
REAL TIME CRYSTAL COLLIMATION MONITORING
AT THE CERN LARGE HADRON COLLIDER∗

G. Ricci1,† , M. D’Andrea2, R. Cai, M. Di Castro,
E. Matheson, D. Mirarchi, A. Mostacci1, S. Redaelli

CERN, European Organization for Nuclear Research, Geneva, Switzerland
1also at Università degli Studi di Roma “La Sapienza”, Roma, Italy

2presently at INFN Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro, Italy

Abstract
At the CERN Large Hadron Collider (LHC), bent crystals

play a crucial role in efficiently redirecting ion-beam halo
particles toward secondary collimators used for absorption.
This innovative method leverages millimeter-sized crystals
to achieve deflection equivalent to a magnetic field of hun-
dreds of Tesla at LHC’s highest energies. This advancement
significantly enhances the machine’s cleaning performance.
Nevertheless, ensuring the ongoing effectiveness of this pro-
cess requires maintaining optimal angular alignment of the
crystals against the circulating beam. This study aims to
improve the monitoring of crystal collimation to provide a
tool that detects deviations from the optimal channeling ori-
entation during beam operation. These deviations may arise
not only from crystal movements but also from fluctuations
in beam dynamics. The ability to adapt and compensate for
these changes is crucial for ensuring consistent and stable
performance of crystal collimation during LHC operations.
To achieve this, a feed-forward neural network (FNN) was
trained using data simulated with the SixTrack-FLUKA Cou-
pling reproducing the pattern of losses obtained during the
2023 ion run. The findings reveal that while the network
can learn from the dataset, it lacks the ability to supervise
the crystal devices effectively. Thus, it underscores the chal-
lenge of accurately classifying when the crystal is optimally
aligned with the circulating beam during operation.

INTRODUCTION
The crystal collimation technique, a new approach ex-

tensively investigated for deployment as part of the High-
Luminosity Large Hadron Collider (HL-LHC) upgrade [1],
aims to enhance the ion-beam cleaning efficiency of the LHC
collimation system [2–8]. This method leverages the unique
property of materials with highly organized atomic struc-
tures to capture charged particles under appropriate impact
conditions within the potential well formed by adjacent crys-
talline planes, a phenomenon known as planar channeling.
Utilizing bent crystals, this technique efficiently redirects
beam halo particles by forcing them to follow the curvature
of the crystal [5].

Achieving and maintaining the optimal channeling condi-
tions in a reliable way is crucial for the efficient deployment
of a crystal-based collimation system at the LHC. The parti-
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cles to be channeled must closely align with the orientation
of the crystalline planes to be effectively captured within
the potential well. This defines the acceptance angle for
the channelling phenomenon, and is known as the critical
angle. At energies approaching 7 𝑍 TeV, the critical angle
is only around 2.5 μrad [7]. To address this challenge, the
crystal goniometer assembly incorporates a high-resolution
goniometer equipped with a piezo actuator [9–11] to align
the crystal orientation with the beam halo. However, chang-
ing beam and environmental conditions imply the need for
continual adjustment of the crystal orientation to ensure that
the channeling condition is maintained.

This study introduces a Feed-forward Neural Network
(FNN) deep learning model designed to enhance the classi-
fication of the crystal’s state during operation. Its purpose is
to streamline the utilization of these devices by monitoring
potential deviations from the optimal channeling orientation,
which could diminish the cleaning efficiency of the crystal
collimation scheme.

CRYSTAL COLLIMATION AND
PROBLEM FORMULATION

As outlined in [12], the HL-LHC upgrade includes the
implementation of crystal collimation for ion beams, a tech-
nique employing bent crystals to coherently manipulate halo
particles, directing them towards a single absorber in either
the vertical or horizontal plane through planar channeling.
Ideally, only one crystal per beam and per plane is required,
along with an absorber to capture channeled particles [5].
Attaining optimal performance using this novel collimation
technique necessitates precise angular alignment of the crys-
tals with the beam envelope. Determining the appropriate
channeling orientation and maintaining it are highly chal-
lenging tasks. A method to find the channeling orientation
has already been addressed in [13]. This study will focus on
the second task: maintaining the optimal channeling orien-
tation position during operation with high-intensity beams.

