulated data indicates, in particular, that the observable
√

⟪∆pT1∆pT2⟫/⟪pT⟫ is robust against particle losses and the analysis reported thus does not include
corrections for such losses.

In addition to HIJING and PYTHIA 8, the AMPT [49] and EPOS LHC [50] models were used to compute
the magnitude of the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator and its evolution with collision centrality in Xe–Xe
and Pb–Pb collisions to provide insight into the interpretation of the data. The subsequent paragraphs
provide a succinct overview of the models utilized for the different collision systems.

AMPT is a heavy-ion collision model that features partonic scattering and string fragmentation com-
ponents in addition to a transport model. It has had considerable successes in reproducing observables
measured in heavy-ion collisions at both RHIC and LHC energies, such as the strength of anisotropic
flow harmonics [49, 51]. However, it has encountered mitigated success in the prediction of correlation
and fluctuation observables [52]. The data presented in this paper will enable further testing of the un-
derlying physics hypotheses of the model. AMPT simulations were performed with default and string
melting settings. In the default mode, the model assumes that hadrons are produced directly from strings
via Lund string fragmentation whereas in the string melting mode, the model melts these strings into
their constituent partons. Thus, all produced hadrons are decomposed into partons immediately after
their formation. After the partonic phase, partons recombine to form hadrons through quark coalescence.

HIJING is a perturbative QCD inspired MC event generator for the study of jet and multiparticle produc-
tion in high-energy pp and heavy-ion collisions. The model includes multi-minijet production, nuclear
shadowing of parton distribution functions, and mechanisms of jet interactions in a dense medium. In
this analysis, HIJING simulations are used for comparisons with results from heavy-ion collisions.

PYTHIA is a MC event generator designed to simulate high-energy collisions between electrons, protons,
photons, and heavy-nuclei. It features hard and soft interactions, sampling of parton distributions, initial-
and final-state parton showers, multiparton interactions, as well as fragmentation and decays. Two tunes
of PYTHIA are used in this analysis. PYTHIA 6 Perugia 2011 includes the revised set of parameters of
flavor and fragmentation, which improves the overall description of Tevatron data and the reliability of
their extrapolations to LHC energies [53]. The minimum bias and underlying event data from the LHC
are taken into account in Perugia 2011 tune. PYTHIA 8 Monash tune includes a default parameterization
of the model based on multiparton interactions and color reconnection mechanism. Following the hard
scattering and parton showers, colored strings are formed with the final-state partons. PYTHIA 8 has a
hadronization mechanism based on the fragmentation model which is followed by particle decays, which
leads to the production of jets and the underlying event [48].

The EPOS LHC model features particle production from core and corona components. Particle produc-
tion in the corona is described in the context of the Parton-Based Gribov–Regge theory, whereas the core,
expected to feature high parton densities, is described with ideal hydrodynamics. EPOS LHC is tuned to
the LHC data via the color exchange mechanism of string excitation [54].

3.1 Systematic uncertainties

Several potential sources of systematic uncertainties were considered including effects due to collision
pile-up, contributions from tracks reconstructed with limited precision, secondary tracks, non-uniformity
of the acceptance, and possible dependencies of the track reconstruction efficiency on the position of the
primary vertex. Testing for these contributions was accomplished by studying the magnitude of the
√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator in response to variations of event and track quality selection criteria
used in the analysis and also by comparing different data subsets. The systematic uncertainty for each
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source was determined based on the maximum difference between the results obtained with the default
analysis configuration and with the different variations of the selection criteria.

