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Abstract

The CERN LHC provided proton and heavy ion collisions during its Run 2 operation
period from 2015 to 2018. Proton-proton collisions reached a peak instantaneous lu-
minosity of 2.1 × 1034 cm−2s−1, twice the initial design value, at

√
s = 13 TeV. The

CMS experiment records a subset of the collisions for further processing as part of
its online selection of data for physics analyses, using a two-level trigger system: the
Level-1 trigger, implemented in custom-designed electronics, and the high-level trig-
ger, a streamlined version of the offline reconstruction software running on a large
computer farm. This paper presents the performance of the CMS high-level trigger
system during LHC Run 2 for physics objects, such as leptons, jets, and missing trans-
verse momentum, which meet the broad needs of the CMS physics program and the
challenge of the evolving LHC and detector conditions. Sophisticated algorithms that
were originally used in offline reconstruction were deployed online. Highlights in-
clude a machine-learning b tagging algorithm and a reconstruction algorithm for tau
leptons that decay hadronically.
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1 Introduction
The CERN LHC collides bunches of particles at a maximum rate of about 40 MHz at several ex-
perimental sites including CMS. During LHC Run 2 in 2015–2018, the maximum instantaneous
luminosity Linst reached 2.1 × 1034 cm−2s−1, twice the initial design value, at

√
s = 13 TeV. The

mean pileup (PU), or simultaneous inelastic proton-proton (pp) collisions per bunch crossing,
was about 50. To select collision events of potential interest to physics analyses, the CMS trigger
system divides the processing into two levels: a first level (L1) that is implemented in custom-
designed electronics, and a high-level trigger (HLT) implemented in software and executed on
commodity computers. The HLT further refines the purity of the collection of physics objects
that are selected at L1, with an input event rate to the HLT limited to about 100 kHz by the
detector read-out electronics, and targets an average output rate of about 1 kHz during Run 2
for standard pp collision events for offline storage and prompt reconstruction. The HLT also
accommodates combinations of objects, such as leptons and jets or final states in B physics, to
target specific physics analyses, although the focus of this paper is on the reconstruction and
object identification tools used at the HLT. Novel techniques introduced during Run 1, such as
a high rate storage of events with a reduced data content (“data scouting”) and storage of addi-
tional full events for delayed processing (“data parking”), both described in Ref. [1], continued
during Run 2 to further extend the physics program.

The performance of the CMS L1 and HLT trigger systems during Run 1 of the LHC, with
√

s = 7
and 8 TeV for pp collisions, is described in Ref. [2]. The L1 trigger was subsequently upgraded
during Run 2 of the LHC as part of the Phase-1 upgrades of CMS [3], and its performance is de-
scribed in Ref. [4]. Run 2 of the LHC delivered challenges to the Run 1 L1 and HLT algorithms,
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including a higher
√

s of 13 TeV, higher luminosity, larger PU, and further detector aging (pri-
marily from radiation damage). The algorithms deployed at the HLT were revised to address
these challenges and were made flexible enough to adapt to various changing detector con-
ditions that occurred during Run 2, together with the installation of detector components and
electronics that were part of the CMS Phase-1 upgrades [5]. Further adaptations of the HLT
for Run 3 of the LHC, such as the inclusion of graphical processing units for computation, are
described in Ref. [6].

This paper is organized as follows. Section 2 describes the CMS experiment and the LHC
operating conditions during Run 2, and Section 3 describes the architecture of the HLT, as well
as a breakdown of its rate and processing time. Section 4 describes the reconstruction and
performance of the physics objects in the HLT that are broadly applicable to a wide range of
physics analyses, such as lepton, jet, and energy sum triggers. Finally, a summary is given in
Section 5.

2 Experimental conditions during Run 2
2.1 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors.
Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside
the solenoid. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Refs. [6, 7]. The
silicon tracker used in 2016 measured charged particles within the range |η| < 2.5. For noniso-
lated particles with 1 < pT < 10 GeV and |η| < 1.4, the track resolutions were typically 1.5% in
pT and 25–90 (45–150) µm in the transverse (longitudinal) impact parameter dxy (dz) [8]. At the
start of 2017, a new pixel detector was installed [9]; the upgraded tracker measured particles
up to |η| = 3.0 with typical resolutions of 1.5% in pT and 20–75 µm in dxy [10] for nonisolated
particles of 1 < pT < 10 GeV. According to simulation studies [11], similar improvements are
expected in the longitudinal direction.

2.2 The LHC operations

The operational period of LHC Run 2 covered the years 2015 to 2018. The year 2015 was dom-
inated by commissioning activities in the wake of LHC Long Shutdown 1, with a correspond-
ingly small amount of integrated luminosity delivered to the experiments. Additionally, the
electronics for the CMS L1 trigger was upgraded and installed for data taking at the beginning
of 2016. Hence we will focus mainly on the 2016–2018 period.

Traditionally, each year starts with an interleaved commissioning–production period, where
the Linst is progressively increased by the insertion of additional proton bunches in opposite
directions to make two oppositely running proton beams in a single LHC fill. After the beams
achieve their maximum occupancy projected for the year, the LHC conditions are optimized
throughout the year to achieve the needs of the physics programs of the experiments. Within a
given LHC fill, the Linst generally decreases in tandem with the natural depletion of the beams,
which allows for the activation of looser trigger algorithms that can increase the physics reach
of an experiment by keeping the data bandwidth to storage effectively constant. For some
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Run 2 fills, the beam focusing was periodically adjusted to achieve approximately constant
Linst for an extended amount of time (luminosity leveling).

Table 1: The LHC operations parameters during Run 2. The maximum PU is for standard
physics fills with more than 600 bunches, and the average PU is calculated assuming an inelas-
tic cross section of 80 mb. The 8b4e bunch-filling configuration values are given in brackets,
and they refer to an LHC configuration used in 2017 to mitigate beam losses. The

√
s

NN
is the

center-of-mass energy per nucleon.

2016 2017 2018
Proton-proton
Max. colliding bunches 2220 2556 [1868] 2556

in CMS 2208 2544 [1866] 2544
Max. Linst (×1034 cm−2 s−1) 1.5 1.7 [2.1] 2.1
Max. PU 46.9 47.5 [78.8] 64.7
Avg. PU 27 31 [42] 37

Heavy ions
Collisions species pPb XeXe, pp PbPb√

s
NN
(TeV) 8.16 5.44, 5.02 5.02

There are also special LHC runs that occur throughout the running period with a variety of
purposes. Low-PU runs, with much less than 0.3 pp interactions per bunch crossing, are im-
portant for particular standard model (SM) measurements, such as the measurement of the W
boson mass. On the other hand, high-PU runs, with fewer filled bunches, are also available for
experimental performance measurements to prepare for the steady luminosity increase dur-
ing Run 2, as well as for that expected for LHC Run 3 and for the High-Luminosity LHC era.
Other special run setups include: reference pp collisions for the heavy ion program; luminosity
studies during van der Meer scans [12], both at the initial proton injection energy and at the
maximum energy; as well as special machine development runs for LHC beam studies.

The experience acquired through Run 2 led to progressively smoother LHC operations through-
out the years [13, 14]. In 2016, the maximum Linst had a rapid initial increase to the nom-
inal value of 1.0 × 1034 cm−2 s−1, followed by a gradual increase during the year to ≈1.5 ×
1034 cm−2 s−1. In 2017, this pre-shutdown performance was easily achieved by the start of the
run, and adjustments made throughout the year allowed the crossing of the 2.0× 1034 cm−2 s−1

milestone by October. Amongst these adjustments, we highlight the deployment of the “8b4e”
filling scheme (8 filled bunches followed by 4 empty buckets) accompanied by the reduction of
β∗ (a parameter related to the transverse beam size at the interaction point) from 40 to 30 cm
to mitigate beam losses around the region of an LHC magnet interconnect [14, 15]. Finally, in
2018 the initial ramp-up period to routinely deliver maximum instantaneous luminosity was
very quick, and collision data were acquired at a steady pace during the year. A summary of
the LHC parameters for pp and heavy ion collisions for 2016–2018 is shown in Table 1.

3 Online data selection
3.1 The HLT architecture

The HLT hardware consists of a large cluster of multi-core servers, the event filter farm, that
runs a Linux operating system. The processing capacity of the Filter Farm was expanded grad-
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ually throughout Run 2 to cope with the evolving LHC and detector conditions. By the end of
Run 2, the processing power was about 7.2 × 105 in HEPSPEC 2006 [16] units. This was dis-
tributed across 360 nodes of dual Intel Haswell E5-2680v3 processors (8640 cores), 324 nodes
of dual Intel Broadwell E5-2680v4 processors (9072 cores), and 400 nodes of dual Intel Skylake
Gold 6130 processors (12 800 cores).

As noted earlier, the HLT refines the purity and reduces the rate of events that are selected by
L1, targeting a rate of about 1 kHz averaged over an LHC fill for standard pp collision events
for offline storage and prompt reconstruction. Additional storage beyond the 1 kHz rate is
allowed for data to be “parked”, whereby the offline reconstruction is postponed until a later,
non-data-taking period (e.g., during a long shutdown of the LHC). In 2018, the storage rate for
parking was an additional 3 kHz [1]. The average raw data event size for these standard pp
collision events at the average Run 2 PU (37) is about 0.65 MB after compression, with a peak
size near 1 MB at the highest PU conditions. A higher rate of reduced-size events also can be
acquired, a technique referred to as “data scouting,” where only the high-level physics objects,
such as jets or leptons, reconstructed at the HLT are stored on disk. No raw data from detector
channels are stored for later offline analysis. For example, 5 kHz of scouting events with an
average event size of 8 kB were also recorded in 2018 [1].

3.2 Algorithms

The data processing of the HLT is structured around the concept of an HLT “path”, which is
a set of algorithmic processing steps run in a predefined order that both reconstructs physics
objects and makes selections on these objects based on the physics requirements. Each HLT
path is implemented as a sequence of steps generally of increasing complexity, reconstruction
refinement, and physics sophistication. For example, the processing of intensive track recon-
struction is usually performed only after some initial reconstruction and selection based on the
calorimeters and muon detectors. Each path also requires the selections in specific L1 triggers
(“L1 seeds”) to have been satisfied before execution would begin. The reconstruction modules
and selection filters of the HLT use the same software framework used for offline reconstruc-
tion and analyses (CMSSW [17]). The framework supports multi-threaded event processing,
which optimizes memory usage and is utilized for the HLT software.

