Advancements in the in-file metadata system for the ATLAS experiment

Peter Van Gemmeren (ANL), Attila Krasznahorkay (UMass), Alaettin Serhan Mete (ANL), Marcin Nowak (BNL), <u>Maciej Szymański (ANL)</u> On behalf of the ATLAS Software & Computing Activity

REGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

CHEP 2024, Kraków, Poland, 19–25 Oct 2024

Introduction

- The in-file **metadata** system is an **essential ingredient** of HEP software
 - Reliable description of events in files and files themselves are prerequisite for all workflows
- The ATLAS in-file metadata infrastructure has been evolving over the years in response to EDM and analysis developments and needs
 - Most notably enabling MT processing [Berghaus et al. CHEP 2021]
- In the HL-LHC, the number of events will increase by an order of magnitude, demanding more **concurrent processing**
- Unlike event processing, **metadata handling is not trivially parallel**
 - Due to the challenging nature of summarising metadata payload
- Thus, ATLAS is **enhancing its in-file metadata** system to support metadata creation and propagation in more robust ways

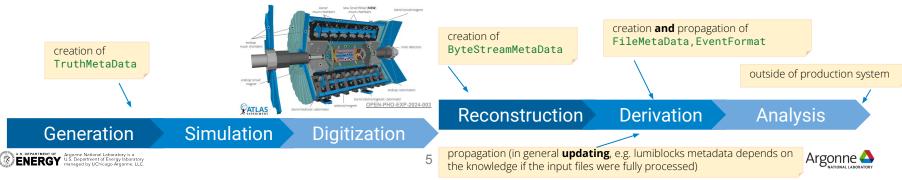
Motadata content

	lelaua	ta content	
	Category	Content	<pre> </pre>
Software	EventStreamInfo	summary of the event content for production	 EventFormatStreamDAOD_PHYS:
	EventFormat	summary of the event content for analysis	 ├── FileMetaData : │
	FileMetaData	event and provenance summary	→ conditionsTag : OFLCOND-MC21-SDR-RUN3-07 → geometryVersion : ATLAS-R3S-2021-03-00-00 → isDataOverlay : False → mcCampaign : mc21a → productionRelease : Athena-24.0.22
NOT OT	ByteStream	run parameters	│
,)	Interval of Validity	information with a lifetime other than event or file	<pre> </pre>
Physics	BookKeeping	event selections, cuts	i i ├── 1 ├── numberOfEvents : 401 ├── processingTags : ['StreamDAOD_PHYS']
	LumiBlocks	luminosity blocks stored in file	├── TruthMetaData : │ └── evgenTune : A14 NNPDF23L0 │ └── generators : Powheg+Pythia8(v.307)+EvtGen(v.2.1.1) │ └── mcChannelNumber : 601229 │ └── weightNames :
	TriggerMenu	trigger configuration	
ך	Truth	MC weights, generator details	├── file_comp_alg : 5 └── file_comp_level : 5 └── file_guid : 5DB82173-BEB7-C24D-88C2-171E29F814E7 └── file_size : 20555186 └── file_type : POOL

Use cases

- **Configuration** of the job using info from the input files
- Initialisation of software components
- **Mapping** of names to data objects or values
- **Decoding** trigger information
- **Keeping track** of event selection and luminosity blocks
- Annotations added by users

Crucial for all workflows!


• including (but not limited to): reco, simulation, derivation, analysis

High-level overview of the architecture

- <u>Athena</u>-based infrastructure for metadata processing and I/O
 - MetaDataSvc orchestrates metadata tools through file incidents
 - *Domain–specific* tools create or propagate metadata on beginInputFile or after each event
 - (Transient) object stores make metadata available to clients
 - Metadata objects persistified in containers stored in database (abstractions of Athena I/O)
- We support metadata processing in a variety of running modes
 - Serial processing, multi-{threading, processing}, also with shared I/O [Mete et al. ICHEP2022]

Restructuring metadata configuration

- Metadata configuration is quite *complex*
 - Various metadata categories are created or propagated at different stages
 - We use a variety of Gaudi components (tools, algorithms) to obtain the needed information
 - Handling depends on the mode (multi-threading, multi-processing w/ or w/o shared writer)
- Legacy configuration was difficult to maintain
 - Athena job configuration has recently been upgraded [Lampl, CHEP 2018]
- Hence, we have improved the metadata configuration
 - Making it modular and explicit which allows for better maintainability and flexibility
- Enhanced testing and validation enabled us to improve robustness of the infrastructure ensuring healthy metadata content
 - \circ Difficult to quantify, but a number of tickets has seemingly dropped igodot

