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ABSTRACT

In this paper, we analyze the adiabatic crossing of a resonance for Hamiltonian systems when a
double-resonance condition is satisfied by the linear frequency at an elliptic fixed point. We discuss
in detail the phase-space structure on a class of Hamiltonians and area-preserving maps with an
elliptic fixed point in the presence of a time-dependent exciter. Various regimes have been identified
and carefully studied. This study extends results obtained recently for the trapping and transport
phenomena for periodically perturbed Hamiltonian systems, and it could have relevant applications
in the adiabatic beam splitting in accelerator physics.

1 Introduction

The adiabatic theory for Hamiltonian systems addresses the problem of understanding the consequences of slow para-
metric modulations. The concept of adiabatic invariance allows one to predict the long-term evolution of a system,
highlighting the fundamental properties of action variables [1, 2]. The theory has been fully developed in the case of
one degree-of-freedom systems [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], and its extension to the multidimensional
case or to symplectic maps [16] is a difficult problem, mainly due to the small denominators of perturbation theory
and the ubiquitous presence of nonlinear resonances in phase space [17, 18].

The possibility of manipulating the phase-space structure in an adiabatic way has recently been considered for novel
applications in the realms of accelerator and plasma physics [19, 20, 21, 22, 23, 24]. For instance, nonlinear resonance
trapping and adiabatic transport have been employed to manipulate a charged-particle distribution to minimize particle
losses during the extraction process of a circular accelerator of high-intensity beams. Adiabatic manipulations are also
used to provide control of transverse beam emittances [25, 26, 27]. These experimental procedures [25, 26, 27]
require very precise control of the efficiency of adiabatic trapping in resonances [12, 28, 29], as well as the change in
phase space during adiabatic transport. All these processes can be modeled using multidimensional Hamiltonians or
symplectic maps [30, 31].

An interesting and intriguing observation has been made during the experiments carried out at the CERN Proton
Synchrotron (PS) for Multi-Turn Extraction (MTE) [32, 33, 25, 34]. Experimental observations have clearly indicated
that the efficiency of the beam trapping into a nonlinear resonance can be improved by using an external exciter whose
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frequency is set on resonance condition with the main frequency of the system. The resulting model is a quasi-resonant
Hamiltonian system perturbed by a time-dependent external exciter whose frequency satisfies a double-resonance
condition. We have studied in detail the phase-space structure of this system considering the adiabatic crossing of the
resonance in different dynamical regimes. The results presented in the article extend the recent results presented in
Ref. [31].

The paper is organized as follows: In Section 2 the main results of the theory of adiabatic invariance and separatrix
crossing are briefly summarized. In Section 3 we discuss two models: A Hamiltonian model is introduced and used
for carrying out the analytical computations and to understand the dependence of the phase-space structure on the
system’s parameters; a map model is used for numerical simulations because it represents a more realistic model of
dynamics. The Hamiltonian system allows one to identify the phase-space topologies and the various regimes of the
system, and numerical simulations verify the robustness of the analytical results. The analysis of the trapping process
is discussed in Section 4, while numerical simulations are presented and discussed in detail in Section 5. Finally, some
conclusions are drawn in Section 6, while some detailed computations can be found in the appendices.

2 Adiabatic theory for trapping in a stable resonance

The results of this paper take advantage of the theory of separatrix crossing in adiabatic conditions, which describes
how an orbit may adiabatically cross a separatrix, breaking the adiabatic invariance of the action in a controlled way.
Here, we recall the main results that will be useful for the analysis carried out in this paper.

According to Neishtadt’s theory of adiabatic trapping [35], which can also be applied to area-preserving map mod-
els [30, 31], when a slow modulation of a parameter makes the area of a separatrix-enclosed region of phase space
equal to 2πJ0, where J0 is the initial action variable, the particle jumps into another region of the phase space with a
probability that depends on the time derivative of the phase-space regions.

In general, consider a Hamiltonian system dependent on a slowly modulated parameter λ = ϵt, ϵ ≪ 1, whose phase
space is divided by two separatrices ℓ1(λ) and ℓ2(λ), into three regions denoted as Region I, II and III according to
the sketch in Fig. 1. Let us indicate by Ai(λ) the area of the region i for a certain value of λ.

ℓ2(λ)ℓ1(λ)
C

I IIIII

Figure 1: Generic phase-space portrait divided into three regions (I, II, III) by the separatrices ℓ1(λ) and ℓ2(λ).

If an orbit of an initial condition in Region III encloses an area A0 = 2πJ0, where the action J0 is the adiabatic
invariant, when λ assumes a value so that AIII(λ̃) = A0, then the particle will enter Region I or II according to the
probability PIII→i given by the formula:

PIII→i =





0 if ξi < 0

ξi if 0 ≤ ξi ≤ 1

1 if ξi > 1

i = 1, 2 , (1)

where

ξi =
dAi/dλ

dAI/dλ + dAII/dλ

∣∣∣∣
λ=λ̃

. (2)
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Figure 2: Phase-space portraits of the Poincaré map of Eq. (3) sampled every 4 iterations. We use three values of
δ/ε2/3 that account for three possible resonance topologies (the other parameters values are: ωr/(2π) = 1/4, ∆ = 0,
ε = 10−4, κ = 0.1, ψ0 = 0).

