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1 Introduction

Measuring polarisation and spin correlations in multi-boson systems in high-energy particle
collisions is a key to access the intricate structure of the electroweak (EW) sector of the
Standard Model (SM), and more in general the deepest properties of quantum mechanics
(QM). The Large Hadron Collider (LHC) provides a unique opportunity to achieve these
challenging purposes, thanks to its broad physics programme.

The simplest multi-boson system with a non-trivial helicity structure is formed by two EW
bosons. This leads to a tree-level spin-density matrix that embeds 8 independent polarisation
coefficients for each boson, and 64 spin-correlation coefficients. Besides the fact that the
actual value of these coefficients depends on the production mechanism (EW production,
vector-boson scattering, gluon fusion, Higgs-boson decay etc.), accessing them in the LHC
environment is hampered by the application of fiducial selection cuts on decay products, the
inclusion of higher-order corrections to the production and decay mechanisms, the presence
of neutrinos amongst decay products, the contamination from non-resonant effects. It is
crucial to notice that such obstacles represent actual physical effects, and as such their nature
is both experimental and theoretical.

The current paradigm for polarisation measurements of di-boson inclusive production [1–
5] and scattering [6] with the LHC Run-2 dataset is the so-called polarised-template method,
which is based on SM predictions for di-boson processes with definite polarisation states
for intermediate EW bosons [7–24]. This approach is somewhat complementary to the one

– 1 –



J
H
E
P
1
2
(
2
0
2
4
)
1
2
0

employed by ATLAS and CMS collaborations for the Run-1 dataset, which relied on the
extraction of angular coefficients upon a kinematic extrapolation to the fully inclusive boson-
decay phase space in single-boson production associated with jets [25–28], and in top-quark
decays [29, 30]. The latter strategy, often dubbed quantum tomography, is known to the
community since long ago and is still developed by theory groups [31–41]. Interestingly, it has
been recently revived in the lights of the growing interest in probing quantum entanglement
and Bell inequalities at the LHC [42–54].

The study of entanglement probes and Bell-inequality tests in a di-boson system relies
on the extraction from LHC data of the di-boson spin-density matrix, from a four-fermion
final state. In fact, the quantum witnesses that are typically studied in the literature are
combinations of the entries of the spin-density matrix, which eventually leave their footprints
in the angular structure of the decay products of the two bosons. All in all, measuring quantum
entanglement at the LHC relies on the extraction of angular coefficients through quantum
tomography, which in turn allows the reconstruction of the spin-density matrix. While this
method has been first introduced relying on the tree-level structure of on-shell di-boson
production and decay and assumes fully inclusive setups, a detailed assessment of the effects
of fiducial cuts, higher-order corrections and off-shell modeling is still missing in the literature.

With this work, we investigate the aforementioned realistic effects, narrowing the gap
with previous phenomenological studies and broadening the theoretical understanding needed
for upcoming experimental studies in the field. The article is organised as follows. In section 2
we set up our computational framework for the extraction of angular coefficients, introduce
spin correlations and their connection to quantum observables. In section 3 we describe in
detail the scattering and decay processes considered in this work, along with the corresponding
numerical setups and the used simulation tools. In section 4 we show the results of our
numerical study and scrutinise the effect of off-shell modeling, higher-order corrections and
selection cut on the extraction at the LHC of the angular coefficients that serve as inputs to
relevant quantum observables. We draw our conclusions in section 5.

2 Computational framework

2.1 Angular coefficients

It is well known [32, 33] that the decay rate of a weak boson into a pair of fermions, differential
with respect to the decay angles, embeds information regarding the helicity state of the
boson; for a spin-1 state, the latter can be represented in terms of spherical harmonics up to
rank-2 [7, 35, 36, 41]. Since it is relevant to identify the charge of the fermion to discriminate
between left- and right-handed modes, we only focus on leptonic decays, namely,

Z → ℓ+ℓ−, W+ → ℓ+νℓ , (2.1)

and identify the decay angles in the boson rest frame (θ, ϕ) as those associated to the positively
charged lepton. The structure of a W− → ℓ−ν̄ℓ can be easily obtained from the one of a
W+ by charge conjugation. In formulas,

dσ

d cos θ dϕ dX = dσ

dX

 1
4π

+
2∑

l=1

l∑
m=−l

αlm(X )Ylm(θ, ϕ)