At the event level, the selections on the reconstructed position of the primary vertex along the beam axis
(Vz), and on the presence of multiple reconstructed primary vertices to suppress events with collision
pile-up were varied. The Vz selection is varied to ∣Vz∣ < 8 cm and contributes to relative uncertainties
smaller than 2.1% for pp collisions, 3.7% for Xe–Xe collisions, and 2.2% in Pb–Pb collisions. The
relative uncertainties due to remaining pile-up contamination are less than 2% and 3.3% for pp and Xe–
Xe collisions, respectively, and vary from a minimum of 0.1% to a maximum 3.5% for Pb–Pb collisions.
At the track level, the track-quality and primary-particle selection criteria were varied including the
longitudinal and transverse DCA of each track and the minimum number of TPC clusters required on a
track. The maximum contribution to the systematic uncertainty due to the track selection criteria arises
from the dz selection, and it is less than 5.5%, 3.1%, and 0.8%, in pp, Xe–Xe, and Pb–Pb collisions,
respectively. Other relevant contributions to the systematic uncertainty on the track selection are due
to the dxy cut (up to 4% in pp collisions), the dz cut (up to 5.5% in pp collisions), and the request of a
minimum number of TPC clusters (up to 2.2% in Xe–Xe collisions). The analysis of the closure test
results showed that deviations between detector and generator levels do not exceed 2% in all studied
collision systems. The minor deviations from perfect closure are conservatively added to the systematic
uncertainties. The estimated values of the relative systematic uncertainties for the three collision systems
are summarized in Table 1. For the sources of uncertainty that depend on multiplicity a range of values is
reported. Individual contributions are summed in quadrature to obtain the total systematic uncertainties.
The total systematic uncertainties are smaller than 7.1%, 6.7%, and 3.8% for pp, Xe–Xe and Pb–Pb
collisions, respectively.

Table 1: Contributions to the relative (%) systematic uncertainty on
√

⟪∆pT1∆pT2⟫/⟪pT⟫ of primary charged
particles in pp and Pb–Pb collisions at

√
sNN = 5.02 TeV and Xe–Xe collisions at

√
sNN = 5.44 TeV.

Source of uncertainty pp, 5.02 TeV Xe–Xe, 5.44 TeV Pb–Pb, 5.02 TeV
Vertex selection < 2.1% < 3.7% < 2.2%
Pile-up < 2.0% < 3.3% 0.1–3.5%
No. of TPC clusters 0.1–2.0% < 2.2% < 0.5%
dxy 0.2–4.0% < 1.5% < 0.3%
dz 3.1–5.5% < 3.1% < 0.8%
MC closure 1.3% 1.8% 1.5%
Total 4.0–7.1% 1.8–6.7% 2.2–3.8%

4 Results

Results of the study of the dependence of the magnitude of the
√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator on the
produced particle density measured in pp, Xe–Xe, and Pb–Pb collision systems are presented in Sec. 4.1.
The comparison of the measurements to theoretical predictions, and the energy dependence of the cor-
relator are discussed in Secs. 4.2 and 4.3, respectively. The dependence of the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ on
the event spherocity S0 measured in pp collisions is discussed in Sec. 4.4

4.1 System size dependence of event-by-event ⟨pT⟩ fluctuations

The event-by-event ⟨pT⟩ fluctuations is reported based on the two-particle correlator
√

⟪∆pT1∆pT2⟫/⟪pT⟫

defined in Eq. (1) and computed according to Eq. (3). The top panel of Fig. 1 presents the magnitude
of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ measured as a function of the pseudorapidity density of charged particles pro-
duced in the collision, ⟨dNch/dη⟩, determined in the kinematic range 0.15 < pT < 2 GeV/c and ∣η ∣ < 0.8,
in pp collisions at

√

s = 5.02 TeV, Xe–Xe collisions at
√

sNN = 5.44 TeV, and Pb–Pb collisions at
√

sNN =

8
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Figure 1: (top) Normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫, shown as a function of the
charged-particle multiplicity density, ⟨dNch/dη⟩, measured in the pseudorapidity range ∣η ∣ < 0.8 in pp collisions at
√

s = 5.02 TeV, Xe–Xe collisions at
√

sNN = 5.44 TeV, and Pb–Pb collisions at
√

sNN = 5.02 TeV; (bottom) Ratio
of values of

√

⟪∆pT1∆pT2⟫/⟪pT⟫ measured in pp and Xe–Xe collisions to those observed in Pb–Pb collisions.
Statistical and systematic uncertainties are represented by vertical bars and boxes, respectively.

