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Particle flow in ATLAS

● Problem: particle identification & energy calibration

● Particularly challenging when we have jets/showers

● Key: exploit complementary components info:
○ tracker

○ calorimeters (calo)

● Particle flow (p-flow) algorithms reconstruct 

particle’s trajectory and its energy deposit in 

detector components

● Inputs are tracks in the inner detector and topo-

clusters in calorimeter
○ topo-clusters are groups of neighbouring cells

→ useful to reconstruct showers in the calorimeter

● Goal: try to associate topo-clusters to tracks
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https://cds.cern.ch/record/2770815/files/
https://www.sciencedirect.com/science/article/abs/pii/S0168900209017264?via%3Dihub
https://link.springer.com/article/10.1140/epjc/s10052-017-5004-5


Luca Clissa, University of Bologna, INFN & ATLAS – 27th Conference on Computing in High Energy and Nuclear Physics, 20-25 October 2024, Krakow

ATLAS p-flow algorithm [Eur. Phys. J. C 77 (2017) 466]

For each track in descending pT:

1. associate closest topo-cluster based on angular distance ΔR’
2. compute expected energy deposit based on the topo-cluster position and track momentum
3. if expected and measured energies differ significantly, associate more topo-clusters 
4. subtract the expected energy by calo cells 
5. if remaining energy lies within expected fluctuations, remove the remnants
6. otherwise, consider leftovers for the next track
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ATLAS p-flow algorithm: pros and cons

Existing ATLAS p-flow algorithm strengths:

● Calo + track information: 

→ improve energy resolution at low energy

● Good energy and angular resolution

● Pileup mitigation through “charged hadron subtraction”

Main limitations:

● Associate track to topo-clusters, not cells directly 

→ energy subtraction not flexible

● No calibration, only use detector measurements

● Tracker usage off above 100 GeV to avoid false matches
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Can we do better? Maybe Machine Learning (ML) can help?

[CERN-THESIS-2011-291]

https://cds.cern.ch/record/1504815?ln=de
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Machine Learning alternatives

● Machine Learning models have already shown promising results under various settings
○ HyperGraphs for end-to-end pflow [Eur. Phys. J. C 83 (2023) 596]

○ ongoing work on task-based solutions (matching, segmentation and calibration)

○ image-based methods for calibration [ATL-PHYS-PUB-2020-018] (central barrel reconstruction, |η|<0.7)
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task-based: 

replace steps with ML

end-to-end:

one model, all steps

Inputs Output

https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7
https://cds.cern.ch/record/2724632
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→ Outperform Local Hadronic Cell Weighting (LCW) calibration

→ Work well for both identification and energy calibration

→ However, inefficient representation and do not include tracking data

Machine Learning alternatives

● Machine Learning models have already shown promising results under various settings
○ HyperGraphs for end-to-end pflow [Eur. Phys. J. C 83 (2023) 596]

○ ongoing work on task-based solutions (matching, segmentation and calibration)

○ image-based methods for calibration [ATL-PHYS-PUB-2020-018] (central barrel reconstruction, |η|<0.7)
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Point cloud methods for p-flow [ATL-PHYS-PUB-2022-040]

● Focus on pion identification and energy calibration, 
○ first step towards hadronic shower reconstruction

● Leverage point cloud data
○ only use actual hits, i.e. natural zero suppression

○ naturally handle varying granularity

○ naturally allow including tracking data

○ easily extend to including more information (momentum, hit confidence, …)

● Test 4 Deep Learning methods for point cloud data:
○ Graph Neural Network (GNN)

○ Deep Sets, Transformers, Merged Deep Fully Connected Network (DNN)

● Outline of extension to segmentation task
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Why point cloud data?

● Image-based approaches are sub-optimal
○ different spatial granularity is difficult to render

○ only encode calorimeter information (no tracker) 

○ irregular deposition geometries cause sparse images

→ inefficient representation

● Point cloud representation has several advantages
○ represent hits as 3D points with properties 

→ complex 3D shapes instead of series of images

→ features like energy, hit confidence 

○ including tracker is straightforward

○ only uses actual hits

→ efficient representation
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ATL-PHYS-PUB-2022-040

[ATL-PHYS-PUB-2020-018]

https://cds.cern.ch/record/2825379
https://cds.cern.ch/record/2724632
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Dataset

● Hadronic showers originate primarily from pions
○ π0: decay promptly to photons → EM calo

○ π+/-: more fluctuation in energy deposit patterns

→ hadronic calorimeter

● Full ATLAS simulation using Geant4

● Uniform pion distributions in
○ azimuthal angle

○ pseudo-rapidity

○ log true energy

● 10M π0, 5M π+, 5M π-

○ 3.5M training, 500k validation, 1M test 

after quality cuts 

○ events with exactly 1 track
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For illustration
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Deep Learning methods

We explored several Deep Learning methods,

only some of them shown here:

● Graph Neural Networks (GNN)

● Deep Sets

● Transformers

● Convolutional Neural Networks (CNN)

● Merged Deep Fully Connected Network 

(DNN)

→ image-based approaches
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Energy calibration → regression: calibrated energy

Particle identification → classification: π0 VS π+/π-

● only calorimeter information 

→ adding tracks makes classification obvious

● input: one topo-cluster at a time

Learning tasks
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● calorimeter + tracker

● input: one track + topo-clusters in ∆R<1.2

● only calorimeter information

● input: one topo-cluster at a time



Results
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We compare ML approaches against two baselines 
depending on the learning task:

