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Close to the continuum limit, lattice QCD with mass-degenerate Wilson quarks can be
described by Symanzik’s effective continuum action, which contains the dimension 5 operator,
< tr(�`a�`a). Its effect can be eliminated by an O(0<q) rescaling of the bare lattice coupling
constant. Until recently, the corresponding improvement coefficient, 1g, was only known
perturbatively to 1-loop order and an estimate of the remaining uncertainty is the dominant
systematic error in the ALPHA collaboration’s recent determination of UB (</ ) with the
decoupling method [1]. To remove this error we have determined 1g non-perturbatively for the
corresponding parameter range. We here briefly review improvement conditions for 1g, perform
a perturbative test and report on our non-perturbative results for 1g.
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1. On-shell O(0) improvement and the rôle of 1g

The leading cutoff effects in lattice QCD with Wilson quarks are linear in the lattice spacing 0,
due to the explicit breaking of all chiral symmetries by the Wilson term. The required counterterms
can be classified in Symanzik’s effective continuum theory by their mass dimensions and lattice
symmetries. Including lattice discretizations of these counterterms in the action with appropriately
tuned improvement coefficients then allows us, at least in principle, to completely eliminate O(0)
effects from on-shell quantities such as hadronic masses and energies (cf. [2] and references therein).
Given that O(0) effects arise from chiral symmetry breaking, one would expect that chiral Ward
identities can be used as improvement conditions to determine the counterterm coefficients. For
instance, with massless quarks, the use of the simplest chiralWard identity, the PCAC relation, leads
to the determination of the coefficient, 2sw, of the Sheikholeslami-Wohlert term and the coefficient
2A, required to improve the axial current. As a result, the uncertainty of the massless limit reduces
to O(02) [2, 3]. With #f mass degenerate Wilson quarks, the only additional O(0) counterterms to
the action take the continuum form < tr(�`a�`a) and <2kk, and can be implemented on the lattice
by re-scaling the bare lattice coupling, 62

0, and the bare subtracted quark mass, <q = <0 − <cr,

6̃2
0 = 6

2
0 (1 + 1g(62

0)0<q), <̃q = <q(1 + 1m(62
0)0<q) . (1)

We here focus on 1g, which is known perturbatively to 1-loop order [4],

1g = 1
(1)
g 62

0 + O(64
0), 1

(1)
g = 0.01200 × #f , (2)

and plays a central rôle for consistent O(0) improvement. It is needed to keep 6̃2
0 constant, if the

quark mass is to be varied at constant lattice spacing. Furthermore, renormalization factors in mass-
independent renormalization schemes depend on 6̃2

0 rather than 6
2
0. Perturbative estimates of 1g are

fine for small 0<q values, but this is not the case e.g. for the charm quark in typical simulations in the
hadronic regime. Our own motivation to compute 1g non-perturbatively originates from the recent
determination of the Λ-parameter for 3-flavour QCD. There, a fictitious mass-degenerate triplet of
quarks is used to establish a precise connection between renormalized couplings in 3-flavour QCD
and pure gauge theory, respectively [1, 5]. The latter is the effective theory in the decoupling limit
of infinite quark mass. In practice, one traces a renormalized QCD coupling for a wide range of
quark masses, while keeping cutoff effects under control. Pure gauge theory calculations can thus
be leveraged to obtain one of the most accurate determinations of the QCD Λ-parameter and of
UB (</ ) to date [1],

Λ
(3)
MS
= 336(10) (6)1g (3)Γ̂<MeV = 336(12)MeV ⇒ UB (</ ) = 0.11823(84) . (3)

The quoted systematic error due to 1g was estimated by assuming a 100 percent uncertainty on the
perturbative result, Eq. (2), and this is currently the dominant systematic error. We here report on
our recent non-perturbatve results for 1g [6], aimed at removing this error in Eq. (3). Controlling the
decoupling limit of largemass<q while keeping 0<q reasonably small (values up to 0<q = 0.3−0.4
were used in the analysis), means that the lattice spacings are significantly smaller than in typical
hadronic simulations e.g. by CLS [7, 8].
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2. Improvement condition for 1g

We distinguish two strategies to determine 1g. The first one is based on chiral Ward identities
and the observation that the O(0) improvement of the quark bilinear, flavour singlet scalar density
can be related to 1g [9]. For a detailed derivation, which also corrects an oversight in [9], we refer to
our paper [6]. The second strategy uses restoration of chiral symmetry in a physically small volume
of linear dimension !, which implies analyticity of observables in the quark mass [6]. Given a
gluonic observable $6, one may thus expand in powers of I = "!,

〈$6〉 = 〈$6〉I=0 + I
m〈$6〉
mI

����
I=0
+ O(I2) (4)

where " denotes the RGI quark mass. With a hyper-torus topology and some variant of periodic
boundary conditions for all fields, it can be shown that the physical quark mass dependence must
be of O(I2). Hence, the term linear in I must be due to lattice artefacts arising from an incorrect
tuning of 1g, and an improvement condition for 1g is obtained by imposing

m〈$6〉
mI

����
I=0

= 0 . (5)

