Available on CMS information server CMS CR -2024/247

m\s The Compact Muon Solenoid Experiment

_— Conference Report ™))

p e
‘\\ \\\\ \

1 Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

04 October 2024 (v6, 04 November 2024)

Run 3 performance and advances in heavy-flavor
jet tagging in CMS

Uttiya Sarkar on behalf of the CMS Collaboration

Abstract

Identification of hadronic jets originating from heavy-flavor quarks is extremely important to several
physics analyses in High Energy Physics, such as studies of the properties of the top quark and the
Higgs boson, and searches for new physics. Recent algorithms used in the CMS experiment were
developed using state-of-the-art machine-learning techniques to distinguish jets emerging from the
decay of heavy flavour (charm and bottom) quarks from those arising from light-flavor (udsg) ones.
Increasingly complex deep neural network architectures, such as graphs and transformers, have helped
achieve unprecedented accuracies in jet tagging. New advances in tagging algorithms, along with new
calibration methods using flavour-enriched selections of proton-proton collision events, allow us to
estimate flavour tagging performances with the CMS detector during early Run 3 of the LHC.
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Heavy-flavor jet tagging in CMS Uttiya Sarkar on behalf of the CMS collaboration

1. Introduction

Heavy flavour tagging is of utmost importance in the CMS experiment [1-3] at the Large
Hadron Collider (LHC) for identifying jets originating from heavy quarks, particularly bottom (b)
and charm (c) quarks. This method plays a pivotal role in various physics analyses, including those
focused on the Standard Model (SM), top quark physics, Higgs boson production, and Beyond the
Standard Model (BSM) searches, such as Supersymmetry (SUSY) processes.

To differentiate heavy-flavor jets from light-flavor quark or gluon jets, standard methods make
use of detector inputs from reconstructed charged particle tracks and information about secondary
vertices reconstructed within jets. The jet-related data is incorporated into advanced machine-
learning techniques. Although there is a rapid improvement in tagging methods, it is essential to
ensure the consistency between data and simulations since the detector conditions change over time
and simulations are often imperfect.

This proceeding briefly discusses about the various tagging strategies that are used in CMS
focusing on the most recently developed tagging algorithm, namely UnifiedParticleTransformer
(UParT) [4]. It then presents a comparison of data and simulation and derived scale factors using
the proton-proton collision data collected by the CMS detector at /s =13.6 TeV during 2022-2023
data-taking periods [5]. Then it shows the performance and validation results for large-radius jets.
Finally, it concludes by discussing the two modern computing frameworks used for training and
commissioning purposes.

2. Heavy-flavor tagging in CMS

Heavy-flavor jet tagging depends on variables related to the characteristics of heavy-flavor
hadrons within jets, such as the presence of secondary vertices, higher track multiplicities, and
more tracks with positively signed impact parameters.

The historical evolution of flavor taggers in the CMS experiment reflects significant advance-
ments in machine learning techniques and algorithms over the past decade. Starting with the
combined secondary vertex (CSV) [6] method, which relied on a likelihood ratio during Run 1,
CMS transitioned to more sophisticated models, such as CSVv2 (Multi-Layer-Percrepton) during
early Run 2. By 2017, CMS introduced DeepCSV [7], utilizing deep neural networks (DNN),
followed by DeeplJet [8] in late Run 2, which combined convolutional neural networks (CNN) and
recurrent neural networks (RNN) for enhanced performance. The introduction of ParticleNet [9]
in early Run 3 further improved tagging capabilities by treating particles as unordered clouds,
using the dynamic graph convolutional neural network (DGCNN) architecture. The latest advance-
ments in Run 3, such as RobustParticleTransformer (RobustParT) [10, 11] and UParT [4], leverage
transformer-based architectures — a multi-head attention mechanism with pairwise interaction fea-
tures between all input jet constituents and secondary vertices [12]. These models also incorporate
input feature distortions (adversarial attacks) to enhance robustness. Overall, the evolution of these
algorithms has led to substantial improvements in tagging efficiency, as demonstrated in figure 1
showing reduced light-flavour mistagging rates at different b-jet tagging efficiencies (left) and im-
proved light or c-jet rejection at a fixed b-jet tagging efficiency of 70% (right). The last generation
models not only tag b and c jets but are also capable of tagging strange (s) and hadronic 7 (13) jets.
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Figure 1: Evolution of the b-tagging performance for jet flavor identification algorithms used in CMS from
Run 1 to Run 3. Left plot shows the increase in tagging performance follows the progression in machine
learning whereas the right plot shows that the light- (udsg, yellow bars) and c-jet (red bars) rejection for a
fixed b-jet identification efficiency of 70% for taggers from Run 1 to Run 3.