5.02 TeV. The strength of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ is evidently non-vanishing and exhibits an approximate
power-law dependence on the produced charged-particle density. Fluctuations of the event-wise average
momentum ⟨pT⟩ are accordingly non-Poissonian and exhibit a strong dependence on the particle density
in all three collision systems studied. These new results confirm and corroborate prior observations of
non-Poission fluctuations in heavy-ion collisions and make it possible to carry out a detailed study of the
system size and energy dependence of the fluctuations [11–13, 17, 18, 22, 55, 56].

The correlator strength is observed to decrease by more than one order of magnitude with increasing
multiplicity for Xe–Xe and Pb–Pb collisions. One notes, however, that this multiplicity dependence
cannot be described by a single power-law across the whole range of ⟨dNch/dη⟩. One finds, indeed, that
in both Pb–Pb (blue square) and Xe–Xe (magenta circle) collisions, the dependence can be characterized
by three power-law regimes with distinct slopes in the ranges 3 < ⟨dNch/dη⟩ < 20, 20 < ⟨dNch/dη⟩ < 300,
and ⟨dNch/dη⟩ > 300, respectively. This suggests that the strength of the correlation is influenced by
several distinct mechanisms (or system properties) from the most peripheral to the most central collisions
considered in this study, as discussed in more detail in the following.

The lower panel of Fig. 1 displays the evolution of the ratio of the correlation strength measured in pp
and Xe–Xe collisions relative to that observed in Pb–Pb collisions at

√
sNN = 5.02 TeV. To compute the

ratio, the pp and Xe–Xe results were rebinned to the ⟨dNch/dη⟩ intervals used for Pb–Pb results, using
a fit function. It is apparent that the magnitude of the correlators measured in Pb–Pb and Xe–Xe are
consistent between each other and feature essentially the same dependence on ⟨dNch/dη⟩. By contrast,
however, the evolution of the correlator strength measured in pp collisions differs from that observed in

9
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the larger systems. Nevertheless, in pp collisions at the higher values (>20) of particle multiplicities,
⟨dNch/dη⟩, the correlator strength is in very good agreement, within statistical uncertainties, to that
reported in Pb–Pb and Xe–Xe at the same particle density. For decreasing ⟨dNch/dη⟩ the correlation
strength measured in pp progressively deviates from the values observed for the larger systems. Overall,
one finds that the evolution of

√

⟪∆pT1∆pT2⟫/⟪pT⟫ with ⟨dNch/dη⟩ follows similar trends in Pb–Pb and
Xe–Xe whereas pp interactions reveals discrepancies at low multiplicities.

4.2 Comparison to theoretical predictions

Figure 2 shows the comparison of the evolution of the measured
√

⟪∆pT1∆pT2⟫/⟪pT⟫ as a function
of ⟨dNch/dη⟩ in Pb–Pb (left) and Xe–Xe (right) collisions with the results obtained using HIJING and
AMPT models. The presented AMPT calculations were obtained for two scenarios: AMPT default and
AMPT string melting.
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Figure 2: Upper panels: Comparisons of the evolution of the strength of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ with produced
charged-particle multiplicity densities, ⟨dNch/dη⟩, in Pb–Pb collisions at

√
sNN = 5.02 TeV (left) and Xe–Xe

collisions at
√

sNN = 5.44 TeV (right) with calculations using the HIJING and AMPT models. Lower panels:
Ratios of the model calculations to measured

√

⟪∆pT1∆pT2⟫/⟪pT⟫. Solid symbols represent the measured data
with statistical (vertical bars) and systematic (boxes) uncertainties. Model calculations are shown with shaded
bands denoting their statistical uncertainty.

