NEW APPROACHES FOR FAST AND EFFICIENT GRAPH CONSTRUCTION
ON CPU / GPU AND HETEROGENEOUS ARCHITECTURES

FOR THE ATLAS EVENT RECONSTRUCTION
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18108 modules in the ATLAS ITK detector (for HL-LHC 2029)
average number of space points / event: O(300k)

Track reconstruction challenge for HL-LHC

: ﬁ\w -

Charged particles leave Hits are collected Goal: rebuild
hits in the detector by Atlas Tracker particle tracks

 large amount of data
* need fast reconstruction
« machine learning ?

« Can't use the same tools

 How to represent
tracking data with a
Neural Network ?

3 \ The ATLAS collaboration, "ATLAS Upgrade for the HL-LHC: meeting the challenges of a
& T five-fold increase in collision rate", ATL-UPGRADE-PROC-2012-003, EPJ Web Conf. 28

(2012) 12069

1600 * 1200 pixels Atlas Tracker for HL-LHC

a large fraction of the image 5 * 10° readout channels

carries information of the subject ~ 3 * 10° 3D space points / event
data are sparse
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 High classification score
likely edge is part of the
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« Low classification score
edge is probably NOT

part of the track
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The ATLAS Collaboration, "Track finding performance plots for a Graph Neural Network pipeline on ATLAS ITk Simulated Data",
IDTR-2022-01, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/ (2022)
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Graph creation : from CPU to GPU

Step 1: Doublet cuts

 send event data to GPU

« apply doublet cuts

 parallel scan
* compact stream

Step 3: Triplet cuts

Step 4: Data reduction
* active edges only

 free cuda memory

 sort edges on output hit (quick sort)

Step 2: Count edges after doublet cuts
and reduce data

parallel scan + stream compaction
« copy reduced data to cpu
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GPU profiling and computational time

Ve Comparison CPU vs GPU ™

differences on 100 events data
nb nodes 22 / 27,384,853

™~ S nb of edges 446 / 177,067,905

Memory ressources

10to 11 Go / event

/ Average GPU time

COLLARD Christophe: L2IT, Toulouse, France, christophe.collard@I2it.in2p3.fr

TTree_hits_constants 0 :
Section: Occupancy /0 GPU tlme
Metric Name Metric Unit Metric Value Chart Of the 69mS by funCtlon
Block Limit SM block 16 012
Block Limit Registers block 3 ’
Block Limit Shared Mem block 16
Block Limit Warps block 2
Theoretical Active Warps per SM warp 32 / .
Theoretical Occupancy . 100 CUDA kernel for graph construction
Achieved Occupancy % 91.23
Achieved Active Warps Per SM warp 29.19 /064
Currently being integrated in ACTS
TTree_hits_constants /
Metric Name Metric Unit Metric Value .
Can be integrated to Athena
DRAM Frequency cycle/nsecond 6.02 2,16 K g
SM Frequency cycle/nsecond 1.15 38,84
Elapsed Cycles cycle 703,443
Memory Throughput % 1.15
DRAM Throughput % 1.15
Duration usecond 609.38
L1/TEX Cache Throughput % 0.56 ;
L2 Cache Throughput . 0 71 m cp to device mconstants = GPU alloc m doublet cuts = scan/compact
SM Active Cycles cycle 656,862.85 ; :
Compute (SM) Throughput ; 8070 triplet cuts m reduction m cp to host = free memory

69ms / event

based on 100 random events of CTD 2023 (simulated pile up
of 200 ttbar events) dataset running on Nvidia A100
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