LHCb: performance, results and upgrade

XV Latin American Symposium on High Energy Physics (SILAFAE), Mexico City, November 6, 2024

Mick Mulder on behalf of the LHCb collaboration (e-mail: mick.mulder@cern.ch)

 faculty of science and engineering

university of groningen

- LHCb originally designed for
 - Mixing and CP violation in B decays
- Fits in long tradition of **indirect measurements** to "discover" new particles, for example:
 - Charm quark in
 - Top quark from B meson mixing

LHCb technical proposal (1998)

Since its discovery, CP violation has been detected only in the decay amplitude of K_L mesons. Experimental efforts in the kaon sector will continue for some time. In the B-meson system there are many more decay modes available, and the Standard Model makes precise predictions for CP violation in a number of these. The B-meson system is therefore a very attractive place to study CP violation, and to search for a hint of new physics.

LHCb experiment

- Forward spectrometer at the LHC, optimised for -hadrons
- cross section at 13 TeV in acceptance
- pairs/s in LHC Run 1 & 2 (and 20 x more)

LHCb detector

6 November, 2024

LHCb detector

6 November, 2024

LHCb collaboration

6 November, 2024

LHCb collaboration

6 November, 2024

LHCb Run 1 & 2 data taking

- Running with LHC luminosity levelling
 (, 2x design luminosity)
 (, stable data taking conditions)
 - stable data-taking conditions
- Corresponds to 1.5 interactions per bunch crossing

Total of collected
 around pairs produced!

LHCb Run 1 & 2 data taking

- Running with LHC luminosity levelling
 (, 2x design luminosity)
 - stable data-taking conditions
- Corresponds to 1.5 interactions per bunch crossing

- Total of collected

 around pairs produced!
- Only the beginning!

LHCb performance

- Very good momentum resolution
 ()
 Sufficient to separate decays
- Excellent charged particle identification: ID ~ 97 % w. 1-3% mis-id ID ~ 90 % w. ~ 5% mis-id required to reject hadronic B decays & separate

LHCb performance

- Very good momentum resolution () Sufficient to separate decays
- Excellent charged particle identification: ID ~ 97 % w. 1-3% mis-id ID ~ 90 % w. ~ 5% mis-id required to reject hadronic decays & separate
- Clear separation of hadron decay vertex and pp collision: 45 fs decay time resolution 3% of lifetime essential to reduce backgrounds

- LHCb originally designed for:
 - Mixing and CP violation in B decays

LHCb technical proposal (1998)

Since its discovery, CP violation has been detected only in the decay amplitude of K_L mesons. Experimental efforts in the kaon sector will continue for some time. In the B-meson system there are many more decay modes available, and the Standard Model makes precise predictions for CP violation in a number of these. The B-meson system is therefore a very attractive place to study CP violation, and to search for a hint of new physics.

- LHCb originally designed for:
 - Mixing and CP violation in B decays
- But LHCb has found general purpose:
 - Rare B decays
 - Charm decays
 - Semileptonic B decays
 - Spectroscopy and exotic hadrons
 - Hadron production (B and quarkonia)
 - Heavy ion physics, fixed target
 - Electroweak physics, QCD
 - Exotics (dark matter, long-lived particles)

Check out the LHCb publication pag

LHCb ГНСр

- LHCb originally designed for:
 - Mixing and CP violation in B decays
- But LHCb has found general purpose:
 - Charm decays
 - Rare B decays
 - Semileptonic B decays
 - Spectroscopy and exotic hadrons
 - Hadron production (B and quarkonia)
 - Heavy ion physics, fixed target
 - Electroweak physics, QCD
 - Exotics (dark matter, long-lived particles)
- Today: selected results from LHCb Run 1 and 2
- Many more interesting results, just a small flavour!