3 The dynamical models

3.1 The Map model

We consider a modified version of the Hénon map [36] by adding a cubic nonlinearity and a modulated exciter
(
xn+1

pn+1

)
= R(ω0,n)×

×
(

xn
pn + x2n + κx3n + εn cos(ωnn+ ψ0)

)
,

(3)

where R(ω0,n) represents a time-dependent rotation matrix. The reason for adding a cubic nonlinearity is twofold: It
makes the system closer to that used in the application [32, 33, 25, 34]; it makes it possible to build an interpolating
Hamiltonian that, even at the lowest order of perturbation theory, is capable of describing the topological structure of
the phase space. The external exciter is customarily described by its frequency ωn, its strength ε, and its phase ψ0. All
three parameters can be set to be time-dependent, but in our studies we only vary the first two.

Our aim is to study the system under the effect of two simultaneous resonant conditions. Setting ωr ∈ 2πQ as the
resonant frequency, we choose the two frequencies so that ω0,n ≈ ωn ≈ ωr, and we introduce the two parameters δn
and ∆n to account for the distance to each resonance, i.e. ω0,n = ωr + δn and ωn = ωr +∆n. The three parameters
δn, ∆n, and εn depend on the iteration number, being slowly modulated to satisfy an adiabatic condition.

We consider the case close to the resonance 1 : 4, i.e. ωr/(2π) = 1/4, and, according to the Poincaré-Birkhoff
theorem [37], we expect that a chain of four resonance islands enclosing a central core appears in phase space for
certain values of δ. However, the effect of the second resonance condition 1 : 1, generated by the external exciter,
changes the structure of the phase space. To study these effects, we set ∆n = 0, so that the excitation frequency is
exactly resonant with ωr and analyze the phase-space structure of the frozen map (i.e.,ω0,n and ωn are kept constant)
using the 4th iterate of Eq. (3), which is shown in Fig. 2. Of course, when εn = 0 one retrieves the well-known
four-island structure of the Hénon map [36, 38]. The second resonance acts on the island structure by enlarging the
size of one or two selected islands and reducing the size of the others. Furthermore, when ε is large enough, other
fixed points disappear, destroying one or more islands.

Following the sketch in Fig. 3, which represents a situation where all four islands and the core are present, we outline
the identification of each island by means of cardinal points according to their position in the phase space (x, p).
Furthermore, the color used in this figure corresponds to the convention used in subsequent figures, for the sake of
clarity. Notable is the peculiar structure of the separatrices: Without the exciter, there exists a single separatrix that
connects the hyperbolic fixed points and encloses the elliptic fixed points. In the presence of the exciter, the single
separatrix splits into two structures: One divides the core region from the West island and encloses a region of the
phase space that contains the other three islands; the other encloses the remaining three islands but does not include
the core region. As ε→ 0, the separatrix that surrounds the three islands and the outer separatrix merge together.
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Figure 3: Separatrices (black lines) of the Poincaré map of Eq. (3) sampled every 4 iterations. The four islands and
the core have been filled with the colors used in Figs. 4, 7, 8 and 10 to refer to each region. The naming convention of
the various regions is also reported here (parameters values: ωr/(2π) = 1/4, ∆ = 0, ε = 10−4, κ = 0.1, ψ0 = 0 and
δ/ε2/3 = 1).

We also observe that increasing ε, for ψ0 = 0, the East island grows, whereas the surface of the other islands shrinks
(the island opposite the dominant, the West island in this case, becomes even smaller). Of course, since the exciter
frequency is exactly 1/4, the islands remain fixed in phase space only when we consider the stroboscopic map (i.e.,the
4th iterate of the original map). If we were to observe each iteration of the map, we would see islands rotating each
turn by π/2, so that the main island, depending on the value of n (mod 4), can be found at each cardinal point.

The measure of the island area as a function of δ/ε2/3 is shown in Fig. 4 (left), while in the right plot we show the
ratio between the area of the main island and the sum of the areas of all islands. We observe that as ε → 0 or δ → ∞
one recovers the 1/4 ratio as expected in the case of the modified Hénon map without the exciter. On the contrary, for
small values of δ and large values of ε, the main island becomes larger than the others. Furthermore, from the plot on
the left, one observes that the variation of Ai as a function of δ/ε2/3 becomes linear for large values of the parameter.
Note also that the choice of this combination of model parameters δ and ε is justified by the analysis of the Normal
Form Hamiltonian that is discussed in Section 3.2.

The same figure highlights two critical values of the re-scaled parameter. The East, South and North islands are created
for a positive value of δ/ε2/3, which corresponds to a bifurcation point when the separatrix enclosing these islands is
created. For lower values of δ/ε2/3, the phase-space structure that morphs into the East island is the only stable region
whose center is displaced from the origin by the exciter’s action, and therefore there is no island present. Then, there
is a second critical value of δ/ε2/3 for the other two regions (i.e., the core and the West island), which are defined
by the second inner separatrix. These critical values will be discussed in conjunction with the Hamiltonian model in
Section 3.2.