The HLT paths selecting similar physics object topologies are grouped into primary data sets,
which are then grouped into streams. Primary data sets define the samples used for offline
processing, and their trigger content is chosen such that the overlap is minimized to avoid
reconstructing offline the same event in multiple primary data sets. Streams define the outputs
of the HLT processes, which are transferred from CMS to offline computing facilities during
data taking. The grouping of primary data sets into streams further reduces the overlap across
HLT outputs, allowing for a more efficient handling of these data transfers.

3.3 Menus

The HLT selects data for storage through the application of a trigger “menu”, which is a collec-
tion of individual HLT paths. The trigger path definitions, physics object thresholds (e.g., the
transverse energy ET threshold and the pT threshold), and rate allocations are set to meet the
physics objectives of the experiment. For Run 2, the HLT menus typically had around 600 paths
for pp data taking. This included the primary triggers for analyses, as well as triggers for cali-
bration, efficiency measurements, control region measurements, etc. that were typically looser
than the primary triggers. These latter triggers were often “prescaled”, meaning that they se-
lected only a fraction of the events that satisfied their conditions to limit their storage rate.
Approximately a dozen menus were deployed each year during 2016–2018 for operations with
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pp collisions. Different sets of trigger menus were used for special LHC runs, including heavy
ion collision runs. A representative listing of the primary triggers used in 2018 for physics anal-
yses, along with their thresholds and corresponding rates, is given in Table 2. These triggers
accounted for approximately 50% of the overall menu rate used to select data that were recon-
structed promptly. Note that the listed rates of each trigger are inclusive and not necessarily
unique. For example objects selected by a trigger applying isolation would also be selected by
a trigger not requiring isolation on the same type of objects, provided that the other conditions
(e.g., energy) are met. Comprehensive details of the algorithms used and their performances
are discussed in Section 4.
Table 2: Representative set of HLT paths based on the basic HLT physics objects used during
data taking in 2018, the associated thresholds at the L1 and HLT, and the corresponding HLT
output rates. The total menu rate at Linst = 1.8 × 1034 cm−2 s−1, representative near the start of
an LHC fill, is 1.6 kHz.

HLT path L1 thresholds [GeV] HLT thresholds [GeV] Rate [Hz]
Single muon 22 50 49
Single muon (isolated) 22 24 230
Double muon 22 37, 27 16
Double muon (isolated) 15, 7 17, 8 32
Single electron (isolated) 30 32 180
Double electron 25, 12 25, 25 16
Double electron (isolated) 22, 12 23, 12 32
Single photon 30 200 16
Single photon (isolated), 30 110 16

barrel only (|η| < 1.48)
Double photon 25, 12 30, 18 32
Single tau 120 180 16
Double tau 32 35, 35 49
Single jet 180 500 16
Single jet with substructure 180 400 32
Multijets with b tagging HT > 320 HT > 330 16

jets > 70, 55, 40, 40 jets > 75, 60, 45, 40
Total transverse momentum 360 1050 16
Missing transverse momentum 100 120 49

The rest of the trigger menu not included in Table 2 consists of slightly more specialized trig-
ger paths that enhance the acceptance of events for targeted analysis areas of the CMS physics
program. This includes “cross-object” triggers, such as mixed double-lepton (e +µ) triggers
that target, e.g., H → WW, H → ττ , and top quark pair production in the dilepton final state,
where H indicates the Higgs boson. Top quark acceptance is further enhanced in other decay
topologies, such as lepton+jets or the all-hadronic channel. For the former, the ET threshold on
an electron can be reduced from that used in the inclusive single-electron trigger, with man-
ageable rate increase, when used in coincidence with jets with a total scalar pT sum (HT) above
a given threshold. Likewise, for the latter, the hadronic top quark decays can be selected via
requirements on the number of jets, HT, and one or more b-tagged jets. The B physics pro-
gram of CMS generally targets soft dimuon final states, and thus uses additional requirements
(e.g., invariant mass) in its HLT paths to keep trigger rates manageable. Since the overall list
of these more specialized trigger paths numbers in the hundreds, their performances are not
described here. However, the description and performance of the algorithms used for most of
the individual objects forming these paths are discussed in this article.
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Figure 1: Pie chart distribution of the CPU time per event spent by the HLT for different parts
of the event reconstruction. Reconstruction modules and filters are grouped by detector and
physics object (outermost ring and similarly colored groupings). The middle ring reports the
names of specific C++ classes in CMSSW used in the HLT reconstruction, and the various slices
in the innermost ring refer to different instances (modules) of that given C++ class in the HLT
menu. The empty slice indicates the time spent outside of the individual algorithms.

3.4 Rates and processing time

The distribution of the CPU time spent in processing the HLT menu by reconstruction category
and by instances of C++ classes within those categories is shown in Fig. 1. Overall, there are
O(1200) instances stemming from O(200) algorithms that are run. The HLT configuration is
based on the one used in 2018, with only minimal updates to the local reconstruction to reflect
the ongoing developments foreseen for LHC Run 3. The timing is measured for an average PU
of 50 during a 2018 data-taking period on a full HLT node (2x Intel Skylake Gold 6130) with
hyper-threading enabled, running 16 jobs in parallel with 4 threads each. The average pro-
cessing time per event is 451 ms; scaling this performance to the full event filter farm capacity
means that it would be able to process an event input rate of approximately 130 kHz, above the
nominal L1 rate target of 100 kHz.

Figure 2 illustrates the HLT rates attributed to each CMS physics group for the HLT menu
deployed in September 2018, which selects data for prompt reconstruction. The rates were
determined by running the HLT menu on a special data set where events were selected that
passed the L1 trigger without any additional HLT requirements. The rates were normalized
to an average Linst of 1.8 × 1034 cm−2 s−1. An event is attributed to a given physics group if
the latter requires (i.e., owns) at least one of the HLT paths that triggered the event. For each
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physics group, three types of rates are evaluated.

• Total: the inclusive rate arising from all HLT paths needed by that physics group.

• Pure: the exclusive rate from all paths uniquely assigned to that physics group.

• Shared: the sum of the pure rate and the fractional rate of the HLT paths shared with
other groups, where the rate is split equally among all groups for a given path.

The sum of the Shared HLT rates is 1530 Hz. However, because the selected data are recorded
in separate data sets with some overlap (6.6%) for analysis and offline processing reasons, the
actual storage rate is 1640 Hz with the additional duplication.

The CMS physics analysis groups focused on searches for physics beyond the SM are the
B2G (searches for new physics in boosted signatures), SUSY (searches for new physics in final
states with imbalanced pT), and Exotica (other topologies of new physics) groups. The analysis
groups focused on measurements are the Higgs boson physics, top quark physics, B physics,
and other SM phenomena groups. The “Objects” category in Fig. 2 contains the HLT paths
used by the physics object groups (Tracking, Muon, Electron-Photon, Jet-MET, Tau, b Tagging)
to characterize the performance of the online and offline reconstruction. The “Calibrations”
category includes all HLT paths used for subdetector alignment and calibration purposes.

0 100 200 300 400 500 600 700 800
Rate [Hz]

Calibrations

Objects

Top

B2G

SM Physics

SUSY

B Physics

Higgs

Exotica

 (2018, 13 TeV)CMS

inst = 1.8 × 1034 cm 2s 1
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Figure 2: The HLT rate consumption by physics group in the standard physics streams for a
Run 2 menu deployed in September 2018. The “Total Rate” is the inclusive rate of all triggers
owned by a group, and the “Pure Rate” is the exclusive rate of all triggers unique to that group.
The “Shared Rate” is the rate calculated by dividing the rate of each trigger equally among all
physics groups that use it, before summing the total group rate. It includes the Pure Rate of
that physics group. The topic coverage of each group is discussed in the text.

The rate allocation per physics group is also expressed as a pie chart in Fig. 3. Very roughly one-
third of the HLT rate budget is devoted to searches beyond the SM, one-third to measurements
including the Higgs boson (but apart from B physics), and one-third to B physics and physics
object groups.
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B Physics12.0%
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Figure 3: Share of the total HLT rate that each physics group contributes. “Data Set Overlap”
refers to the events that are duplicated and saved into separate data sets for analysis and offline
processing convenience, but which must be reconstructed separately offline.

4 The HLT reconstruction and performance
The HLT paths in the menu are based on physics objects produced from reconstruction mod-
ules that use information from the inner tracking system, calorimeters, and muon detectors.
Central to many of the object reconstructions is the particle-flow (PF) algorithm [18], which
aims to reconstruct all individual particles (electrons, muons, photons, and charged and neu-
tral hadrons) in an event, combining information provided by these systems. The online PF
reconstruction has a simplified version of the offline reconstruction to fulfill the timing limita-
tion for online reconstruction. The tracking has a reduced number of iterations, down to three
as discussed in Section 4.1. Moreover, electron reconstruction is not integrated into the online
PF algorithm [18]. Brief descriptions of the HLT reconstruction algorithms for physics objects
and highlights of their performance measured with data collected during Run 2 are described
below. The measured efficiencies of the lepton (ℓ) algorithms are typically obtained using the
“tag-and-probe” technique [19], which exploits resonant dilepton production (e.g., Z → ℓℓ or
J/ψ → ℓℓ) events in data. One of the lepton candidates, called the “tag,” is required to satisfy
a trigger requirement (e.g., a single-lepton trigger) such that the event is recorded irrespective
of the other lepton, the “probe.” Offline selection requirements are applied to both tag and
probe to reduce the contribution of misidentified leptons. The trigger efficiency of the probe
can then be measured in an unbiased way as a function of various kinematic and object quality
parameters. The measured efficiencies of jets and energy sums are obtained using an unbiased
data set, namely one triggered by a lepton.
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4.1 Tracking

Charged particle tracks in the HLT are reconstructed from the hits in the pixel and strip tracker
using a Kalman filtering technique [20], based on initial estimates of the track parameters ob-
tained from hits in the pixel detectors (“seeds”). The seed is propagated outwards and the
track parameters are updated with the information from compatible hits as they are found un-
til no more hits are found or the tracker boundary is reached. The track is then propagated
from the outermost hit inwards in search of additional compatible hits, after which a fit to the
resulting hit collection determines the final track parameters. Similar to the offline track re-
construction [8], the tracking is performed iteratively, starting with tight requirements on the
pT and displacement with respect to the beam spot of the seed, which become looser for each
subsequent iteration. Hits in the tracking detectors already used in a track are removed at the
beginning of the next iteration. The general track reconstruction in the HLT consists of three
iterations. The first two require the maximum of four consecutive pixel detector hits expected
for one track from the detector geometry, identified using a cellular automaton algorithm [21],
to seed (i.e., initiate) the tracking. These iterations first target high-pT tracks before extending
the coverage to low-pT tracks, using the full volume of the pixel detector. The third iteration
relaxes the requirement on the number of hits in the track seeds to three and is restricted to the
vicinity of jet candidates identified from calorimeter information and the tracks reconstructed
in the two previous iterations. Tracks are clustered into vertices using the same deterministic
annealing algorithm [22] used in the offline reconstruction [8]. The vertex position is fitted
using an adaptive vertex fitter [23].