6 November, 2024

Check out the LHCb publication pag

Publication luminosity

Mixing and CP violation

6 November, 2024 LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

CKM matrix

CKM matrix

- Probabilities described with 3x3 unitary CKM matrix (almost diagonal, almost real)

not equal W boson transforms quarks Probabilities described with 3x3 unitary C

٠

 Probabilities described with 3x3 unitary CKM matrix (almost diagonal, almost real)

Mass and flavour eigenstates of quarks are

- Only three real, one imaginary parameter remain in SM (due to unitarity)
- Imaginary element causes CP violation (opposite phase for particle, anti-particle)
- Before LHCb, only 1st and 2nd generation were well constrained

6 November, 2024

Unitarity triangle

- Unitarity of CKM matrix leads to two types of conditions: real, , orthogonal,
- Unitarity triangles formed
 with orthogonal relations
- In case of New Physics, unitarity conditions are broken!
 test consistency of unitary triangles with measurements testing each angle and side

Constraining the unitarity triangle

Significant progress over last decades with crucial role for LHCb (since 2011)

Any sign of inconsistency could point to New Physics

CKMfitter.in2p3. fr

6 November, 2024

Constraining the unitarity triangle

Significant progress over last decades with crucial role for LHCb (since 2011)

Any sign of inconsistency could point to New Physics

CKMfitter.in2p3. fr

6 November, 2024

- Only angle accessible in tree-level decays arg
- Theoretically clean

- Only angle accessible in tree-level decays arg
- Theoretically clean
- World Average from direct measurements:

- Only angle accessible in tree-level decays arg
- Theoretically clean
- World Average from direct measurements:
- World Average from indirect measurements (CKMFitter 2023):
- LHCb's goal: bring uncertainty from direct measurements of down to uncertainty from indirect measurements

Measuring CKM angle

• Use interference of and diagrams $\mathbf{y} = \mathbf{arg}$

- Interference only possible when decay to same final state
- Extract from combination of measurements (where or)

 $\frac{\mathbf{V_{ub}^*}\mathbf{V_u}}{\mathbf{V}^*\mathbf{V}}$

Measurement of in decays

- D meson reconstructed in many possible final states:
- Relatively challenging mode due to decay, low reconstruction efficiency
- Result: illustrative of measuring many modes required to reach ultimate precision

Direct CPV: more decays than decays!

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

[arXiv:2410.21115]

New combination

- Combination of 198 observables to determine 53 free parameters
- Simultaneous determination of and charm mixing parameters
- External inputs from BESIII, CLEO-c

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	Run $1\&2$	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[36]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^{\pm} h'^{\mp} \pi^0$	[37]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 h^+ h^-$	[38]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^0_S K^{\pm} \pi^{\mp}$	[39]	Run $1\&2$	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^{\pm} h'^{\mp}$ (PR)	[35]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$ (PR)	[20]	Run 1&2	New
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$ (FR)	[21]	Run $1\&2$	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^{\pm} h'^{\mp}$	[22] [†]	Run $1\&2$	Updated
$B^{\pm} \rightarrow DK^{\star\pm}$	$D \rightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[22]†	Run $1\&2$	Updated
$B^{\pm} \rightarrow DK^{\star\pm}$	$D \rightarrow K_S^0 h^+ h^-$	[22] [†]	$\operatorname{Run} 1\&2$	New
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[23]	Run $1\&2$	Updated
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[24]	Run $1\&2$	Updated
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ ightarrow K^- \pi^+ \pi^+$	[41]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	$[25, 42]^{\dagger}$	Run $1\&2$	Updated
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[43]	$\operatorname{Run} 1\&2$	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[44-46]	Run 1&2	As before
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[46-48]	Run 2	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[49, 50]	Run $1\&2$	As before
$D^0 ightarrow h^+ h^-$	ΔY	[51-54]	Run $1\&2$	As before
$D^0 \to K^+ \pi^-$ (double tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[55]	Run 1	As before
$D^0 \to K^+ \pi^-$ (single tag)	$R_{K\pi}, A_{K\pi}, c_{K\pi}^{(\prime)}, \Delta c_{K\pi}^{(\prime)}$	[27, 56]	Run 1&2	Updated
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	[57]	Run 1	As before
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	x, y	[58]	Run 1	As before
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[59]	Run 1	As before
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[60, 61]	Run 2	As before
$D^0\!\rightarrow\pi^+\pi^-\pi^0$	ΔY^{eff}	[26]	Run 2	New

 † Results presented at ICHEP 2024, but not yet publically available.

