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Abstract: In synchrotrons, accurate knowledge of the magnetic field generated by bending dipole

magnets is essential to ensure beam stability. Measurement campaigns are necessary to characterize

the field. The choice of the measurement method for such campaigns is determined by the combi-

nation of magnet dimensions and operating conditions and typically require a trade-off between

accuracy and versatility. The single stretched wire (SSW) is a well-known, polyvalent method to

measure the integral field of magnets having a wide range of geometries. It, however, requires

steady-state excitation. This work presents a novel implementation of this method called pulsed

SSW, which allows the system to measure rapidly time-varying magnetic fields, as is often needed,

to save power or gain beam time. We first introduce the measurement principle of the pulsed SSW,

followed by a combined strategy to calculate the absolute magnetic field by incorporating the classic

DC SSW method. Using a bending magnet from the Proton Synchrotron Booster located at the

European Organization for Nuclear Research as a case study, we validate the pulsed SSW method

and compare its dynamic measurement capabilities to a fixed induction coil, showing thereby how

the coil calibration must be adjusted according to the field level. Finally, we assess the method’s

measurement accuracy using the standard SSW as a reference and present an analysis of the primary

noise contributors.

Keywords: single stretched wire; magnetic field measurements; particle accelerators; bending magnet;

induction coil calibration

1. Introduction

In synchrotrons, large sets of dipole electromagnets are used to bend the particle
beam in the horizontal plane along a ring-shaped trajectory, according to the Lorentz force
generated by a vertical magnetic field [1]. Over a magnetic cycle, the dipole field changes
proportionately to the beam energy to ensure that the beam remains centered within the
vacuum chamber. We consider a single bending magnet, as represented schematically in
Figure 1, where the beam circulates along the longitudinal axis of the magnet z, and x and y
represent the transverse and vertical directions, respectively. The vertical field component:

By(x, y, z, I(t)) (1)

is a function of the position and magnet excitation current I(t). The magnetic field is
approximately proportional to the current, which is typically very uniform in the gap
between the magnet poles and rolls off to zero rapidly in the surrounding fringe region.
The main property of interest for synchrotron operation is the longitudinal integral of the
field or, equivalently, its average B̄:

B̄(I(t)) =
1

lm

∫ +∞

−∞

By(0, 0, z, I(t)) dz (2)
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where lm is a reference length, defined as the length of the circular arc traced by the beam
inside the magnet, under the assumption of constant field (hard-edge model, [1]):

lm =
2πR

NB
(3)

where R is the bending radius of the synchrotron and NB is the number of bending magnets
powered in series. The reference length is usually close, but not necessarily identical, to
the length of the magnet’s iron yoke. We also note that the total length of the accelerator
ring is always greater than 2πR, because the beam trajectory between dipoles is generally
composed of additional straight sections corresponding to different kinds of components,
such as focusing quadrupoles or RF cavities. In practice, integration in (2) can be truncated
to a short distance from both ends of the iron yoke, with 2.5 times the height of the magnet
aperture being more than sufficient [2].

Figure 1. Schematic representation of the beam path in a dipole magnet, assuming small bending

angle (i.e., lm ≪ R) so that the arc length of the path can be replaced by its projection onto the

longitudinal axis z. Dashed curves refer to the hard-edge model. (a) Vertical cross-section of the

magnet; (b) longitudinal field profile; (c) beam path (top view).

To program the current excitation cycles, machine operators need knowledge of the
current-to-field relationship (2) with a relative precision of 10−4. However, the magnet
response is usually affected (up to several percent) by nonlinear phenomena such as
magnetic saturation, hysteresis, and eddy currents, which cannot easily be predicted by
means of FE models or measured with beam-based techniques during operation. The most
accurate and cost-effective approach is to measure the integral of the magnetic field directly
using a reference magnet. Here, the two most widely used measurement methods are based
on induction coils and single stretched wire (SSW) systems, which have the added benefit
of providing information on the quality and uniformity of the main field component [3].

Induction coils represent one of the most basic types of magnetic field sensors. A coil
typically consists of multiple loops of conducting wire, wound around a rectangular core,
and positioned along the longitudinal axis of a magnet’s aperture [4]. The output voltage
is proportional to the number of turns and the rate of change of the linked magnetic flux,
according to Faraday’s law. A fixed coil is therefore suitable for measuring time-varying
magnetic fields, in which case, however, it can register only their variation. Conversely, a
coil rotating or translating in a stationary field coil can be used for absolute measurements
but at the cost of a more complex mechanical setup. In both cases, very-high-quality
results are possible, provided that the coil is adapted to match a magnet’s specific geometry.
Unfortunately, manufacturing uncertainties increase with the length and number of turns,
making accurate calibration of integral coils more difficult, as is discussed in Section 2.4.
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With respect to induction coils, the single stretched wire (SSW) method presents
complementary advantages and drawbacks. In a dipole magnet, the classic static SSW (s-
SSW) method is used to measure the absolute integral of the magnetic field by displacing
a single taut conducting wire perpendicularly to the field direction. A key advantage of
this method lies in the flexibility to cover a wide range of magnet lengths and aperture
widths with the same hardware. Moreover, the width of the flux linkage area swept by
the stretched wire is defined with exquisite precision by the translation stages, which is
often better than the micrometer level and in stark contrast with typical induction coils.
As a result, the static SSW method is often used as a reference to calibrate the width of
integral induction coils, as discussed in the next section. The limitations of this method
are twofold; First, the setup can only measure steady-state magnetic fields. Secondly, as
the method is equivalent to using a single-turn variable-geometry coil, the output voltage
depends mainly on the magnetic field strength [5]. Other SSW methods exist where the
magnet or wire is excited using an AC waveform. However, we shall not cover them here
as they are mainly used to determine the magnetic axis of quadrupole magnets. Overall,
both measurement methods are induction-based and, therefore, inherently linear to the
field level, which is a key advantage over other types of magnetic sensors, such as Hall
probes [6].

In the following, we shall compare the performance of these measurement methods
by taking a bending magnet currently in operation at the European Organization for
Nuclear Research (CERN) as a case study. At CERN, the Large Hadron Collider (LHC)
proton injector chain includes four synchrotrons that progressively increase the beam
energy from 160 MeV to 6.5 TeV, thus limiting nonlinear effects that grow exponentially
with the dynamic range of each ring. We focus on the first synchrotron in the chain, the
Proton Synchrotron Booster (PSB), which accelerates protons up to 2 GeV. This synchrotron
consists of Nb = 32 dipoles that bend the beam with a radius R = 8.3 m, corresponding
to a reference magnetic length of lm = 1.630 m, as per Equation (3). The PSB bending
dipoles are excited by the 1.2 s long current cycle depicted in Figure 2, which reaches a
current level Imax = 5400 A at the extraction flat-top [7]. Here, the magnets produce an
integrated field of lmB̄max = 1.835 Tm, which we will use throughout the following analysis
as a normalization reference. The magnetic cycle is characterized by a high ramp rate,
with a ramp-up time of around 0.5 s that peaks at about 5 T s−1. This rapid cycling allows
for large numbers of protons to be accelerated while limiting thermal dissipation in the
magnet’s excitation coils, which were originally designed to operate at the much lower
level of ∼2300 A [8]. Unfortunately, high ramp rates induce substantial eddy currents in
the iron yoke of an accelerator magnet, degrading the field uniformity and causing the
magnetic field to lag behind the current waveform [9]. In the PSB, the eddy currents delay
the magnetic field’s response by as much as 0.7 ms at beam extraction, corresponding to a
field error of about 0.2 %. This highly dynamic nature of the magnetic field compounds
the need for accurate measurements while restricting the usage of the static SSW, thereby
making the precise calibration of induction coils more difficult.