This configuration of the track reconstruction was deployed in 2017, after the Phase-1 pixel
detector was installed. Reflecting the lower number of detector layers, fewer pixel hits were re-
quired to form track seeds in previous years. The higher quality of track seeds available in 2017
resulted in an increase in tracking efficiency by about 10% for tracks with pT > 1.2 GeV, with
larger improvements present at lower pT and high |η|. At the same time, the track misidentifi-
cation rate was reduced by a factor of 5–7.

During 2017, several issues with the installed Phase-1 pixel detector were identified that led
to a nonnegligible fraction of inactive pixel detector modules in each event. Most notable was
the failure of some direct-current DC-DC converters (≈5%) used to power the detector, which
resulted in an increasing fraction of inactive modules towards the end of the data-taking pe-
riod [6].

During the year-end technical stop 2017–2018, the pixel detector was equipped with new con-
verters, and the initial performance was restored. To safeguard against a possible recurrence of
this problem and other possible detector failures, an additional recovery iteration was added.
Track seeds consisting of just two pixel detector hits (“doublets”) are created in regions of the
detector where two inactive modules overlap as seen from the interaction point. Because of the
limited CPU time available for the HLT reconstruction, this iteration is restricted to tracks with
pT > 1.2 GeV.

The tracking efficiency and misidentification rate reported here are obtained from simulated
top quark pair (tt) events with a mean PU of 50. The efficiency and rate are defined with
respect to the Monte Carlo (MC) simulated objects, where the tracks of the simulated particles
are matched to reconstructed tracks based on shared hits in the tracking detectors. The tracking
efficiency is defined as the fraction of simulated particles from the signal interaction with pT >
0.9 GeV, |η| < 2.5, dxy < 35 cm, and dz < 70 cm that are matched to a reconstructed track.
The misidentification rate is defined as the fraction of reconstructed tracks that could not be
matched to a simulated particle. To realistically model the effect of an imperfect pixel detector,
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a map of inactive modules representing the status of the real detector as of June 2018 is applied
to the simulation. The tracking performance is implicitly included in the measured HLT object
and algorithm performances that use tracking, reported in subsequent sections of this article.

The tracking efficiency as a function of pT, number of PU interactions (NPU), η, and ϕ is shown
in Fig. 4. The reduction of efficiency at large track pT is characteristic of the sample used for
the efficiency measurement. As the inactive modules are not distributed uniformly throughout
the detector, the tracking performance is expected to be asymmetric in track η and ϕ. For
reference, the efficiency that would be achieved with the “design pixel detector”, namely with
no inactive pixel detector modules, is also shown in the figure. As the doublet-seeded iteration
is not run in the case of the design detector, in some cases the tracking efficiency with the
“realistic detector”, which takes into account the pixel detector modules that have become
inactive, can be higher than with the design detector. In the plateau region around pT ≈ 20 GeV,
the efficiency observed with the realistic detector conditions is about 5% lower than with the
design detector. This efficiency loss compared with the design detector is more pronounced
in the central part of the detector, and is concentrated in the region around ϕ = 0.6, where
a significant number of inactive modules is present. The doublet-seeded tracking iteration is
able to recover a significant fraction of this efficiency loss above the pT threshold of 1.2 GeV.
The performance of the recovery procedure is not uniform across the η and ϕ ranges since it
is invoked only if there are two overlapping inactive modules, making it dependent on the
specific distribution of these modules. The tracking efficiency is robust against the presence of
PU, decreasing only slightly with the number of additional interactions. The performance of
the doublet-seeded recovery is also independent of PU.

The tracking misidentification rate as a function of pT, NPU, η, and ϕ is shown in Fig. 5. There
is no difference between the misidentification rates with the design and realistic detector con-
ditions. Taking into account the doublet-seeded recovery iterations, a slight increase of the
misidentification rate above the pT threshold of this iteration is observed. When integrated over
all pT values, no significant increase in the misidentification rate is observed for the doublet-
seeded recovery iteration as seen in the other plots. The misidentification rate does increase
with the number of additional PU interactions for either tracking scenario and for the design
pixel detector.

4.2 Muons

Tracking algorithms are also deployed to identify and reconstruct muons measured in the
muon detectors in combination with the pixel and strip trackers. Since the algorithms used
during Run 2 are described in more detail in Ref. [24], a brief summary is given here.

Muon track reconstruction at the HLT takes place in two steps: first using hits only in the muon
system (L2 reconstruction), followed by a combination with hits in the inner tracking system
(L3 reconstruction). The L2 reconstruction is equivalent to the standalone muon reconstruction
performed offline. The reconstruction at L3 is seeded by an L2 muon and follows an iterative
track reconstruction similar to that described in the previous section in a region around the seed
starting from the outer tracking layers and working inward (“outside-in”) or from the inner
tracking layers working out (“inside-out”). The latter inside-out approach also can be seeded
directly by muons reconstructed by the L1 trigger (“L1 muons”) using muon detector informa-
tion only. The L3 track reconstruction is essentially 100% efficient with respect to L1-identified
muons, and it reduces the rate by more than an order of magnitude for the same pT threshold
because of the improved momentum resolution of the inner tracking system. However, the L3
reconstruction consumes approximately 20% of the overall HLT CPU time per event. After the
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Figure 4: Tracking efficiency as a function of simulated track pT (upper left), NPU (upper right),
η (lower left), and ϕ (lower right). The contributions to the total efficiency from the different
tracking iterations are shown in different colors. The initial three iterations are shown in shades
of blue, and the contribution of the doublet recovery iteration is shown in violet. The simula-
tion includes a map of inactive modules representing the status of the real detector as of June
2018. The performance that would be achieved with no inactive pixel detector modules and no
doublet recovery iteration (design pixel detector) is shown as a red line. Details of the observed
features are discussed in the text.
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Figure 5: Tracking misidentification rate as a function of track pT (upper left), NPU (upper right),
η (lower left), and ϕ (lower right). No selection on track kinematics is applied. The misiden-
tification rate for the first three iterations (default tracking) is shown in dark blue triangles,
whereas the misidentification rate after including the doublet recovery iteration is shown in
violet circles. The simulation includes a map of inactive modules representing the status of the
real detector as of June 2018. The misidentification rate that would be observed with no inac-
tive pixel detector modules and no doublet recovery iteration (design pixel detector) is shown
in dark red squares.
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track reconstruction, identification criteria are applied as well as isolation criteria for the iso-
lated muon category. The isolation is based on the sum of pT from additional tracks associated
with the primary vertex and calorimeter energy deposits clustered using an algorithm based
on the PF candidates in a cone of radius ∆R =

√
(∆ϕ)2 + (∆η)2 = 0.3 around the muon. The

estimated contribution from PU to the energy deposits in the calorimeter is subtracted.

The combined L1+HLT muon trigger efficiency of an isolated single-muon trigger with pT >
24 GeV with respect to offline-reconstructed muons is presented in Fig. 6 as a function of the
data-taking date, which shows the effect of the evolution of the muon reconstruction algorithm
during Run 2, as well as the detector and machine conditions. The maximum efficiency of
about 90% is primarily set by the L1 trigger. Offline-reconstructed muons with pT > 26 GeV are
used. In 2016, two different approaches were used to reconstruct L3 muons. The first one (the
“cascade” algorithm) starts from L2 muons as seeds and consists of three different methods to
reconstruct L3 muons. Each method uses the outside-in or inside-out approach with different
ways to find tracks in the inner tracker. The fastest method in calculation time is used first, and
then it proceeds to the next methods only if an L3 muon is not found in the previous method.
The other approach (the “tracker muon” algorithm) starts from L1 muons as seeds, which are
used to define an inner tracker region to perform the track reconstruction. Reconstructed inner
tracks matched to segments in the muon stations are then tagged as muons. By combining
with the L3 muons from the cascade algorithm, it improves the overall performance, especially
when L2 muons are not properly reconstructed. The performance was stable with an overall
efficiency of about 90% during the whole of 2016 operations, showing robustness in early 2016
during a period of degradation of the inner strip tracking detectors before their operational
parameters were retuned to reduce their susceptibility to highly ionizing particles.

In 2017, a new algorithm for the L3 muon reconstruction (the “iterative” algorithm) was im-
plemented. It combines the advantages of both the cascade and tracker muon algorithms and
replaced them. It starts with the outside-in step seeded by L2 and continues to find more L3
muons by two inside-out steps seeded by L2 or L1 muons. In early 2017, the performance of the
initial version of the iterative algorithm was not as good as that of the previous algorithm, since
a few technical weak points in the algorithm were not identified during validation with sim-
ulated events. The performance was consistently improved by implementing several patches
during the data taking until the middle of 2017. However, the efficiency decreased later, mainly
as a result of pixel detector module losses mentioned in the previous section and higher PU, as
indicated in Fig. 6. The efficiency did rise nevertheless toward the end of 2017 and early 2018
because of a slight reduction in the amount of PU. To improve the robustness of the algorithm,
significant changes were introduced in 2018. To recover the efficiency, all L1 muons were used
in the L1-seeded step by removing the pT requirement, and an iterative tracking step was added
in the inside-out steps using the pixel doublet as seeds. In parallel, to improve the purity and
rate, identification criteria were imposed on L3 muons at the last step of the algorithm. These
improvements were implemented in May 2018 as denoted in the figure, restoring the efficiency
to be similar to the 2016 level, up to the end of the Run 2 operation.