New combination

- Most precise single experiment result, , in agreement with and 20% better than previous average
- Previous tension between and modes resolved
- In agreement with global fits:
- Still statistically limited (systematic uncertainty is 1.4), so improvements expected in Run 3!

LHCb-CONF-2024-004:

update to [JHEP 12(2021)14

•

- The angle is sensitive to top-quark interactions; therefore only sensitive to loop diagrams, in this case B-meson oscillation
- Use interference of and meson decay to same final state, resulting in

(ignoring lifetime difference in - system)

for these decays,

-type decays excellent to measure :

 where due to non-tree decays is correction of ~1%

 6 November, 2024
 LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

Recent measurement of

- Use three modes, namely and, to get the most out of Run 2 data
- Combine with Run 1 measurement •
- Results of combination:

i.e. asymmetry is shaped like sine

Consistent with CKMFitter, UTFit, • best single experiment measurement

6 November, 2024

Charm mixing and CPV

- Unique CP violation test, asymmetries !
- LHCb discovered CPV in charm in 2019: , difference in time-integrated CP asymmetries of
- New this year: time-dependent asymmetry of prompt meson decays to , , tagged using , with full Run 1, 2 dataset
- Use ratio of wrong sign vs. right sign decay,
- Most precise mixing measurement; no sign of CP violation in mixing or interference
- Parallel analysis using from semileptonic decays provides additional constraints

[PRL 122 (2019) 211803]; [arXiv:2407.180

[LHCb-PAPER-2024-044, in preparation]

CP violation: summary

LHCb has provided stringent tests of CP violation and CKM matrix

- Strongest constraints on CKM angles and (closing the triangle)
- Observation of mixing and CP violation in charm decays

And more I could not show today:

- : world-leading in (angle in unitarity triangle)
- CP violation in mixing with semileptonic decays
- tests with semileptonic decays ()
- Search for direct CPV in

[arXiv:2409.01414]

[PRL 132 (2024) 051802]

[PRL 114 (2015) 041601, PRL 117 (2016) 061803]

[PRL. 126 (2021) 081804, PRD101 (2020) 072004, Nature Physics 11 (2015) 743]

More on CP violation by Melissa Cruz Torres (past Monday, 16:45)

Rare decays and lepton universality

6 November, 2024 LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

Rare B decays:

снср

Test Standard Model with weak interaction loop diagrams (Flavour Changing Neutral Currents)

6 November, 2024

Rare B decays:

- Test Standard Model with weak interaction loop diagrams (Flavour Changing Neutral Currents)
- Transition uncommon in Standard Model, sensitive to small contributions from heavy new particles!

6 November, 2024

Rare B decays:

- Test Standard Model with weak interaction loop diagrams (Flavour Changing Neutral Currents)
- Transition uncommon in Standard Model, sensitive to small contributions from heavy new particles!
- Observables:
 - Leptonic decays (e.g.) < in backup
 - Branching fractions
 - Angular distributions
 - Lepton universality
- Large variety of channels and observables

Semileptonic rare decays:

Physics depends on :

- Resonances (e.g.)
- Photon pole at low
- Vector or axial vector current

Semileptonic rare B decays: anomalies

Measurements of semileptonic rare B decays deviate from predictions....

Note: these deviations are consistent (interpreted in EFT framework, see backup)

6 November, 2024

Lepton universality:

 From SM expect equal muonic, electronic decay rate

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(\mu^{+} \mu^{-}))} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(e^{+} e^{-}))}$$

1.4

LHCb

 $9 \, {\rm fb}^{-1}$

- Measure double ratio with respect to modes
- **Consistent with SM**, shift versus previous results due to contribution from misID backgrounds

 $low-q^2 = 0.994^{+0.094}_{-0.087}$

 $R_K \text{ central-}q^2 = 0.949^{+0.048}_{-0.047}$

[PRL 131 (2023) 051803, PRD 108 (2023) 032002]

 R_K

Lepton universality:

- First measurement with : [arXiv:2410.13748]
 lower statistics but higher purity due to very narrow resonance
- First LHCb measurement at high above resonances
- Consistent with SM, much more limited by statistics than

