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Abstract
Observation of Schottky signals provides information

on important beam and machine parameters, such as trans-
verse emittance, betatron tune, and first-order chromaticity.
However, the so-far developed theory of Schottky spectra
does not include the impact of the higher-order chromaticity,
which can be non-negligible in the case of the Large Hadron
Collider (LHC). In this contribution, we expand the theory
of Schottky spectra to also take into account second-order
chromaticity. Analytical results are compared with macro-
particle simulations and the errors resulting from neglecting
second-order chromaticity are assessed for the case of the
LHC.

INTRODUCTION
The fundamental theory of transverse Schottky signals of

bunched beams was presented in two classical references,
written by D. Boussard [1] and S. Chattopadhyay [2]. Ac-
cording to these texts, the first three moments of the Schottky
transverse sidebands, that is their cumulative power, center
of mass, and root-mean-squared (RMS) width can be used to
derive respectively the transverse emittance, betatron tune,
and the first order chromaticity. In this contribution, we
present an extension of the Schottky signal theory to the
case of a non-zero second-order chromaticity. Such an ex-
tension is closer to the reality of the standard LHC operation
[3], and especially when high values of the second-order
chromaticity are introduced to stabilize transverse collective
instabilities [4].

DERIVATION
Let us assume that in a given location of the machine the

transverse displacement of a given particle 𝑖 is given by

𝑥𝑖 (𝑡) = 𝑥𝑖 cos
(
𝜙𝛽𝑖 (𝑡)

)
,

where 𝑥𝑖 =
√︁

2𝛽𝐽𝑖 is the amplitude of betatron oscillations,
𝛽 is the Courant-Snyder beta parameter, 𝐽𝑖 is the transverse
action, and 𝜙𝛽𝑖 (𝑡) is the instantaneous betatron phase.

In the scope of this contribution, we will assume that the
frequency of the betatron motion is given by a product of the
instantaneous tune 𝑄𝑖 and the angular revolution frequency
𝜔0 ≡ 2𝜋 𝑓0:

𝜔𝛽𝑖 = 𝑄𝑖𝜔0 =

[
𝑄0 +𝑄′Δ𝑝𝑖

𝑝0
+ 𝑄′′

2!

(
Δ𝑝𝑖

𝑝0

)2
]
𝜔0, (1)
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where 𝑄𝑖 is dependent on the instantaneous momentum de-
viation

Δ𝑝𝑖

𝑝0
, the nominal tune is denoted by 𝑄0, and 𝑄′, 𝑄′′

are respectively first and second order chromaticities. We
shall also assume that the momentum deviation is a conse-
quence of a harmonic synchrotron motion, and as follows
from Ref. [5], can be expressed as:

Δ𝑝𝑖

𝑝0
= −

𝜏𝑖Ω𝑠𝑖

𝜂
cos(Ω𝑠𝑖 𝑡 + 𝜑𝑠𝑖 ),

where 𝜏𝑖 , Ω𝑠𝑖 and 𝜑𝑠𝑖 are respectively the amplitude, the
angular frequency and the phase of the synchrotron motion
and 𝜂 is the slip factor, assumed to be positive above the
transition energy.

The betatron phase can be calculated by integrating
Eq. (1). It yields:

𝜙𝛽𝑖 (𝑡) =
[(
𝑄0 +

𝑄′′𝜏𝑖
2
Ω2

𝑠𝑖

4𝜂2

)
𝑡 − 𝑄′𝜏𝑖

𝜂
sin

(
Ω𝑠𝑖 𝑡 + 𝜑𝑠𝑖

)
+

𝑄′′𝜏𝑖
2
Ω𝑠𝑖

8𝜂2 sin
(
2Ω𝑠𝑖 𝑡 + 2𝜑𝑠𝑖

) ]
𝜔0 + 𝜑𝛽𝑖 ,

where 𝜑𝛽𝑖 is chosen to match the initial betatron phase.
The transverse Schottky signal is given by the product of

the transverse displacement and the intensity signal 𝐼𝑖 (𝑡):

𝐷𝑖 (𝑡) = 𝐼𝑖 (𝑡) · 𝑥𝑖 (𝑡)

= 𝑓0𝑞

∞∑︁
𝑛=−∞

𝑒 𝑗𝑛𝜔0 [𝑡+𝜏𝑖 sin(Ω𝑠𝑖
𝑡+𝜑𝑠𝑖 )]𝑥𝑖 cos

(
𝜙𝛽𝑖 (𝑡)

)
=

𝑓0𝑞𝑥𝑖
2

∞∑︁
±,𝑛=−∞

𝑒 𝑗𝑛𝜔0 [𝑡+𝜏𝑖 sin(Ω𝑠𝑖
𝑡+𝜑𝑠𝑖 )]± 𝑗 𝜙𝛽𝑖

(𝑡 ) ,

where 𝑞 is the charge of the particle, and ± denotes that the
final result is a sum of two series, each having the opposite
sign. Expanding 𝜙𝛽𝑖 (𝑡), one obtains