 , (2.2)
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where X is any other kinematic observable independent of the decay angles, e.g. the transverse
momentum of the decaying boson. The Ylm(θ, ϕ) are real spherical harmonics, normalised
in such a way that ∫ 1

−1
d cos θ

∫ 2π

0
dϕ Ylm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ . (2.3)

When no selection cuts are applied on individual decay products, the 8 angular coefficients
can be easily extracted according to

dσ

dX αlm(X ) ≡
∫ 1

−1
d cos θ

∫ 2π

0
dϕ

dσ

dϕ d cos θ dX Ylm(θ, ϕ) . (2.4)

We notice that the expansion in spherical harmonics is equivalent to the one in other
projectors [7, 32, 33, 36, 37] or asymmetries [38, 39, 41], provided that they represent a
complete basis for the ℓ ≤ 2 angular structure. The extension of eq. (2.2) to the case of
two weak bosons decaying into pairs of leptons,

V (→ ℓ1ℓ2)V ′(→ ℓ3ℓ4) (2.5)

can be written [41, 44] as follows,

dσ

d cos θ1 dϕ1 d cos θ3 dϕ3 dX
= dσ

dX

[ 1
(4π)2 + (2.6)

+ 1
4π

2∑
l=1

l∑
m=−l

α
(1)
lm(X )Ylm(θ1, ϕ1)

+ 1
4π

2∑
l=1

l∑
m=−l

α
(3)
lm(X )Ylm(θ3, ϕ3)

+
2∑

l1=1

2∑
l3=1

l1∑
m1=−l1

l3∑
m3=−l3

γl1m1l3m3(X )Yl1m1(θ1, ϕ1)Yl3m3(θ3, ϕ3)
]

,

where θ1, ϕ1 (θ3, ϕ3) are the polar and azimuthal angles associated to the decay of the first
(second) boson. Notice that θ1, ϕ1 are computed in the rest frame of the (ℓ1, ℓ2) system, while
θ3, ϕ3 are computed in the rest frame of the (ℓ3, ℓ4) system.

As a last remark of this subsection, we recall that while the analytic structure of eq. (2.6)
(and of eq. (2.2)) remains the same in any helicity reference frame, the actual value of the
extracted coefficients depends on the choice of the coordinate system and especially on the
Lorentz frame where the helicity states of intermediate bosons are defined, i.e. the reference
frame for the spin quantisation. The di-boson system is identified as the system formed by
the four physical leptons; such a choice is robust in the presence of higher-order corrections.
For di-boson systems the typical frames chosen for polarisation and spin-correlation studies
are the laboratory, and the di-boson centre-of-mass (CM) frame. The latter, at LO, coincides
with the partonic CM frame in EW production or with the Higgs-boson rest frame in Higgs
decays. The studies of quantum observables for entanglement and Bell-inequality tests [42–54]
typically employ the di-boson CM frame. In this work, unless otherwise stated, we will
employ the di-boson CM frame as Lorentz frame for the helicity-state definition, and the
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Figure 1. Definition of the coordinate system in the case of a ZZ system.

di-boson-system direction in the laboratory as a reference axis to determine azimuthal decay
angles. An illustration of the chosen reference frame, often dubbed modified helicity coordinate
system [1], is given in figure 1. In our investigation of Higgs-boson decays in section 4.3, we
will compare this choice with the one of the Higgs-boson rest frame.

2.2 Polar spin correlations and the Rc quantity

The full structure of eq. (2.6) contains relevant information about how correlated the spin of
the two EW bosons are. In other words, the difference between eq. (2.6) and a factorised
form of it resulting from the combination of two eqs. (2.2) (one for each boson) gives a
number of quantitative measures of the spin correlations. In order to give an example, we
consider the simple case of a quantity that can be constructed uniquely with polar angular
coefficients. Integrating over the azimuthal angles, the decay rate differential in the two
polar decay angles reads,

dσ

d cos θ1 d cos θ3 dX
= dσ

dX

[1
4 + π

2∑
l=1

α
(1)
l,0 (X )Yl,0(θ1) + π

2∑
l=1

α
(3)
l,0 (X )Yl,0(θ3) (2.7)

+4π2
2∑

l1=1

2∑
l3=1

γl1,0,l3,0(X )Yl1,0(θ1)Yl3,0(θ3)
]