To evaluate the performance of b-jets and c-jets, several discriminators—such as BvsAll,
BvsL, CvL, and CvB—are defined based on the probability of identifying different jet types. These
transformations allow discriminating specifically between bottom (b), charm (c), strange (s), light
(ud), and gluon jets. The definitions are:

BvsAll = prob(b) /[1-prob(b)],
BvsL = prob(b) / [prob(b) + prob(udsg)],
CvsL =prob(c) / [prob(c) + prob(udsg)], and
CvsB = prob(c) / [prob(c) + prob(b)]
For s and 7, tagging, a broader classification is used, defined as:
svsX = [prob(s)] / [prob(s) + prob(X)]

T,vsX = [prob(t;)] / [prob(r;) + prob(X)]

where X is any other jet type.

3. UParT

UParT is based on the ParticleTransformer architecture [12] specifically designed for AK4
jets (anti-k7 jets with a cone radius of 0.4). It integrates heavy-flavor identification with flavor-
aware jet energy regression and jet energy resolution estimation in a comprehensive manner. The
model introduces pairwise interaction features between jet constituents and secondary vertices,
enhancing its capability to capture complex internal jet relationships. A key advancement in
UParT is the use of a novel Adversarial Training approach. This enables the model to learn from
input feature distortions, significantly improving its robustness against mismodeling in simulations.
Furthermore, UParT preserves feature importance mapping through adversarial attack gradients,
highlighting critical features for jet classification, ensuring both high performance and robustness
in heavy-flavor tagging.
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Figure 2: Left: ROC curves of post-training reweighted discriminators for b-tagging. Both BvsL and BvsC
shows the best rejection against their specific flavor but fail to achieve a good rejection for the other. The
different weighted BvsAll show a trade-off for BvsC and BvsL showing a significant improvement in BvsL
for a limited impact on BvsC performance. Right: c-tagging ROC curves. UParT shows state-of-the-art
performance for both b and light jet rejections.

The left plot in figure 2 shows the c/udsg jet misidentification rate vs. the b-jet tagging
efficiency for jets with pr > 30 GeV and || < 2.5 taken from a simulated ttbar sample. Whereas,
the right plot in figure 2 shows the b/udsg jet misidentification efficiency versus the c-jet tagging
efficiency for different tagging algorithms in the same jet selection. A consistent improvement in
the tagging performance is observed with UParT being the most performing model so far in c-jet
identification.

Additionally, UParT extends its capabilities by introducing an s-jet classifier, making it the
first attempt to identify jets originating from s-quarks within the CMS experiment. The left plot
in figure 3 shows the s-jet tagging efficiency against the misidentification rate of other jets. It can
already achieve 20% tagging efficiency for a mididentification probability of 1073, In addition,
UParT extends its capabilities to include hadronic tau classification, as demonstrated in the right
plot of figure 3, further enhancing its versatility across a wide range of particle tagging tasks.

4. Data vs. Simulations

Discrepancies between data and simulations arise from multiple factors that impact the accuracy
of jet tagging and classification in high-energy physics experiments. These mismatches are often
attributed to imperfect modeling of input variables used in tagging algorithms, which translates into
biases in the predicted distributions of jet-related observables, such as tagger scores or discriminator
values. Calibration errors, especially in the detector’s alignment and tracking systems, further
exacerbate these differences.

The misalignment between real-world data and simulated outputs manifests as shifts in peak
positions and trends in tagger scores. Such mismatches are prominent before the implementation of
scale factors (SFs), which are essential for correcting these discrepancies by adjusting the simulation
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Figure 3: Left: First s-tagging ROC curves in CMS experiment. Performances indicates we can achieve a

low efficiency s-tagger. Right: 7-tagging ROC curves. ParticleNet and UParT show similar performances.
ParticleNet performs better at high misidentification rate and UParT at lower rate.
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Figure 4: ParticleNetAK4 BvAll discriminator of the selected jet with highest py. A lower tagger score in
the mismatched peak position and downward trend are observed.

results to better match the data. These corrections are necessary to maintain the validity of tagging
algorithms in both inclusive and flavor-aware tasks.

Figure 4 presents the BvsAll discriminator distribution for the ParticleNet tagger in events
enriched with 77 decaying to dileptons, using data collected during the 2022-2023 run period,
corresponding to an integrated luminosity of 61.7,fb=! [13]. The bottom panel shows the
Data/Simulation ratio, which noticeably deviates from unity in the low score region.
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5. Calibration and Scale Factors

As discussed in the previous section, the calibration of heavy-flavor jets in the CMS experiment
is essential to improve the precision of tagging algorithms. This calibration is crucial for improving
the accuracy of physics analyses that involve heavy-flavor jets. Scale Factors (SFs) [14] are intro-
duced to correct discrepancies between the tagging efficiencies observed in data and those predicted
by simulations. These SFs are derived by comparing the performance of tagging algorithms on data
and simulations for various jet flavors (b, c, and light jets).