● classification
→ Electromagnetic (EM) scale + initial hadronic 
calibration step corrections: 𝒫EM

cluster

● regression
→ full Local Cell Weighting (LCW) calibration, 
i.e. 𝒫EM

cluster + additional corrections: ELCW
cluster
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π0 VS π+/π- classification: calo only 

Metrics: π土 efficiency VS π0 rejection

○ π土eff = TP/(TP+FN)

○ π0
rej = 1 - FPR = TN/(TN+FP) 

● ML methods outperform 

baseline Pclus
EM

○ 4x to 8x background 

rejection in |η|<0.7

○ 2x to 6x in full η range

● GNN performs best

→ 5x background rejection 

● performance increases with 

higher topo-cluster energy

14

[ATL-PHYS-PUB-2022-040]

https://cds.cern.ch/record/2825379


Luca Clissa, University of Bologna, INFN & ATLAS – 27th Conference on Computing in High Energy and Nuclear Physics, 20-25 October 2024, Krakow

Metrics: median energy response and resolution

○ energy response, R = Epred/Etrue

○ resolution, IQR = median R 土 1σ (16-84%)

● ML significantly better than traditional 

calibrations across entire energy spectrum

→ R closer to 1; lower IQR

● GNN is best overall

● Deep Sets better than baseline for charged 

pions, especially at low-energy (< 1 GeV)

→ known weakness in conventional techniques

● ML mitigates long-standing calibration issues
○ high-energy π± underestimation

○ low-energy π0 overestimation

Energy regression: calo only 
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Metrics: median energy response and resolution

○ energy response, R = Epred/Etrue

○ resolution, IQR = median R 土 1σ (16-84%)

● Point cloud models VS baseline: significantly 

outperform EM and LCW calibration
○ better R and IQR across the full energy spectrum

● Point cloud VS image-based (DNN): 
○ comparable median accuracy  for E < 30 GeV

○ superior performance for E > 30 GeV

● Track information dramatically improves prediction

→ IQR consistently below 0.1 

(VS 0.4 for cluster-only)

● Adding cell-level info further improves resolution, 

particularly at high energy (more in backup slides)

Energy regression: calo + tracker
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Next steps
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Cells-to-track matching

● Extend point cloud methods to tackle cells-to-track matching
○ one focus track at a time

○ all hits within ΔR=0.2 (tracker + calo)

○ associate hits with track contributing the most energy (>50%)

○ PointCloud architecture [6], attempt with MaskFormers [7]

● Promising results for simple ρ, ∆ decays (~1 track per event)

● Trying to generalize to more challenging dijets scenarios
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Inputs Output

For illustration

https://openaccess.thecvf.com/content_cvpr_2017/html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html
https://arxiv.org/abs/2312.12272
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Conclusion
● Significant improvement in π0/π± classification and energy regression

● Key findings from calorimeter-only regression:

○ GNN and Deep Sets outperform traditional calibrations across all energies

○ They mitigate long-standing calibration issues at the boundaries of energy values

○ point cloud methods outperform image-based approaches

→ and more efficient!

● Combined calorimeter and tracker regression:

○ ML models surpass EM/LCW scales

○ Dramatic improvement in energy resolution (IQR/median < 0.1)

○ Pointcloud advantage increases at high energies (> 30 GeV)

○ Granular cell-level data further enhances results

● Outlook: Promising step towards ML-optimized Particle Flow in ATLAS
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Any questions?



Backup
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Graph Neural Network

Architecture

● 4 GNN blocks with Multi-Layer Perceptrons (MLP)

● Message passing to learn hidden representation

○ update edges: x’(i, j) = fedge(xi, xj, x(i,j))

○ update nodes: x’i = fnode(xi, Σj∈Nix’(j,i)) 

● Graph-level features as function of node embeddings:

g’i = fglobal(g, Σi∈Nx’j)

● Global features concatenated with input for classification

● Simultaneous classification and regression tasks

Components

● Cells are nodes, neighboring cells connected by edges

● Node features: energy sampling layer η, ∆η, 𝜙, ∆𝜙, r⊥
● Edge features: type of connection
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Deep Sets
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● pixels are bidimensional projections of cell 

baricenters

● pixel intensity reflects energy deposit

● considers calo layers separately to account for 

different granularity
○ EMB1 alone

○ EMB2, EMB3 together

○ Tile1, Tile2 and Tile3 together
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Convolutional Neural Networks (CNN)
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Merged Deep Fully Connected Neural Networks (DNN)

● image-based approach
○ EMB1 alone

○ EMB2, EMB3 together

○ Tile1, Tile2 and Tile3 together

● 3 fully connected hidden layers

● 50 nodes in each hidden layer

● outputs calibrated energy values
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50 nodes

50 nodes

50 nodes

tracker info

calo image
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PointNet model
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Several learning tasks: classification, part 

segmentation, semantic segmentation

permutation invariant 

transformation equivariance

both shape classification & segmentation

robust to data corruption → critical points 

no local context → global feature learning

generalization to unseen scenes → global features 

depend on absolute coordinates

no rotation/shape equivariance
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Calo + track results using cell-level information

● Severall GNN configurations attempted

○ Leadining cluster only VS all clusters

○ With VS w/o edges

○ With VS w/o cell info

● GNN with cell-level data (red, light 

blue) improves resolution compared to  

versions trained without this

information under several

configurations
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