Metadata storage technology

- Revisiting the way we persistify the in-file metadata
 - In the context of migration of the event data to RNTuple [Mete et al. ACAT 2024]
- The goal is to find a solution to store metadata objects for HL-LHC
 - Appropriate and performant
- We may want to **rethink the approach**
 - Find the equivalent *standard* of storing event data in *trees*
 - Considering concept of a *file* granularity in the context of potential usage of object stores
- There is **no standard** way of storing metadata in HEP experiments
 - Examples of approaches: TMap, TObject, sqlite database, JSON string
- Arguably, there exists a **synergy across experiments** on this topic

Current state of ATLAS metadata I/O layer

• In-file metadata is stored in a dedicated TTree within a **single entry**

- I/O infrastructure mostly shared with event data
- Works reasonably well, but it's an imperfect fit (not designed for)
- Actual payload consists of:
 - Simple types (POD and std::string)
 - Containers (std::vector) of simple types
 - Nested vectors, std:set, std::map, std::pair
- Most of the above information is wrapped into xAOD classes [ATLAS S&C Run3 paper]
- Size & I/O speed are not a concern, being much smaller than event data
 - E.g. 100s of kilobyte within 100s of megabyte DAOD file (TriggerMenu is the largest contributor)

*Tree	:MetaData : MetaData *
*Entries	: 1 : Total = 4484849 bytes File Size = 168158 *
*	: : Tree compression factor = 26.89 *
Br 0	:FileMetaDataAux. : xAOD::FileMetaDataAuxInfo_v1 *
Entries	: 1: Total Size= 757 bytes FileSize = 224 * 1 : Basket Size= 32000 bytes Compression= 1.00 *
	*
Br 1	:TriggerMenuJson BGAux. : xAOD::TriggerMenuJsonAuxContainer v1 *
Entries	: 1 : Total Size= 26662 bytes File Size = 1558 * : 1 : Basket Size= 32000 bytes Compression= 16.76 *
Baskets	: 1 : Basket Size= 32000 bytes Compression= 16.76 *

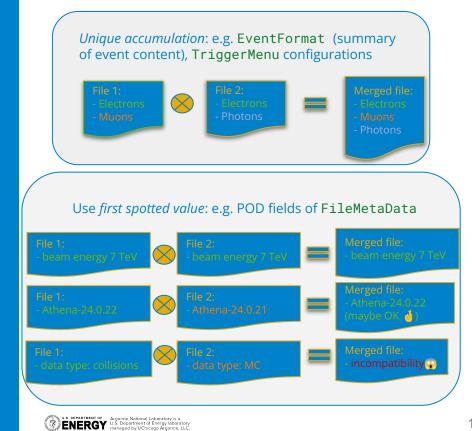
Entries	:TriggerMenuJson_HLTAux. : xAOD::TriggerMenuJsonAuxContainer_v1 * : 1 : Total Size= 2885794 bytes File Size = 81155 *
Baskets	: 1 : Basket Size= 32000 bytes Compression= 35.55 *
Br 3	<pre>:TriggerMenuJson_HLTMonitoringAux. : xAOD: *</pre>
	:TriggerMenuJsonAuxContainer_v1 *
Entries	: 1 : Total Size= 807 bytes File Size = 206 * : 1 : Basket Size= 32000 bytes Compression= 1.00 *
	: I: Basket Stze= Sz000 bytes compression= 1.00 ^
Br 4	:TriggerMenuJson HLTPSAux. : xAOD::TriggerMenuJsonAuxContainer v1 *
Entries	: 1 : Total Size= 334396 bytes File Size = 29229 * : 1 : Basket Size= 32000 bytes Compression= 11.42 *
Baskets	: 1 : Basket Size= 32000 bytes Compression= 11.42 *

Br 5 Entrioc	:TriggerMenuJson_L1Aux. : xAOD::TriggerMenuJsonAuxContainer_v1 *
Raskets	: 1 : Total Size= 1092521 bytes File Size = 34198 * : 1 : Basket Size= 32000 bytes Compression= 31.93 *
	* z . basket bill blob bjilb compression*
Br 6	<pre>:TriggerMenuJson L1PSAux. : xAOD::TriggerMenuJsonAuxContainer v1 *</pre>
Entries	: 1 : Totāl Size= 67979 bytes File Size = 3652 * : 1 : Basket Size= 32000 bytes Compression= 18.46 *
Baskets	: 1 : Basket Size= 32000 bytes Compression= 18.46 *
	*
Entries	: 1 : Total Size 1017 bytes File Size = 358 *
Baskets	:CutBookkeepersAux. : xAOD::CutBookkeeperAuxContainer_v1 ** : 1 : Total Size= 1017 bytes File Size = 358 * : 1 : Basket Size= 32000 bytes Compression= 1.33 *
Br 8	<pre>:IncompleteCutBookkeepersAux. : xA0D::CutBookkeeperAuxContainer v1 *</pre>
Entries	: 1 : Total Size= 2008 bytes File Size = 612 * : 1 : Basket Size= 32000 bytes Compression= 2.33 *
Baskets	: 1 : Basket Size= 32000 bytes Compression= 2.33 *
	<pre>* * * * * * * * * * * * * * * * * * *</pre>
Entries	: 1 : Total Size= 19569 bytes File Size = 4953 *
Baskets	: 1 : Total Size= 19569 bytes File Size = 4953 * : 1 : Basket Size= 32000 bytes Compression= 3.85 *