Figure 7 (left column) shows the efficiency of the isolated single-muon trigger with pT > 24 GeV
as a function of muon pT, η, and the number of reconstructed primary vertices (Nvtx) for three
years of data taking: 2016, 2017, and 2018. The right column of Fig. 7 shows the corresponding
efficiency distributions for the nonisolated single-muon trigger with pT > 50 GeV. The panel
below each figure shows the ratio of the efficiency measured for data to that of simulation.

Figure 8 shows the efficiency of the same isolated single-muon trigger as in Fig. 7, plotted as
a function of the η and ϕ of the muons. Different muon detector technologies and different
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Figure 6: Evolution of the isolated single-muon trigger efficiency with pT > 24 GeV as a func-
tion of data-taking dates during the Run 2 period from 2016 to 2018. Each point is the efficiency
measured using the data with an integrated luminosity of about 3 fb−1. Dashed lines show the
changes in the LHC or CMS conditions that could have an impact on the trigger performance,
such as the fix for the degradation of the inner tracker as a result of heavily ionizing particles
(“HIP mitigation fix”) or the change in the filling scheme for pp collisions at the LHC (“8b4e
scheme”) that led to higher PU in CMS until the end of 2017. The change of the reconstruction
algorithm for L3 muons are presented as green dotted lines, including the replacement of cas-
cade or tracker muon algorithm to the iterative algorithm (“Change to iter. L3”) and the update
of the iterative algorithm to overcome the limitations observed in 2017 (“Iter. L3 update”).
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Figure 7: Trigger efficiencies for the isolated single-muon trigger with pT > 24 GeV (left col-
umn) and the nonisolated single-muon trigger with pT > 50 GeV (right column), as functions
of muon pT (upper row), η (middle row), and Nvtx (lower row). The lower panel of each plot
shows the ratio of data to MC simulation The vertical bars on the markers represent statistical
uncertainties.
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Figure 8: Efficiency of the isolated single-muon trigger with pT > 24 GeV as a function of the η
and ϕ of the muons in 2016 (upper left), 2017 (upper right), and 2018 (lower).

reconstruction algorithms in both the L1 and HLT were used depending on the geometric re-
gion, but the overall efficiency is generally stable across Run 2, except for a few specific regions
related to issues in the muon detector.

The minimum pT thresholds used for double-muon triggers are lower than those of single
isolated muon triggers. As Table 2 shows, the lower-pT threshold of the isolated double-muon
trigger used in the Run 2 trigger menu is 8 GeV. The efficiency of this lower-pT “leg” is reported
in Ref. [24]. It exhibits a sharp turn-on in the efficiency vs. pT at the threshold, with a plateau
efficiency of ≈95% that is stable across the years 2016–2018 to within about 1%.

4.3 Electrons and photons

The electron and photon candidates at L1 are based on trigger towers defined by arrays of 5×5
ECAL crystals along with the HCAL tower directly behind them in the barrel, and in the end-
caps are formed from groups of 5–25 crystals depending on their η-ϕ position [4]. The trigger
tower with the largest ET is clustered together with its adjacent ET towers using a procedure
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that also trims the energy deposits to only include contiguous towers to match the electron
or photon signature in the calorimeter. To form an L1 candidate, energy clusters must sat-
isfy additional identification criteria and, optionally, isolation requirements. The HLT electron
and photon identification begins with a regional reconstruction of the energy deposited in the
ECAL crystals around the L1 candidates. In Run 2, the signals in the ECAL crystals are recon-
structed by fitting the signal pulse with multiple template functions, to mitigate out-of-time
PU. The signal amplitudes are then corrected by per-crystal correction factors and per-channel
calibration techniques, which, to deal with the increasing ECAL crystal opacity from radiation
damage, require frequent updates to maintain performance. Clusters of ECAL deposits within
a certain geometric area around the seed cluster, called “superclusters,” are then built, using
the same reconstruction algorithm as used offline [25]. However, the energy correction applied
to HLT superclusters is simpler than the one used offline in that it employs ECAL informa-
tion only. This correction is needed to take into account possible energy losses of the electrons
and photons travelling through the detector material. After requesting a minimal threshold on
the energy, requirements are applied based on properties of the energy deposits in the ECAL
and HCAL subdetectors, according to the compactness and shape of electromagnetic showers.
In the case of electrons, the ECAL supercluster is associated with a reconstructed track with
a direction compatible with the cluster location. The first step is a match with pixel detector
hits. Since 2017, the pixel matching algorithm requires three pixel detector hits rather than
two, to maximize early background rejection, while a hit doublet is accepted only if the trajec-
tory passes through a maximum of three active modules. Once the supercluster is associated
with the pixel detector seeds, the electron track is reconstructed using a dedicated tracking
algorithm, based on the Gaussian sum filter [26]. However, not all electron HLT paths run
this algorithm: in some cases, sufficient rate reduction is already achieved from pixel detector
matching alone.

Single- and double-electron triggers are the first selection step of most analyses using elec-
trons. In the following, their performance is reported, using the full 2016, 2017, and 2018 data
sets, corresponding to an integrated luminosity of 136 fb−1 [27–29]. The performance of pho-
ton triggers, which are very similar to those of electron triggers apart from the absence of the
requirement on the presence of matching tracks, is not reported here. This is because photon
triggers are typically designed for specific analyses and are not used as extensively.

Table 3: Tag-and-probe selections used for the single- and double-electron trigger efficiency
determination.

Tag selection Probe selection
pT > 30 (35) GeV in 2016 (2017–2018) pT > 5 GeV
|η| < 2.1 (except 1.44 < |η| < 1.57) |η| < 2.5
Tight isolation and shower shape requirements No extra identification criteria
Passing the single-electron HLT path
with pT > 27 (32)GeV in 2016 (2017–2018)

The tag-and-probe selections [30] used to measure the efficiencies are listed in Table 3. Probes
are then required to pass the HLT path under study. The analyzed triggers are the following,
being those used by most of the physics analyses involving electrons:

• Single-electron trigger with tight identification and isolation requirements: electron
pT > 27 (32)GeV in 2016 (2017–2018).

• Double-electron trigger with loose identification and isolation requirements: highest-
(lowest-)pT electron pT > 23 (12)GeV.
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The identification requirements are based on the shower shapes in ECAL and HCAL, and the
isolation requirements on energy and momentum sums in a cone around the electron. Fig-
ures 9–13 show the L1+HLT efficiency of these two electron triggers with respect to an offline-
reconstructed electron as a function of the electron pT and Nvtx, for different η regions of the
supercluster. The offline-reconstructed electron efficiency is typically above 95% for electrons
with pT > 20 GeV [31]. The lower panel of each plot shows the ratio of the efficiency for data
to MC simulation. The data/MC discrepancy in the turn-on at low pT, seen for all years and
η values, mainly comes from the small differences that exist between the online and offline
ECAL response corrections [31]. Small inefficiencies that arose during 2017 from L1 energy
clusters misassigned to the previous bunch crossing at high pT [4] primarily affect higher |η|
than reported here.

The single-electron trigger performance reported in Figs. 9 and 10 is affected by a change in
the strict identification and isolation selections required in this HLT path, which together are
known as the tight working point, whose target is a signal efficiency of about 80%. These crite-
ria were retuned in 2017, and some requirements in the endcap were loosened. Consequently,
the single-electron trigger efficiency is higher for 2017 and 2018 with respect to 2016, in partic-
ular at high η values. The different shape as a function of pT in 2016 with respect to 2017 and
2018 arises mainly from the different energy threshold, namely, 27 instead of 32 GeV. In 2017,
the CMS pixel detector was upgraded by introducing extra layers in the barrel and forward
regions, and a commissioning period at the beginning of the year led to a slightly reduced effi-
ciency. As a consequence of the upgraded detector, the algorithm used to reconstruct electrons
matching ECAL superclusters to pixel detector tracks was revised, causing a significant rate
reduction for a minimal performance loss. However, problems with the pixel detector DC-DC
converters (discussed in Section 4.1) led to a gradual efficiency reduction towards the end of
the year. Moreover, the majority of the high PU data in 2017 also came toward the end of that
year. Thus, for these reasons, the single-electron trigger performance in 2017 is slightly worse
than in 2018.

The efficiency of the double-electron trigger, shown in Figs. 11–13, is in general higher in the
turn-on region in 2016 compared with 2017 and 2018. This is because the ET thresholds of the
lowest unprescaled L1 seed requiring two electrons, which seeds this path, increased across
the years. The effect is especially evident at low pT. Moreover, the 2017 trigger performance is
slightly worse than the other years because of the issues related to the pixel detector and PU
described in the previous paragraph. More details are reported in Ref. [31].

