
ATLAS usage of the Czech national HPC center: HyperQueue, cvmfsexec, and other
news

M. Svatoš, J. Chudoba, P. Vokáč
On behalf of the ATLAS Software & Computing Activity

ATLAS usage of the Czech national HPC center: HyperQueue, cvmfsexec, and other
news

M. Svatoš, J. Chudoba, P. Vokáč
On behalf of the ATLAS Software & Computing Activity

Introduction

The ATLAS distributed computing is using resources of the
Czech national HPC center IT4Innovations in Ostrava through
Czech Tier2 praguelcg2 in Prague:
• Anselm (2013-2021)
– CPU nodes: 180 WNs with 16 cores and 64GB of RAM
– in production in ATLAS: 2020-2021

• Salomon (2017-2021)
– CPU nodes: 576 WN with 24 cores and 128GB of RAM
– in production in ATLAS: 2017-2021

• Barbora (2019-present)
– CPU nodes: 192 WN with 36 cores and 192GB of RAM
– in production in ATLAS: since 2020

• Karolina (2021-present)
– CPU nodes: 720 WN with 128 cores and 256GB of RAM
– in production in ATLAS: since 2021

Submission system

Czech Tier2
(Prague)

IT4I
(Ostrava)

Harvester ARC-CE login node

HyperQueue
server

sshfs

ssh

batch system
htttp proxy

(squid) http
Panda
Server

LustreStorage
webdav
/xroot

1

• the ARC-CE shares storage space with the Lustre via sshfs connection through a login node and communicates with the batch system via
ssh connection (through other login node)

• when the ARC-CE receives a job, it translates the job description into a script that can be run in the batch system, puts necessary files
into a folder within sshfs shared area and submits the job via ssh connection to the HyperQueue server running on a login node

• the HyperQueue server collects these job definitions and when there are enough of them, it submits jobs into the batch system
• when the batch job starts, atlas-cvmfsexec is mounted and then a HyperQueue worker starts and is filled with HyperQueue jobs
• in each HyperQueue job, pilot wrapper starts, launching the pilot
• pilot contacts panda server through http proxy (Czech Tier2 squid) to receive a payload (as there are only few open ports at each HPC)
• when it receives the payload, it gets input file from the Czech Tier2 storage via xroot or webdav
• then it processes the payload
• when the payload finishes, it sends outputs to the Czech Tier2 storage via xroot or webdav
• when this is finished, pilot will request another payload (if it can expect that the job can finish)
• when all HyperQueue jobs are finished, the HyperQueue worker finishes and atlas-cvmfsexec is unmounted

HyperQueue

• https://it4innovations.github.io/hyperqueue/latest/

• HyperQueue is a tool designed to simplify execution of large workflows on HPC clusters
• submission from ARC-CE to HyperQueue requires only minor changes in ARC-CE scripts
• HPCs moved from PBSpro to slurm and it runs on both

user perspective

• small binary with no dependencies which one can just download and run
• works as batch system under my control within a batch system outside of my control
– batch system schedules only whole node jobs but I can split it (one 128 core job into four 32 core jobs)
– batch system enforces re-runnable jobs but I can set them to be not re-runnable

batch job
HyperQueue worker

at
la

s-
cv

m
fs

ex
ec

m
ou

nt

at
la

s-
cv

m
fs

ex
ec

um
ou

nt

HyperQueue job
pilotATLAS jobATLAS jobATLAS job ATLAS job. . .

HyperQueue job
pilotATLAS jobATLAS jobATLAS job ATLAS job. . .

HyperQueue job
pilotATLAS jobATLAS jobATLAS job ATLAS job. . .

HyperQueue job
pilotATLAS jobATLAS jobATLAS job ATLAS job. . .

1

filling efficiency

N.B.: On Karolina, the switch from one
128-core job to four 32-cores jobs (al-
lowed by HyperQueue) was motivated
by CPU efficiency increase:

128 cores
32 cores

90%

70%

Measurement: 142 HyperQueue workers: start and end dates of jobs and workers
Results:

sum of all time used by jobs

sum of all time available in workers
= 93%

common case: exceptional cases:

possible causes od exceptional cases:
• killed job could cause early end (if something was stuck and keep running until max time)
• late start could be caused by lack of jobs

Acknowledgement

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90254). The
work was also supported by the project CERN-CZ LM2023040.

atlas-cvmfsexec

When the CVMFS is not installed, jobs can run in so-called fat containers (FC), which
contain everything the job needs, or use software from atlas-cvmfsexec:
• https://gitlab.cern.ch/atlas-tier3sw/atlas-cvmfsexec

• WNs need access to a squid
• atlas-cvmfsexec is highly modular, i.e. there are parts of CVMFS (large or often used)
which can be used from a local (rsynced) copy

– local:
∗ base system (CC7, alma9)
container

∗ fat container (FC) releases
∗ condition ROOT files
∗ DBRelease

– from cvmfsexec
∗ ALRB (for every job)
∗ release software (for non fat container releases)

many thanks to Asoka De Silva for making atlas-cvmfsexec possible

network usage

Even at hundreds of concurrent atlas-cvmfsexec jobs, the network usage is rather low.

300

1 Gb/s

FC vs non-FC releases usage (9.2023 - 8.2024)

Barbora

only 12% of FC jobs

non-FC jobs
Karolina

37% of FC jobs

non-FC jobs

Performance

The grid jobs are running at Czech Tier2 computing center. The BOINC jobs are back-filling
a cluster dedicated to local users.

#cores of running jobs

20k

BOINC
GRID
HPC

CPU consumption [s]

BOINC
GRID
HPC

HPC fail rate (wallclock)

CPU efficiency

80%

BOINC
GRID
HPC