The ideal channeling orientation can be monitored using
Beam Loss Monitors (BLMs) [14,15] positioned at the lo-
cation of the collimators. These monitors are designed to
detect beam losses by measuring the ionization generated
when beam particles interact with their gas volume, produc-
ing a signal measurable in units of Gy/s. With the use of
BLMs it is possible to monitor the various orientation states
of the crystal: (1) amorphous, where the orientation deviates
significantly from optimal channeling, causing the crystal to
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behave like a typical amorphous scatterer; (2) channeling,
characterized by particles being trapped between the crys-
talline planes, resulting in reduced inelastic interaction rates
and increased losses at the secondary collimator intercept-
ing the channeled particles; (3) volume reflection, wherein
particles bounce off the crystalline planes rather than be-
ing channeled, with slightly higher losses occurring at the
crystal location and lower losses at the absorber collimator
location. Each orientation shows characteristic loss patterns
that can be used to identify the state of the crystal. As an
example the loss pattern in Fig. 1 shows the BLM signals
in the transverse collimation region of the LHC (IR7) when
the crystal is in its channeling orientation. In this case the
highest peak occurs at the secondary collimator intercepting
the channeled halo.

Figure 1: Beam Loss monitor loss pattern for the horizontal
plane of Beam 1 with the crystal collimation system in its
channeling orientation.

Numerous tests were conducted at the LHC to compre-
hensively characterize crystal-assisted collimation before
deployment in operation. However, all these tests were con-
ducted during Machine Development studies, over short
durations and with low beam intensities. During the first
operational deployment of crystal-assisted collimation with
high-intensity beams in the 2023 Pb run [16], significant
stability issues were observed with the devices, posing chal-
lenges in maintaining channeling during the run. All four
devices (one per beam per transverse plane) were affected,
but this study primarily concentrates on the horizontal de-
vice of Beam 1, as it exhibited sufficient persistent losses to
enable continuous monitoring of the crystal orientation.

Figure 2 illustrates the angle adjustment required to main-
tain the optimal channeling orientation over time. It can be
seen that the crystal positioned on Beam 1 in the horizon-
tal plane during flat top (period at which the LHC is at its
maximal energy) exhibited noticeable fluctuations from the
initial optimal alignment. The initial optimal channeling
orientation was determined during commissioning with low-
intensity beams and the deviation from this reference value
was calculated using a tool [18] designed to optimize angular
orientation. These observations led to the conclusion that
real-time monitoring and classification of the crystal state
during operation are necessary.

DATASET
The data utilized in this study makes use of the losses

expected at different locations of the accelerator simulated
using coupling of the SixTrack and FLUKA codes [19–

Figure 2: Offset from the initial optimal channeling orienta-
tion as a function of time at flat top, from Ref. [17].

25]. FLUKA is a widely employed Monte Carlo simulation
software package for particle transport and interactions with
matter that enables particle behaviour to be to accurately
modelled as they interact with various materials. SixTrack
allows the 6D symplectic multi-turn magnetic tracking of
particles. Leveraging these tools, we successfully simulated
the beam’s interaction with the crystal at varying energies.
The scenario used in these simulations is that of the LHC
during the 2023 ion run. An initial distribution of 1 × 106

Pb ions in a pencil beam that impacts the crystal at a depth
of 1 µrad [26] was setup. The resulting particles were then
tracked until they hit the aperture or were absorbed by a
collimator.

The simulation involves the crystal interacting with the
beam under three distinct conditions: channeling, volume
reflection, and amorphous configurations. As depicted by
the green bars in Fig. 3, when the crystal (TCPCH.A4L7.B1)
is in channeling, the device absorbs minimal energy. This is
because the particles channeled through the lattice planes
encounter fewer interactions with atomic nuclei in the crys-
tal. On the other hand, the energy absorbed by the secondary
collimator (TCSPM.B4L7.B1) is notably higher because it
intercepts the particles channeled by the crystal. For a crys-
tal in amorphous conditions (red bars in Fig. 3), the energy
absorbed by the crystal exceeds the energy observed by the
secondary collimator as it behaves like a standard scatterer,
with the beam interacting with the crystal material. Conse-
quently, the energy absorbed by the secondary collimator
decreases. In the case of volume reflection (blue bars), the
loss pattern resembles that of the amorphous case, with the
notable addition of a concentration of energy deposited near
the crystal and the TCSPM.6R7.B1 collimator.