Although it is the largest island, the variation in the surface of the East island is not the largest. As resonance trapping
is determined by their area derivative, the majority of particles found in that island after the modulation process comes
from the displacement of the center rather than from the separatrix crossing.

If ε is fixed and δ varies, all island areas increase, but the East island remains the largest. The area ratio between the
East island and the sum of the four islands is higher for small values of δ and tends to 1/4 (i.e., the islands enclose the
same area) as the frequency moves farther away from the resonance (see right plot of Fig. 4).

The phase-space topology is also influenced by the exciter phase ψ0. It is straightforward to verify that if ψ0 =
mπ/2, m ∈ N, the resulting map coincides with the case ψ0 = 0 after m additional turns. Therefore, the effect of the
exciter phase is a rotation of the phase space. When ψ0 assumes intermediate values between mπ/2 and (m+ 1)π/2,
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quoted is the angular coefficient of the linear fit of each line performed in the interval 1 ≤ δ/ε2/3 ≤ 4. Right: Ratio
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Figure 5: Phase space portraits of the Poincaré map of Eq. (3) sampled every 4 iterations for three values of the
initial phase ψ0. The phase of exciter selects the island that becomes larger than the others (the parameters values are
ωr/(2π) = 1/4, ∆ = 0, ε = 10−4, κ = 0.1, δ/ε2/3 = 0.75).

the result is more interesting. In fact, as ψ0 increases, the area of the main island decreases and that of an adjacent
island increases. At the middle point, when ψ0 = (2m + 1)π/4, two islands of equal size become dominant. This
transition is clearly visible in Fig. 5.

3.2 Hamiltonian model

We introduce a Hamiltonian model to study the phase-space structure of the map model (3) when ∆n = 0 and
ωr/(2π) = 1/4. We take advantage from the Birkhoff Normal Form expansion of the Hénon map close to the fourth-
order resonance up to the third order, which provides an interpolating Hamiltonian of the form

H(ϕ, J) = ω0(λ)J + J2

[
Ω2

2
+A cos(4ϕ− 2πt)

]
, (4)

where ω0(λ) = π/2+ δ(λ), λ = ϵt, and the Normal Form computation gives the coefficients of the Hamiltonian [38],
i.e.

Ω2 = −1

8
− 3

8
κ+O(δ),

A =
1

16
(1− κ) +O(δ) ,

(5)

5
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Then, we introduce the resonant exciter that corresponds to a linear term ∝ x in the Hamiltonian according to the
definition in the map (3). To express x as a function of action J and angle ϕ, we introduce the complex variables
z = x − ip, its complex conjugate z∗, the conjugating function of the Normal Form transformation Φ(ζ, ζ∗), and
action 2J = ζζ∗. At the first perturbation order in J the expansion of x reads

x =
z + z∗

2
=
ζ + ζ∗

2
+

Φ(ζ, ζ∗) + Φ∗(ζ, ζ∗)

2
, (6)

with

Φ(ζ, ζ∗) =
∑

n≥2

n∑

k=0

ϕk,n−kζ
kζ∗n−k . (7)

In action-angle variables, Eq. (6) becomes

x(ϕ, J) =
√
2J cosϕ

+
∑

n≥2

(2J)n/2
∑

k≤n

Re(ϕk,n−k) cos((2k − n)ϕ)

=
∑

ℓ≥1

xℓ(J) cos(ℓϕ) ,

(8)

where

x1(J) =
√
2J


1 +

∑

n≥1

(2J)n Re(ϕn+1,n + ϕn,n+1)


,

xℓ(J) =
∑

n

(2J)n/2 Re
(
ϕn+ℓ

2 ,n−ℓ
2

+ ϕn−ℓ
2 ,n+ℓ

2

)
ℓ > 1 ,

(9)

and it is worth noting that the numbers ℓ and n in the previous equation must have the same parity.

The Hamiltonian of Eq. (4), with the contribution of the exciter, can be then written as

H = ω0(λ)J + J2

[
Ω2

2
+A cos(4ϕ− 2πt)

]
+

+ ε
∑

ℓ

xℓ(J) cos(ℓϕ) cos(ωt+ ψ0) .
(10)

The last term of Eq. (10), can be rewritten introducing the slow angle θ = ϕ− πt/2 according to

cos(ℓϕ) cos(ωt+ ψ0) =

=
1

2

[
cos

(
ℓθ +

ℓ+ 1

2
πt+∆(λ)t+ ψ0

)
+

cos

(
ℓθ +

ℓ− 1

2
πt−∆(λ)t− ψ0

)]
.