For this reason, we have developed the so-called pulsed SSW (p-SSW) method; a
novel implementation of the SSW setup that enables the system to measure fast time-
varying magnetic fields by combining dynamic measurements taken at different wire
positions. In the context of our case study, the pulsed SSW setup serves mainly as a method
to complement and cross-calibrate fixed coil measurements. The availability of suitable
induction coils, especially with lengths on the order of meters, is limited by the lack of
commercial offers and the level of resources needed to design, manufacture, and calibrate
them. Due to its inherent flexibility in adapting to a wide range of geometries, the pulsed
SSW method represents a very effective alternative.
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Figure 2. Current waveform powering the PSB bending magnets during a 2 GeV magnetic cycle.

This paper is structured as follows: In Section 2, we first introduce the operating
principles of both the induction coil and the static and pulsed SSW implementations; then,
in Section 3, we detail the test setup and measurement procedure of the PSB bending dipole.
In Section 4, we present, analyze, and compare the results obtained with all three methods,
highlighting how the pulsed SSW method has been used to calibrate a fixed induction coil.
In Section 5, we make concluding remarks and outline planned developments.

2. Measurement Principle

In this section, we describe the measurement principle of the three methods used in
this work. The symbol Φ shall denote absolute flux linked through an induction loop,
whether an induction coil or a wire. The symbol ∆Φ shall be used for space or time flux
differences (or, equivalently, excitation current).

2.1. Static SSW

The general operating principle of the static SSW method is well documented [10–12].
A conducting wire is stretched along the axis of the magnet and then displaced along a
known trajectory while the magnet current I remains constant. The path of displacement
of the wire depends on the magnet type and the harmonics of the field that are measured,
ranging from a simple segment to a complex elliptical rotation [13]. For the present case
study, we shall consider a straight dipole magnet, as shown in Figure 3. The wire is
stretched between two symmetric linear stage supports over a length ℓ parallel to the
longitudinal z axis. The wire lies in the magnet’s midplane y = 0 and is translated only
along the x axis by the linear stages. Since we are dealing with a relatively short magnet,
we can ignore the impact of gravity-induced sag. The ends of the wire and the return
wire must be sufficiently far from the magnet to lie in a field-free region, where stray and
environmental fields can be ignored. As a result, the flux linked through the wire loop at
any time can be expressed as follows:

Φ(X(t), XR, I) =
∫ + ℓ

2

− ℓ
2

dz
∫ XR

X(t)
By(x, 0, z, I) dx (4)
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where X(t) and XR are the transverse positions of the stretched and return wire, respectively.
Under the assumptions made, the flux does not depend either on the precise length of the
stretched wire, or on the exact path followed by the return wire [14].

(a) (b)

Figure 3. Schematic representation of the SSW system mounted in the four-gap PSB bending dipole

magnet, where each gap corresponds to a different accelerator ring and all lengths are given in

millimeters. Red lines denote the stretched wire, while green shows the return wire closing the flux

loop. The induction coil can be placed along the same path followed by the stretched wire, being

only slightly shorter (although both its ends still reach into the field-free region). (a) Front view.

(b) Top view.

A static SSW measurement consists of the wire moving from X1 to X2 at an approx-
imately constant speed dX/dt. According to Faraday’s law, the induced loop emf Vs

depends only on position and velocity:

Vs(t) = −
∂Φ

∂t
=

dX

dt

∫ + ℓ
2

− ℓ
2

By(X(t), 0, z, I) dz (5)

In a good field region of a highly uniform dipole, the integral term is essentially constant,
and the voltage is simply proportional to the stretched wire velocity, which, therefore,
should be as high as possible to improve the signal-to-noise ratio (SNR). By digitally
acquiring Equation (5) and then integrating it numerically with respect to time, we can
derive the expression of the flux ∆Φs linked through the rectangular surface swept by the
stretched wire:

∆Φs(X1, X2, I) = −
∫ t2

t1

Vs(u) du = Φ(X2, XR, I)− Φ(X1, XR, I) =
∫ + ℓ

2

− ℓ
2

dz
∫ X2

X1

By(x, 0, z, I) dx (6)
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where u is the integration variable, X1 = X(t1), and X2 = X(t2). In principle, this result
does not depend upon the exact law of motion X = X(t) followed by the wire. In practice,
however, the wire will vibrate every time it is accelerated, and the integration interval
must be adjusted to allow the vibrations to damp out. The need to curb the velocity and
acceleration of the wire may represent a limitation of the method, especially in the case
of fast-cycled magnets such as the PSB dipole, where the duration of current plateaus is
severely constrained.

Finally, the average field can be obtained according to Equation (2) as

B̄s(I) =
1

lmd
lim
d→0

∆Φs(−
d

2
,

d

2
, I) (7)

where d = X2 − X1 represents the stroke of the wire’s movement, which, in this paper,
we will always take to be symmetric with respect to x = 0. However, the magnitude
of the integrated flux and, hence, its accuracy tend to vanish as d → 0. In practice, an
optimal wire stroke d∗ can be defined as a compromise between measurement accuracy
and the additional error due to field nonuniformity, which must be found experimentally
as discussed in Section 4.1, to obtain

B̄s(I) =
1

lmd∗
Φs(−

d∗

2
,

d∗

2
, I) (8)

2.2. Pulsed SSW

The pulsed SSW method subtracts two dynamic measurements at the positions of the
wire X1 and X2. The voltage induced in the wire loop when the magnet excitation current
is changing while the wire position is kept fixed is given by

Vp(t) = −
∂Φ

∂t
=

dI

dt

∫ + ℓ
2

− ℓ
2

dz
∫ XR

X

∂

∂I
By(X, 0, z, I(t)) dx (9)

By acquiring and integrating Equation (9) we can obtain the change between the initial and
final linked fluxes:

∆Φp(X, XR, I0, I(t)) = −
∫ t

t0

Vp(u) du = Φ(X, XR, I(t))− Φ(X, XR, I0) (10)

where I0 = I(t0). In principle, the flux change depends only upon the initial and final
states, much like in the case of static wire. However, the nonlinear relationship between
current and field often makes it necessary to implement suitable measures to improve the
reproducibility of results. Most importantly, the change between minimum and maximum
current should always be monotonic to avoid switching to a different branch of the magnetic
hysteresis loop. For the same reason, the rate of change of the current should also be
constant to ensure reproducible losses. As a result, it is strongly recommended that a fixed
current cycle I(t) be repeatedly applied at X1 and X2. The results shall then be subtracted
numerically to finally obtain