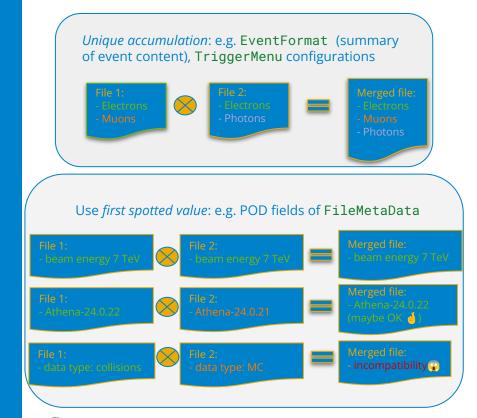
Metadata merging (summarising)

- While merging events is a trivial concatenation, for metadata it is **not as straightforward**:
 - Depends on the metadata type, e.g. some values are assumed to be constant throughout the job
 - Must be handled differently knowing if the input file was fully processed, e.g. for lumi blocks
- Robust merging procedure is required not only to combine the files, but also to **support concurrent** workflows
- In principle, we could use popular R00T's <u>hadd</u> utility to merge the files
 - Teaching metadata objects to know how to **merge themselves** by implementing Merge()
 - Detecting if the inputs are compatible and deciding how to deal with the given metadata types (and their constituents)
 - Unfortunately, this works only for the objects of classes inheriting from TObject 😕

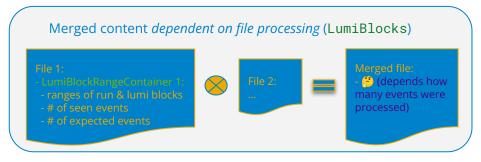
Unique accumulation: e.g. EventFormat (summary of event content), TriggerMenu configurations


Unique accumulation: e.g. EventFormat (summary of event content), TriggerMenu configurations

Natural addition: number of events in EventStreamInfo



Natural addition: number of events in EventStreamInfo



Natural addition: number of events in EventStreamInfo

More on metadata processing

- As of now, merging is the responsibility of the metadata tools in Athena
 - Challenging *feature* due to type-dependent handling, especially for shared I/O mode
 - Metadata *linked* to the event tree has to be readable even w/o events (workers may not process any events, also the case of skimmed data)
 - We explored a single-tool with 2 modes (creation and propagation) design, but found not much gain wrt the current approach of 2 tools per category (simplicity vs flexibility trade-off)
- We investigate how some metadata propagation can be done outside of event processing
 - Make it possible to transmit some payloads (e.g. beam energy) w/o the need for an event loop
- We are also constantly improving FileMetaData (key-value store summarising properties of all events in the file)
 - Used primarily for job configuration and analysis, so we focus on ease of use outside Athena and convenient file peeking

Possible solutions for in-file metadata storage

- Store metadata in a separate RNTuple
 - Implemented, following the work for event data, also adapting auxiliary (Python) tools
 - However, RNTuple is not really designed for a single-entry *tree*
 - While not a crucial factor, slight size increase wrt TTree (less opportunities for compression?)
- Store metadata objects using ROOT-keyed container (based on TKey)
 - (Partially) implemented resurrecting an old implementation dating back to <u>LCG_POOL</u>
 - Feels suboptimal to use an old, low-level API
 - \circ $\;$ Also, does not really help with solving the issue of metadata merging
- Leverage the future feature of user-provided metadata in RNTuple
 - Listed in the <u>RNTuple architecture document</u>
 - In essence, it would be beneficial to allow for a second *tree* associated with event tree
 - Favorable solution, looking forward to collaborating with R00T team and other experiments!

Summary

- We presented the on-going investigations into enhancing the ATLAS in-file metadata system for HL-LHC
 - Integral part of the ATLAS software ecosystem crucial for successful physics programme
- Investigating **improvements** of the in-file **metadata storage**
 - Promising development of the user-defined metadata in RNTuple
- Looking forward to community collaboration on developing common strategies for coping with challenges of metadata processing
- Working towards more **robust summarising of metadata** objects
 - Challenging in face of the need for concurrent processing towards higher data rates

Thank you for your attention!

mszymanski@anl.gov

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