Semileptonic decays & LFU

- Semileptonic most common decay mode!
- Include neutrino in final state (missing mass m
- Still, used at LHCb for
 - -hadron production measurements
 - Mixing and CP violation tests
 - measurements
- Test lepton universality: vs. rates
- Precise SM prediction available
- At least 1 neutrino produced in decay: more missing mass
- LHCb does or

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^- \bar{\nu}_{\mu})}$$

muonic

- Simultaneous determination with 2015, 2016 data, using
- Multidimensional fit in 3 variables ()

6 November, 2024

LHCb: performance, results a

muonic

- Simultaneous determination with 2015, 2016 data, using
- Multidimensional fit in 3 variables ()

- By itself 0.8 from SM predictions, preliminary average
- Work on extending LFU tests to full dataset ongoing

LHCb: performance, results ar

Summary: rare decays, lepton universality

- **Deviations found in rare decays, both and** (branching fraction and angular observables)
- Lepton universality holds in semileptonic loop-level decays

(consistent with New Physics in equal to)

 Deviations from lepton universality found in semileptonic tree-level decays:

(consistent with New Physics in only)

- Consistent interpretations possible (with Effective Field Theory)
- Much more I could not show:
 - Charm and strange decays
 - Radiative () decays
 - Lepton Flavour / Lepton Number / Baryon Number Violation [arX]

[LHCb-PAPER-2024-047, in preparation] [LHCb-PAPER-2024-030, in preparation] [arXiv:2405.13103]

6 November, 2024

Spectroscopy and exotic hadrons

Spectroscopy

• Many new hadrons discovered at LHC: 75 total, 67 at LHCb

patrick.koppenburg@cern.ch 2024-10-08

Spectroscopy

Many new hadrons discovered at LHC: 75 total, 67 at LHCb

- 23 new hadrons are exotic: (partially) four- or five-quark states
 Nature of states is unclear: tightly (tetra/pentaguark) tightly or loosely-
- Nature of states is unclear: tightly (tetra/pentaquark) or loosely bound (hadronic molecule)?
- Key to study of non-perturbative QCD
- New naming scheme proposed by LHCb: [arXiv:2206.15

states in diffractive processes

[arXiv:2407.14301]

- Measurement of cross section in pp interactions with no other activity: diffractive processes
- Surprisingly, observed resonant structures in mass spectrum; evidence for (), observation of ()
 Understand
 Unde
- Consistent with previous "charmonium-like" states found in decays!
- First such a correspondence apart from state

: what state is it?

- best-known non-conventional state ("charmonium-like"), discovered 2003
- Existence at threshold of mass suggests loosely bound molecule
- Prompt production in hadron collisions suggests conventional -state
- This paper: measure
- Generally larger than 1 for non-molecular states, which is exactly what is measured!
- Looks like has a significant compact component, either or tetraquark

Weak mixing angle at LHCb

- Weak mixing angle fundamental parameter of SM
- Previously tested at LEP; since 2015, LHC started to contribute
- Strategy: measure from forward-backward asymmetry in decay, in bins of difference in pseudorapidity

[arXiv:2410.02502]

Weak mixing angle: results

LHCb finds , resp. statistical, systematic, theoretical (PDF) uncertainties, **consistent with other estimates**

Improvement in precision of previous LHCb measurement by more than factor 2

۰

Still limited by statistical uncertainties!

Total uncertainty

Statistical uncertainty

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

[arXiv:2410.02502]

LHCb detector upgrades

6 November, 2024 LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

LHCb Upgrade 1

LHCD

Goals:

- Luminosity increase by factor 5; collect ~ by 2026, by 2033
- Hardware trigger removed 2x efficiency in hadronic/electronic modes

Required

- Upgrade of most detectors, fully replaced tracking detectors (higher granularity)
- Full readout and DAQ replacement to read out detector at 40 MHz

LHCb Upgrade 1 detector

CERN-LHCC-2011-001

A whole new detector!