(11)

where ∆(λ) = ω − ωr. When ∆(λ) = 0, the time average of Eq. (11) is cos(θ + ψ0)/2 only for ℓ = 1, and zero
otherwise, and the averaged expansion of x, up to order J3, becomes

⟨x(J)⟩ =
√
2J [1 + 2J Re(ϕ21 + ϕ12)]

=
√
2J(1 + c1J) ,

(12)

where c1 is a constant term whose value can be retrieved from the computation of the terms of Φ in normal form (in
our case, we have c1 = 2Re(ϕ21 + ϕ12) = O(δ)). Neglecting terms of order O(δ) in the resonant term, we have the
Hamiltonian

H = δ(λ)J + J2

(
Ω2

2
+A cos 4θ

)
+

+
1

2
ε
√
2J cos(θ + ψ0) .

(13)

6
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In Fig. 6, we observe that, depending on the values of δ, ε and ψ0, the phase-space portraits of Eq. (13) present the
same features as those of Eq. (3), with the appearance of resonance islands of unequal area. However, it is worth
noting that the position of the fixed points in the phase space is not the same for the map or for the Hamiltonian. This
is due to the difference in the dependence of the orbit frequency on the action that, in the Hamiltonian, is truncated
at the second order in J . The presence of a positive cubic term, i.e. κ > 0, in the map is necessary to have closed
separatrices in the phase space of the Normal Form Hamiltonian at order O(J2). Resonance islands can also be found
for κ ≤ 0, but to retrieve the same topology, one must perform an additional step in the Normal Form computation,
which makes the model overly complicated.

From Eq. (13) we can also retrieve some scaling properties of the parameters. Let J = Ĵε2/3 and δ = δ̂ε2/3, the
Hamiltonian can be scaled by defining a slow time t̂ = ε4/3t, and we obtain

Ĥ = δ̂(λ)Ĵ + Ĵ2

(
Ω

2
+A cos 4θ

)
+

+
1

2

√
2Ĵ cos(θ − ψ0) ,

(14)

which means that if the ratio δ/ε2/3 is kept constant, the resulting phase-space portraits of the Hamiltonian of Eq. (13)
are similar (up to a scaling of the action by a factor ε−2/3). From this consideration one observes that, since ε and δ
are found in reciprocal positions, the phase-space topologies that the system crosses, increasing ε at constant δ, have a
reversed order when increasing δ at constant ε.

Appendix A discusses in detail the fixed points and resonance islands of the Hamiltonian (13). In particular, we
establish the dependence of the phase-space topology on the parameter δ̂ = δ/ε2/3, and we identify two critical values
of δ̂ associated with the emergence of fixed points: δ̂1 = 3κ1/3/4 and δ̂2 = (3/4)

[
κ2/3(κ+ 1)1/3(κ− 1)−2/3

]
.

The relevance of these concepts can be seen in Fig. 6, where one observes the nice correspondence between the
Hamiltonian Normal Form and the map phase-space portraits of Figs. 2 and 5, when the same values of δ/ε2/3 and
ψ0 are used. The Hamiltonian description succeeds in reproducing all possible phase-space topologies of the map
depending on the scaled parameter δ̂ and on the initial exciter phase.

4 Qualitative analysis of the trapping process

Consider the evolution of an orbit of the map defined by Eq. (3). At the beginning, i.e. n = 0, we set ω0,0 = π/2− δ
and ε0 = 0, and then the map is iterated for 2N turns. During the first N turns, ε increases linearly from 0 to εN = ε,
while ω0 remains constant. During the second N turns, we keep εn = ε and linearly increase ω0 by 2δ. With this
strategy, the first part of the process is meant to slowly introduce the effect of the exciter, whereas in the second part
the actual resonance-crossing process takes place.

To understand the resonance trapping process in terms of the separatrix-crossing theory developed by Neishtadt, whose
main result is the probability formula given in Eq. (2), we consider the dependence of the values of the area of the
islands and the core region on the parameter δ̂ (see Fig. 4), and the dependence of the trapping probability ξ of an orbit
in any of the phase-space region as a function of ω0, i.e. of δ, which varies linearly (see Fig. 7), which are related to
the process we are going to describe in this section.

Depending on the values of ε and δ, during the first phase of the process, resonance islands may or may not be present
in the phase space. However, as the frequency ω0,n increases and goes beyond the resonant value ωr, the four islands
eventually appear.

If we follow the evolution of the phase-space topology of the 4th iterate of the map (3) during the trapping process, it
is possible to understand how a given initial condition will be trapped in one of the possible phase-space regions. In
the initial state of the modulation process, when δ < 0 and ε = 0, there are no resonance islands, the stable fixed point
is at the origin of the phase space, and inside the stability domain of the map, the orbits of the initial conditions rotate
around the stable fixed point.

As ε increases, the central fixed point moves in the x positive direction (or, using our ‘geographical terminology, it
moves eastward). As this process is adiabatic, the orbits moving around the central fixed point will also be displaced
eastward, and when ε reaches the final value, the orbits will rotate centered around the new position of the stable fixed
point. All initial conditions at low amplitude will remain in the stable basin of the fixed point, which defines the main
island.