,

where Yli,0(θi) = Yli,0(θi, ϕi = 0) is a Legendre polynomial of degree li, up to a normalisation
factor. Eq. (2.7) embeds 8 independent coefficients and can be re-written in terms of the
joint polarisation fractions fλλ′ (first polarization index for the first boson, second index for
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the second boson), with λ′, λ = L (longitudinal), + (right handed), − (left handed):

dσ

dcosθ1 dcosθ3 dX
= 9

64
dσ

dX
[
4fLL(X ) sin2 θ1 sin2 θ3 (2.8)

+ 2fL−(X ) sin2 θ1
(
1−2η3 cosθ3+cos2 θ3

)
+ 2fL+(X ) sin2 θ1

(
1+2η3 cosθ3+cos2 θ3

)
+ 2f−L(X )

(
1−2η1 cosθ1+cos2 θ1

)
sin2 θ3

+ 2f+L(X )
(
1+2η1 cosθ1+cos2 θ1

)
sin2 θ3

+ f−−(X )
(
1−2η1 cosθ1+cos2 θ1

)(
1−2η3 cosθ3+cos2 θ3

)
+ f−+(X )

(
1−2η1 cosθ1+cos2 θ1

)(
1+2η3 cosθ3+cos2 θ3

)
+ f+−(X )

(
1+2η1 cosθ1+cos2 θ1

)(
1−2η3 cosθ3+cos2 θ3

)
+ f++(X )

(
1+2η1 cosθ1+cos2 θ1

)(
1+2η3 cosθ3+cos2 θ3

) ]
,

where the parameter ηℓ is the asymmetry between the left- and right-chirality coupling
strengths of the EW-boson to leptons (ηℓ = η1 = η3). This quantity can be expressed, in
the (Gµ, MW, MZ) input scheme, for massless leptons, as

ηℓ =
c2

ℓ,− − c2
ℓ,+

c2
ℓ,+ + c2

ℓ,−
= 4MW

2MZ
2 − 3MZ

4

8MW
4 − 12MW

2MZ
2 + 5MZ

4 ≈ 0.219 . (2.9)

The joint polarisation fractions in eq. (2.8) sum up to unity and are related to single-boson
polarisation fractions f

(1)
λ (first boson) and f

(3)
λ′ (second boson) by means of the relations,∑

λ,λ′

fλλ′ = 1 ,
∑
λ′

fλλ′ = f
(1)
λ ,

∑
λ

fλλ′ = f
(3)
λ′ . (2.10)

Using eq. (2.10), the independent coefficients in eq. (2.7) are easily expressed as linear
combinations of single-boson and joint polarisation fractions:

α
(i)
1,0 =

1
4

√
3
π

ηi

(
f

(i)
+ −f

(i)
−

)
, α

(i)
2,0 = 1−3f

(i)
L

4
√
5π

, (2.11)

γ1,0,1,0 =3η1η3
f−−+f++−f−+−f+−

16π
, γ2,0,2,0 = 1−3f

(1)
L −3f

(3)
L +9fLL

80π
,

γ1,0,2,0 =
√

3
5 η1

3
(
f−L−f+L

)
−
(
f

(1)
− −f

(1)
+

)
16π

, γ2,0,1,0 =
√

3
5 η3

3
(
fL−−fL+

)
−
(
f

(3)
− −f

(3)
+

)
16π

.

It has been recently proposed by ATLAS [3] to evaluate the level of correlation between
the two longitudinally polarised bosons through the variable Rc, which is directly related
to angular coefficients with l = 2, m = 0,

Rc =
fLL

f
(1)
L f

(3)
L

=
1− 4

√
5π α

(1)
2,0 − 4

√
5π α

(3)
2,0 + 80π γ2,0,2,0

1− 4
√
5π α

(1)
2,0 − 4

√
5π α

(3)
2,0 + 80π α

(1)
2,0 α

(3)
2,0

, (2.12)
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where the second expression is easily obtained inverting the relations in eq. (2.11). If the
spin states of the two bosons were completely uncorrelated, then one would have Rc = 1. A
value different from 1 has been measured by ATLAS in ZW inclusive production [3] and is
predicted in the SM at NLO QCD+EW [12, 15], clearly pointing in a marked correlation. A
word of caution is needed here. While the quantity Rc can be evaluated in any kinematic
setup as a ratio of polarisation fractions, thanks to the polarisation-template method [7–24],
its evaluation in terms of the angular coefficients extracted with projections (see eq. (2.4))
only makes sense in a fully inclusive setup, namely in the absence of transverse-momentum
and rapidity cuts on the decay products. A detailed discussion of this aspect is carried
out in section 4.4.