The bottom panels of Fig. 2 show ratios of HIJING and AMPT calculations to the measured data. The
observed magnitude of the normalized transverse momentum correlator,

√

⟪∆pT1∆pT2⟫/⟪pT⟫, obtained
with the HIJING model exhibits a simple power-law dependence. This behavior is accurately depicted
by a fit of

√

⟪∆pT1∆pT2⟫/⟪pT⟫ ∝ ⟨dNch/dη⟩
α where the exponent α is determined to be −0.504±0.007

within the charged particle multiplicity density interval of 20 < ⟨dNch/dη⟩ < 2500.

This power-law dependence and the exponent value are consistent with the behavior expected for a
system consisting of a simple superposition of nucleon–nucleon collisions without rescattering of the
secondaries as modeled by HIJING. One finds, however, that while the evolution of the correlator mea-
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Figure 3: Evolution of the ratio of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ to results of a power-law fit to HIJING calculations:
(left) pp and Pb–Pb collisions at

√
sNN = 5.02 TeV; (right) pp collisions at

√
sNN = 5.02 TeV and Xe–Xe collisions

at
√

sNN = 5.44 TeV. The power-law fit was performed on correlator values obtained with HIJING for Pb–Pb
collisions at

√
sNN = 5.02 TeV and Xe–Xe collisions at

√
sNN = 5.44 TeV for left and right panel, respectively, as

described in the text. Solid symbols represent the measured data reported in this work with statistical (vertical bars)
and systematic (boxes) uncertainties. Calculations of the ratios obtained with HIJING and AMPT calculations are
shown with shaded bands denoting their statistical uncertainty.

sured in both Pb–Pb and Xe–Xe approximately follows the HIJING power-law fit in the low-multiplicity
range 10 < ⟨dNch/dη⟩ < 50, it clearly deviates from this simple trend at ⟨dNch/dη⟩ > 50. This is also
highlighted in Fig. 3 that shows the ratio of the magnitude of the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator in
Pb–Pb collisions at

√
sNN = 5.02 TeV (left) and in Xe–Xe collisions at

√
sNN = 5.44 TeV (right) to the

power-law fit of ⟨pT⟩ fluctuations of HIJING model. This indicates that the final-state particle production
in Pb–Pb collisions at

√
sNN = 5.02 TeV and Xe–Xe at

√
sNN = 5.44 TeV cannot be described by a mere

superposition of independent particle-emitting sources. It also corroborates the earlier findings by the
ALICE Collaboration in Pb–Pb collisions at

√
sNN = 2.76 TeV [22] and those of the STAR Collaboration

at RHIC energies [17–19].

Deviations from a superposition model of independent particle-emitting sources, in A–A collisions, are
known to arise in measurements of nuclear modification factor [45], and anisotropic flow [57], and other
measurements of two-particle correlation functions [55, 58]. It is thus reasonable to seek theoretical
guidance from a model such as AMPT, which has had relative success in the description of data obtained
at RHIC and LHC. One finds that the two versions of AMPT considered strongly under-predict the
strength of the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator in the most peripheral Pb–Pb collisions. The AMPT
with string melting on, shows agreement with the data for Pb–Pb and Xe–Xe collisions in the high-
multiplicity regions. However, it is evident that both HIJING and AMPT lack some important features
that determine the strength and evolution of

√

⟪∆pT1∆pT2⟫/⟪pT⟫ with collision centrality. For Xe–Xe
collisions, AMPT with string melting on, shows a better agreement with data than for Pb–Pb collisions
for low multiplicity region.

In order to guide further theoretical inquiries, the strength and evolution of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ ob-
served in pp, Pb–Pb and Xe–Xe collisions are compared in more detail.