∆
2
Φp(X1, X2, I0, I) = ∆Φp(X2, XR, I0, I)− ∆Φp(X1, XR, I0, I) =

∫ + ℓ
2

− ℓ
2

dz
∫ X2

X1

(

By(X, 0, z, I(t))− By(X, 0, z, I0)
)

dx
(11)

where the squared delta symbol represents the difference with respect to the position of
a difference with respect to time. In other words, Equation (11) represents the change of
the flux linked through a rectangular area equivalent to a virtual, single-turn fixed coil of
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width d = X2 − X1. Similarly to Equation (8), the average field can be derived by moving
the wire by the optimal stroke d∗, thus obtaining

∆B̄p(I0, I(t)) =
1

lmd∗
∆

2
Φp(−

d∗

2
,

d∗

2
, I0, I(t)) (12)

where the ∆ symbol emphasizes the fact that Equation (12) represents a difference be-
tween two excitation current levels. The accuracy of this result depends crucially on the
reproducibility of the magnetic field, which, unfortunately, is not guaranteed, even when
identical I(t) cycles are applied in succession. This is mainly due to the possible impact
of the previous excitation history and, to a lesser degree, to common imperfections of the
excitation current, such as high-frequency ripple or uncontrolled transients (glitches or over-
shoots). When a test campaign includes a variety of different magnetic cycles, as is the case
in the present work, two well-known strategies can be applied to improve reproducibility:
(1) systematic execution of one or more normalization precycles; and (2) forcing each cur-
rent cycle to swing monotonically between fixed minimum and maximum values to remain
always on the same hysteresis loop. Both techniques are used in the present work, as
discussed in Section 3.

Additional considerations must be made about the optimal position of the return wire,
which may be placed externally or internally to the magnet. Let us consider two common
cases, as shown in Figure 4: a window-frame-type dipole (top), where the return flux splits
evenly between the two vertical legs of the iron yoke, and a C-shaped dipole (bottom),
where one side is left open for easier access. For simplicity, we shall assume that all the
magnetic flux generated by the excitation coils Φe is captured as the wire moves from X1 to
X2. We find the following:

• Window-frame dipole (inset a, b): When the return wire is external to the magnet
(XR), the measured flux changes antisymmetrically with respect to the origin, reaching,
at both ends, the same absolute value |Φ(X1, XR, I)| = |Φ(X2, XR, I)| ≈ 1

2 Φe. If,
instead, the return wire is inside the magnet gap at either position XR′ or XR′′ due
to the symmetry of the yoke, the linked flux will be ∼0 at one end and reach the
maximum value ∼|Φe| at the other.

• C-shaped dipole (inset c, d): If the return wire is placed on the side where the yoke
is open, either externally (XR ) or internally (XR′ ) to the gap, the measured flux will
behave identically i.e., it will swing from the maximum value ∼|Φe| to ∼0; if, instead,
the return is moved on the closed side of the yoke (XR′′ ), the sign of flux will be
opposite as the curve Φ(X) is shifted by −Φe.

For a static SSW measurement, these differences are irrelevant since the results depend
only on the initial and final positions of the wire. Instead, in the case of pulsed SSW, it is
important to maximize the peak value of the measured flux to gain dynamic range, which
may improve the final accuracy, provided the acquisition chain can be adapted accordingly.
For a C-shaped dipole, the maximum dynamic range is always guaranteed, while for a
window-frame type, either internal position leads to a factor ∼2 improvement. The case
of the PSB dipole corresponds to an intermediate situation closer to the C-shaped design
since the flux returns on the x > 0 side through a relatively thin plate. For the present case
study, the return wire was fixed externally, and the resulting flux curves, which retain the
same sign throughout the wire movement, are shown in Figure 4. Running the return wire
internally may provide an additional advantage linked to lower EM interference pick-up
due to the smaller loop area (see also the discussion in Section 4.3). Should one choose
this configuration, fixing the mechanically stable wire is paramount since even very small
movements in the high-field region may perturb the voltage readout.



Sensors 2024, 24, 4610 8 of 25

Figure 4. Impact of the position of the return wire, according to the type of magnet. (a): Magnetic flux

in a symmetric window-frame dipole. (b): corresponding qualitative representation of the measured

flux as the wire moves from X1 to X2. (c): Flux in an asymmetric C-shaped dipole. (d): corresponding

measured flux. Green: external return wire (XR). Purple: internal return wire (XR′ ).

2.3. Combined SSW

Embodiment in the same physical setup gives the unique opportunity to combine static
and pulsed SSW measurement procedures to derive the absolute field, even under dynamic
excitation conditions (c-SSW method). Assuming that DC excitation at I0 is possible, we
can simply add Equations (6) and (11) to define the combined flux as follows:

Φc(X1, X2, I(t)) = ∆Φs(X1, X2, I0) + ∆
2
Φp(X1, X2, I0, I(t))

=
∫ + ℓ

2

− ℓ
2

dz
∫ X2

X1

By(x, 0, z, I(t)) dx
(13)

The average field can then be expressed as

B̄c(I(t)) = B̄s(I0) + ∆B̄p(I0, I(t)) =
1

lmd∗
Φc(−

d∗

2
,

d∗

2
, I(t)) (14)

As it incorporates the residual field, Equation (14) captures, in principle, the current
magnetic state irrespective of the previous excitation history. However, as discussed in
the previous section, the reproducibility of the two consecutive cycles necessary for the
pulsed SSW is generally guaranteed only if the magnet is already on a stable hysteresis
loop. A suitable number of normalization precycles, to be established experimentally for
each magnet type, should be run before any measurement to ensure that is the case.

2.4. Induction Coil

Ideally, an induction coil can be represented by NT infinitely thin identical rectangular
turns of length lc and width wc. In practice, the width of each winding is affected by the
pile-up of manufacturing tolerances, which increase with the total length and the number
of turns. As a result, the average width of the windings should be considered instead of an
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unknown function wc(z) of the longitudinal position [15]. In general, the flux linked by the
coil can be expressed as

Φcoil(I) = NT

∫ + lc
2

− lc
2

dz
∫ + wc(z)

2

− wc(z)
2

By(x, 0, z, I)dx (15)

In the following, we shall assume that the length of the coil is sufficient to reach the
field-free region at both ends, allowing us to use the same longitudinal integration limits as
in the case of the stretched wire. In addition, we shall ignore the nonuniformity of the field
across the coil, which is usually only a few millimeters wide. Under these assumptions, we
can express the total flux linked through the coil as

Φcoil(I) = NT

∫ + ℓ
2

− ℓ
2

wc(z)By(0, 0, z, I) dz (16)

The flux at any given current level can be measured by integrating the voltage Vc

induced according to Faraday’s law in different ways. The following two methods were
used in this work:

• Flip-coil method: The coil is first positioned flat in its central rest position inside
the magnet’s gap (roll angle θ = 0), then it is flipped upside down (θ = π) while
measuring the induced voltage Vc(t). The final flux linkage will be equal and opposite
to the initial one, and we can derive the following:

Φcoil(I) =
1

2

∫ t(0)

t(π)
Vc(u) du (17)

where the integration bounds correspond to mechanically stable coil configurations.
The result, in principle, does not depend upon the precise law of motion θ(t) followed,
even if some translation is unwittingly superposed to the rotation. The main practical
difficulty is turning the coil quickly enough to avoid the build-up of integrator drift
while at the same time ensuring that the initial and final configurations are not offset in
any direction. Mainly for this reason, a suitable nonmagnetic, nonconducting, rotating,
mechanical support should be preferred to manual operation.