2.3 Quantum observables

The characterisation of the spin structure of di-boson systems is being increasingly explored
nowadays in the context of quantum-information observables, under the compound definition
of quantum observables. Concurrence bounds, purity, and Bell inequalities are studied
for bipartite systems of qubits or qutrits, the latter representing two fermions or massive
gauge bosons respectively. Quantum observables at TeV-scale colliders like the LHC do not
only serve as further probes of the SM structure, but also as complementary probes for
potential new-physics effects, parameterised for example in the Standard Model Effective
Field Theory (SMEFT).

The development of a direct connection between high-energy physics and quantum
information from a theoretical viewpoint is mature enough to consider its effective integration
in experimental analyses at colliders. However, the interpretation of the spin-density matrix in
terms of general quantum properties of LHC processes requires some considerations about the
role of higher-order effects and selection cuts, which are unavoidable in a collider environment.
This is the purpose of this work, but before going into the details it is worth recalling some
general notation which strictly pertains quantum information and making the connection
to physical objects that can be actually accessed in LHC events.

Following the general formalism of refs. [34, 35, 44], the explicit structure of eq. (2.6),
already written in terms of angular decay variables, comes from the formal expression,

1
σ

dσ

dΩ1dΩ3
=
( 3
4π

)2
Tr {ρ (Γ(1) ⊗ Γ(3))T} . (2.13)

In eq. (2.13), ρ is the hermitian 9× 9 spin-density matrix for a boson-pair system,

ρ = 1
9

(I3 ⊗ I3) +
∑
l,m

A
(1)
l,m

(
T l

m ⊗ I3
)
+
∑
l,m

A
(3)
l,m

(
I3 ⊗ T l

m

)
+ Cl1,m1,l3,m3

(
T l1

m1 ⊗ T l3
m3

) ,

(2.14)
where I3 is the identity and T l

m are irreducible tensor representations of the vector-boson
spin [44], while A

(1,3)
l,m and Cl1,m1,l3,m3 are complex-valued coefficients. The ρ matrix is

multiplied by the tensor product Γ(1) ⊗ Γ(3), where Γ is the density matrix associated to
a spin-1-boson decay into two spin-half fermions. The correspondence between eq. (2.13)
and eq. (2.6) is then evident, since

Tr
(
I3ΓT

)
∝ Y00(θ, ϕ) , Tr

(
T l

mΓT
)
∝ Ylm(θ, ϕ) , (2.15)
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up to suitable real multiplicative factors. More precisely, the α, γ coefficients defined in eq. (2.6)
can be converted into the A, C coefficients of ref. [44] by means of the following relations:
√
40πα

(i)
2,mi

= A
(i)
2,mi

, 40πγ2,m1,2,m3 = C2,m1,2,m3 , 8πγ1,m1,1,m3/η2
ℓ = C1,m1,1,m3 . (2.16)

Notice also that the decay angles defined in this work are associated to positively charged
leptons, while in ref. [44] are associated to the negatively charged leptons.

Performing a quantum-state tomography of the global system, i.e. the four-lepton system
in di-boson, allows to obtain information about its quantum properties. A general procedure
to probe the separability of a spin-density matrix, i.e. if the two bosons are entangled or not,
is not known. However, in the case of massive-boson pairs (two qutrits) the Peres-Horodecki
condition [55] is sufficient for entanglement. If the di-boson system comes from the decay of
a scalar particle, sufficient and necessary conditions for the two bosons to be entangled are:

γ2,1,2,−1 ̸= 0 or γ2,2,2,−2 ̸= 0 . (2.17)

Furthermore, if a quantum state is close to maximal entanglement one can also probe Bell
non-locality. A suitable Bell inequality for two-qutrits systems is the CGLMP one [56], which
can be expressed in terms of the expectation value of a Bell operator,

I3 = ⟨OBell⟩ = Tr (ρOBell) ≤ 2 . (2.18)

For the case of a scalar decaying into two spin-1 massive bosons, a Bell operator that leads
to a maximal violation of eq. (2.18) is given by [44],