7
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Figure 6: Top: Phase-space portraits of the Hamiltonian of Eq. (13) with ψ0 = 0 and κ = 0.1, for three values of
the scaled parameter δ̂ = δ/ε2/3 representing three topological structures, which correspond to those shown in Fig. 2
for the map model. The coordinates have also been re-scaled by the factor ε1/3. Note that for κ = 0.1, the two
critical values of δ̂ where the solutions bifurcate are δ̂1 = 0.348 and δ̂2 = 0.179. Bottom: Phase-space portraits of the
Hamiltonian of Eq. (13) with δ̂ = 0.75 and κ = 0.1, for three values of the initial phase ψ0, corresponding to Fig. 5
for the map model. The same coordinate scaling has been used.
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For δ̂ > δ̂2 two new islands appear in the phase space: One is the North island and the second is the South island.
As can be seen from the evolution of the areas Ai (see Fig. 4), the size of the secondary islands increases at the same
rate as that of the principal, but their area is always smaller. Therefore, as Fig. 7 shows, there is a range of ω0 (i.e. of
δ), for which the area derivative w.r.t. δ of these secondary islands is higher than that of the principal one. Hence, in
this range the particles will preferentially be trapped in the North or South islands. As the area of the island structure
grows while ω0 is changed, orbits whose initial conditions are in the outer region will be initially trapped in the East
island and afterward also in the new islands, and we have a minimum value for the action to be trapped in them.

Finally, when δ̂ > δ̂1, a new separatrix appears and the last island is created in the phase space on the opposite side of
the principal one. This is the smallest island, but also has a peak of the time derivative of its area, which corresponds
to a peak in the probability of trapping. Therefore, a certain fraction of high-amplitude particles will enter the last one.
Together with the smaller island, a new fixed point is created in the central region, and the core area will also trap some
high-amplitude particles. Finally, for even higher values of δ we see that the area derivatives of the five regions tend
to be equal and, therefore, no island is privileged when δ̂ is sufficiently large. Note that this also explains the absence
of dominant islands for the standard Hénon map, corresponding to ε = 0.

Figure 7 also reports the trapping probability for the case of the nominal Hénon map, i.e. without an external exciter.
A single curve is shown as the four islands behave the same. Furthermore, note that according to Ref. [38], for ε = 0
one should expect ξ → 1/4 if ω0/2π → 0.25, but the numerical computation of ξ is made difficult by the small values
of the islands and core areas close to the resonance, which explains the missing part of the curve.

5 Simulation results

Detailed numerical simulations have been carried out with the aim of understanding and controlling the trapping
process and adiabatic transport inside the stable islands for the map (3). The quantities ε and δ have been linearly
varied as a function of the number of turns to observe how the trapping in each island depends on various parameters
of the system.

We study the evolution ofNp = 3×103 particles, distributed with an initial action average ⟨J0⟩ =
〈
x20 + p20

〉
/2, after

2N turns of the map, using the process described in Section 4. At the end of the modulation, each particle orbit can be
classified using the main and secondary tune values. Tune analysis is performed to provide an accurate identification
of the region in which each initial condition is trapped at the end of the evolution process. The region identification is
performed by looking at the frequency of the final orbits, according to the approach described in the Appendix B.

The first study consists of scrutinizing how the initial distribution of particles is transformed into the final one, i.e.
how the initial conditions are shared between the islands. Figure 8 shows the fraction of particles found in each island,
for a family of uniform annular initial distributions, as a function of their amplitude

√
x20 + p20 =

√
2J0. For each

histogram bin, Np = 1 × 103 particles have been generated, uniformly distributed in an action interval of width of
0.01, and we calculated, at the end of the modulation process, how many particles of each annulus were trapped in
each island. This is repeated for four values of the final exciter amplitude. We observe that when ε = 0, all islands
have the same behavior and capture particles at the same amplitudes. Furthermore, at small amplitude, the islands do
not trap any initial condition, and these are then left orbiting around the stable fixed point at the origin of the phase
space. As ε increases, we see that particles, even at low amplitudes, are trapped more and more in the main island (the
East island), whereas smaller islands begin to trap particles only at higher amplitudes. This behavior is not possible
for the standard Hénon map, which is shown in the top-left plot, and is the main effect that led to the use of an exciter
in the application of this process to accelerator physics.

The final distributions of the particles are shown in Fig. 9, where the color scale encodes the initial amplitude. As
the value of ε increases, the asymmetry between the islands becomes more and more visible. Furthermore, the set of
particles left at the center of the phase space is reduced until it is completely emptied at the largest value considered,
i.e. ε = 10−3. It should be noted that low-amplitude particles are trapped in the inner region of the islands, or in the
center, for the case ε = 0. However, as ε increases, the low-amplitude particles are trapped in the main island, while
the other islands trap the higher-amplitude particles, in agreement with the results shown in Fig. 9. The red halo visible
in Fig. 9 is generated by large-amplitude particles that are not trapped in any island.

