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Abstract

The identification of jets arising from heavy-flavor (bottom or charm) quarks primarily relies on detec-
tor inputs from reconstructed charged particle tracks and information about secondary vertices con-
tained within reconstructed jets. In Run 3, improved machine-learning techniques have been intro-
duced to distinguish heavy-flavor jets from those originating from the hadronization of light-flavor
(uds) quarks or gluons (g). Therefore, it is crucial to compare the distributions of data and simulations
of input variables, tagging discriminants, and other pertinent kinematic observables between data and
simulated events. In this proceeding, five selections to enriched different processes are presented top
quark-antiquark production (tt̄) in the dileptonic final state (enriched in b jets), in the semileptonic
final state (enriched in b and c jets), W boson plus charm production (enriched in c jets), Drell-Yan
production, and QCD multijet production (enriched in light-flavor jets). These selections are shown
with proton-proton collision data at

√
s = 13.6 TeV corresponding to an integrated luminosity of

61.7 fb−1 and recorded by the CMS experiment in 2022 and 2023. These studies rely on a modern
and fast framework. It has been developed and automated to produce the comparisons presented, along
with its technical details.
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The identification of jets arising from heavy-flavor (bottom or charm) quarks primarily relies
on detector inputs from reconstructed charged particle tracks and information about secondary
vertices contained within reconstructed jets. In Run 3, improved machine-learning techniques have
been introduced to distinguish heavy-flavor jets from those originating from the hadronization of
light-flavor (uds) quarks or gluons (g). Therefore, it is crucial to compare the distributions of
data and simulations of input variables, tagging discriminants, and other pertinent kinematic
observables between data and simulated events. In this proceeding, five selections to enriched
different processes are presented: top quark-antiquark production (𝑡𝑡) in the dileptonic final state
(enriched in b jets), in the semileptonic final state (enriched in b and c jets), W boson plus charm
production (enriched in c jets), Drell-Yan production, and QCD multijet production (enriched in
light-flavor jets). These selections are shown with proton-proton collision data at

√
𝑠 = 13.6 TeV

corresponding to an integrated luminosity of 61.7 fb−1 and recorded by the CMS experiment in
2022 and 2023. These studies rely on a modern and fast framework. It has been developed and
automated to produce the comparisons presented, along with its technical details.
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1. Introduction

The identification of jets arising from heavy-flavor (bottom or charm) quarks is crucial for
several analyses in CMS [1–4], such as investigations of the properties of the Higgs boson, top
quarks, and the search for new physics beyond the standard model. To distinguish heavy-flavor jets
from light-flavor quarks or gluons jets, flavor tagging algorithms primarily rely on detector inputs
from reconstructed charged particle tracks and information about secondary vertices contained
within reconstructed jets. The information associated with jets is used as input to advanced
machine-learning methods. Therefore, understanding the agreement of data and simulation is
crucial to evaluate the performance and spot possible mismodeling in simulation. This proceeding
(based on Ref. [5]) presents the data and simulation comparison using the proton-proton collision
data collected by the CMS detector at

√
𝑠 = 13.6 TeV during 2022-2023 data-taking periods, which

correspond to 61.7fb−1. The state of the art taggers used for heavy flavor tagging in CMS Run
3 – DeepJet [6, 7], ParticleNetAK4 [5, 8], and RobustParTAK4 [5, 9–11] – are shown with five
selections of data, each enriched with b jets, c jets and light- (udsg) flavor jets in different kinematic
regions. A modern framework with efficient and automatized workflows delivers this study.