4.4 Jets

Jets are reconstructed at the HLT using the anti-kT clustering algorithm [32] with a nominal
distance parameter of 0.4, and 0.8 for wide jets used in Lorentz-boosted topologies and multi-
jet triggers. The inputs for the jet algorithm can be either calorimeter towers or reconstructed
objects from the PF algorithm. Most HLT jet paths use the PF inputs (“PF-jets”), whereas cal-
orimeter jets (“Calo-jets”) are used as a first step to identify jet signatures and initiate the PF
reconstruction. To account for detector and collision conditions, several corrections are applied
to the estimated PF hadron energies, average PU energy, and jet energy scale. The performance
of the jet triggers is measured in terms of their efficiency to select events that have an offline-
reconstructed jet. For this purpose, an unbiased set of pp collision events collected with an
isolated single-muon trigger with a pT > 27 GeV requirement is used. The events are required
to have exactly one loosely identified offline muon with pT > 10 GeV within |η| < 2.4, which
has a relative isolation value less than 0.4 in a ∆R cone of radius 0.4 to match the trigger criteria.
Any events with additional loosely identified electrons having pT > 10 GeV within |η| < 2.5
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Figure 9: The L1+HLT efficiency of the single-electron HLT path with pT > 27 (32) GeV in 2016
(2017 and 2018) with respect to an offline-reconstructed electron as a function of the electron
pT, obtained for 0 < |η| < 1.44 (upper left), 1.57 < |η| < 2.0 (upper right), and 2.0 < |η| < 2.5
(lower). The lower panel of each plot shows the ratio of data to MC simulation. The vertical
bars on the markers represent combined statistical and systematic uncertainties.
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Figure 10: The L1+HLT efficiency of the single-electron HLT path with pT > 27 (32) GeV in 2016
(2017 and 2018) with respect to an offline-reconstructed electron as a function of Nvtx, obtained
for 0 < |η| < 1.44 (upper left), 1.57 < |η| < 2.0 (upper right), and 2.0 < |η| < 2.5 (lower).
The electron pT is required to be above 50 GeV. The lower panel of each plot shows the ratio
of data to MC simulation. The vertical bars on the markers represent combined statistical and
systematic uncertainties.
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Figure 11: The L1+HLT efficiency of the pT > 23 GeV leg of the double-electron trigger with
respect to an offline-reconstructed electron as a function of the electron pT, obtained for 0 <
|η| < 1.44 (upper left), 1.57 < |η| < 2.0 (upper right), and 2.0 < |η| < 2.5 (lower). The lower
panel of each plot shows the ratio of data to MC simulation. The vertical bars on the markers
represent combined statistical and systematic uncertainties.
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Figure 12: The L1+HLT efficiency of the pT > 12 GeV leg of the double-electron trigger with
respect to an offline-reconstructed electron as a function of the electron pT, obtained for 0 <
|η| < 1.44 (upper left), 1.57 < |η| < 2.0 (upper right), and 2.0 < |η| < 2.5 (lower). The lower
panel of each plot shows the ratio of data to MC simulation. The vertical bars on the markers
represent combined statistical and systematic uncertainties.
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Figure 13: The L1+HLT efficiency of either leg of the double-electron trigger with respect to an
offline-reconstructed electron as a function of Nvtx, obtained for 0 < |η| < 1.44 (upper left),
1.57 < |η| < 2.0 (upper right), and 2.0 < |η| < 2.5 (lower). The electron pT is required to
be above 50 GeV. The lower panel of each plot shows the ratio of data to MC simulation. The
vertical bars on the markers represent combined statistical and systematic uncertainties.
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are rejected to ensure that the chosen data have high purity of hadronic jets in the event. The
offline-reconstructed PF jets used in the measurement are clustered using the anti-kT algorithm
with radius 0.4; have pT > 18 GeV within |η| < 2.4; and pass selection criteria based on the
charged-hadron fraction, number of constituents, etc. that are able to reject a good fraction of
leptons misidentified as jets. Events are selected requiring at least one such offline jet that is
well separated from the offline muon by a ∆R of at least 0.4, so that the muon lies outside the
reconstructed jet radius.

The efficiency is defined as the ratio of the number of events that have an HLT PF jet that
passes the trigger threshold and matches the highest-pT offline PF jet within ∆R < 0.2, to the
total number of events with a reconstructed offline jet. The efficiency for the lowest thresh-
old unprescaled single PF jet trigger as a function of the offline PF jet pT is shown separately
for each data-taking year in Fig. 14. Results are shown for the total integrated luminosities
collected in each year during 2016, 2017, and 2018. For a trigger threshold of 500 GeV, the effi-
ciency reaches 100% at about 600 GeV in the offline reconstructed jet pT for all three years. The
jet trigger efficiency, measured as a function of the offline reconstructed jet pT, is affected by the
calibration of the offline-reconstructed jets. The offline jet energy corrections were recalculated
multiple times during Run 2, whereas only one set of online calibrations were used. Hence,
depending on the energy scale and resolution of the offline-reconstructed jets, the turn-on of
the efficiency curve can be shifted and become slightly faster or slower.
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Figure 14: The L1+HLT efficiency of the unprescaled single PF jet trigger having an online
pT threshold of 500 GeV, measured with respect to the offline reconstructed PF jet pT, for the
data collected using an unbiased single-muon trigger during 2016, 2017, and 2018. The slight
variation in turn-on curve is caused by differences in offline jet energy scale calibrations. The
vertical bars on the markers represent statistical uncertainties.

4.5 Scalar energy sums

The global HT energy sum is based on the scalar sum of jet pT, and is sensitive to multijet signa-
tures. The same set of unbiased events triggered by an isolated muon, described in the previous
section, is used to measure the efficiency of HT triggers. The event preselection requirements
based on leptons are also the same. To suppress the effects from PU, the HT reconstructed at
the HLT is calculated using HLT PF jets having pT > 30 GeV within |η| < 2.4. The same pT and
η requirements are also applied to the offline-reconstructed PF jets to calculate the offline HT,



4.6 Missing transverse momentum 25

in addition to passing the jet identification criteria. The offline jets are required to be separated
from the offline muon by a ∆R of at least 0.4.

The trigger efficiency is defined as the ratio of the number of events where the HT at the HLT
passes the applied threshold to the total number of events selected by the offline HT algorithm
with the same threshold. The performance of the unprescaled HT triggers with the lowest
thresholds, as a function of the offline HT, is shown separately in Fig. 15 for the total inte-
grated luminosities collected during 2016, 2017, and 2018. During 2016, a lower threshold of
900 GeV was applied online and was increased in subsequent years to maintain a similar total
trigger rate as the Linst increased. This is because HT is highly sensitive to PU events, causing
a nonlinear increase in the trigger rate.

For an online threshold of 1050 GeV, the efficiency reaches 100% at about 1300 GeV in the
offline-calculated HT. The HT trigger efficiency for 2016 was lower because of an effect in the
L1 trigger seed firmware implementation that limited the plateau to <100%.
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Figure 15: The L1+HLT efficiency of the unprescaled HT triggers with the lowest thresholds,
measured with respect to the offline-reconstructed HT, for the data collected during 2016, 2017,
and 2018. The inefficiency for 2016 is caused by an effect in the L1 trigger seed firmware imple-
mentation. The vertical bars on the markers represent statistical uncertainties.

4.6 Missing transverse momentum

At the HLT, the missing transverse momentum is defined as the negative vector sum of the
pT of all the PF candidates in an event, and its magnitude is denoted as pmiss

T . It is crucial to
account for the instrumental effects of noise and beam-induced backgrounds to keep the rates
of these triggers within reasonable limits. Additional filtering algorithms are applied during
reconstruction to achieve lower rates for pmiss

T triggers. Calorimeter deposits consistent with
noise signature or beam halo are removed from the energy sum computation at the HLT.

The performance of the pmiss
T triggers is measured with respect to the offline-reconstructed

pmiss
T also based on PF candidates and including jet energy corrections, referred to as corrected

pmiss
T . An unbiased sample of events, triggered by a single isolated electron of pT > 32 GeV, is

used for this measurement. To match the online requirement, the events must contain exactly
one well-identified and isolated offline electron, having pT > 35 GeV within |η| < 2.5 and
passing the electron identification criteria based on track quality and electromagnetic shower
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shape variables. Events with any additional loosely identified electrons or with muons with
pT > 10 GeV are excluded.

The trigger efficiency is defined as the ratio of the number of events that satisfy a given online
pmiss

T threshold requirement to the total number of events selected by the offline pmiss
T algorithm

with the same threshold. The performance of the unprescaled triggers with the lowest thresh-
olds using the total integrated luminosities collected during 2016, 2017, and 2018, is shown in
Fig. 16. Since pmiss

T triggers are also susceptible to PU effects similar to HT triggers, the thresh-
olds are different in the three years because of variations in the Linst. For a trigger of threshold
of 170 GeV, the efficiency reaches 100% for an offline pmiss

T of about 350 GeV in 2016, with a
similar performance seen in later years for slightly shifted thresholds.
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Figure 16: The L1+HLT efficiencies of the unprescaled pmiss
T triggers with the lowest thresholds,

measured with respect to the offline-reconstructed corrected pmiss
T , for the data collected during

2016, 2017, and 2018. The vertical bars on the markers represent statistical uncertainties.

At the HLT, online jet energy corrections can also be propagated to the calculation of the pmiss
T

similar to that performed offline. Figure 17 (left) compares the performance of the nominal
and corrected pmiss

T at the HLT for the 2018 data-taking year. The trigger with corrected pmiss
T

has a slightly faster turn-on compared with that of the nominal pmiss
T trigger having the same

threshold. However, the rate of the corrected pmiss
T trigger is also observed to increase by about

20% compared with that of the nominal pmiss
T trigger. Figure 17 (right) shows the performance

of different unprescaled thresholds on online pmiss
T against offline-corrected pmiss

T , again using
2018 data. The turn-on curves are observed to behave consistently with increasing thresholds.

The event selection efficiencies as a function of Nvtx are shown in Fig. 18 for different data-
taking years. The offline thresholds are chosen at the fixed L1+HLT efficiency values of 80 and
95% for each year, as determined from Fig. 16. The thresholds applied online are 170, 250,
and 220 GeV in 2016, 2017, and 2018, respectively. The efficiencies decrease in events with a
larger Nvtx, which is expected since particle tracks from only a limited number of vertices are
reconstructed at the HLT and pmiss

T is underestimated.

An alternative pmiss
T trigger is based on a calculation that uses all the reconstructed PF objects

except for muons, leading to the “µ-subtracted” trigger paths. Therefore, in this approach,
events with high-pT muons are also assigned large online pmiss

T , whereas for events with no
reconstructed muons, the two calculations coincide. An unprescaled trigger path that selects
µ-subtracted pmiss

T and missing HT (similarly without muons) both >120 GeV was available



4.7 b quark jets 27

 [GeV]miss

T
Offline corrected PF p

0 200 400 600 800 1000

L1
 +

 H
LT

 e
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4 > 200 GeVmiss

T
PF p

> 200 GeVmiss

T
Corrected PF p

CMS 59.7 fb-1
 (13 TeV)

 [GeV]miss

T
Offline corrected PF p

0 200 400 600 800 1000

L1
 +

 H
LT

 e
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4 > 200 GeVmiss

T
PF p

> 250 GeVmiss

T
PF p

> 300 GeVmiss

T
PF p

CMS 59.7 fb-1 (13 TeV)

Figure 17: Left: comparison of the L1+HLT efficiencies of the corrected vs. nominal pmiss
T trig-

gers of the same threshold, for the data collected during 2018. Right: nominal pmiss
T trigger

L1+HLT efficiencies using different thresholds.

during the majority of Run 2. The main uses for this path are searches for new physics in final
states with only jets and pmiss

T , which require the lowest pmiss
T thresholds possible. Figure 19

shows the performance of this path with respect to the offline µ-subtracted pmiss
T , during 2016,

2017, and 2018. A trigger efficiency above 95% is reached for µ-subtracted pmiss
T > 250 GeV.

