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The CERN LHC is not only the current energy-frontier collider for parton-parton collisions, but
has proven a powerful photon collider providing photon-photon (𝛾𝛾) collisions at center-of-mass
energies and luminosities never reached before. The latest theoretical developments implemented
in the gamma-UPCMonte Carlo (MC) event generator [1], which can calculate arbitrary exclusive
final state produced via 𝛾𝛾 fusion in ultraperipheral collisions (UPCs) of protons and/or nuclei at
the LHC, are presented. These include azimuthal modulations of dilepton pairs produced in the
𝛾𝛾 → ℓ+ℓ− process, and neutron emission probabilities for photoexcited lead ions in PbPb UPCs.
A few comparisons of the results of the updated gamma-UPC v.1.6 code to relevant RHIC and LHC
data are presented.
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1. Introduction

Over the past decade, the CERN Large Hadron Collider (LHC) has been accelerating hadrons
to achieve collisions at unprecedented nucleon-nucleon c.m. energies (up to √

𝑠NN = 13.6 TeV) and
integrated luminosities (several hundred fb−1 per year). Beyond the unique studies of hadronic
collisions conducted since 2010, the LHC has also studied photon-photon (𝛾𝛾) collisions at an
hitherto unexplored kinematic regime by exploiting the large fluxes of quasireal photons emitted by
the accelerated hadrons [2, 3]. Such 𝛾𝛾 processes can be studied in particularly clean conditions in
the so-called ultraperipheral collisions (UPCs) where the colliding hadrons interact with transverse
separations larger than their matter radii, i.e. without hadronic overlap, and survive their purely
electromagnetic interaction [4]. The phenomenological study of 𝛾𝛾 collisions in UPCs has been
significantly facilitated with the recent development of the gamma-UPC code [1], which allows the
automated computation of arbitrary 𝛾𝛾 → X processes (including Standard Model, and beyond,
final states), in combination with the MadGraph5_aMC@NLO (MG5_aMC hereafter) [5] or
HELAC-Onia [6, 7] event generators. Using gamma-UPC, photon-fusion processes have been cal-
culated for the first time up to next-to-leading-order (NLO) accuracy in quantum electrodynamics
(QED) and/or quantum chromodynamics (QCD) [1, 8–10]. In these proceedings, we present addi-
tional extensions of the gamma-UPC code including the effect of the polarization state of the colliding
quasireal photons on the azimuthal modulation of dileptons produced in the 𝛾𝛾 → ℓ+ℓ− process,
as well as the probabilities for photoexcitation and subsequent neutron emission of the Pb ions in
UPCs at the LHC. Both developments, plus others (gamma-UPC v.1.61), will be presented in detail
elsewhere [11].

2. Azimuthal modulation in UPC lepton pair production

In UPCs, the electric field associated with a charge accelerated at high energies vibrates in a
single, straight-line direction. This implies that its associated quasireal photon flux, in the equivalent
photon approximation (EPA) [12, 13], is linearly polarized. One particularly clean way to probe the
polarization of photons in UPCs is studying the azimuthal angle distribution of dileptons produced
in 𝛾𝛾 → ℓ+ℓ− processes [14]. The differential cross section with respect to the angle Δ𝜑 between
q⊥ = k1⊥ + k2⊥ and P⊥ =

k1⊥−k2⊥
2 , where k1⊥ and k2⊥ are the transverse momentum of produced

leptons, can be decomposed into three terms:

d𝜎
dΔ𝜑

∝ 𝐴 + 𝐵 cos(2Δ𝜑) + 𝐶 cos(4Δ𝜑), (1)

where 𝐴, 𝐵, and𝐶 are coefficients (GeV−2 units) that can be derived from convolutions of the photon
transverse-momentum distribution (TMD) [15] (cf. Eqs. (4–6) therein). So far, the combination of
gamma-UPC with MG5_aMC or HELAC-Onia operates within the collinear factorization approach,
and the azimuthal modulation represented by Eq. (1), properly accounted for by TMD factorization,
is absent. In order to restore the full transverse-momentum dependencies of the photon fluxes,
our gamma-UPC setup incorporates small extra transverse momentum 𝑘⊥ and azimuthal angle 𝜑

“smearings" of the initial photons in events generated within the collinear factorization MC setup.
1Code downloadable from: http://cern.ch/hshao/gammaupc.html
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The implementation of the 𝑘⊥ smearing alone has been described in Ref. [10]. In these proceedings,
we report the new implementation of the simultaneous 𝑘⊥ and 𝜑 smearing in the gamma-UPC
framework. The photon TMD coefficients given by Eq. (1) have been incorporated into our
setup through a smearing of the initial and final states performed by running a python script
on the MC output Les Houches (lhe) file that modifies the kinematics of external particles in
each event. This implementation has been tested by simulating 𝛾𝛾 → e+e− events in Au-Au
UPCs at √𝑠NN = 200 GeV within the fiducial cuts corresponding to the measurement of the STAR
collaboration [16]: 𝑚e+e− ∈ [0.45, 2.6] GeV, 𝑝e+e−