6 November, 2024

VELO

CERN-LHCC-2013-021

New pixel detector (replacing strips)

- Within vacuum of LHC beam pipe; 2 moveable halves (5.1 mm from beam closed, 30 mm open)
- Dedicated RF foil for protection
- Very radiation hard
- Data rate: 3 Tbit/s

Performing well now, after recovery from January 2023 incident

6 November, 2024

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

SciFi

Scintillating Fibretracker developed for high occupancy

- Spatial resolution 80 μm
- Hit efficiency > 99%

Performing well, with occupancy even higher than in design specifications

CERN-LHCC-2014-001

VELO

Long track

T1 T2 T3

SciF

Upstream track

Upstream Tracker

- 4 planes made of silicon strips with finer segmentation and improved acceptance
 - Fast pT determination for track extrapolation, reduction of ghost tracks
 - Detect long-lived particles decaying after VELO ()
- Successfully running together with rest of detector

Trigger

CERN-LHCC-2014-016 CERN-LHCC-2020-006

- All subdetectors read out at 30 MHz Real Time Analysis with software trigger
 HLT1 reduces 30 MHz to 1 MHz with partial event reconstruction (tracking, vertexing, muon ID), based on GPUs in new data centre
 - Calibrate detector in "real-time" such that HLT2 u best-quality tracking, PID
 - Hadronic yield is 2x that of Run 2
 - 40 Tbit/s is highest throughput of all LHC

A lot of hard work finally yielded fruit in 2024 Total of 9.56 collected, same as all of Run 1 and 2!

- Note: some of this data was affected by start-up issues (until about mid-June)
- How does performance look like in good quality data?

And how was 2024?

10

Upgrade performance: particle ID

• Particle ID holding up under harsher Run 3 conditions

Upgrade performance: trigger

• Trigger performance much better for hadrons...

[LHCb-FIGURE-2024-030]

Upgrade performance: trigger

• Trigger performance much better for hadrons... and electrons!

6 November, 2024

Goal: increase of luminosity by facto aim for 300 fb-1 after Run 6

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

-0.2

0.0

sin 2B

I⊊ 0.3

0.2

0.1 0.0 -0.4

64

Upgrade 2 Goal: increase of luminosity

Goal: increase of luminosity by factor aim for 300 fb-1 after Run 6

Will reach unprecedented precision

Detector environment will be challeng

- Pile-up ~40 interactions
- 200 Tb/s of produced data

Detector upgrades: performance in harsher environment

- Better granularity
- Fast timing (~10 ps)
- Radiation hardness

 $\Delta m_{\rm H} \& \Delta m_{\rm e}$

V_{ub}/V_{cb}

 $\overline{0}$

0.4

0.2

Upgrade 1

0.6

0.8

1.0

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

65

Goal: increase of luminosity by factor 7 aim for 300 fb-1 after Run 6

• Will reach unprecedented precision

Detector environment will be challengi

- Pile-up ~40 interactions.
- 200 Tb/s of produced data.

Detector upgrades: performance in harsher environment

Better granularity

Upgrade 2

- Fast timing (~10 ps)
- Radiation hardness

Large step, e.g. in constraining unitarity triangle

Conclusions

- LHCb achieved excellent performance over Runs 1 and 2, collecting at
- Unitarity triangle tested to high precision; Standard Model still holds on
- Rare decays and lepton universality tests strongly probe new heavy particles;
 eagerly awaiting new results to resolve hints of New Physics
- Fantastic set of spectroscopy and electroweak results, many of which were never expected
- LHCb Upgrade 1 detector running well!
 Collected 9.56 in 2024, more than total Run 1 and 2 dataset; most of it should be useful for physics analysis
- Work for Upgrade 2 is ongoing to make the ultimate step in precision

¡Gracias por su atención!

6 November, 2024 LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

Meson mixing

- Neutral flavoured mesons () only have non-zero quantum numbers that are not invariant for weak interaction!
- Very dependent on meson system
- Described with Hamiltonian, oscillation frequency and lifetime difference

Figure 3.3: If one starts with a pure P^0 -meson beam the probability to observe a P^0 or a \bar{P}^0 -meson at time t is shown, $\operatorname{Prob}(t) = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2} \Delta \Gamma t \pm \cos \Delta m t \right).$

Effective field theory

- Are anomalies consistent with each other?
- Use effective field theory at B-hadron scale, just like beta decay four-point interaction!