Several additional studies were carried out with the aim of assessing the dependence of the trapping process on the
parameters of the model considered. We defined a set of parameter values that we consider as the default, when
others are varied to study the dependence of the trapping fraction. The default values consist of the maximum exciter
amplitude (ε = 1 × 10−4), its constant frequency (ω/(2π) = 1/4), its phase (ψ0 = 0), and we also include the
octupolar coefficient (κ = 0.1). The rotation frequency ranges from ω0,0/(2π) = ω0,N/(2π) = 1/4 − δ/(2π) to
ω0,2N/(2π) = 1/4 + δ/(2π), with δ/(2π) = 5 × 10−4. The total number of simulated turns is 2N = 2 × 105, and
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Figure 8: Fraction of particles trapped in each island and their sum for initial conditions of the map of Eq. (3) as a
function of the initial amplitude

√
2J0 =

√
x20 + p20 of the particles for four values of exciter strength ε. Data for

the graphs were collected by simulating several uniform initial annular distributions, each containing Np = 1 × 103

particles, for each bin of the histogram (bin width 0.01). Note that the upper-left plot corresponds to a standard Hénon
map without external exciter (parameters values: ωr/(2π) = 1/4, δ/(2π) = 5× 10−4, κ = 0.1, ψ0 = 0, N = 105).

the initial conditions are normally distributed, inspired by what occurs in accelerator physics applications, in both x
and p, with standard deviations σx = σp = 0.1, which account for an initial average action of ⟨J0⟩ = 0.01. Although
the approach followed here provides an essential understanding of the main features of the process under study as a
function of the various model parameters, it goes without saying that a global optimization of the entire process e.g.
in the sense of defining the target trapping fraction in each island, which would be needed in the case of realistic
applications, would require a global multi-parameter optimization, not a scan of a single parameter at a time.

Figure 10 (a) shows the fraction of initial conditions trapped in each island and the ratio between the trapping in
the main island (as ψ0 = 0, this is the East island) as a function of the final exciter amplitude ε. We observe that
the difference in trapping between islands increases with ε. The peculiar behavior of the dominant island is clearly
visible: For all values of ε > 10−5, it can be observed that the East island captures the highest fraction of initial
conditions (up to ≈ 60% of the initial distribution, which represents ≈ 90% of the islands), followed by the North
and South islands and then the smallest West island. The effect is more prominent for large values of ε, whereas for
ε→ 0 all islands tend to behave the same. Note that the situation at ε = 10−6 is almost indistinguishable from that of
the Hénon map without exciter. However, the total number of particles in the islands increases only slightly, and until
ε ∼ 1 × 10−4. Above that value, the total number of particles in the islands is reduced because a larger number of
particles are expelled to the external region of the phase space.

If we study the trapping properties as a function of the frequency excursion δ (for which ω varies from ω− δ to ω+ δ),
(see Fig. 10 (b)), we observe that if the frequency variation is not large enough, most particles will not be trapped in
the islands, but will be expelled in the external region. In this situation, the area of the island structure is not large
enough to match the initial action of most particles, which therefore do not get trapped. At the other extreme, for large
values of 2δ/(2π), a small decrease in trapping is observed in some islands, which is due to the loss of particles due
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Figure 10: Final trapping fraction in each island, in the core region, in the external region, and ratio between the final
trapping fraction in the main island and that of the sum of all islands for a normal random distribution ofNp = 3×103

initial conditions under the evolution of the map of Eq. (3) with ω/(2π) = 1/4 changing one parameter at a time and
keeping all the others fixed to the default values of ε = 10−4, δ/(2π) = 5 × 10−4, κ = 0.1, ψ0 = 0, ⟨Ji⟩ = 0.01,
N = 105 (the vertical line represents the default value of the parameter). Starting from the top-left graph, the final
trapping fraction of the distribution is plotted against the exciter strength value ε (log scale), the main frequency change
2δ (log scale), the number of time steps N (log scale), the strength of the cubic nonlinearity κ (linear scale), the initial
phase of the exciter ψ0 (linear scale) and the average initial action ⟨Ji⟩ (linear scale). The legend shown on the top-left
graph is valid for all other graphs.
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to escape to infinity induced by nonlinearities. It is worth observing and stressing how the parameter δ can be used to
improve the trapping fraction with respect to the default case.

The role of adiabaticity is visible in the results shown in Fig. 10 (c), where we present the trapping fraction in each
region as a function of the number of turns N during which the modulations are performed. The fraction of particles
successfully trapped increases with N reaching a plateau at N ∼ 104, therefore confirming that the default value of
105 represents a sufficiently slow modulation to apply adiabatic theory to the system.

The role of the cubic nonlinearity present in the map is studied and visible in the results shown in Fig. 10 (d), where we
analyze the trapping fractions as a function of κ. The main effect of the parameter κ, which represents the strength of
the cubic nonlinearity, is to cause a deformation of the phase space, changing the shape of the islands. Furthermore, it
also reduces the extent of the stable region of the phase space, i.e. the region where a bounded motion occurs, causing
escape to infinity of orbits of several initial conditions. This behavior becomes dominant in the region κ < −0.1.
However, for large positive values of κ, the islands become smaller and the time derivative of their surface changes:
Fewer particles are trapped in the islands, although the ratio between the trapped fraction in the main island and all
islands does not change much from what was observed when κ = 0.