4.7 b quark jets

The identification of b quark jets at the trigger level is essential to collect events that do not
pass standard lepton, jet, or pmiss

T triggers, and to increase the purity of the recorded sample
for analyses requiring b quark jets in the final state. The L1 trigger uses information from
the calorimeters and muon detectors to reconstruct objects, such as charged leptons and jets.
Sophisticated identification of b quark jets similar to the one performed offline is not possible
at that stage as it relies on the reconstructed tracks from charged particles available only at the
HLT. In this section, we describe b quark jet identification at the HLT.

Because of latency constraints at the HLT, it is not feasible to reconstruct the tracks and primary
vertex with the algorithms used for offline reconstruction. The time needed for track finding
can be significantly reduced if the position of the primary vertex is known. Although the posi-
tion in the transverse plane is defined with a precision of 20 µm, its position along the beam line
is not known. However, it is possible to obtain a rough estimate of the primary vertex position
along the beam line by projecting the position of the silicon pixel tracker hits compatible with
the jets onto the z direction. A pixel tracker hit in the barrel (endcap) is compatible with a jet
when the difference in ϕ between the hit and the jet is less than 0.21 (0.14). The region along the
beam line with the highest number of projected pixel detector hits is most likely to correspond
to the position of the primary vertex.

This fast primary vertex finding algorithm is sensitive to pixel detector hits from PU interac-
tions. Therefore, a number of selection requirements based on the shape of the charge deposi-
tion clusters associated with the pixel detector hits are applied to select those that most likely
correspond to a particle with a large pT. In addition, only pixel detector hits compatible with
up to four highest-pT jets with pT > 30 GeV and |η| < 2.4 are used. Finally, each pixel detector
hit is assigned a weight reflecting the probability that it corresponds to a track in one of the
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Figure 18: Event selection efficiencies as a function of Nvtx for fixed L1+HLT efficiency values
of 80 and 95% of the unprescaled pmiss

T triggers with the lowest pmiss
T thresholds in 2016 (upper),

2017 (lower left), and 2018 (lower right). The PU is considerably lower in 2016, which allowed
to lower thresholds for all triggers involving jets and pmiss

T . The vertical bars on the markers
represent statistical uncertainties.
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on both pmiss
T and missing HT measured with respect to the offline reconstructed µ-subtracted

pmiss
T , shown separately for data collected during 2016, 2017, and 2018. The vertical bars on the

markers represent statistical uncertainties.

considered jets. The weight is obtained by using information related to the shape of the charge
deposition cluster, the ϕ between the jet and the cluster, and the jet pT. Since the spread of pro-
jected hits from the primary vertex is proportional to the distance from the beam line, a larger
weight is assigned to pixel detector hits closer to the beam line.

Since b tagging relies on the precise measurement of the displaced tracks with respect to the pri-
mary vertex, it is crucial to use tracks that use the information of both the pixel and the silicon
strip tracker to improve the spatial and momentum resolutions. To reduce the HLT algorithm
processing time, these tracks are reconstructed only when originating near the primary vertex
and if they are close to the direction of the highest-pT jets, sorted according to decreasing jet pT.
Up to eight jets with pT > 30 GeV and |η| < 2.4 are considered in an event. In the first step, the
trajectories of charged particles are reconstructed from the pixel detector hits. To reduce the
reconstruction time, tracks are only reconstructed when they have dxy < 15 mm, dz < 2 mm,
and are compatible in angle with the direction of one of the jets. The tracks are reconstructed
using the information from the pixel and strip detectors. An iterative procedure is applied that
is similar to the offline track reconstruction except for the number of iterations and the seeds
used for track finding in each iteration.

The reconstructed tracks and the primary vertex are then used to reconstruct secondary vertices
with the inclusive vertex finder reconstruction algorithm [33, 34]. These vertices and tracks are
then used as input for the b tagging algorithms.

Usually a loose b tagging selection based on Calo-jets is used as an intermediate filter to select
the events for which the full PF-jet reconstruction will be executed and from which the final PF-
jet b tagging selection is applied. However, Calo-jet b tagging was sufficient for some physics
triggers.

4.7.1 Description of the algorithm

During the 2016 data-taking period, CSVV2 was the recommended algorithm for b tagging at
the HLT. The tagger and its performance are described in Ref. [34]. After 2016, CMS devel-
oped a new tagger dedicated to identification of b quark jets reconstructed with the anti-kT
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jet clustering algorithm with a distance parameter equal to 0.4 (AK4-jets). This new algorithm,
DeepCSV [34], relies on a multiclassifier neural network structure made of four fully connected
layers with 100 neurons each. The input variables list comprises PF jet properties, tracks, and
vertex related variables. The DeepCSV output values range from zero to one and are inter-
preted as the probability for a given jet to originate from the hadronization of a b quark, a c
quark, or a gluon or light quark. The DeepCSV tagger was deployed at the HLT at the start of
the 2017 data-taking period, and it was the recommended online b tagging algorithm until the
end of Run 2 in 2018. The training of the DeepCSV algorithm has been carried out using the
input variable collections obtained from MC simulated events after the trigger selection and
the full CMS event reconstruction.

An important figure of merit for b tagging algorithms is the b quark jet identification efficiency
versus the gluon or light-quark jet misidentification rate evaluated in simulated events in the
form of receiver operating characteristic curves (ROC curves); this provides a direct compari-
son of the performance of different taggers. The flavor of offline-reconstructed jets in simula-
tion is identified using the so-called “ghost-matching” technique [32]. In this method, only the
directional information of the four-momentum of the generator-level (ghost) hadron is used
to prevent any modification to the four-momentum of the reconstructed jet. Jets containing at
least one b hadron are assigned b quark jets. Similarly, labels are defined for jets originating
from c hadrons and from gluons g or light-flavor (u, d, s) quarks (light jets). Preference is given
to jets with b hadrons over c hadrons. Online jets are matched to offline jets if their direction
agrees within a cone of ∆R < 0.4, and their flavor is assigned using the offline jet.
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Figure 20: Performance of the online (red and blue) and offline (black) b quark jet identification
algorithms demonstrated as the probability for a light jet to be misidentified as a b quark jet as
a function of the efficiency to correctly identify a b quark jet. The performance of the CSVV2
(dashed) and DeepCSV (solid) algorithms are shown. The curves are obtained for online and
offline jets with pT > 30 GeV and |η| < 2.4 in simulated tt events. The plot is obtained using
the 2017 detector conditions.

In Fig. 20, the ROC curves obtained for the two b tagging algorithms, DeepCSV and CSVV2,
are compared using two different sets of HLT input variables for the jet algorithm: full event PF
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reconstruction (in blue) and reconstruction based on information in regions around jets from
the CMS calorimeters (in red); the offline performance is shown for reference in black. The
conclusion of this study is that DeepCSV outperforms CSVV2, with an improvement of the b
quark jet tagging efficiency for a fixed gluon or light-quark misidentification rate of 5–15%.

4.7.2 Performance measurement in data and simulation

The performance is evaluated using pp collision data collected at
√

s = 13 TeV in 2017 and
2018 during LHC Run 2, corresponding to an integrated luminosity of about 30 and 48 fb−1,
respectively. The performance is assessed for events consistent with the tt process. Events are
selected at the HLT using a combination of trigger paths that require the presence of at least one
muon and one electron. For the offline analysis, events are selected that contain one isolated
electron with pT > 30 GeV and one isolated muon with pT > 20 GeV. In addition, at least two
jets with pT > 30 GeV are required. This event selection is enriched with tt events and ensures
an unbiased selection of b quark jets with only a small contribution of tW events.

Efficiencies are measured by selecting events that contain at least one offline-reconstructed jet
passing a working point that corresponds to a light jet mistag rate of 1%. Figure 21 shows the
online PF-jet DeepCSV and CSVV2 discriminator score. The left (right) plot was obtained us-
ing 2017 (2018) data. As described earlier, the output scores range from 0 to 1, and a negative
value is assigned if the tracking preselection has failed and the discriminator was not evalu-
ated. For both tagging algorithms, the data agree well with the MC simulation predictions.
The distribution for true b quark jets peaks at unity, while a peak at low values in the b tag
score is observed for light jets. For DeepCSV, the separation between signal and background is
observed to be much larger.
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Figure 21: Left: Online (PF-Jets) CSVV2 discriminator distribution, normalized to unity for
both data and the summed simulation. Different colors show the contributions from simulation
of different jet flavors. The plot is obtained using the 2017 detector conditions. A negative
value indicates that the tracking preselection has failed and the discriminator is not evaluated.
Right: Same, but for the DeepCSV discriminator. The plot is obtained using 2017 data and MC
simulation using the DeepCSV algorithm as it was run in 2018. The lower panel of each plot
shows the ratio of data to MC simulation. The vertical bars on the markers represent statistical
uncertainties.
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The efficiencies at the HLT are displayed in Fig. 22. The efficiency is defined as the fraction
of jets selected by the HLT with respect to the number of jets selected by the offline DeepCSV
algorithm, with representative working points as indicated in the plots. The study is performed
using data and simulated samples for the conditions of 2017. The performances of Calo- and
PF-jets are shown individually. Good agreement between data and simulation is observed.
The rise of the efficiency using DeepCSV both online and offline is much steeper because of the
larger correlation between the scores. In these plots, the choice of a looser working point, and
thus higher efficiency, for Calo-jet b tagging compared to PF-jet b tagging reflects how these
algorithms are applied in physics triggers.
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Figure 22: Efficiency to pass the online CSVV2 (left) and DeepCSV (right) working points as
a function of the corresponding offline DeepCSV value. Data collected in 2017 are shown in
closed circles; the result of the simulation is shown in open circles. The turn-on with respect to
the online Calo-jets is shown in blue. The turn-on with respect to the online PF-jets is shown
in red. The right plot is obtained using 2017 data and MC simulation using the DeepCSV algo-
rithm as it was run in 2018. A negative value indicates that the tracking preselection has failed
and the discriminator is not evaluated. The vertical bars on the markers represent statistical
uncertainties.