• Fixed coil method: We keep the coil fixed and instead ramp the current starting from
zero up to its desired value, to obtain the flux change:

∆Φcoil(I0, I) =
∫ t(I)

t(I0)
Vc(u) du (18)

This method is the most rapid and practical since it does not involve any coil handling;
however, the measurement is blind to the initial flux Φ0 = Φ(0). This is typically
associated with a remanent field in the iron poles, which depends upon the previous
magnetization history and can be of the order of a few milliteslas. Ideally, a demagne-
tization cycle should be applied before the measurement, but doing so requires bipolar
power converters, which are not always available. In the alternative, Φ0 must be
measured independently, for example, by the flip-coil method. Another independent
measurement of Φ0 could be obtained with the static SSW method by scaling the
results with the appropriate number of induction coil turns. However, the measured
flux will not be entirely consistent with Equation (16), since the wire is much more
straight than the coil windings, at least horizontally. Fortunately, the resulting error
is often negligible since the integrated remanent field is very small, typically at least
two orders of magnitude below the lowest level of interest (corresponding to beam
injection). The value thus obtained is then added to the pulsed measurement to derive
the absolute flux:

Φcoil(I) = Φ0 + ∆Φcoil(0, I) (19)
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The same Φ0 can be reused multiple times for fixed coil measurements at different
current levels. Doing so, however, requires that a stable hysteresis cycle be followed
to ensure repeatability, as we have performed in the present work.

Regardless of the method followed, a straightforward and accurate derivation of
the average field, such as in Equation (8) or Equation (12), is not possible due to the coil
width being affected by a large uncertainty. We shall therefore define a suitable calibration
parameter and the effective coil width as follows [16]:

weff(I) =
Φcoil(I)

lmB̄(I)
=

NT

∫ + ℓ
2

− ℓ
2

wc(z)By(0, 0, z, I) dz

∫ + ℓ
2

− ℓ
2

By(0, 0, z, I) dz
(20)

which can be interpreted as the average coil turn width, weighed with the local magnetic
field, additionally incorporating the number of turns to simplify practical usage as a
single calibration coefficient. The calibration of the coil depends, at the same time, upon
its geometry and the longitudinal field profile of the magnet being measured. In iron-
dominated magnets, the most common choice for particle accelerators is the shape of the
longitudinal field profile, which is mainly a function of the excitation current. At high fields,
saturation increases the flux leaking out of the iron yoke, leading to a relative increase in the
field strength of the fringe field region and a subsequent flattening of the profile. Calibration
of the effective width from Equation (20) requires an independent measurement of B̄ in the
same magnet with a reference method, such as any form of SSW. For example, omitting for
simplicity the incorporation of the residual field in both coil and SSW measurements, the
pulsed SSW method can be used to derive the effective width as

weff(I) =
∆Φcoil(0, I)

lm∆B̄p(0, I)
= d∗

∆Φcoil(0, I)

∆2Φp(−
d∗

2 , d∗

2 , 0, I)
(21)

We note that any nominally identical magnets belonging to a series production run can
be used as a reference, with their relative differences usually being very small. Once the
calibration has been obtained, the average field can finally be derived from Equation (20)
as follows:

B̄coil(I) =
Φcoil(I)

lmweff(I)
(22)

3. Test Setup

The measurements discussed in Section 4 were obtained with the setup based on the
PSB dipole magnet shown in Figures 5 and 6 and represented schematically in Figure 7.
The main design parameters and field quality requirements are listed in Table 1. The design
of the PSB magnet is unique in that it consists of four vertically stacked apertures powered
in series and sharing the same iron yoke, allowing for a four-fold increase in the number
of protons that can be accelerated in parallel. In the context of this work, all apertures are
functionally equivalent to a standalone magnet, and the measurements were performed in
the bottom aperture.



Sensors 2024, 24, 4610 11 of 25

Figure 5. CERN test hall 867-R-29, showing two PSB bending dipoles being prepared for magnetic

measurements. Thanks to the availability of the Holec power converter, this hall is a unique asset

dedicated to testing potentially activated, high-pulsed-current magnets such as the other PS and SPS

units shown.

Figure 6. Test setup including the four-aperture PSB magnet and the SSW stages. (a) Illustration of

the wire (dotted yellow line) stretched through the magnet between the two XY translation stages.

(b) Detail of one stage placed in front of the lowest of the magnet’s apertures, i.e. the one used for the

present work.

Figure 7. Schematic block diagram of the test setup.
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Table 1. Main geometrical and electrical design parameters of the PSB bending dipole, along with

the principal magnetic field quality requirements [17].

Parameter Value Unit

Iron core length 1537 mm

Gap height 70 mm

Gap width 238 mm

Good field region width 160 mm

Excitation turns/gap 12 -

Total excitation resistance 9.9 mΩ

Total excitation inductance 41.5 mH

Peak excitation current 5400 A

Integrated dipole tolerance B̄
B̄max

− 1 ±5 · 10−4 -

Field uniformity in the good field region ∆B
B (23) ±4 · 10−4 -

3.1. SSW Setup

The setup used for this work is based on the systems originally developed at Fermilab
to measure series LHC magnets [11,12]. The PC-controlled system consists of a 3 m long,
∅125 µm beryllium copper wire stretched through the aperture and supported on either
side by a Newport ESP 7000 XY translation stage, having a maximum ±75 mm stroke
on both axes and mounted on a granite support. An additional motor keeps the wire
under constant tension 8 N to limit the gravity-induced sagitta to about 0.1 mm [13]. The
acquisition chain includes a Metrolab PDI-5035 voltage integrator [18] to measure the flux
change induced by the displacement of the wire in static mode, as well as a National
Instruments USB-6366 16-bit DAQ module to acquire the voltage induced in pulsed mode
in both the wire loop and the coil up to 1 MS/s, as well as the DCCT output measuring
the excitation current. We point out that the large inductance of accelerator magnets
usually limits the effective bandwidth well below 1 kHz; however, oversampling at high
frequency is often very useful for estimating and then subtracting the low-frequency 1/f

noise components leading to integration drift.