Figure 10 (e) shows the fraction of initial conditions trapped in each island as a function of the exciter phase ψ0. We
see that, depending on ψ0, a different island will capture most of the initial conditions, as we observed when looking
at the phase space of the stroboscopic map with different exciter phases. This change is a smooth function of ψ0, and
there are special values of ψ0 for which two dominant islands are present and whose size is comparable. The trapped
fraction in all islands, as well as the final population of the core and of the external regions, is constant w.r.t. ψ0.

Finally, Fig. 10 (f) shows the evolution of the trapping fraction in each phase-space region as a function of the action
average of the initial distribution ⟨Ji⟩ = (σ2

x + σ2
p)/2. This plot represents an integration over the initial normal

random distribution of what was observed in Fig. 8, which was obtained using concentric annular distributions of the
initial conditions. As particles close to the origin are more likely to be trapped in the main island, this effect is more
prominent in the case of initial distributions corresponding to small values of ⟨Ji⟩. However, the other islands are
populated with initial conditions starting at higher amplitudes. Therefore, wider distributions present a more balanced
output, reducing the ratio between the trapped fraction in the main island and the total fraction trapped in all the
islands. This improved balance is achieved at the price of a reduced total number of trapped particles in the islands, as
the high-amplitude fraction of the distribution of initial conditions lies beyond the phase-space region covered by the
islands. In this case, also, a higher value of the parameter δ would allow for an optimization of the trapping process.

As a last consideration, we would like to highlight the peculiar behavior introduced by the double-resonance condition,
which is shown in Fig. 11, as this can play a fundamental role for applications. In that plot, the fraction of initial
conditions trapped in the islands is shown as a function of the average action of the normal distribution of the initial
conditions. Two cases are reported, namely the Hénon map (with cubic nonlinearity but no external exciter) and the
special map with external exciter fulfilling a double-resonance condition.
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Figure 11: Comparison between the total trapping fraction into the four islands using a double-resonant approach
(ε = 10−4, black line), and the Hénon map (with cubic nonlinearity, but no external exciter) splitting (ε = 0, dashed
line) as a function of the action average of the normal distribution of the initial conditions. The vertical dotted line
represents the value of ⟨Ji⟩ used in other studies (parameters values: ωr/(2π) = 1/4, δ/(2π) = 5 × 10−4, κ = 0.1,
ψ0 = 0, N = 105, Np = 3× 103).
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The difference in behavior between the two models is clearly seen for initial distributions with an average action value
close to zero. In this condition, the Hénon map features a total fraction of initial conditions trapped in the islands
that goes to zero, while when the exciter is in action, the fraction of initial conditions trapped in the islands tends to
one. The difference between the two models fades away as ⟨Ji⟩ increases. Therefore, the use of the exciter with a
double-resonance condition allows efficient control of particle trapping even for the case of initial distributions of a
rather small extent in phase space, for which the natural trapping would naturally be very low.

6 Conclusions

In this paper, we have presented the detailed study of a double-resonance condition for a 2D model of a nonlinear
Hénon-like map. The double resonance occurs because the main frequency of the map is close to a rational value
(1 : 4 in our case), and the corresponding resonance is excited by the nonlinearities of the map and the frequency of a
time-dependent external exciter, whose frequency is in resonance 1 : 1 with the main frequency of the system.

The corresponding Normal-Form Hamiltonian model has been constructed and studied in detail. This model is of
paramount importance for understanding the scaling properties for the various model parameters and the fixed point
and islands topology in the phase space, which can be transferred to the map model. The Hamiltonian model clearly
indicated that the key feature introduced by the double-resonance condition is an asymmetry in the island structure
of the Henon map. In fact, one island grows and becomes dominant with respect to the other three. Furthermore,
the structure of the single separatrix of the Hénon map is completely altered and split into separatrices. These effects
provide an original and new phase-space foliation that has deep implications for adiabatic trapping and transport in
phase space.

After the analysis of the phase-space topology, the study of adiabatic trapping in the islands was carried out. According
to the theory of adiabatic resonance crossing, a distribution of initial conditions can be partially trapped into the various
structures in phase space, generated by separatrices of the frozen system. By means of detailed numerical simulations,
we showed that trapping actually occurs and studied the dependence of its properties on the various model parameters.
These studies can be used to optimize the trapping process, which is an essential aspect for an application of this novel
double-resonance system. It is important to stress that the obtained results agree with the experimental observations
and that the use of an external exciter satisfying a double-resonance condition allows the trapping probability to
increase in the islands.
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A Fixed points and resonance islands

To describe the properties of the Hamiltonian phase space (see Eq. (13)) and to discuss the resonance trapping phe-
nomena when the parameters ε and ω0 are varied, we start from the fixed-point analysis in case ψ0 = 0. Since