OBell =
2

3
√
3
(T 1

1 ⊗ T 1
1 − T 1

0 ⊗ T 1
0 + T 1

1 ⊗ T 1
−1) +

1
12(T

2
2 ⊗ T 2

2 + T 2
2 ⊗ T 2

−2) (2.19)

+ 1
2
√
6
(T 2

2 ⊗ T 2
0 + T 2

0 ⊗ T 2
2 )−

1
3(T

2
1 ⊗ T 2

1 + T 2
1 ⊗ T 2

−1) +
1
4T 2

0 ⊗ T 2
0 ,+h.c.

where the same irreducible tensor representations introduced in eq. (2.14) are used. Written
according to the angular expansion of eq. (2.6), the explicit form of I3 reads,

I3 = 1
2 + 4

√
3

9 −
√
5π

(
1− 8

√
3

9

)
α2,0 − 40π

(
2
3 + 4

√
3

9

)
γ2,1,2,−1 +

20π

3 γ2,2,2,−2 . (2.20)

Sufficient conditions for entanglement and Bell operators exist also for general boson-pair
systems [46], but are not considered in this work.

While the connection between decay-angle coefficients and quantum observables is now
made explicit, it is still based on a tree-level description of the considered processes and on the
possibility to extrapolate to a fully inclusive phase space. In order to have a solid theoretical
understanding, we raise the following issue: what is the validity limit of the tree-level angular
expansion up to rank-2 spherical harmonics, given the presence of higher-rank contributions
introduced by radiative effects and fiducial-cut application? Translated in terms of quantum
observables: are tree-level expressions for such quantities (like eq. (2.20) for I3) still suitable
observables to claim quantum entanglement or Bell-inequality violation, knowing that the
defintion of the spin-density matrix ρ in eq. (2.14) is either incomplete or not even well defined?

In the following we address the above considerations by means of a detailed discussion
of realistic effects which come into play at colliders.
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3 Process definition and numerical setup

3.1 Di-boson inclusive production at the LHC

We consider the production at the LHC of two pairs of leptons belonging to different families,
in order to avoid additional systematic uncertainties from identical leptons,

pp → e+e−µ+µ− + X , (ZZ)
pp → e+νeµ

+µ− + X . (W+Z) (3.1)

We model the above processes in the pole-approximation approach described in [11, 12,
14, 17, 18, 21] as well as in the full off-shell picture. Higher-order corrections are included
up to NLO QCD and NLO EW accuracy, and complementing NLO QCD results with
QCD+QED Parton-Shower (PS) effects. The input SM parameters are the same as those
used in refs. [12, 14] and the events are generated with Powheg-Box-Res [21, 57] . Two
kinematic selections are considered for both processes. A first one, dubbed inclusive, uniquely
involves an invariant-mass cut on charged-lepton pairs with opposite charge and same flavour,

81GeV < Mℓ+ℓ− < 101GeV , ℓ = e, µ . (3.2)

As second kinematic selections, we choose ATLAS fiducial regions employed in recent po-
larisation measurements. On top of the invariant-mass cut in eq. (3.2), for the ZZ process
we apply [4]:

pT,e(µ) > 7(5)GeV, |ye(µ)|< 2.47(2.7), pT,ℓ1(2) > 20GeV, M4ℓ > 180GeV, ∆Rℓℓ′ > 0.05 ,

(3.3)
while for WZ we apply [3]:

pT,e(µ) > 15(20)GeV, |ye(µ)| < 2.5, MT,W > 30GeV, ∆Re+e− > 0.2, ∆Re±µ+ > 0.3 .

(3.4)
The dressing of charged leptons with additional photon radiation is carried out with resolution
radius Rℓγ = 0.1. In the case of WZ production, the presence of a single neutrino allows to
reconstruct the four-lepton kinematics with standard on-shell-ness requirements [1]. While
interesting from a theoretical point of view, the W+W− mechanism is characterised by
the presence of two neutrinos, whose separate reconstruction is not possible with standard
techniques. Therefore, we do not show any result about it.

3.2 Higgs-boson decay into four leptons

In addition to di-boson inclusive production, we consider the decay of a SM Higgs-boson into
four massless charged leptons, which is considered as one of the most promising processes to
detect quantum entanglement [44, 45]. We consider the following decay reaction,

H → e+e−µ+µ− (+γ) (ZZ∗) , (3.5)

including complete EW corrections at NLO. A Higgs-boson mass of 125GeV is understood
and a minimum-invariant-mass cut is applied on both opposite-sign, same-flavour lepton pairs,

Mℓ+ℓ− > 10GeV , ℓ = e, µ . (3.6)
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The lepton dressing is carried out with resolution radius Rℓγ = 0.1. The numerical results at
LO and NLO EW have been obtained with the MG5_aMC@NLO event generator [58, 59]
and checked independently with Prophecy4f [60].