2. Heavy flavor jet identification in CMS

The heavy flavor jet identification algorithms rely on the variables connected to the properties
of heavy flavor hadrons present in jets, such as the presence of secondary vertices, higher track
multiplicities, and more tracks with positive signed impact parameters. The collective behavior of
the inputs allows us to achieve good discrimination of heavy flavor jets using advanced machine-
learning methods developed at the beginning of Run 3. In the early Run 3 studies, two new
taggers, ParticleNetAK4 and RobustParTAK4, were introduced to improve the performance and
robustness. ParticleNetAK4 is customized for heavy-jet jet identification for AK4 jet classification
where AK4 refers to jets reconstructed using the anti-𝑘𝑡 [12] clustering algorithm with a distance
parameter of Δ𝑅 = 0.4 using particle-flow [13] candidates. This algorithm incorporates heavy
flavor and hadronic tau identification, along with flavor-aware jet energy correction and resolution,
based on the ParticleNet [8] architecture. RobustParTAK4 uses the ParticleTransformer [9, 10]
architecture for AK4 jets with the pairwise interaction features between all input jet constituents
and secondary vertices and implements an adversarial training [11] to enhance the robustness of
the model against the mismodeling presented in our simulated events. To evaluate the performance
on b jets and c jets, three discriminants, BvsAll, CvL, CvB, are defined using the probability of
the neural network (P(b) and P(c)) of identifying b or c jets from other jets. BvsAll is defined
as BvAll = P(b) which is used to evaluate the performance of b jet efficiency and light-flavor jet
mistag rate. The CvL and CvB are the c jet discriminants which are defined as CvL = P(c) /
[P(c) + P(udsg)] and CvB = P(c) / [P(c) + P(b)].

3. Heavy flavor jet performance of Run 3 data

Jets used in this study are AK4 jets and the pileup mitigation is performed using the pileup-
per-particle identification (PUPPI) algorithm [14, 15], which assigns a weight to every particle
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depending on its probability of originating from either a pileup or the leading vertex. Dedicated
jet energy corrections (JEC) derived from Run 3 data [16, 17] are applied to the jets. The jets are
required to have 𝑝𝑇 > 20 GeV with |𝜂 | < 2.5, fulfilling tight identification criteria, and separated
from the selected prompt lepton by at least Δ𝑅 > 0.4. The selections enriched with b, c, and
light-flavor jets are summarized below:

• Dileptonic 𝑡𝑡 selection (b jet enriched): Dileptonically decaying 𝑡𝑡 events form a final state
with a large b jet purity. This event topology is relevant for deriving calibration for b
tagging [19]. Events are selected with a set of electron-muon (e𝜇) trigger paths. The electron
and muon are required to fulfill 𝑝𝑇 > 30 GeV, |𝜂 | < 2.5(2.4) and to pass tight identification
and isolation requirements [4, 20]. Events with at least two jets, one electron, and one muon
are selected.

• Semileptonic 𝑡𝑡 selection (b jet and c jet enriched): The hadronically decaying W boson
from the semileptonic 𝑡𝑡 events provide a significant amount of c jets. This region can be
used for calculating b tagging and c tagging efficiency scale factors [19, 21]. Events are
selected using a single-muon trigger path. The selected muon is required to fulfill the same
selection criteria as the one of the dileptonic 𝑡𝑡 phase space. Events are required to have
𝑝𝑚𝑖𝑠𝑠
𝑇

> 50 GeV and at least four jets.

• W boson plus charm jet (W+c) selection (c jet enriched): This selection is largely enriched
in c jets and is utilized for evaluating the c-tagging performance [21]. The signal process
contains a leptonically decaying W boson produced along with a c jet. These c jet candidates
are identified using the semileptonic decay of the c hadron, which can produce a soft lepton
within the jet in the final state. The same trigger path and the same selection criteria for the
isolated muon as for the semileptonic 𝑡𝑡 selection are required. At least one additional soft
muon with a reduced 𝑝𝑇 threshold and a relative isolation greater than 0.2 is selected and
matched with one of the selected jets. The jet multiplicity is required to be at least one jet
and up to three jets. Both opposite-sign (OS) and same-sign (SS) isolated muon and soft
muon pairs are taken into account. Additional selection criteria to enrich the sample with W
boson events and to suppress QCD multijet and Drell–Yan contributions are applied as well.
To enrich the selected events with W bosons, the sum of 𝑝𝑚𝑖𝑠𝑠

𝑇
and isolated muon four-vector

is required to be > 55 GeV.