∂H
∂θ

= −4AJ2 sin 4θ − ε

2

√
2J sin θ , (15)

we have exact solutions to the fixed-point equation for θ = 0, π and approximate solutions at O(ε), close to θ =
±π/4 and θ = ±π/2. In the first case, it is more convenient to write the Hamiltonian using Cartesian coordinates
X =

√
2J cos θ, Y =

√
2J sin θ, and consider the solutions of ∂H/∂X at Y = 0 that reduces to the cubic equation

−κ
3
X3 + δX +

ε

2
= 0 . (16)

The exact solutions could be retrieved using the well-known Cardano formulae. However, for a qualitative analysis
of the existence of solutions, it suffices to study the sign of the discriminant κδ3 − 27κ2ε2/64. Assuming κ > 0 and
ε > 0, we have three real solutions if

δ

ε2/3
>

3

4
κ1/3 = δ̂1 (17)

and a single real (positive) solutions otherwise. According to Descartes’ rule of signs, one of the three real solutions
is found on the positive X semiaxis (i.e., at θ = 0), and two on the negative one (θ = π). The three real solutions
are the elliptic points of three stable regions: The center and two islands, the West and East islands, according to our
nomenclature. For δ smaller than the critical value, the real single solution coincides with the origin of the phase space
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when ε = 0, and represents the displacement of the central region, which is found at a distance ≈ ε for small values
of ε and ≈ ε1/3 for large values of the exciter amplitude. The solutions for Y = 0 are given by the equation

−κ
2 − 1

4κ
X3 + δ

κ− 1

κ
X +

ε

2
= 0 (18)

with

Y = ±
√

4δ

κ
− X2

κ
, (19)

which gives up to six extra fixed points, symmetrical w.r.t. the axis X = 0.

Assuming κ < 1, Eq. (18) has up to three real roots if

δ

ε2/3
>

3

4

[
κ2(κ+ 1)

(κ− 1)2

]1/3
= δ̂2 (20)

and one real root otherwise. For κ < 1/3 we have δ̂2 < δ̂1.

In the top three plots of Fig. 6 we show three different phase-space portraits of the Hamiltonian of Eq. (13) for ψ = 0,
κ = 0.1 and three possible configurations depending on the value of δ̂ = δ/ε2/3, (where the scales of x and p depend
on the value of ε). For δ̂ < δ̂2, we only have a fixed point on the positive semiaxis x, which means that a single island
(the East island) is present in the phase space. For δ̂2 < δ̂ < δ̂1 we still have a fixed point on the positive x semiaxis
and the other four symmetric fixed points (two elliptic and two hyperbolic), which create two equal islands, the North
and South islands. Finally, for δ̂ > δ̂2 we have three real roots, both in Eq. (16) and in Eq. 18. On the x axis, we can
find the centers of three regions: The newly created West island, the stable center, and the usual East island, while we
still have the North and South islands. Of course, for ε = 0 we retrieve, as δ̂ → ∞, the usual structure of the Hénon
map.

B Use of the main tune to identify phase-space regions

The frequency (main tune) associated to each closed orbit is evaluated using the so-called average phase advance
method [39, 40] over N = 4096 turns, i.e.

ν0 =
1

2πN

N∑

n=1

atan
xnpn−1 − xn−1pn
xnxn−1 + pnpn−1

. (21)

In the left plot of Fig. 12 we have computed the main tune ν0 for a set of initial conditions defined on a grid in the phase
space (x, p), and we observe that ν0 locks to the exact resonant value ωr/(2π) = 1/4 not only within the islands, but
also in the area enclosed by the outer separatrix. This result allows distinguishing between initial conditions that are
in the region enclosed by these separatrices, but not those that are in the islands. To this end, we used the secondary
tune ν1, which is the average phase advance computed on the stroboscopic map, i.e. using only the 4th iterate of the
map, according to

ν1 =
4

2πN

N/4∑

n=1

atan
x4np4n−4 − x4n−4p4n
x4nx4n−4 + p4np4n−4

, (22)

and which is plotted, for the same set of initial conditions, in the right plot of Fig. 2. In fact, it can be observed that
ν1 changes sign within and outside the islands. The secondary tune ν1 is the rotation frequency of a particle around
the center of the island and can be used to discriminate whether or not a particle is in an island. Moreover, its sign
provides the direction of rotation around the stable fixed point, which can be used to distinguish between the islands
and the core region.

Therefore, we define a particle to be trapped in an island if ν0 = 1/4 and ν1 < 0. Furthermore, by looking at the
angle in the phase space of the final condition, it is possible to determine the specific island where the particle is. The
particles with ν1 > 0 are in the core region and the remaining particles, i.e. those with ν0 ̸= 1/4 are classified in the
external region. It should be mentioned that given the finite precision of the method used to determine ν0, a tolerance,
based on the precision of the method [39, 40], should be defined to assess when ν0 can be considered equal to 1/4.
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map of Eq. (3). Separatrices have also been represented (black line). Right: Secondary tune ν1 (color scale, computed
as in Eq. (22)) for the same set of initial conditions and the same map (parameters values: ∆ = 0, ε = 10−4,
δ/(2π) = 0.005, ψ0 = 0).
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