Effective field theory

An EFT probes different couplings:

$$\mathcal{H}_{\mathrm{eff}} = -\frac{G_F}{\sqrt{2}} V_{\mathrm{CKM}} \sum_i \mathcal{C}_i \mathcal{O}_i$$

- Fermion operators, Wilson coefficients
- Grouped by leptonic current: (SM,NP)
 - photon penguin
 - (axial) vector
 - (pseudo) scalar
- Note: operators, coefficients with opposite quark current handedness from SM marked with , (negligible in SM)
- Global fits indicate consistent deviation: universal reduction in ?

Measurements with electrons at LHCb

- Electrons provide extra challenge in LHCb, because of significant bremsstrahlung in material
- If bremsstrahlung is emitted before magnet, momentum is underestimated
- Recover bremsstrahlung by searching for photon clusters in calorimeter
- If found, correct electron momentum
- Still, mass shape worse for electron modes

Measurements with electrons at LHCb

- Electrons provide extra challenge in LHCb, because of significant bremsstrahlung in material
- If bremsstrahlung is emitted before magr momentum is underestimated
- MeV/c^2 Recover bremsstrahlung by ٠ searching for photon clusters in calorime Candidates
- If found, correct electron momentum
- Still, mass shape worse for electron m

From previous result, LHCb [PRL122(2019)191801]

- Additionally, electrons more difficult for naraware trigger (than muons)
- Electron sample divided based on hardware trigger category: electron, rest-of-event, or hadron trigger
Leptonic: decays

- Excellent decays to study transition
 - Precise theory predictions (4% uncertainty)
 - Helicity suppression: very rare in SM
 - Scalar contributions not helicity suppressed
 enhanced relative to SM!
- Only in current experimental reach

PredictionsBobeth et al. PRL 112 (2014) 101801Beneke et al. JHEP 10 (2019) 232

• (extra clean test)

6 November, 2024

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

Fleischer et al., JHEP 05 (2017) 156

6 November, 2024

LHCb : performance , results \land upgrade \lor M . Mulder \lor SILAFAE XV

[PRL 120 (2018) 061801]

Branching fraction of

[LHCb-PAPER-2021-007]

with significance > 10

- Similar uncertainty to previous LHC combination
- and compatible with backgroundonly at 1.7, 1.5
- Measurement of
 is testing CP state of decay
 (more data needed)

6 November, 2024

LHCb: performance, results \land upgrade \lor M. Mulder \lor SILAFAE XV

Effective lifetime

- decay proceeds through CP-odd state in SM;
- CP-even, CP-odd states of have different lifetime measure effective lifetime to test CP-even contribution, scalar NP
- **ps** (previously ps)
- 1.5 sigma from SM2.2 sigma from extreme non-SM
- Run 3 data needed to start providing significant constraints

6 November, 2024

LHCb: performance, results \land upgrade \lor M. Mulder \lor SILAFAE XV

Plume and SMOG

Probe for LUminosity MEasurement (PLUME):

new dedicated luminometer

- Quartz tablets + PMTs for online+offline per- bunch luminosity measurement
- Running continuously, accurate luminosity estimate

SMOG2 gas system for fixed-target physics

- New storage cell for gas upstream of nominal interaction point
- Gas density increased by up to two orders of magnitude → much higher luminosity
- Gas targets: He, Ne, Ar
 (+ possibly H2, D2, N2, Kr, Xe)
- Simultaneous p-p and p-gas data taking
- **Running**² Smoothly-and data taken^{It}in^{and upgrade | M.Mulder | SILAFAE XV}

CERN-LHCC-2019-005

LHCb Upgrade 2 detector

LHCb: performance, results and upgrade | M.Mulder | SILAFAE XV

Advantages of -hadrons

- Heaviest quark forming hadrons decaying weakly
- Many possible decay modes, and even more observables!
 - Very rich spectrum of possibilities!
 - O(600) modes (incl. searches) for , O(100) for
- Weak decay of -hadron crosses generations:
 - No large branching fractions (largest)
 - Sensitive to small SM and New Physics effects!
- Lifetime and boost at LHCb give decay length of ; precise lifetime measurement possible