Feed-forward Neural Networks (FNNs), due to their shal-
low architecture, require a substantial volume of diverse
data to effectively discern intricate patterns. To mitigate the
computational cost of extensive simulations, the dataset un-
derwent enlargement, augmenting the number of examples
available for network learning, thus bolstering its general-
ization and robustness. Furthermore, data augmentation
served to mitigate overfitting during training, a prevalent
issue in FNNs, by imposing regularization through exposure
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Figure 3: Absorbed energy distribution of impacting parti-
cles normalized to the total energy loss observed on various
collimators when the horizontal crystal experiences channel-
ing, amorphous, or volume reflection conditions on Beam 1.

to diverse instances of the dataset. In essence, dataset en-
largement amplifies the efficacy and dependability of FNN
models by infusing the training data with a set of varied
samples.

The process of enlarging the dataset involved several key
steps. Initially, the standard deviation of the noise to be
added to the dataset is determined using a factor derived
from the minimum value present in the original dataset.
Subsequently, random noise, characterized by the previously
calculated standard deviation, is added to the dataset. This
noise is sampled from a normal distribution centred at 0
with the determined standard deviation. This method en-
sures the generation of an expanded and diversified dataset
while preserving the underlying patterns of the data classes,
thereby facilitating the training of the FNN. The augmented
dataset was divided into a test set, comprising 20% of the
original dataset (300 samples), and the enlarged training set
containing the remaining portion (1200 samples).

THE MODEL
The model used in this work is a feed-forward neural

network that takes as input the normalized energy in 11 dif-
ferent collimators located in IR7. The FNN is forced to
discern complex patterns within the dataset that correspond
to the three states of the crystal. The FNN described in this
paper utilizes the Adam optimizer for training. The archi-
tecture consists of three dense layers. The first has 16 units
and incorporates a dropout rate of 0.1 to prevent overfitting.
Following this, the second dense layer contains 80 units
and employs a dropout rate of 0.5. Finally, the third dense
layer consists of 176 units with a dropout rate of 0.5. These
dropout layers aid in regularizing the model and reducing
the likelihood of overfitting by randomly dropping a fraction
of connections during training. The optimal architecture of
the feed-forward neural network was determined through a
systematic search process, specifically employing random
search methodology, to ensure robust performance and gen-
eralization capability. As depicted in Fig. 4, during training
the model exhibits a narrowing gap between the training and
validation loss. Where the training loss measures how well

the performs on the training data during the training phase,
while the test loss, evaluates the model’s performance on
data that it has not seen during training. The convergence ob-
served suggests that the model has learned pertinent patterns
from the training dataset without overfitting.

Although the model demonstrated good performance dur-
ing training, achieving a low validation loss, it failed to
generalize effectively when presented with unseen BLM
data logged during ion runs. This limitation may stem from
the utilization of a model trained on simulated data for clas-
sifying real-world data, emphasizing the critical need to
bridge the gap between simulated and actual operational
environments.

Figure 4: Loss Curves for training and test sets. The plot
depicts the progressive reduction of test loss, aligning closely
with the train loss curve, signifying effective learning of the
model.

CONCLUSIONS
In this study, we aimed to enhance the monitoring and

classification of crystal collimator states during operation at
the CERN Large Hadron Collider (LHC). Our efforts focused
on developing a Feed-forward Neural Network (FNN) model
to detect deviations from the optimal channeling orientation
of crystals during LHC operations. We trained the model
using simulated data generated by coupling the SixTrack
and FLUKA simulation codes, with the aim of replicating
conditions observed during the 2023 ion run.

Despite the promising performance of the FNN during
training, it failed to effectively generalize when presented
with unseen Beam Loss Monitor (BLM) data collected dur-
ing ion operations. This limitation underscores the challenge
of bridging the gap between simulated and real-world opera-
tional environments. Further efforts are needed to improve
the model’s ability to classify crystal states accurately during
actual LHC operation.

Our study highlights the complexity of integrating ad-
vanced machine learning techniques into practical opera-
tional contexts, particularly in high-energy physics environ-
ments like the LHC. Future research directions may involve
refining the FNN architecture, incorporating losses observed
in other locations of the accelerator as inputs, and exploring
alternative training methodologies to enhance the model’s
performance in real-world scenarios.
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