Figure 3 shows the ratio of measured values of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ to the HIJING results estimated
by a power-law fit to the correlator values. Results are drawn as a function of the charged-particle
multiplicity, ⟨dNch/dη⟩. The fitting procedure was carried over the range 25< ⟨dNch/dη⟩ <2500 with a
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Figure 4: (top) Normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫, shown as a function of the
charged-particle multiplicity density, ⟨dNch/dη⟩, in Pb–Pb collisions at

√
sNN = 2.76 [22] and 5.02 TeV; (bottom)

Ratio of values of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ measured at
√

sNN = 5.02 TeV to the corresponding results at
√

sNN =
2.76 TeV. The statistical and systematic uncertainties for both energies are represented by vertical bars and boxes,
respectively.

fixed exponent value of α = −0.5. The shaded green band is approximately centered at unity and shows
that the power-law fit is a good description of the evolution of the strength of

√

⟪∆pT1∆pT2⟫/⟪pT⟫

with ⟨dNch/dη⟩ predicted by HIJING. Indeed, HIJING produces a progressive dilution of the correlator
with rising values of ⟨dNch/dη⟩ as expected. By contrast, one finds that correlations observed in Pb–Pb
and Xe–Xe increasingly undershoot the power-law fit at small densities while they significantly exceed
the fit at ⟨dNch/dη⟩ above 70–80, thereby signaling a considerable departure from a system consisting
of a superposition of independent nucleon–nucleon collisions. One additionally finds that both AMPT
calculations considerably violate the density scaling. However, pp results exhibit scaling behavior at
multiplicities greater than 10.

4.3 Energy dependence of event-by-event ⟨pT⟩ fluctuations

Figure 4 shows the dependence of the correlator strength
√

⟪∆pT1∆pT2⟫/⟪pT⟫ as a function of charged-
particle multiplicity (⟨dNch/dη⟩) for Pb–Pb collisions at two energies,

√
sNN = 2.76 TeV and 5.02 TeV.

The lower panel of the figure shows the ratio of 5.02 TeV correlator to that of 2.76 TeV. The ratio is close
to unity at low values of ⟨dNch/dη⟩ and increases with increasing multiplicity. For central collisions
(large values of ⟨dNch/dη⟩), the correlator at 5.02 TeV is up to 20% larger compared to the one at 2.76
TeV.

Fig. 5 (left panel) shows the dependence of the correlator as a function of the number of participant
nucleons (Npart) for Pb–Pb collisions at two LHC energies and Au–Au collisions at

√
sNN = 200 GeV at

RHIC [17]. As shown in the ratio plot, the collision energy dependence in Pb–Pb collisions disappears
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Figure 5: Left: Normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫, shown as a function of
the average number of participant nucleons, ⟨Npart⟩, in Pb–Pb collisions at

√
sNN = 2.76 and 5.02 TeV and Au–

Au collisions at 0.2 TeV. right: Normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫, plotted as a
function ⟨Npart⟩ in Xe–Xe collisions at

√
sNN = 5.44 TeV and Pb–Pb collisions at

√
sNN = 5.02 TeV. The statistical

and systematic uncertainties are represented by vertical bars and boxes respectively.

when the correlator is shown as a function (⟨Npart⟩). This suggests that for a given initial-state overlap
geometry, the correlator strength is independent of the collision energy. However, an energy dependence
is observed when comparing RHIC and LHC energies. The behavior in Fig. 4 could be due to the
dependence of the ⟨pT⟩ fluctuations on the collision energy or could be due to the larger number of
particles produced at

√
sNN = 5.02 TeV that shifts ⟨dNch/dη⟩ to a higher value as compared to

√
sNN =

2.76 TeV. The energy dependence as a function of ⟨Npart⟩ in Fig. 5 corroborates with the above statement.
The right panel of Fig. 5 shows that similar values of

√

⟪∆pT1∆pT2⟫/⟪pT⟫ are observed in Pb–Pb and
Xe–Xe collisions for ⟨Npart⟩ > 25 but differ by as much as 15% at smaller ⟨Npart⟩ (i.e. very peripheral
collisions).