3.2. Induction Coil

The integral induction coil used for this work is part of a batch of nominally identical
units developed for the PSB dipoles. It consists of NT = 70 turns of copper wire wound
around a lc = 2.75 m long, wc = 10 mm wide fiberglass core. For series measurements,
these coils are installed inside grooves milled in G10 supports, held in place by an extruded
aluminum profile structure, as shown in Figure 6. The coil used for this work was calibrated
at I = 1000 A by combining in (20) the flip-coil method (17) with a static SSW measurement,
resulting in a calibration coefficient w1000 = 0.7083 m.

3.3. Magnet Powering

The PSB dipole was powered with a custom 6500 Apeak/3200 ARMS, ±200 V con-
verter developed in 1997 by Holec Projects BV, NL, especially for testing CERN pulsed
magnets [19]. This is a two-quadrant, current-controlled converter based on an 18 kV trans-
former and two parallel 6-pulse bridge thyristor rectifiers, preloaded with an additional
12-pulse thyristor rectifier at 150 A so as to be able to output stable controlled current down
to zero. The combination of a passive LC filter having an 80 Hz cut-off with an active filter
injection choke and amplifier enables suppression of the inherent 300 Hz ripple, while
ensuring a good match to rapid transients in the input reference, up to a bandwidth of
10 kHz. In particular, the active filter is designed to always approach the steady-state step
response from below, i.e., without any overshoot that may switch the magnet’s response
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onto a different branch of the hysteresis loop. As a result, the overall accuracy of the output
current is better than 23 ppm of the full scale for loads up to 200 mH and 120 mΩ.

The excitation current waveforms are plotted in Figure 8. The current was measured
with a 10 V/6000 A TOPACC 1.0 Zero-Flux DCCT, also developed by Holec and imple-
mented as an integral part of the current control loop of the converter [19]. The DCCT
working principle is based on a high-turn-ratio secondary winding, powered by a feedback-
controlled amplifier in order to cancel out the flux generated by the primary, represented by
the current to be measured. In this way, the secondary current is used to derive the primary
with combined DC offset and linearity errors below 5 ppm with respect to the full scale, in
addition to a long-term stability of 5 ppm/year and a thermal stability of 0.25 ppm/°C. The
dynamic performance of the DCCT can be expressed in terms of the maximum output slew
rate, i.e., 1.5 V µs−1, which corresponds to 900 A µs−1. This is four orders of magnitude
higher than the fixed ramp rate of the excitation cycles, that is, 10 kA s−1, resulting in a
completely negligible delay. The rated noise level of the DCCT from DC up to 10 kHz is as
low as 1.5 ppm of full scale, i.e., about 10 mA. The level of random noise measured in the ac-
quired signal is about 100 mA, i.e., about 3 · 10−5 of the nominal peak value Imax = 5400 A.
This can be largely attributed to the cabling and acquisition system, and it remains well
below the required accuracy.

The waveforms consist of a sequence of two cycles that start at I = 0, reach Imax,
and then return to I = 0. The first is a normalization precycle that has the function of
improving the reproducibility of the magnet’s response, with a flat-top duration of 1 s. As
a rule, normalization precycles should reach at least as high as the highest level of the
cycles being run, due to the well-known wiping out property [20]. Typically, the number of
normalization cycles necessary to ensure repeatability of the flat-top field within a given
tolerance tends to decrease with the level of saturation, which asymptotically represents
a uniquely defined reference state. However, based on our own experience, no general
quantitative prescription can be formulated; instead, the number of repetitions should be
established experimentally. In this case study, a single precycle was enough, plausibly due
to the high level of saturation reached by the PSB magnet in operation.

After the precycles, the proper test cycle begins, introducing an intermediate plateau
at a level ranging from 500 A to 5400 A. For measurements with pulsed SSW and fixed coil
methods, the duration of the plateau was 2 s, which is enough to allow the eddy currents to
decay (as discussed in Section 4.4). For measurements using the static SSW method, the
duration of the plateau was extended to 120 s. This long duration is needed for at least three
back-and-forth wire sweeps, which are averaged to improve the SNR. However, extended
DC powering of the PSB dipole is possible only up to a maximum of 3000 A to keep the
temperature of the excitation coils below a safe level, typically 60 °C. In all cases, the
absolute value of the ramp rate was fixed to ensure stable power converter operation.The
measured stability and reproducibility of the current plateaus is about ∼10−5. The strategy
of combining a precycle with a fixed maximum current level proved very effective in
controlling the effects of hysteresis, and the residual field measured with the static SSW
method, lmB̄0 = 0.54 mTm (i.e., 3 · 10−4 with respect to the nominal field), was found to be
reproducible throughout the test campaign.
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Figure 8. Excitation current waveforms used to power the PSB magnet.

4. Measurement Results and Analysis

In this section, we analyze and compare the results obtained with the three measure-
ment methods. A detailed summary of the main results is given in Table 5.

4.1. Field Uniformity

The uniformity of the transverse field was measured with the fixed coil method as a
preliminary step in order to determine the optimal range of the SSW stroke. Measurements
were taken at x = 0,±25,±50,±75, and ±90 mm for I = 1000, 3000, and 5000 A, and the
results normalized to the central values, expressed in terms of

∆B

B
(x, I) =

∫

∞

−∞
By(x, 0, z, I)dz

∫

∞

−∞
By(0, 0, z, I)dz

− 1, (23)

are plotted in Figure 9 and listed in Table 2. The table also provides the lowest-order normal
field harmonics bn [5], obtained by performing a least-squares fit of the measured field
profiles over the interval ±90 mm. The uniformity at all current levels is equal to or better
than 3.4 · 10−4, which is within the tolerance given in Table 1. The field error is dominated
by the sextupole and decapole components, which are allowed by the nominal symmetry of
the main dipole component. However, because of the actual asymmetry of the construction,
smaller quadrupole and octupole components are also present, as can be observed in the
vicinity of the axis. These and all other even-order harmonic field components do not
affect the measurement of the dipole, as long as the SSW stroke remains symmetric with
respect to the origin.

In order to obtain a high level of integrated signal, it is always preferable to sweep the
stretched wire across the widest possible range, provided the nonuniformity of the field
does not impact the result. In our case, we find that the stroke d∗ = 60 mm, corresponding
to the extreme positions of the wire ±30 mm, gives a maximum relative error with respect
to the central value equal to 0.2 · 10−4, which represents a reasonable compromise. In the
following sections, a detailed comparison of the results obtained with shorter strokes of
±10,±20, and ±5 mm is given.



Sensors 2024, 24, 4610 15 of 25

-100 -80 -60 -40 -20 0 20 40 60 80 100

-3

-2

-1

0

1

2

3

4

1000 A

3000 A

5400 A

Figure 9. Field uniformity relative to the value at 0 mm, as measured using the fixed coil method.

Vertical error bars represent the standard deviation over three measurements, while the horizontal

arrows represent the induction coil’s width of 10 mm. Dashed lines denote positions of X1 and X2 for

the different SSW configurations under test.

Table 2. Integrated normal field error harmonics and field uniformity, corresponding to the curves

plotted in Figure 9. The harmonics are numbered according to the convention n = 2 quadrupole, n = 3

sextupole, etc., refer to the radius r0 = 80 mm, and are normalized with respect to the integrated

dipole field at each respective current level.