Assuming $6 to be dimensionless, one may change variables from (I,Λ!, !/0) to (0<q, 6
2
0, !/0)

and obtain [6],

1g(62
0) =

m〈$6〉
m0<q

����
62

0 ,<q=0
×

62
0
m〈$6〉
m62

0

�����
<q=0


−1

. (6)

3. Perturbation Theory

It is instructive to test this improvement condition in perturbation theory. We consider 〈$6〉 =
1/6̄2, the SF coupling [4, 10], but with jSF boundary conditions, which, unlike standard SF
boundary conditions, do not generate an O(I) term at the boundaries [11, 12]. We set the boundary
counterterm coefficients If , 2t and 3s to their correct tree-level values [12] and use the tree-level
O(0) improved action with 2sw = 1. We expand perturbatively,

6̄2(!, I) = 62
0 + ?1(!/0, I)64

0 + O(66
0) = 6̃

2
0 +

(
?1(!/0, I) − 0<q1

(1)
g

)
6̃4

0 + O(6̃6
0) , (7)

where we define I = <R! with some renormalized quark mass, <R. To lowest perturbative order
we have <R = <̃q = <q(1 + O(<q)). The asymptotic expansion for small 0/! takes the form,

?1 ∼ A0(I) + 210(I) ln(!/0) +
0

!
A1(I) + O(02) , (8)

where 10 is the one-loop coefficient of the V-function, normalized such that 10(0) = (11 −
2
3#f)/16c2. With jSF b.c.’s, A0 and 10 are even functions of the quark mass, so that their derivatives
at I = 0 must vanish. We have anticipated the absence, due to bulk O(0) improvement, of a term
∝ (0/!) × ln(!/0). Complete tree-level boundary O(0) improvement implies that A1(0) = 0. The
only remaining O(0) effect is given by the quark mass dependence of A1 and is cancelled by 1g.1

1The boundary O(0<q) counterterm obtained by the replacement If → If (1 + 1f0<q), contributes at O(02) to ?1
and at O(0) to the 1g-estimate.
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The improvement condition, Eq. (5), requires to differentiate with respect to I at I = 0, which
leads to,

m6̄2

mI

����
I=0

=
0

!

(
A ′1(0) − 1

(1)
g

)
6̃4

0 + O(02, 6̃6
0) = 0 ⇒ 1

(1)
g = A ′1(0) . (9)

We have checked that this reproduces the known one-loop result, Eq. (2). We can also test Eq. (6)
for a given lattice size. We have2

m6̄2

m0<q

����
62

0 ,<q=0
= 64

0
m?1
m0<q

����
<q=0
+ O(66

0) , 62
0
m6̄2

m62
0

�����
<q=0

= 62
0 + 2?16

4
0 + O(66

0) . (10)

We thus obtain estimates for the 1-loop coefficient at fixed !/0,

1
(1) ,est
g =

m?1
m0<q

����
<q=0

= A ′1(0) + O(0/!) . (11)

Using the standard SF coupling with jSF b.c.’s, <0 = 0, \ = c/5, a few numerical results are

1
(1) ,est
g

0.0120#f

�����
!/0

= 0.899, 0.913, 0.924, 0.940, 0.950, for !/0 = 16, 24, 32, 48, 64 . (12)

The leading lattice effects are indeed ∝ 0/!, including an (0/!) × ln(!/0) term. In Eq. (11) we
have again used,

!

0

(
A ′0(I) + 21′0(I) ln(!/0)

) ����
I=0

= 0 , due to A ′0(I), 1
′
0(I) = O(I) . (13)

At finite !/0, the chiral limit is not unambiguously defined. Setting I = 0 means <q = 0 up to an
O(02) uncertainty. This implies that the O(0) improved axial current (with counterterm ∝ 2A) must
be used to obtain an O(0) improved critical mass from the PCAC relation. At 1-loop order, we have
tested this effect by setting <0 ∝ 0/!2, ie. by adding an artificial O(0) term to the critical mass,
which then produces an O(1) shift in 1 (1) ,estg , as expected.

Unfortunately, jSF b.c.’s are only available for even #f . For odd flavour numbers, a mixed
set-up with a single massless “spectator quark” satisfying SF boundary conditions [13], while a
theoretical possibility, looks less attractive, and some hyper-torus topology with periodic or twisted
periodic (for #f = 3) boundary conditions is clearly preferable.