𝐷𝑖 (𝑡) = 𝑓0𝑞𝑥𝑖
2

∞∑︁
±,𝑛=−∞

𝑒 𝑗 (𝑛±𝑄0±Δ𝑄 (𝑄′′ ,𝜏𝑖 ) )𝜔0𝑡

× 𝑒 𝑗𝜒±
𝑛 (𝜏𝑖 ) sin(Ω𝑠𝑖

𝑡+𝜑𝑠𝑖 )𝑒± 𝑗Γ (𝑄′′ ,𝜏𝑖 ) sin(2Ω𝑠𝑖
𝑡+2𝜑𝑠𝑖 )𝑒± 𝑗 𝜑𝛽𝑖 .

(2)
For readability, we have used the following notation:

𝜒±
𝑛 (𝜏̂𝑖) =

(
𝑛𝜏𝑖 ∓ 𝑄′ 𝜏̂𝑖

𝜂

)
𝜔0,

Δ𝑄 (𝑄′′, 𝜏̂𝑖) =
𝑄′′ 𝜏̂2

𝑖
Ω2

𝑠𝑖

4𝜂2 ,

Γ (𝑄′′, 𝜏̂𝑖) =
𝑄′′𝜏𝑖

2
Ω𝑠𝑖

𝜔0
8𝜂2 .
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By using the Jacobi-Anger expansion [6, Eq. 17.1.7],
Eq. (2) can be transformed into

𝑓0𝑞𝑥𝑖
2

∞∑︁
±,𝑛, 𝑝=−∞

𝐽𝑝
[
𝜒±
𝑛 (𝜏̂𝑖)

]
𝑒 𝑗𝑡 [ (𝑛±𝑄0±Δ𝑄 (𝑄′′ , 𝜏̂𝑖 ) )𝜔0+𝑝Ω𝑠𝑖 ]

× 𝑒± 𝑗Γ (𝑄′′ , 𝜏̂𝑖 ) sin(2Ω𝑠𝑖
𝑡+2𝜑𝑠𝑖 )𝑒 𝑗 (±𝜑𝛽𝑖

+𝑝𝜑𝑠𝑖 ) ,

and then into

𝑓0𝑞𝑥𝑖
2

∞∑︁
±,𝑛, 𝑝,𝑘=−∞

𝐽𝑝
(
𝜒±
𝑛 (𝜏̂𝑖)

)
𝐽𝑘 (±Γ (𝑄′′, 𝜏̂𝑖))

× 𝑒 𝑗𝑡 [ (𝑛±𝑄±Δ𝑄 (𝑄′′ , 𝜏̂ ) )𝜔0+(𝑝+2𝑘 )Ω𝑠𝑖 ]𝑒 𝑗 (±𝜑𝛽𝑖
+(𝑝+2𝑘 )𝜑𝑠𝑖 ) ,

where 𝐽𝑚 denotes the Bessel function of the first kind of
order 𝑚. Rearranging this sum and using the substitution
𝑑 = 𝑝 + 2𝑘 , we obtain:

𝐷𝑖 (𝑡) = 𝑓0𝑞𝑥𝑖
2

∞∑︁
±,𝑛,𝑑,𝑘=−∞

𝐽𝑑−2𝑘
(
𝜒±
𝑛 (𝜏̂𝑖)

)
𝐽𝑘 (±Γ (𝑄′′, 𝜏̂𝑖))

× 𝑒 𝑗𝑡 [ (𝑛±𝑄±Δ𝑄 (𝑄′′ , 𝜏̂𝑖 ) )𝜔0+𝑑Ω𝑠𝑖 ]𝑒 𝑗 (±𝜑𝛽𝑖
+𝑑𝜑𝑠𝑖 )

=
𝑓0𝑞𝑥𝑖

2

∞∑︁
±,𝑛,𝑑=−∞

𝐽𝑑
(
𝜒±
𝑛 (𝜏̂) ,±Γ (𝑄′′, 𝜏̂𝑖)

)
× 𝑒 𝑗𝑡 [ (𝑛±𝑄±Δ𝑄 (𝑄′′ , 𝜏̂𝑖 ) )𝜔0+𝑑Ω𝑠𝑖 ]𝑒 𝑗 (±𝜑𝛽𝑖

+𝑑𝜑𝑠𝑖 ) ,
(3)

where 𝐽𝑑 (·, ·) is a 2D Generalized Bessel Function (GBF),
defined as in Ref. [7]. Among the fundamental properties
of 𝐽𝑑 (·, ·) one has 𝐽𝑑 (·, 0) = 𝐽𝑑 (·), hence for 𝑄′′ = 0 the
formula above is in agreement with the previously developed
theory of Schottky spectra [1, 2].