Current b2 b3 b4 b5
∆B

B
(23) Unit

1000 A 1.00 4.28 −1.87 −3.47 3.4 10−4

3000 A −0.02 3.90 1.70 −3.34 2.5 10−4

5400 A −0.77 1.89 1.68 −1.06 3.0 10−4

4.2. Pulsed SSW Results

Let us analyze in detail an example of the flux measured with the pulsed SSW method.
As illustrated in Figure 10, we focus on a test cycle with a 1000 A plateau and dynamic
measurements taken plotted in the positions X = ±5,±10,±20, and ±30 mm. In particular,
measurements at X1 = +5 mm, X2 = −5 mm correspond to the nominal width of the
induction coil and can be used to make a direct comparison, as discussed in Section 4.6.

Inset (a) shows an example of the voltage output of the wire loop. Thanks to the high
field ramp rate, even a single-turn loop provides a peak voltage of the order of one volt,
which, combined with the 16-bit acquisition, is enough to guarantee accurate and drift-free
integration of the flux. The flux ∆Φp integrated at all wire positions is plotted vs. time in
the inset (b). Due to the high uniformity of the field in the interval scanned by the wire,
the curves scale with a good approximation linearly with respect to the wire position. The
flux at the end of the cycle flat-top, plotted in inset (c), varies linearly from about 240 to
130 mVs, with a relative residual RMS of the order of 10−5. This should be compared with
the ideal expectation illustrated in Figure 4d, considering that the measurement range
±30 mm captures only a fraction of the total flux in the 180 mm gap width.

The curves ∆Φp(t) exhibit a peculiar kink at high field, both at the end of the ramp-up
and at the beginning of the ramp-down. By instead plotting the flux as a function of the
excitation current, as shown in inset (d), it appears that the kink is due to the saturation
of the yoke. When the wire is in the rightmost position, X = +30 mm, the fall-off due to



Sensors 2024, 24, 4610 16 of 25

saturation above ∼3500 A is about 40 % with respect to the approximately linear behavior
at low current. This level of saturation is much higher than what is observed in the
center of the gap (see Section 4.6) because, in this case, the flux measured by the wire
loop is dominated by the contribution of the thin side plates. Finally, according to (11),
the measured flux curves were subtracted numerically pairwise to obtain the virtual-coil
equivalent ∆

2
Φp. Two examples of the results for the cases X = ±5 and ±30 mm are

plotted in the insets (e) and (f), respectively. The flux difference curves resemble the current
waveform much more closely than the ∆Φp curves since the kinks cancel out, as expected.
The peak values of ∆

2
Φp are reported in Table 5 for the case X = ±30 mm.
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Figure 10. Examples of pulsed SSW measurements of a 1000 A plateau test cycle, taken at eight wire

positions between X = ±30 mm. (a) Example of raw output voltage at X = +5 mm; (b) Integrated

flux ∆Φp. (c) Peak flux at t = 7.2 s vs. wire position. (d) Magnetization curves of ∆Φp vs. current.

(e) Difference of ∆Φp at ±5 mm. (f) Difference of ∆Φp at ±30 mm.
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4.3. Noise Analysis

The noise of the fixed coil and pulsed SSW was analyzed in the frequency domain as a
function of the stroke width d and acquisition sampling rate for a magnetic cycle with a
5400 A plateau. The results, summarized in Table 3, are expressed in terms of the fraction η
of the power spectrum that can be attributed to extraneous noise, defined as

η =

√

√

√

√

∫

∞

fm
|Ψ( f )|2d f

∫

∞

0 |Ψ( f )|2d f
(24)

where Ψ( f ) = F(B̄(t)) is the Fourier transform of the measured field, its modulus squared
provides the power spectrum, and fm ≈ 80 Hz is the highest appreciable frequency content
of the magnetic cycle waveforms. In practice, (24) is evaluated via the FFT of the discrete
field signal, and integration is truncated at the Nyquist frequency.

Overall, the noise level is very low, being on the order of a few 10−5 for the fixed
coil and the pulsed SSW. The results obtained at the sampling rate of 1 MS/s are plotted
as a function of the wire stroke in Figure 11. The pulsed SSW data points fit roughly a
relationship of inverse proportionality with respect to d, as one might expect, assuming
that the noise level in the raw acquisition remains constant, while the measured flux ∆Φp is
proportional to d. The noise content of the fixed coil measurement is η = 3.6 · 10−6, which
is equivalent to an ideal wire stroke as wide as ∼39 mm. The pulsed SSW results are clearly
penalized by the intrinsic limitations of the method, which are (a) lower signal levels due
to the single-turn nature of the wire loop, and (b) the difference between two separate
measurements adds noise components (including quantization noise and excitation current
ripple) and common modes quadratically, instead of canceling them out.

Further insight into the relative performance of the two methods can be gained
from the amplitude spectra plotted in Figure 12, which include the fixed coil acquired
at 1 MS/s and the ±30 mm pulsed SSW acquired at sampling rates down to 10 kS/s.
All measurements were carried out with the same anti-aliasing analog filter set at the
maximum Nyquist frequency, that is, 500 kHz. For comparison, pulsed SSW signals were
also downsampled by the decimation of the 1 MS/s acquisition in the post-processing
phase. The spectrum of the induction coil (in black) is characterized by an initial steep slope,
up to ∼200 Hz, associated with the shape of the magnetic cycle, followed by a roll-off slope
about −20 dB/decade, indicating the effect of the coil as a first-order RL low-pass filter.
The slope approximately doubles above ∼ 80 kHz, marking the lowest-order resonance
associated with the self-capacitance of the coil. At the same sampling frequency of 1 MS/s,
the pulsed SSW spectrum (in green) exhibits a first-order slope similar to that of the coil
but shifted about 15 dB higher, consistently with the lower L/R of the wire, leading to a
higher cutoff frequency. By lowering the sampling rate down to 10 kHz while intentionally
maintaining the same anti-aliasing filter, we observe that the noise of the pulsed SSW
increases by as much as ∼50 dB. This result does not depend appreciably on the way
downsampling is achieved, either by lowering the ADC settings or by decimation of the
signal acquired at the highest rate in post-processing. This increase can be entirely ascribed
to aliasing and demonstrates how the single-turn wire loop behaves as a very effective
antenna picking up high-frequency disturbances, which, instead, are filtered out by the
induction coil. This result highlights the importance of reducing the setup susceptibility to
broadband noise, not only, of course, by including an appropriate anti-aliasing filter, but
also by minimizing the surface area of the return loop.
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Figure 11. Effect of displacement width on the p-SSW setup’s noise content for a 5400 A plateau cycle.

Vertical error bars represent the standard deviation over 3 repetitions.
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Figure 12. Amplitude spectrum of p-SSW and fixed coil, acquired at different sampling rates. The

part of the spectrum above fm is attributed to noise only.

Table 3. Noise content η (24) for the fixed coil and the ±30 mm pulsed SSW. The quoted uncertainty

is the standard deviation over three consecutive repetitions.