4.4 Transverse spherocity dependence of ⟨pT⟩ fluctuations in pp collisions

The results in Fig. 3 indicate that the strength of the correlator in central Pb–Pb and Xe–Xe collisions
deviates by as much as 30% from the trivial scaling expected in the dilution scenario of independent
particle-emitting sources. Although this deviation might stem largely from the kinematic focusing of
correlated pairs associated with radial flow, it is of interest to examine whether the enhanced correlation
values might arise from fluctuations associated with jet production and, more particularly, event-by-event
variations in the number of jets and their composition. One might naively expect that fluctuations in the
number or constituents of jets relative to “baseline" collisions (with no jet) could increase fluctuations
and thus change the magnitude of the correlator. It is thus interesting to investigate, based on pp colli-
sions alone, how the magnitude of the correlator changes from collisions where effects of jets are less
pronounced to those featuring prominent jets. This investigation is conducted by studying the magnitude
of the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator relative to the shape of particle emission in the transverse plane.
The spherocity observable, described in Sec. 2, is used to select collisions based on their transverse
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Figure 6: Comparison of the normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫ as a function of
the charged-particle multiplicity density for spherocity-integrated (black), jetty (red), and isotropic (blue) events in
pp collisions at

√

s = 5.02 TeV. The statistical and systematic uncertainties of the measured data for all spherocity
classes are represented by vertical bars and boxes respectively.

shape. Collisions with S0 = 1 are expected to feature few or no jets, as by construction these are isotropic
events without any preferred direction. This can be also possible for events with multijets. Whereas,
events with S0 ∼ 0 are expected to feature back-to-back jets. It is then nominally possible to get insight
into the impact of jets on the magnitude of

√

⟪∆pT1∆pT2⟫/⟪pT⟫.
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Figure 7: Upper panels: Comparison of the normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫

as a function of charged-particle density in pp collisions at
√

s = 5.02 and
√

s = 13 TeV for spherocity-integrated
(left), jetty (middle) and isotropic (right) events; Lower panels: Ratio of the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ in pp collisions
at
√

s= 13 TeV to
√

s= 5.02 TeV. The statistical and systematic uncertainties of the measured data for all spherocity
classes are represented by vertical bars and boxes, respectively.

Figure 6 presents measurements of the evolution of the strength of the correlator
√

⟪∆pT1∆pT2⟫/⟪pT⟫ as
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a function of ⟨dNch/dη⟩ in pp collisions at
√

s = 5.02 TeV for selected spherocity classes. Black squares
display inclusive events, i.e., events with no spherocity selection; red circles present events character-
ized by a back-to-back jet topology denoted as “jetty” in the following, with S0 < 0.425 corresponding
to the 20% of events with lower spherocity; and blue stars are for the 20% most isotropic events, with
S0 > 0.745. Low-spherocity events feature

√

⟪∆pT1∆pT2⟫/⟪pT⟫ values larger than those observed for
isotropic events. The presence of a pronounced back-to-back jet topology is found to enhance the mag-
nitude of the correlator by about 20% in high-multiplicity collisions. This enhancement likely results
from jet particles being emitted in a narrow cone and thus being more correlated on average than other
particles. It is interesting to consider whether the observed 20% correlation strength difference between
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Figure 8: Comparison of normalized transverse momentum correlator,
√

⟪∆pT1∆pT2⟫/⟪pT⟫ as a function of the
produced particle multiplicity for integrated (left), jetty (middle), and isotropic (right) pp collisions at

√

s = 5.02
TeV with calculations from the PYTHIA and EPOS models. See text for details. The statistical and systematic
uncertainties of the measured data for all spherocity classes are represented by vertical bars and boxes, respectively.

collisions dominated by a back-to-back jet topology and isotropic events may entail for correlation in
larger systems. Since high-pT particles and jets are suppressed in mid to central heavy-ion collisions,
one expects that contributions to the