For the analysis, one is usually interested only in the spec-
tral components close to a specific harmonic 𝑛 of the revolu-
tion frequency. For the fractional nominal tune 𝑄𝐹 < 0.5,
these components correspond not to the index 𝑛 in the Eq. (3),
but to indices 𝑛−𝑄𝐼 and 𝑛+𝑄𝐼 , where 𝑄𝐼 is the integer part
of the nominal betatron tune. Shifting the summing indices
so that index 𝑛 corresponds to the spectral region around
𝑛𝜔0, one obtains:

𝐷𝑖 (𝑡) = 𝑓0𝑞𝑥𝑖
2

∞∑︁
±,𝑛,𝑑=−∞

𝐽𝑑

(
𝜒±
𝑛∓𝑄𝐼

(𝜏𝑖) ,±Γ (𝑄′′, 𝜏̂𝑖)
)

× 𝑒 𝑗𝑡 [ (𝑛±𝑄𝐹±Δ𝑄 (𝑄′′ , 𝜏̂𝑖 ) )𝜔0+𝑑Ω𝑠𝑖 ]𝑒 𝑗 (±𝜑𝛽𝑖
+𝑑𝜑𝑠𝑖 ) .

ANALYSIS OF THE MODIFIED
SPECTRUM

The Power Spectral Density (PSD) of the multiparticle
Schottky spectrum, around the 𝑛th harmonic of the revolution
frequency and for either the upper (+) or lower (−) transverse
band is given by a sum over 𝑁 single-particle contributions:

𝑃± (𝜔) =
𝑁∑︁
𝑖=1

𝑓 2
0 𝑞

2𝑥𝑖
2
𝜋

2

∞∑︁
𝑑=−∞

𝐽2
𝑑

(
𝜒±
𝑛∓𝑄𝐼

(𝜏𝑖) ,±Γ (𝑄′′, 𝜏̂𝑖)
)

× 𝛿
(
𝜔 − (𝑛 ±𝑄𝐹 ± Δ𝑄 (𝑄′′, 𝜏𝑖)) 𝜔0 − 𝑑Ω𝑠𝑖

)
,

(4)

where cross-terms between distinct particles cancel due to
the random, uniformly distributed betatron phases.

The presence of non-zero second-order chromaticity 𝑄′′

affects the Schottky spectrum in two ways. Firstly, it in-
troduces an incoherent tune shift given by Δ𝑄 (𝑄′′, 𝜏𝑖). In
addition, even at the single-particle level, the synchrotron
satellites are not symmetric with respect to the central, 𝑑 = 0,
satellite. The second argument of the GBF, ±Γ (𝑄′′, 𝜏𝑖), de-
termines the magnitude of this asymmetry. We shall study
this effect for typical LHC proton beam parameters, listed
in Table 1, assuming a Gaussian bunch profile.

Table 1: Typical LHC and Schottky Monitor Parameters

Revolution frequency 𝜔0 = 2𝜋 × 11 245.5 Hz
Schottky harmonic 𝑛 = 427 725
Synchrotron frequency Ω𝑠 = 2𝜋 × 50 Hz
Bunch length (RMS) 𝜎𝜏 = 0.3 ns
Tune 𝑄0 = 64.28
Chromaticity 𝑄′ = 10
Slippage factor 𝜂 = 3.182 × 10−4

The Schottky spectra for three different values of the
second-order chromaticity are presented in Fig. 1. Using
the theory presented in the last section, we have calculated
the expected Schottky spectra using the matrix formalism
introduced in Ref. [8]. As a benchmark, we present also
the spectra calculated from the results of PyHEADTAIL
macroparticle simulations as discussed in Ref. [9].
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Figure 1: Upper transverse sidebands for different values of
the second order chromaticities, using the parameters from
Table 1.
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If we were only considering the theory of first-order chro-
maticity, the shape of the transverse sidebands could have
been used to determine the values of the transverse emit-
tance, tune and chromaticity. In such a case, and if 𝑃total

± , 𝜇±
and 𝜎± are, respectively, the cumulative power, mean and
standard deviation of the upper (+) and lower (−) sidebands
treated as distributions over frequency, we would get [1, 10]:

𝜀 =
2𝑃total

−
𝑁 𝑓 2

0 𝑞
2𝛽

=
2𝑃total

+
𝑁 𝑓 2

0 𝑞
2𝛽

, (5)

𝑄𝐹 =
𝜇+ − 𝑛𝜔0

𝜔0
=
𝑛𝜔0 − 𝜇−

𝜔0
, (6)