One commonly used method for deriving SFs involves calibrating b-tagging or c-tagging
discriminators by analyzing datasets enriched with heavy-flavor jets, such as those produced in top
quark pair decays (b enriched) or jets produced in association with W bosons (¢ enriched). During
this process, the distributions of discriminants (e.g. BvsAll, ... CvsL and CvsB) are examined in
both data and simulation. To achieve reliable SFs, systematic uncertainties, such as those due to
differences in detector conditions or modeling inaccuracies, are accounted for, which ensures robust
estimates.

SFs can be derived through two primary methods: working-point-based and shape-based cali-
bration. In the working-point-based approach, SFs are calculated for specific thresholds (working
points) of a tagging algorithm, providing a single correction factor for each working point. Shape-
based calibration, on the other hand, adjusts the full distribution of a discriminant (e.g., the output
score of a b-tagging algorithm) to improve agreement across a range of values.

The comparison between pre- and post-calibration distributions is shown in figure 5. After
applying the SFs, the agreement between data and simulation improves considerably, mitigating the
effects of mismodeling. In the left plot, the b-tag discriminant values from ParticleNet for both data
and simulations are compared before and after SF application, using data from late 2022 with an
integrated luminosity of 26.7 fb~!. The right plot illustrates the the light-jet misidentification rate
versus b-jet efficiency, where some deterioration in performance is observed post-calibration.

Thus, proper calibration of SFs is vital for reducing systematic uncertainties and ensuring
reliable and consistent jet flavor tagging across different datasets.

6. Merged jet tagging

The tagging of boosted jets plays a crucial role in analyses focusing on highly-energetic decays
of processes such as H — bb and H — cé. In such cases, the Higgs boson decays into two jets
that are often collimated, forming a single "boosted jet" due to its high momentum. To distinguish
signal jets from background, several innovative tagging techniques have been developed to exploit
the substructure of these jets.

Various machine learning (ML)-based algorithms have been employed to tag these jets. Some
of the key algorithms used are:

* Double-b (DNN): a deep neural network to differentiate jets containing bb-quarks from other
jets,

* DeepAKS8MD (CNN): A convolutional neural network (CNN) algorithm that is mass-
decorrelated (MD) to mitigate mass dependence in tagging,
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Figure 5: Left plot shows the distribution of the b jet discriminant score of the ParticleNet algorithm for jets
the eu + jets phase space for data recorded in late 2022 period. The recorded data and simulated events after
applying the SFs are shown. In the lower panel the data-to-simulation ratio after the SF application is shown
and in addition the ratio of data and simulation before the SF application is indicated. After the application
of SFs, a better agreement is observed. Right plot shows the b jet identification efficiency versus light jet
misidentification rate for the particleNet algorithm in late 2022 data evaluated for jets in hadronic ¢ events.
The distributions are shown before and after scale factor application (including uncertainties) to match the
efficiencies in data.

* DeepDoubleX (CNN, RNN): combines CNN and recurrent neural networks (RNNs),

¢ ParticleNetMD (DGCNN): based on dynamic graph convolutional neural networks (DGCNN).

The Run 2 performance of these algorithms is illustrated in figure 6 for H — bb and in
figure 7 for H — cc [15]. The signal efficiency versus background efficiency plot shows that the
ParticleNetMD algorithm outperforms the older algorithms, offering superior discriminating power
for both processes.

The left plot of figure 8 shows the mistag rate versus the signal efficiency for X — bb tagging
in Run-2 at various working points (Tight, Medium and Loose) along with the results of a dedicated
calibration. In Run-3, a validation is performed in Z — bb enriched samples with 2022 dataset,
where the main backgrounds include W — ¢g¢q’ and QCD [16]. The main background consists of
QCD multijet and is estimated using data driven techniques. The events are categorized in five
regions of ParticleNetMD score and a simultaneous likelihood fit is performed using the soft-drop
mass (mgsp) [17] distributions of the four highest ParticleNetMD score regions. The right plot of
figure 8 illustrates the post-fit mass distribution in the highest score region of the ParticleNetMD
tagger, showing a pronounced Z boson mass peak which confirms excellent agreement with SM
predictions. This consistency is critical for searches and measurements involving boosted jets.
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Figure 6: ROC curves for signal efficiency vs. background efficiency where signal is H — bb and the
background is inclusive QCD. The plot compares the performance of different boosted taggers in 450<pt<600
GeV (left) and pt > 600 GeV (right) for a mass selection between 90 and 140 GeV.
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Figure 7: ROC curves for signal efficiency vs. background efficiency where signal is H — c¢¢ and the
background is inclusive QCD. The plot compares the performance of different boosted taggers in 450<pr<600
GeV (left) and pr > 600 GeV (right) for a mass selection between 90 and 140 GeV.