Sampling Rate η Fixed Coil η Pulsed SSW η Pulsed SSW Unit
(1 MS/s Decimated) (1 MS/s Decimated) (Directly Sampled)

10 kS/s 5.8 ± 2.6 58 ± 11 56 ± 11 10−6

100 kS/s 3.7 ± 2.0 17 ± 3.5 17 ± 3.5 10−6

250 kS/s 3.6 ± 1.7 10 ± 1.7 9.6 ± 1.7 10−6

500 kS/s 3.6 ± 1.7 5.0 ± 2.0 4.9 ± 1.4 10−6

1 MS/s 3.6 ± 1.7 4.7 ± 1.4 4.7 ± 1.4 10−6
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4.4. Eddy Current Decay Transient

The measurement of the amplitude and time constant of eddy current decay transients
is necessary to characterize magnets for operation, as well as to establish a time interval
on the cycle plateaus where the comparison between static and dynamic measurements is
meaningful. The magnetic cycles used for our tests, as those generally used for synchrotron
operation, are composed of successions of linear current ramps and plateaus where eddy
currents develop at the start of ramps, and decay at their end. As an example, we focus
on the transient at the end of a ramp-up to 5400 A, depicted in Figure 13. The normalized
current Ĩ, normalized field B̃, and their difference δ are defined as follows:

Ĩ(t) =
I(t)

I(te)
, B̃(t) =

B̄(t)

B̄(te)
, δ(t) = Ĩ(t)− B̃(t) (25)

where the average field is measured with the fixed coil, and the time te represents steady-
state conditions, when the eddy current can be assumed to have fully decayed. The
difference δ represents the relative impact of nonlinear effects, and it can be clearly seen to
undergo an exponential decay according to the following expression:

δ(t) = −A0e−
t−t0

τ (26)

where t0 = 4.2 s is the end of the ramp-up, A0 represents the peak relative field error, and τ
is the time constant of the decay [14]. Equation (26) has been fitted with least squares to
measurements taken with the induction coil and the pulsed SSW method with the wire
stroke range ±5,±10,±20, and ±30 mm, and the results are reported in Table 4. The
variance of the fitted parameters is lowest for the induction coil and decreases as the SSW
wire stroke increases, which is consistent with the levels of signal noise appearing in the
example shown in Figure 14a. This result is also in agreement with the findings reported in
Figure 11, which shows the signal noise decreasing with d.

Measurements were repeated for cycles with plateaus at different levels, and the
results are also listed in Table 4. The fitted parameters are reported in Table 5, and the
RMSE residuals of the exponential fitting are plotted in Figure 13 as a function of the
integrated field. The accuracy of the fitting improves with increasing d and, even more
substantially, with the inverse of the field level.

Figure 13. Normalized current and field showing the eddy current decay.
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Table 4. Dynamic performance of the p-SSW and fixed coil setups. Values were calculated from the

results across 81 measurements. Relative values are presented with respect to the magnetic field at

5400 A (1.835 Tm).

Measurement
Method

Current (A)
τ

(ms)
Avg. ± σ

A0

(10−4)
Avg. ± σ

Fit Error
(10−4)
RMS

Fixed Coil 500 48 ± 17 3.0 ± 0.2 0.2

Fixed Coil 1000 93 ± 15 4.4 ± 0.3 0.2

Fixed Coil 1500 121 ± 14 4.9 ± 0.2 0.2

Fixed Coil 2000 85 ± 18 5.1 ± 0.2 0.2

Fixed Coil 2500 99 ± 11 5.5 ± 0.3 0.2

Fixed Coil 3000 116 ± 7 6.2 ± 0.2 0.2

Fixed Coil 4080 125 ± 7 6.6 ± 0.3 0.2

Fixed Coil 4700 142 ± 3 7.1 ± 0.2 0.2

Fixed Coil 5400 146 ± 3 14.9 ± 0.3 0.2

±5 mm p-SSW 5400 137 ± 42 15.2 ± 1.4 0.8

±10 mm p-SSW 5400 143 ± 21 14.7 ± 0.9 0.4

±20 mm p-SSW 5400 149 ± 14 14.6 ± 0.6 0.3

±30 mm p-SSW 5400 144 ± 9 14.5 ± 0.4 0.3

(a) (b)

Figure 14. (a) Normalized magnetic field measured on the 5400 A test cycle. (b) Normalized

RMS residual calculated across all measurement plateaus. Values are relative to corresponding

magnetic field.

4.5. Comparison with Static SSW

The performance of the combined SSW method was compared with that of the static
SSW, which is the reference method for DC conditions. For both methods, the integrated
field measured with a stroke of ±30 mm is reported in Table 5 for each plateau level from
500 to 3000 A, along with the standard deviation over three consecutive repetitions. The
relative difference over all current levels has a systematic (average) value of 3.8 · 10−5,
while the standard deviation is 1.2 · 10−4. These results confirm that the performance of the
combined SSW method meets operational requirements, which are typically of the order
of 10−4.
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The comparison is also made in terms of the integral transfer function, illustrated in
Figure 15 and defined as the ratio between the integral field and the current:

TF(I) = lm
B̄(I)

I
(27)

The transfer function is a very useful tool, not only because it allows machine operators to
easily set the current necessary to achieve a given field, but also because it helps to visualize
even minor deviations from the desired linear behavior, which ideally corresponds to a
simple flat line. Moreover, by normalizing with respect to the current, the confounding
impact of current reproducibility is eliminated inherently. This is reflected in the systematic
relative difference with respect to the static SSW, which reduces to 2.1 · 10−5, while the
standard deviation is 1.3 · 10−4.

500 1000 1500 2000 2500 3000

3.476

3.478

3.48

3.482

3.484
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10

-4

Figure 15. Transfer function measured with the fixed coil, static, and combined SSW in the current

range allowing for DC powering. Error bars represent twice the standard deviation over three

consecutive repetitions.

Table 5. Summary of the main results obtained with the different measurement methods. All SSW

measurements were performed with a ±30 mm stroke.