𝑄′ = 𝜂

(
𝑛
𝜎− − 𝜎+
𝜎− + 𝜎+

−𝑄𝐼

)
. (7)

We can now question whether these formulae remain cor-
rect in the case of non-zero 𝑄′′. We shall use the following
properties of the GBF:

∞∑︁
𝑑=−∞

𝐽2
𝑑 (𝑥, 𝑦) = 1, (8)

∞∑︁
𝑑=−∞

𝑑𝐽2
𝑑 (𝑥, 𝑦) = 0, (9)

∞∑︁
𝑑=−∞

𝑑2𝐽2
𝑑 (𝑥, 𝑦) = 𝑥2

2
+ 2𝑦2. (10)

The first two equalities are given explicitly in Ref. [7], while
the third one was derived by us following a similar method.

The cumulative power in each sideband can be calculated
by direct integration of Eq. (4), with the use of Eq. (8):

𝑃total
± =

∞∫
−∞

𝑃± (𝜔)
2𝜋

𝑑𝜔 =
𝑓 2
0 𝑞

2 ∑𝑁
𝑖=1 𝑥𝑖

2

4
=

𝑁 𝑓 2
0 𝑞

2𝛽𝜀

2
.

As a consequence, Eq. (5) remains valid.
If we now assume that the momentum deviation and the

betatron amplitudes are independent, this allows us to re-
place 𝑥𝑖2 in Eq. (4) with Avg

[
𝑥̂2] . The mean frequencies of

the modified sidebands are obtained through integration of
the product of 𝜔 with the normalized transverse sideband,

𝑃± (𝜔) ≡
𝑃± (𝜔)
2𝜋𝑃total

±
, using Eqs. (4), (8) and (9):

𝜇± =

∞∫
−∞

𝜔𝑃± (𝜔) 𝑑𝜔 =

𝑁∑︁
𝑖=1

(𝑛 ±𝑄𝐹 ± Δ𝑄 (𝑄′′, 𝜏𝑖)) 𝜔0
𝑁

.

Calculating the tune as in Eq. (6), one obtains

𝜇+ − 𝑛𝜔0
𝜔0

=

𝑁∑︁
𝑖=1

𝑄𝐹 + Δ𝑄 (𝑄′′, 𝜏𝑖)
𝑁

= Avg [𝑄] ,

that is the average value of the betatron tune including the
second-order chromaticity shift.

The variances of the modified sidebands are obtained
through a direct integration of (𝜔 − 𝜇±)2 𝑃± (𝜔), using
Eqs. (4) and (8) to (10):

𝜎2
± =

∞∫
−∞

(𝜔 − 𝜇±)2 𝑃± (𝜔) 𝑑𝜔 =
1
2

Avg
[
Ω2

𝑠

(
𝜒±
𝑛∓𝑄𝐼

(𝜏̂)
)2

]
+
𝑄′′2𝜔2

0
32𝜂4

(
3 Avg

[
Ω4

𝑠 𝜏̂
4] − 2 Avg2 [

Ω2
𝑠 𝜏̂

2] ) .
Compared to the previous results that assumed 𝑄′′ = 0
[10], the presence of the non-zero 𝑄′′ has introduced two
additional terms to the second moment of the transverse
sideband. Both of these terms are proportional to the square
of the second-order chromaticity. Strictly speaking, the pres-
ence of these terms would essentially mean that we cannot
use Eq. (7) for calculating 𝑄′, however, it can be shown that,
for the typical LHC beam and Schottky monitor parameters
(see Table 1), the effect of these terms is negligible. In Fig. 2
we can see the average tune shift, as well as the error result-
ing from using Eq. (7), as a function of 𝑄′′. The typical
range of 𝑄′′ in the LHC does not exceed a few thousand
units, while the maximal values presented in Fig. 2 corre-
spond to high 𝑄′′ proposed in Ref. [4] as an alternative to
the Landau damping using octupole magnets.

−40000 −20000 0 20000 40000
Q”

−0.001

0.000

0.001 Avg [∆Q]

Q’ Error

−0.015

−0.010

−0.005

0.000

Figure 2: Effect of 𝑄′′ on the Schottky-based parameter
estimates.

CONCLUSION
In this contribution, we have theoretically studied the

impact of the second-order chromaticity on the Schottky
spectra of bunched beams. The modified Schottky spectra
can still be described with a concise formula, Eq. (4). Ana-
lytical results have been benchmarked against macroparticle
simulations, that confirm their validity. In the case of the
LHC, the impact of 𝑄′′ is not significant and does not pose
a threat to the previously established diagnostic techniques.
This, however, is not necessarily the case for other accelera-
tors, especially if the value of the second-order chromaticity
is significantly larger, or the measured Schottky spectra are
taken around a lower harmonic of the revolution frequency.
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