7. Frameworks

In CMS experiments, efficient frameworks for jet tagging and other particle physics analyses

are essential for handling large datasets and ensuring efficient processing. The frameworks used

for training and commissioning workflows, enable fast and scalable solutions, particularly for tasks

like flavor tagging in jets.
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Figure 8: Left: The ROC curve of the ParticleNetMD discriminant obtained using simulation (blue) with
the three working points pointed out in simulation (filled circles) and in data (hollow circles), under the
2018 data-taking conditions with pt > 450 GeV. Right: Data to simulation comparison in the ParticleNetMD
highest score region. The upper panel shows the mass distributions of data (black markers) and prediction
(stack of QCD, W — ¢q’ and signal Z — ¢gq , with the latter split on the basis of its decay products). The
lower panel shows the ratio between data and prediction. The Z-peak is visible in the data distribution.

7.1 b-hive (Training Framework):

The b-hive [18] training framework focuses on efficiently training machine learning models for
tagging tasks. It uses ROOT [19] filelists as input and automates the dataset construction, training,
and inference tasks. The training framework is defined using a workflow pipeline that supports
parameterization, making it adaptable for different use cases. Its modular design allows users to
easily introduce custom models and tweak training parameters, such as dataset version, number of
epochs, and threads for parallel processing.

This framework is highly customizable and flexible, enabling users to modify it to incorporate
new models or methods, ensuring it can adapt to the evolving demands of jet tagging and related
tasks within CMS. The efficiency and flexibility of this framework make it an invaluable tool for
both model training and inference. Figure 9 shows a flowchart showing the workflow of the b-hive
framework.

7.2 BTVNanoCommissioning [13]

This workflow utilizes the NanoAOD format, which is a highly compressed data format con-
taining essential information for physics analyses. After processing the RAW detector outputs
into NanoAOD, the BTVNanoCommissioning framework is utilised for a faster, more efficient
manipulation of data. It uses pythonic array-based manipulations rather than loops, streamlining
operations by utilizing libraries such as Columnar Object Framework For Effective Analysis (cof-
fea) [20], awkward [21], and ROOT. The automation is enhanced by GitLab Continuous Integration
(CI/CD), enabling consistent performance monitoring over regular intervals with minimal human
intervention.
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Figure 10: The analysis workflow for BTV commissioning tasks. The first stage is centrally produced
NANOAOD samples, the second stage is divided into different workflows enrich in specific flavored jets,
and the last part is the histogrammer and plotter. The last two stages are connected to gitlab CI/CD for

automatically submitting jobs and producing the comparison plots.

Additionally, the BTVNanoCommissioning framework brings together selections from differ-

ent phase spaces and applies corrections and systematic variations. It also has options of converting

outputs into arrays, histograms, and figures and automatically transfers them to the storage area

(EOS) via GitLab CI pipeline.. The framework helps ensure accurate monitoring of the jet tagging

process and simulations for heavy-flavor jets. Figure 10 shows the diagram of the full chain of

processes that are executed for the production of commissioning results.
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8. Summary

The latest advancements in heavy-flavor jet tagging in the CMS experiment significantly im-
proves the performance during Run 3 data taking in CMS. Recent tagging algorithms in CMS
utilises sophisticated machine learning techniques, including deep neural networks, graph-based ar-
chitectures, and transformer models like the UnifiedParticleTransformer (UParT) algorithm. These
models enhance the ability to distinguish between heavy-flavor jets and light-flavor or gluon jets.
The proceeding reviews the evolution of these algorithms, emphasizing the improved tagging per-
formance and reduced mistagging rates, along with the introduction of robust calibration techniques
to mitigate discrepancies between data and simulation. Additionally, UParT also introduces novel
techniques for s-quark jet tagging and hadronic-tau jet classification.

The proceeding also discusses the performance of tagging algorithms for boosted jets and
their importance in specific physics processes, such as H — bb and H — cé. The calibration
of tagging performance using scale factors, derived from data and simulations, ensures accurate
physics measurements.

Finally, the paper outlines the two main frameworks used in CMS for model training and
commissioning: b-hive, which automates machine learning model training, and BTVNanoCom-
missioning, which employs a compressed data format and automation for efficient analysis of data
and simulations discrepancies.
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