√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator, from jet particles, might also be
suppressed. This should then reduce the correlation strength relative to the scaled dependence resulting
from the dilution of the correlator in mid to central heavy-ion collisions. However, note that an excess
is observed relative to the scaled dependence in both Xe–Xe and Pb–Pb collisions. One can then infer
that the excess of correlation strength observed in these systems is not likely linked to jets but rather
arises from other causes. A possible cause of the increased strength may be the strong transverse radial
flow arising from the rapid expansion of the matter formed in heavy-ion collisions [59–61]. Indeed, one
expects that the transverse radial expansion should accelerate correlated particles resulting from reso-
nance (high mass hadrons) decays, string fragmentation, or QGP hadronization, giving thus rise to larger
√

⟪∆pT1∆pT2⟫/⟪pT⟫ correlator values.

It is also interesting to consider how the magnitude of
√

⟪∆pT1∆pT2⟫/⟪pT⟫ evolves with
√

s in pp
collisions. Figure 7 compares the dependence of

√

⟪∆pT1∆pT2⟫/⟪pT⟫ on ⟨dNch/dη⟩ for inclusive, low-
and high-spherocity events measured in pp collisions at

√

s = 5.02 TeV and 13 TeV. One observes the
correlation strength exhibits only a small dependence, if any, on the energy of the pp collisions in both
jetty and isotropic events. This indicates that changes in the strength of

√

⟪∆pT1∆pT2⟫ are essentially
compensated by the rise in ⟪pT⟫ associated with the increase in the collision energy.

The measured ⟨pT⟩ fluctuations for different spherocity classes are compared in Fig. 8 with calculations
performed with the MC generators PYTHIA 6 [62], PYTHIA 8 [48], and EPOS LHC [54]. PYTHIA
6 significantly underestimates the magnitude of

√

⟪∆pT1∆pT2⟫/⟪pT⟫, while PYTHIA 8 reproduces the
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data rather well. This indicates that the MPI mechanism is crucial for the description of particle produc-
tion in PYTHIA. In addition, EPOS LHC, a model with core-corona approach, also reproduces the data
well in both spherocity classes.

5 Summary and conclusions

Event-by-event ⟨pT⟩ fluctuations of charged particles produced in Pb–Pb and Xe–Xe collisions at
√

sNN
= 5.02 and 5.44 TeV, respectively, and in pp collisions at

√

s = 5.02 TeV are studied based on the nor-
malized

√

⟪∆pT1∆pT2⟫/⟪pT⟫ integral correlator. The correlation strength is measured as a function of
produced charged-particle multiplicity in all three collision systems and as a function of the spherocity of
produced particles at midrapidity in pp collisions. The correlator strength is positive, thus indicating that
significant dynamical fluctuations are observed in heavy-ion collisions and corroborating prior measure-
ments reported by the STAR and ALICE Collaborations [61, 63]. The strength of

√

⟪∆pT1∆pT2⟫/⟪pT⟫

is also observed to monotonically decrease with increasing multiplicity in all measured systems, likely
resulting in part from a dilution of the correlation strength associated with an increase in particle produc-
tion. The observed decrease with multiplicity, however, significantly deviates from a power scaling of the
form ⟨dNch/dη⟩

−1/2 expected for a source consisting of a superposition of independent nucleon–nucleon
(or parton–parton) collisions with no re-scattering of the secondaries. A comparison of the correlation
strength measured in low- and high-spherocity pp collisions shows that the selection of events character-
ized by a back-to-back jet topology yields a 20% increase in the correlator strength relative to isotropic
events. Given that the production of high pT particles and jets is known to be quenched in mid to central
A–A collisions, one concludes that the observed deviation from ⟨dNch/dη⟩

−1/2 is likely not associated
with a change in jet production but originates from other sources. A prime candidate for such a source is
the large transverse radial flow arising in mid to central A–A collisions [59, 60].
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