For trigger paths using b quark jet tagging, the online efficiency with respect to the offline
performance is usually an important figure of merit. This quantity can be evaluated for a fixed
offline b tagging efficiency corresponding to a light-jet efficiency of 0.1, 1, or 10%, namely,
the tight, medium, and loose working points, respectively. The relative CSVV2 and DeepCSV
efficiency is shown in Fig. 23. The efficiencies, as obtained from data and simulation, are in
good agreement. Using these curves, the online selection is tuned to reach a fixed efficiency
given a fixed offline selection. The CSVV2 efficiency is smaller than that of DeepCSV at high
score values because the offline DeepCSV discrimination is much better and the jets selected
online are all also selected by the offline algorithm.

4.8 Tau leptons

Tau leptons have a relatively short lifetime and decay before reaching the beampipe. In 64.8%
of cases, they decay hadronically into one or three charged hadrons and mostly accompanied
by neutral pions. Neutral pions decay promptly into two photons, which may convert into
e+e− pairs while traversing the material of the tracker. As a result of the large magnetic field
of the CMS solenoid, the e+e− pairs are separated in the (ϕ, η) plane. Thus, neutral pions
are reconstructed from photons and electrons. The aim of the HLT tau reconstruction is to
reconstruct hadronic decays of tau leptons (τh).
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Figure 23: Efficiency of jets b tagged offline to pass the online CSVV2 (left) and DeepCSV
(right) b tagging requirement, as a function of the online requirement. Three offline selections
are shown: Loose (red), Medium (orange), and Tight (blue). Data are shown in closed circles;
the result of the simulation is shown in open circles. The right plot is obtained using 2017 data
and MC simulation but using the DeepCSV algorithm as it was run in 2018.

4.8.1 Reconstruction of τh trigger paths

The reconstruction of tau leptons at the HLT is performed in different steps depending on the
associated particle. A flow chart of the reconstruction steps is summarized in Fig. 24. The τh
triggers used in the Run 2 data-taking period and the corresponding L1 and HLT conditions
are listed in Table 4.

Double-tau (τhτh) trigger paths

A double-tau trigger path is formed when a tau lepton is associated with another tau lepton that
also decays hadronically. In these double-tau triggers, the reconstruction is performed in three
steps. The first step is called L2, where reconstruction starts with the L1 trigger τh candidates.
The energy depositions in the calorimeter towers around the seeded L1 τh candidates within
a cone of radius 0.8 are clustered, and L2 τh candidates are reconstructed by using the anti-
kT algorithm [32] with ∆R = 0.2. In 2016 and 2017, the L2 candidates were reconstructed for
all L1 τh candidates, including those with very low pT that did not contribute to any of the
relevant seeds in the L1 menu. In 2018, the reconstruction of the L2 candidates was updated
to be performed around only those L1 τh candidates that satisfy the pT and isolation criteria of
the L1 seeds that contributed to the event selection at L1.

L1 triggered tau
leptons

L2 calo taus L2.5
pixel isolation

Regional L3 reconstruction
using particle flow & HPS

algorithms

Global L3 reconstruction
using particle flow & HPS

algorithms

Global L3 reconstruction
using particle flow & cone based

algorithms

di-tau paths

lepton + tau paths

others

single tau & tau + MET paths

Figure 24: Flow chart for τh-candidate reconstruction at the HLT.
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In the second step, known as L2.5, charged-particle isolation based on the information in the
pixel detector is implemented. Reconstructed L2 τh jets with pT > 20 GeV and |η| < 2.5
are selected, and pixel detector tracks are reconstructed around the direction of the selected
L2 τh candidates in a region of ∆η × ∆ϕ = 0.5 × 0.5 from the hits in the pixel detector. The
reconstructed tracks are clustered, and vertices having at least two tracks with pT > 1 GeV
are formed by using the divisive vertex finder [8]. If no vertices are found, a τh candidate is
considered perfectly isolated and the reconstruction continues with the next step. If more than
one vertex is reconstructed, the one with the highest ∑ p2

T of its constituent tracks is chosen as
the primary vertex of the hard-scattering event. Tracks that have at least three hits and have a
trajectory in a cone of 0.15 < ∆R < 0.4 centered around the L2 τh candidates and originating
from the primary vertex are considered for the isolation requirement. These tracks are required
to have dxy < 0.2 cm. An L2 τh candidate is considered to be isolated if the scalar sum of the
pT of the associated pixel detector tracks is less than 4.5 GeV.

The final step is referred to as the L3 reconstruction, where the full tracking information is in-
cluded through the use of the online PF reconstruction. Instead of reconstructing all tracks, the
reconstruction is performed regionally around the L2 τh candidates with pT > 20 GeV and The
L3 reconstruction was performed using a cone-based algorithm until mid-2018, after which it
was upgraded to the hadron-plus-strips (HPS) algorithm that had already been in use for the
offline reconstruction of tau leptons [35]. The HPS algorithm allows for the exclusive recon-
struction of specific hadronic decay modes, which is not possible with a cone-based algorithm.
Both algorithms start with PF jets reconstructed by the anti-kT algorithm with a distance pa-
rameter of 0.4, and a maximum of one tau lepton is reconstructed for each PF jet at the end of
the algorithm. The HPS-based algorithm, described later, will be the main focus here, since the
cone-based algorithm has already been described in Ref. [35].

The τhτh triggers used in the Run 2 data-taking period require a pair of isolated L1 τh candi-
dates with variable pT thresholds, as listed in Table 4. The τh candidates are required to have
pT > 35 GeV at the HLT and to pass the medium working point of the combined isolation,
described below. The isolation is relaxed by 5%/GeV for pτh

T > 100 GeV (i.e., the threshold on
the pT sum is increased by 5% for each GeV in pτh

T above 100 GeV). The τh candidates must be
separated by ∆R > 0.5.

Lepton+τh trigger paths

So-called cross triggers select events with at least one tau lepton and another object, such as an
electron or muon. For these triggers, the reconstruction is performed in fewer steps than for
double-tau trigger paths. These triggers require the existence of an L1 trigger seeded by a muon
or an electron together with a τh lepton. Additionally, they perform the reconstruction and
selection of a muon or electron before the τh reconstruction starts, which reduces the number
of events for which the τh reconstruction is run. Because of that, the L3 reconstruction is run
directly without the L2 and L2.5 prefilters and thus over the entire CMS detector acceptance.
The L3 reconstruction is performed using the HPS algorithm.

The lepton+τh triggers require a muon or an electromagnetic object passing the L1 pT thresh-
olds given in Table 4. A τh candidate is also required to pass a given HLT pT threshold and
loose charged isolation. In some cases, several L1 triggers with different pT thresholds are used
to keep the L1 rate constant by dynamically selecting the unprescaled L1 seed based on Linst.
The isolation is relaxed by 5%/GeV for pτh

T > 110 GeV. Finally, the lepton and τh candidate
must be separated from each other by requiring ∆R > 0.3.
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The τh+pmiss
T and single-τh trigger paths

Tau leptons can also be reconstructed in association with pmiss
T , which is also called a cross trig-

ger. The reconstruction in such triggers occurs in two steps. These triggers require the existence
of an L1 trigger seeded by pmiss

T together with a τh lepton, as with the lepton+τh triggers. The
reconstruction and selection of pmiss

T before the τh reconstruction is started reduces the rate of
events for which the τh reconstruction is run. Hence, the L3 reconstruction can be run with-
out the L2.5 prefilter and globally over the entire coverage of the CMS detector. In the case of
single-τh triggers, because of the high pT requirement, global L3 reconstruction is also afford-
able. In both τh+pmiss

T and single-τh triggers, however, the L2 filters are used to reduce the
CPU processing time. In contrast to the µτh, eτh, and τhτh triggers, the τh+pmiss

T and single-τh
triggers reconstruct the tau leptons using the cone-based algorithm as described in Ref. [35].

Table 4: List of τh triggers used in 2016, 2017, and 2018 data-taking periods including both the
L1 and HLT conditions. The eτh triggers evolved in 2016 data taking, with the labels (1), (2),
and (3) indicating use for the first 7.4 fb−1, the next 10.2 fb−1, and the last 18.3 fb−1 of data,
respectively.

Year Trigger HLT condition L1 condition
2016

µτh pµ
T > 19 GeV (isolated) pτh

T > 20 GeV (unseeded) pµ
T > 18 GeV

eτh pe
T > 24 GeV, pτh

T > 20 GeV (unseeded) (1) pe
T > 22 GeV

pe
T > 24 GeV, pτh

T > 20 GeV (seeded & nonisolated) (2) pe
T > 22 GeV,
pτh

T > 20 GeV

pe
T > 24 GeV, pτh

T > 30 GeV (seeded & isolated)(3) pe
T > 22 GeV,
pτh

T > 26 GeV

τhτh pτh
T > 35 GeV (seeded & isolated) pτh

T > 28–36 GeV

τh+pmiss
T pmiss

T > 90 GeV, pτh
T > 50 GeV, ph±

T > 30 GeV (unseeded) pmiss
T > 80–100 GeV

Single τh pτh
T > 140 GeV, ph±

T > 50 GeV (seeded) pτh
T > 120 GeV

2017 & 2018
µτh pµ

T > 20 GeV (isolated), pτh
T > 27 GeV (seeded & nonisolated) pµ

T > 18 GeV,
pτh

T > 24/26 GeV

eτh pe
T > 24 GeV , pτh

T > 30 GeV (seeded & isolated) pe
T > 22/24 GeV,
pτh

T > 26/27 GeV

τhτh pτh
T > 35 GeV (seeded & isolated) pτh

T > 32–36 GeV

τh+pmiss
T pmiss

T > 100 GeV, pτh
T > 50 GeV, ph±

T > 30 GeV (seeded) pmiss
T > 80–110 GeV,
pτh

T > 40 GeV

Single τh pτh
T > 180 GeV, ph±

T > 50 GeV (seeded) pτh
T > 120–130 GeV

The τh+pmiss
T triggers are seeded by an L1 cross trigger as listed in Table 4. The τh+pmiss

T triggers
require high pmiss

T and a tau lepton with pτh
T > 50 GeV passing the medium working point of the

charged isolation by rejecting the tracks with low pT. The isolation is relaxed by 5%/GeV for
pτh

T > 120 GeV. The high pT single-τh trigger is seeded by a single L1 tau lepton. Tau leptons

are reconstructed by using charged particle h± tracks with ph±
T > 30 (50)GeV for the τh+pmiss