• Drell–Yan (DY) plus jets selection (light-flavor jet enriched): This selection is enriched
in light-flavor jets used for the calibration of light-mistagging efficiencies [21]. A di-muon
trigger path is employed to select Z→ 𝜇𝜇 events. The leading (subleading) muon has to
fulfill a criteria of 𝑝𝑇 > 15(12) GeV, where both muons are required to satisfy |𝜂 | < 2.4, as
well as tight identification and isolation requirements [20]. The invariant di-muon mass is
required to be |𝑚𝑍 − 𝑚𝜇𝜇 | < 15 GeV. At least one jet is required in each event.

• Inclusive QCD multijet selection (light-flavor jet enriched): This selection has a large
fraction of light-flavor jets with higher statistics at high 𝑝𝑇 region. Events are selected if
they satisfy a trigger selection of at least one AK4 jet with 𝑝𝑇 > 180 GeV, |𝜂 | < 2.4. Due
to the high event rates, only part of the events passing the trigger requirement are selected
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(prescaled trigger). The fraction of accepted events depends on the prescale value, which
varies during the data-taking period according to the instantaneous luminosity. The data are
compared to multijet events simulated at leading order in QCD.

Although an overall agreement between data and simulation is observed ( as shown in Figure 1),
certain trends are observed in the distribution of the tagger scores. This indicates that a calibration
of the tagger score is required. During the 2022 and 2023 data-taking period, two main detector
issues occurred, which required dedicated simulations to mimic the effect. The water leakage issue
of electromagnetic calorimeter (ECAL) [18] happened in late 2022 in the endcap region (2022
post-EE) and a region of barrel pixel (BPix) was deactivated in the late 2023 data-taking period
(2023 post-BPix). The performance of heavy flavor jets using dileptonic 𝑡𝑡 phase space is stable
between different periods among all the taggers as shown in Figure 2.

Figure 1: Jet 𝑝𝑇 (left) and 𝜂 (right) distributions in the W+c phase space.

Figure 2: Tagger scores across different data-taking periods in the dileptonic 𝑡𝑡 phase space. The first
panel shows the distribution normalized to 1. The second panel uses the 2022 pre-EE data-taking period
as a reference and shows the ratio of the scores observed in other data-taking conditions versus to the one
observed in the reference. The third panel shows the data and prediction ratios in each individual era.
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4. Common BTV framework [24]

To deal with the growing data at the LHC, an efficient and reproducible framework is important
for heavy flavor tagging studies. This framework is based on coffea [23] which uses customized
NanoAOD [22] as input. The coffea framework reads the information as awkward [18] arrays
(columnar data) and also includes tools to apply corrections and systematic variations. The Common
BTV framework (BTVNanoCommissioning) [24] unifies the selections from different phase spaces
and implements the corrections and systematic variations. The processed information can be further
converted to arrays, histograms, and figures, and automatically transferred to the storage area (EOS)
via GitLab CI pipeline.

Figure 3: Workflow of the common BTV framework. It begins by adding customized flavor-tagging
information to the NanoAOD files and creating flat ntuples. Next, it proceeds to the common BTV framework
where events are selected for b, c, or light-flavor jet enriched regions, with the corrections and systematic
variations applied on the fly. Finally, the information is stored either as histograms (coffea [23], ROOT [25])
or arrays (awkward [18], ROOT [25]), to be used for plotting or as input for other frameworks (e.g., scale
factor derivation).

5. Summary

The study demonstrates the outputs of the new heavy flavor jet taggers evaluated on CMS Run
3 data and simulation, and the utility of the modern data processing framework in handling complex
data. With the stability of different taggers and good agreement among different phase spaces,
the results provide a foundation for ongoing and future physics analyses using the improved heavy
flavor tagging capabilities of the CMS experiment.
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