4. Non-perturbative results

To determine 1g non-perturbatively for #f = 3 O(0) improved Wilson quarks [14] and the
Lüscher-Weisz gauge action [15], we chose a line of constant physics (LCP) defined by I = 0
and the physical scale ! defined implicitly by 6̄2

GF(!) = 3.949 (see ref. [16] for the coupling
definition), corresponding to ! ≈ 0.25 fm [1]. For a given lattice size, !/0, the LCP implies values
for V = 6/62

0 and the critical mass, 0<cr(62
0). With !/0 = 12, . . . , 48 this leads to V-values in

the range V ∈ [4.3, 5.17]. Periodic and anti-periodic boundary conditions in all directions were

2We here differentiate the inverse observable, 6̄2 = 1/〈$6〉; the additional factor cancels in the ratio for 1g.
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imposed for the gauge and quark fields, respectively. This allowed us to simulate around the chiral
limit without the need for chiral extrapolations. We looked at two sets of renormalized and O(0)
improved gluonic observables, first the gluon action density at finite flow-time, C,

f(2) =
3∑

`,a=0

C2 〈tr
{
�`a (C, G)�`a (C, G)

}
X& (C) ,0〉

〈X& (C) ,0〉

�����
8C=22!2

, (14)

where the projection onto the zero topological charge sector is part of the definition of f(2).
Secondly, we measured Creutz ratios, defined from expectation values of rectangular Wilson loops,
, (',)), by

j(',)) = −m̃' m̃) log(, (',))) , (15)

with symmetric lattice ',)-derivatives. Again, a projection to the & = 0 sector is implicit in the
definition of, (',)). To complete the definition of the LCP we still need to fix the flow time and
the dimensions of the Wilson loops in units of !. After some exploration in parameter space, our
main (dimensionless) observables were chosen as f(2 = 0.18) and ĵ = '2j(', ') |'=!/4.

Estimates of 1g by Eq. (6) require the derivatives off(2), ĵ, with respect to the bare parameters.
These were implemented by tracing their <q-dependence at fixed V and their 62

0-dependence at
<q = 0, respectively. Various checks were performed, in particular we made sure that higher order
terms in <q did not impact on our extraction of the linear <q dependence required for 1g. Since 1g
is obtained from a cutoff effect that vanishes proportionally to 0/!, it gets increasingly difficult to
obtain direct measurements on the larger lattices. We decided to strictly follow the LCP for lattice
sizes from !/0 = 12 to !/0 = 24. At the !/0 = 32 point of the LCP we then performed some
checks on the !/0-dependence of the 1g-estimates. We concluded that the difference was too small
to be resolved, allowing us to continue on with !/0 = 24 for this and the higher V-values. We
also checked the sensitivity of our 1g-estimates to the precise definition of the LCP, by studying
their dependence on C and '. It turns out that these estimates are very stable once

√
8C/0, '/0 ≥ 3

which is satisfied for all 1g-estimates from ĵ; with f(0.18) this holds for all lattice sizes except
!/0 = 12, 16 where the C-dependence is visible but still rather mild.

0.0 0.5 1.0 1.5
g2

0

0.00

0.05
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0.15

bσg

1-loop PT: b
(1)
g g2

0

fit: b
(1)
g g2

0 + c1g
4
0 + c2g

6
0

0.000 0.002 0.004 0.006
(a/L)2

−0.0010

−0.0005

0.0000
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a
/L

[b
σ g
−
bχ̂ g

]

Figure 1: Final result for 1g from f(0.18) (left) and ambiguity [1fg − 1
ĵ
g ] × 0

!
(right). The extra factor 0/!

is added because 1g always enters into observables with an explicit factor of 0; we also include a linear fit to
all points constrained to go to zero.
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We also produced data at V = 6, 8, 16, in order to compare with perturbation theory. The
results for 1g obtained from f(2 = 0.18) are collected in Figure 1 (left panel) and smoothly connect
the perturbative and non-perturbative regimes, even though the deviation from perturbation theory
becomes quite large at the lowest V-values. In order to check for consistency we looked at the
difference to the 1g-estimates from ĵ. We found that this O(0)-ambiguity is very small (see right
panel of Figure 1), and compatible with O(0). We have performed different fits to the data for 1g
from f(0.18). Our preferred 2-parameter representation for V ≥ 4.3 is given by

1fg = 0.036 62
0 − 0.0151 64

0 + 0.0424 66
0 , (16)

where the first coefficient is constrained to the perturbative result for #f = 3, Eq. (2). The overall
uncertainty from comparing to different fits is 1.1×10−3 and ca. 4×10−4 in the range V ∈ [4.3, 5.17].

5. Conclusions

We have reported on our recent non-perturbative results for the improvement coefficient 1g,
as needed for the study of the decoupling limit in [1, 5]. The improvement condition relies on the
restoration of chiral symmetry in a physically small volume and passes a perturbative test to first
non-trivial order. Following a line of constant physics, we have looked at the action density at
finite gradient flow time and Creutz ratios, in order to test the dependence of 1g-estimates on the
choice of observable. We find remarkable stability of our results, which are well-represented by
a 2-parameter fit, Eq. (16). The re-analysis of the data from the decoupling project for the QCD
Λ-parameter and UB (</ ) is currently underway.
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