T
(single-τh) trigger, and they are required to have large pT and to pass the medium working
point of the combined isolation (discussed in the next section). The isolation is relaxed for
pτh

T > 300 GeV by 2%/GeV and is removed completely when pτh
T > 500 GeV.
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Hadron-plus-strips algorithm

In the first step of the HPS algorithm, photons and electrons that exist in PF jets are clustered
into a “strip” around the highest-pT photon or electron with a ∆η × ∆ϕ area of 0.05 × 0.2, and
the strip is assigned the π0 mass. To overcome any inefficiency stemming from the misrecon-
struction of charged hadrons, PF neutral hadrons in the signal cone are considered as a part of
charged hadrons in addition to PF charged hadrons. The signal cone that is used to reconstruct
τh candidates is defined as a function of the pT of the hadronic system by Rsig = 3.0 GeV/pT,
with the limits of the cone size to be in the range of 0.05 < Rsig < 0.10. We reconstruct τh can-
didates in the following decay topology classes on the number of charged and neutral hadrons:
(nh± , nπ0) = (1,0), (1,1), (1,2), (2,0), (2,1), (3,0), and (3,1). The classes with two charged hadrons
have been added to catch decays to three charged hadrons where one track was not properly
reconstructed. A vertex is associated to each tau candidate, selected to be the one closest in
dz, to the track of the highest-pT charged-hadron candidate. A tau lepton is then selected by
applying further requirements that include the compatibility of the final states to given decay
modes. For this purpose, the reconstructed decay modes are required to be within a mass win-
dow corresponding to either a ρ(770) or a1(1260). The mass windows are optimized for the
online implementation of the HPS algorithm to reconstruct the online tau leptons efficiently.
The offline values of the mass windows are reported in Ref. [35].

After this step, there are further cleaning steps applied. Soft tau lepton candidates with two
charged hadrons with pT < 5 GeV are rejected in order to reduce the rate of tau leptons with
one charged hadron migrating to the decay mode with two charged hadrons. Of the remaining
candidates, the tau leptons with the largest pT and largest strip multiplicity are preferred by
the HLT paths. The single-tau candidate with the lowest combined isolation, associating its
neutral components with the candidate, within the isolation cone size of ∆R = 0.5, is selected.
The combined isolation is calculated as:

IL3
τh

= ∑ pcharged
T + ∑ pγ

T, (1)

where ∑ pcharged
T and ∑ pγ

T are the scalar sums of the pT of charged hadrons and of photons,
respectively, that do not belong to the τh candidate. The value of the combined isolation is
relaxed in the HPS-based tau lepton reconstruction compared with the one used in cone-based
algorithm to achieve similar efficiency, leading to the requirement that the isolation be smaller
than 3.9, 3.7, and 3.2 GeV for loose, medium, and tight working points, respectively. Those
values are further relaxed as a function of pT to increase the reconstruction efficiency of genuine
τh candidates at high pT. This is only possible because of the reduction in the number of
misidentified τh candidates as a function of pT, which helps to control the trigger rates [35].

4.8.2 Performance measurement in data and simulation

The efficiencies of the τh legs of the eτh, µτh, and τhτh triggers are estimated by using the tag-
and-probe method in Z/γ∗ → ττ → µτh events, since the τh purity is higher in µτh events
than in eτh and τhτh events. Monitoring triggers based on µτh with the same isolation, iden-
tification, and pT thresholds as in the eτh or τhτh triggers are used to measure the efficiency of
τh leg in eτh and τhτh triggers. The trigger efficiency is calculated from the ratio of the num-
ber of events that pass the baseline offline tag-and-probe selection, explained below, as well as
the given HLT path to the number of events that pass only the tag-and-probe selection. The
offline τh candidates are matched to the online τh candidates for the numerator selection. The
measured efficiencies always depend on the offline selection.
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Events passing an isolated single-muon L1 trigger with pT > 27 GeV and |η| < 2.1 are se-
lected. Exactly one offline muon passing loose identification criteria is required to suppress
the contamination from Z → µµ events. An offline muon candidate is considered matched
with an online object if ∆R < 0.5. From this sample, a hadronically decaying tau candidate
with pT > 20 GeV and |η| < 2.1 is selected as the probe. The tau candidate is required to pass
the medium working point of the tau combined isolation to reject the events with misiden-
tified tau leptons reconstructed from the background from SM events composed uniquely of
jets produced through the strong interaction, referred to as quantum chromodynamics multi-
jet events, with 70% efficiency. To suppress the misidentified muons and electrons, dedicated
discriminators are used. The τh lepton is required to be separated from the tagged µ. The
selected µ and τh candidates are required to have opposite sign charges in both data and sim-
ulation samples. The reconstructed offline tau leptons are matched with tau leptons, electrons,
or muons at the MC generator level to suppress misidentified τh particles from jets in simu-
lated events. In data, the contribution from such events is subtracted using events containing
a muon and an hadronic tau lepton carrying the same charge. To increase the purity of the
Z → ττ → µτh events, offline selections on the transverse mass, mT(µ, pmiss

T ) < 30 GeV, and
visible mass, 40 < mvis(µτh) < 80 GeV are applied. Furthermore, events with electrons and
b-tagged jets are vetoed.

The trigger efficiencies are measured for the full 2016, 2017, and 2018 data sets, corresponding
to an integrated luminosity of 137.1 fb−1, and in Drell–Yan simulated samples (Z/γ∗ → ℓℓ,
where ℓ = e, µ, τ). The combined L1+HLT efficiency of the τh triggers is presented unless
stated otherwise. Therefore, generally, the results include the impact of L1 trigger selection
efficiency and the specific L1 seeding efficiencies. Figure 25 compares the pT resolution of the
two different algorithms used to reconstruct hadronically decaying tau leptons from the same
data set recorded from the first 17.7 fb−1 taken in 2018. The figure shows that the HPS-based tau
reconstruction has a better pT resolution compared with the cone-based one. This reduces the
fraction of misidentified τh candidates from low-pT jets exceeding the nominal pT threshold,
allowing lower pT thresholds for the same rate. The efficiency per leg of these two algorithms is
presented in Fig. 26 for the τhτh triggers, where one can see that the HPS algorithm has slightly
higher efficiency in the turn-on region with pT and has a significant improvement in the region
of high PU.

The implementation of the HPS τh reconstruction reduced the HLT rate of τh by 10% per τh
leg. It is measured as 4.6 and 39 Hz for an average PU of approximately 50 for µτh and τhτh
triggers, respectively, while it was correspondingly 5.2 and 50 Hz for the cone-based algorithm.
The approximate processing time of a τhτh trigger is around 50 ms, whereas it is around 10 ms
for lepton+τh triggers for an average PU of approximately 50.

Figure 27 presents the trigger performance per leg of the τhτh triggers in 2016, 2017, and 2018.
It shows that the 2016 data have a higher efficiency compared with 2017 and 2018 data, which is
a consequence of the lower L1 pT thresholds and the lower PU, as presented in the right plot of
the figure. The HPS-based reconstruction algorithm deployed in the middle of 2018 data-taking
results in good efficiency in general, compared with the cone-based reconstruction algorithm
that was used before. Since there were no other significant differences in terms of pT thresholds,
isolation, or L1 seeds between 2017 and 2018, one would expect to see similar performance
in 2017 and 2018. However, the figure shows that the efficiency for 2017 data is lower than
that in 2018 data. This was caused by the inactive pixel detector modules observed in the
beginning of 2017 data taking as well as the DC-DC converter issue (described in Section 4.1)
encountered at the end of the 2017 data taking. The inefficiency coming from the inactive
pixel detector modules was recovered with the extra recovery iterations in the tracking, but the
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Figure 25: The pT resolution for the µτh trigger for cone-based and HPS-based τh reconstruc-
tion, calculated by using the first 17.7 fb−1 of 2018 data taken with the cone-based tau recon-
struction, where the trigger paths with HPS-based algorithm were included for the purpose of
testing. The vertical bars on the markers represent statistical uncertainties.
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Figure 26: Combined L1 and HLT efficiency per leg of the τhτh triggers with cone-based and
HPS-based τh reconstruction, using the first 17.7 fb−1 and the next 42.0 fb−1 of data in 2018.
The figure shows the efficiency as a function of offline pτ

T (left) and Nvtx (right). The vertical
bars on the markers represent statistical uncertainties.

DC-DC problem reduced the overall efficiency. In 2018, the DC-DC pixel detector issue was
mitigated, and this improved the tau trigger efficiency.

5 Summary
The performance of the high-level trigger of CMS has been presented as it evolved over the
course of LHC Run 2 in 2016–2018. The algorithms of the high-level trigger were adapted
to meet the challenges of the increase of the LHC luminosity and pileup to twice their ini-
tial design values as well as two to three times the previous Run 1 values. Imperfect detector
effects that arose also were mitigated to minimize inefficiencies. The trigger menu continu-
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Figure 27: Combined L1 and HLT efficiency per leg of the τhτh triggers for 2016, 2017, and
2018 data taking. The figure shows the trigger efficiency as a function of the offline pτ

T for a
35 GeV threshold (left) and as a function of Nvtx (right), for which an offline requirement of
pτ

T > 50 GeV is applied. The lower panels show the ratio of data to MC simulation for each
year. The vertical bars on the markers represent statistical uncertainties.

ously evolved to meet the needs of the experiment across a wide range of physics areas under
these conditions and within the CPU capacity of the online computer farm. The overall single
isolated lepton trigger efficiency was maintained at the level of 90% for muons and 80% for
electrons with pT thresholds of 24 and 32 GeV, respectively. Triggers based on jets and on en-
ergy sums such as pmiss

T also were available. Jets also could be tagged as arising from a b quark
jet with a performance of the identification algorithm approaching that achieved offline and
using machine learning for the best discrimination. Hadronically decaying tau leptons were
also reconstructed in the trigger and were typically used in combination with other leptons,
with minimum pT thresholds from 20 to 35 GeV on the hadronic tau decay depending on the
flavor of the other lepton and the data-taking year.
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M. Alves Gallo Pereiraa , F. Ferroa , E. Robuttia , S. Tosia,b

INFN Sezione di Milano-Bicoccaa, Università di Milano-Bicoccab, Milano, Italy
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