T ≤ 0.1 GeV, |𝑦e+e− | ≤ 1, 𝑝⊥,e ≥ 0.2 GeV, and
|𝜂e | ≤ 1. Our preliminary result (blue dashed curve) is shown in Figure 1 compared to the azimuthal
modulation measured in the experimental data (black symbols), and to the alternative prediction
from the Superchic model (red dotted curve) [17]. Within uncertainties, both MC predictions can
reproduce the modulation observed in data, thereby confirming the linearly polarized nature of the
incoming photons.
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Figure 1: Normalized dielectron dN/dΔ𝜑 distributions for 𝛾𝛾 → e+e− events in Au-Au UPCs at √𝑠NN =

200 GeV, with the kinematics cuts listed. The STAR data (points) [16] are compared to our predictions (blue
dashed curve) and that of Superchic (red dotted curve).

3. Coulomb excitation and neutron emission in UPCs with Pb ions

The second improvement implemented into the gamma-UPC code is the calculation of the
photoexcitation probability of the nuclei in UPCs, due to soft Coulomb photon exchanges between
them taking place simultaneously with the hard 𝛾𝛾 reaction, and their subsequent deexcitation via
neutron emission [4]. The neutron(s) emitted from the excited nuclei in UPCs can be detected in
very forward (zero-degree) calorimeters, and thereby are commonly used by the experiments to
trigger on photon-photon interactions. The most straightforward way to implement such processes
is by adding a probability to emit 𝑋 and𝑌 neutrons by the photoexcited nuclei A and B (separated by
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Figure 2: Left: Experimental Pb photoabsorption cross sections as a function of photon energy,
𝜎𝛾Pb→Pb∗ (𝐸𝛾), fitted to our parametrization (red curve with violet band uncertainties). Right: Probabil-
ity for different neutron emission categories in the 𝛾𝛾 → e+e− process measured by CMS in PbPb UPCs at
√
𝑠NN = 5.02 TeV [27] compared to our predictions with ChFF and EDFF 𝛾 fluxes (the bottom panel shows

the data/gamma-UPC ratio).

an impact parameter separation |𝑏𝑏𝑏1−𝑏𝑏𝑏2 |), 𝑃𝑋n𝑌n( |𝑏𝑏𝑏1−𝑏𝑏𝑏2 |), that multiplies the no-inelastic hadronic
interaction probability, 𝑃no inel( |𝑏𝑏𝑏1 − 𝑏𝑏𝑏2 |), inside the convolution integral of the two photon fluxes:

d2𝑁
(AB,𝑋n𝑌n)
𝛾1/𝑍1,𝛾2/𝑍2

d𝐸𝛾1d𝐸𝛾2

=

∫
d2𝑏𝑏𝑏1d2𝑏𝑏𝑏2 𝑃𝑋n𝑌n( |𝑏𝑏𝑏1−𝑏𝑏𝑏2 |)𝑃no inel( |𝑏𝑏𝑏1−𝑏𝑏𝑏2 |)𝑁𝛾1/𝑍1 (𝐸𝛾1 , 𝑏𝑏𝑏1)𝑁𝛾2/𝑍2 (𝐸𝛾2 , 𝑏𝑏𝑏2).

The probability term is determined from the experimentally measured values of photoabsorption
cross sections followed by neutron emission, 𝜎(𝛾Pb → Pb★ → Pb + Xn) with X ≥ 1. We have fit
the individual cross sections measured in photon-lead interactions for various neutron multiplicities
(1n, 2n, 3n, 4n, . . . , and their sum), as a function of the incoming photon energy 𝐸𝛾 from threshold
(a few MeV) up to 16.4 GeV [18–23]. Beyond this energy, since few data points are available [24],
we follow the approach used by other MC generators, such as nOOn [25] and Superchic [17],
and use a Regge-based parameterization of the total photoabsorption cross sections of the proton at
high energy [26], scaled by the nuclear mass number 𝐴 = 208 times a shadowing factor of 0.65 so
that the resulting fit matches the high energy Pb photodissociation data [24]. Figure 2 (left) shows
the collected experimental photoabsorption cross sections (black points) with our fit results and
assigned uncertainties (red curve with violet band).

With the corresponding neutron deexcitation probabilities implemented in gamma-UPC as ex-
plained above, we can now compare our predictions to the experimental data measured in PbPb
UPCs at √𝑠NN = 5.02 TeV. The results are shown in Figure 2 (right) for various neutron emis-
sion probabilities (0n0n, 1n1n, XnXn and combinations, where X ≥ 1 here) in the 𝛾𝛾 → e+e−

(𝑚e+e− > 5 GeV) process, obtained using two different 𝛾 fluxes (based on the charged (ChFF) and
electric dipole (EDFF) form factors) compared to the corresponding CMS data [27]. Our ChFF-
based results (within the assigned theoretical uncertainties) reproduce well the experimental data
as indicated by a data/gamma-UPC ratio around unity (red symbols in the bottom panel).
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