Current
(A)

Integral Field
lmB̄ (Tm)

Integral Transfer Function
lmB̄

I

(

10−4 Tm
A

)

Induction Coil Calibration
weff (mm)

s-SSW c-SSW s-SSW c-SSW s-SSW c-SSW

0 0.00054 - - - - -

500 0.17414 ± 0.00001 0.1741 ± 0.00005 3.4828 ± 0.0002 3.4820 ± 0.0008 - 708.27 ± 0.24

1000 0.34824 ± 0.00001 0.34823 ± 0.00006 3.4824 ± 0.0001 3.4824 ± 0.0006 708.30 ± 0.03 708.26 ± 0.17

1500 0.52228 ± 0.00001 0.52228 ± 0.00008 3.4818 ± 0.0000 3.4819 ± 0.0006 - 708.27 ± 0.17

2000 0.69623 ± 0.00001 0.69616 ± 0.00007 3.4811 ± 0.0000 3.4808 ± 0.0004 - 708.29 ± 0.10

2500 0.86996 ± 0.00001 0.86995 ± 0.00005 3.4798 ± 0.0000 3.4798 ± 0.0002 - 708.29 ± 0.06

3000 1.04323 ± 0.00001 1.04338 ± 0.00005 3.4774 ± 0.0000 3.4779 ± 0.0002 - 708.34 ± 0.05

4080 - 1.41406 ± 0.00006 - 3.4659 ± 0.0001 - 708.43 ± 0.03

4700 - 1.61743 ± 0.00004 - 3.4413 ± 0.0001 - 708.50 ± 0.03

5400 - 1.83548 ± 0.00006 - 3.3990 ± 0.0001 - 708.56 ± 0.03
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4.6. Comparison with the Fixed Coil Setup

The comparison between pulsed SSW and fixed coil is analyzed in detail with the aim
of deriving the coil calibration across the whole range of currents. We remark that adding
or not the residual field to the pulsed SSW results has no impact, provided, of course, that
the same is applied to the coil results. The transfer functions measured over the entire set
of test cycles with the fixed coil and the pulsed SSW are plotted in Figure 16, separately, for
the four-stroke lengths ±5,±10,±20, and ±30 mm. The calibration used for the fixed coil
is that obtained with the flip-coil method.

(a) (b)

(c) (d)

Figure 16. Transfer function of cycles with plateaus from 500 to 5400 A measured with the p-SSW

and the fixed coil. (a) wd = ±5 mm. (b) wd = ±10 mm. (c) wd = ±20 mm. (d) wd = ±30 mm.

As a general characteristic, the transfer function is approximately flat on the ramp-up
between 1000 and 3500 A, which is indicative of the desired linear response. At higher
currents, the curve drops by about 2.3% due to iron saturation. This drop, measured
in the magnet gap, depends on the average level of saturation of the whole iron yoke
and is, therefore, one order of magnitude below the drop registered by individual ∆Φp

measurements, which capture the much higher level of saturation of the side plates. On the
intermediate plateaus and on the flat-top of the excitation cycles, we observe an increase
in the field at constant current due to the decay of the eddy currents that screen the
field in the gap. As discussed in Section 4.4, steady-state conditions apply at the end of
the decay transient and the corresponding values are listed in Table 5. The ramp-down
of the hysteresis loop is not relevant for synchrotrons such as the PSB, as no beam is
circulating. Both branches of the loop diverge as the current approaches zero, due to
the presence of a residual field. All these features are captured equally well by both
measurement methods. Consistent with the results reported in the previous sections, the
reproducibility of the pulsed SSW improves dramatically as the stroke lengthens and the
field increases. At injection (I ≈ 1100 A), the relative standard deviation changes from
0.6% at ±5 mm (Figure 16a) to 0.1% at ±30 mm (Figure 16d), further dropping to 0.03% at
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5400 A. This result confirms the choice of the wire stroke d∗ = 60 mm as the optimal one,
which we also used as the basis to derive the coil calibration.

The comparison between the two methods was carried out using the ratio ρ between
the respective transfer functions, which can be expressed as follows:

ρ(I) =
TFcoil(I)

TFp(I)
=

B̄coil(I)

B̄p(I)
=

d∗

w1000

∆Φcoil(0, I)

∆2Φp(−
d∗
2 , d∗

2 , 0, I)
(28)

The ratio corresponding to the ±30 mm pulsed SSW is plotted as a function of time in
Figure 17a and of current in Figure 17b, where only the 1000 A plateau cycle is shown. As
expected, at low current, ρ ≈ 1, except for a discontinuity corresponding to the decay of
the eddy currents on the plateau. However, as the current increases above 2000 A, the ratio
increases almost linearly by as much as 0.04% at 5400 A, which denotes a substantial change
in coil calibration with field level. The effective coil width can be derived by combining (21)
and (29) to obtain

weff(I) = ρ(I)w1000 (29)

The results are listed in Table 5 and plotted in Figure 18a, where the error bars represent
the standard deviation over the set of nine test cycles. As a first approximation for practical
use, the effective width can be reasonably well fitted by the following linear expression:

weff(I) = w0 + w′ I

Imax
(30)

where w0 = 0.7082 m and w′ = 4.0 · 10−4. The initial value is very close to the one
obtained by the flip-coil calibration method, i.e., 0.7083 m. This could be expected to
apply throughout the linear part of the range. However, an accurate evaluation in this
region is impeded by the high standard deviations due to low signal levels. The increase
in the effective width at a high field can be explained by one, or both, coil ends being
marginally wider than the central part, thus being able to capture more of the high-field
leakage due to saturation. Such a geometrical imperfection is actually often observed in
coils wound with multiconductor cables due to their stiffness, which makes it relatively
difficult to bend the, around the 90° corners at the ends of the winding form. Regardlesss
of the physical origin, using the calibration (30) allows the elimination of any systematic
current-dependent discrepancy with respect to pulsed SSW measurements, as shown in
Figure 18b.

(a) (b)

Figure 17. Ratio between the transfer functions measured with fixed coil and the ±30 mm pulsed

SSW over a 1000 A test cycle. (a) As a function of time. (b) As a function of current.
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Figure 18. (a) Induction coil effective width derived from the difference with respect to ±30 mm

combined SSW measurements. Vertical error bars represent 2-sigma standard deviation of over

9 measurements. (b) Relative difference between the test cycles measured with the fixed coil and

±30 mm c-SSW setups. The plot shows the improvement in accuracy due to the current-dependent

weff(I) calibration.

5. Conclusions and Future Work

In this paper, we presented a novel method for measuring the dynamic integral field
of an accelerator magnet using the SSW measurement bench. The pulsed SSW method was
shown to accurately characterize the integral field of the CERN PSB bending dipole over its
entire range of operation, which was not possible using the previous static implementation.
Similar to static SSW, the measurement uncertainty was shown to depend strongly on
the wire stroke. Therefore, we suggest identifying an optimal stroke width that meets the
measurement precision without compromising the uncertainty from the field uniformity.
The pulsed SSW shows no significant systematic difference compared to the static SSW,
with a relative RMS difference of less than 2 · 10−4 across their shared field range. This level
of performance is closely comparable to that of other instrumentation and generally up to
beamline requirements.

No implementation of the SSW method can clearly compete with a multiturn induction
coil in terms of SNR, immunity to high-frequency external perturbations, and practicality
of use in a context requiring multiple dynamic measurements of different magnetic cycles.
However, the pulsed SSW method offers crucial advantages with its extreme geometrical
adaptability and accuracy of the width over the flux-capturing area. Moreover, the dy-
namic performance was shown to improve with the rate of change of the magnetic field
under conditions that make static SSW measurements more difficult. Overall, this method
represents a valid general alternative to the static SSW, demonstrating its viability as a
metrological reference when calibrating an induction coil as a function of the iron core’s
saturation level. Future planned developments include widening the wire stroke into the
nonuniform field region and the estimation of the field harmonic errors; upgrading the
signal conditioning electronics to improve EMI robustness and SNR; and extending the
method to quadrupole and higher-order multipole magnets.
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