4 Results

In this section we unravel the intricate effects of a realistic modeling of di-boson production
and decay at hadron colliders in view of the extraction of polarisation and spin-correlation
coefficients. In particular, we focus on how off-shell effects, higher-order corrections of both
QCD and EW type, and selection cuts modify the extraction of entries of the spin-density
matrix for one or more resonant particles. To give quantitative evidence to such effects we
consider the processes defined in eqs. (3.1) and (3.5).

4.1 Off-shell vs on-shell modeling

The first relevant aspect for the extraction of angular coefficient is the off-shell modeling of
EW bosons. It is clear that the tree-level analytic structure of eqs. (2.2) and (2.6), which in
the case of leptonic decays remains valid in the presence of higher-order QCD corrections,
relies on the actual presence of weak bosons which are produced in s-channel and then
decay each into two leptons. Diagrams characterised by this structure are often dubbed
resonant. Strictly speaking, such a situation is physical only if the intermediate EW bosons
are on-shell [11]. In general, given a certain final state, both resonant and non-resonant
diagrams contribute to the full off-shell process. In the case of four-charged-lepton production
at the LHC, for which sample diagrams are shown in figure 2, the resonant topologies give
the dominant contribution. Indeed, the full off-shell results differ from those computed in
the pole [11–14, 18] or in the narrow-width approximation [13, 20] by less than 2% in most
of phase-space regions, as expected from the intrinsic accuracy of the employed on-shell
approximations [61, 62]. Note that diagrams with virtual-photon exchange in s-channel are
only included in the full off-shell process, as they belong to non-resonant contributions.

If the resonant topologies and therefore the on-shell-boson phase-space regions are
dominant, one expects that the angular coefficients extracted from full off-shell distributions
according to eqs. (2.2) and (2.6) are very close to those found for on-shell calculations, as long
as two-body decays are present. This is confirmed by the numerical results in table 1, where we
show a comparison of selected angular coefficients obtained with full off-shell and double-pole-
approximation (DPA) simulations. The shown coefficients are NLO accurate in QCD, and
have been computed integrating fully differential weights from POWHEG-BOX-RES [21]
multiplied by suitable combinations of spherical harmonics (ℓ ≤ 2) in the decay angles,
according to eq. (2.4) and eq. (2.6). Both ZZ and W+Z channels are considered. It is striking
to see how all coefficients computed in the DPA agree within Monte Carlo uncertainties with
those computed including off-shell effects. It is worth noticing that forcing same-flavour,
opposite-sign leptons to have an invariant-mass sufficiently close to the Z-boson mass further
suppresses non-resonant contributions, making the DPA results even closer to the off-shell
ones. If such constraints are not applicable, as in the W-boson leptonic decay, slightly larger
off-shell effects have to be expected in some phase-space regions [11, 12, 63, 64]. In sufficiently
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Figure 2. Sample diagrams contributing to off-shell ZZ production in the qq̄ channel at tree level
(a), at NLO QCD (b) and at NLO EW (c, d). Z bosons in s-channel and decaying into two same-
flavour, opposite-sign leptons (and an additional photon at NLO EW) are marked in red. Resonant
contributions entering the DPA calculation are those with two Z-boson propagators marked in red.

ZZ W+Z
full off-shell DPA δ full off-shell DPA δ

α
(1)
1,0 −0.00093(5) −0.00098(5) +5.4% −0.0464(3) −0.0472(3) +1.7%

α
(1)
2,0 0.02807(5) 0.02806(5) −0.1% 0.0283(3) 0.0289(3) +2.1%

α
(3)
1,0 −0.00102(5) −0.00109(5) +6.9% 0.0040(3) 0.0041(3) +2.5%

α
(3)
2,0 0.02794(5) 0.02802(5) +0.3% 0.0298(3) 0.0294(3) −1.3%

γ1,0,1,0 −0.00146(2) −0.00150(2) +2.7% −0.0052(1) −0.0053(1) −1.9%
γ2,0,2,0 0.00167(1) 0.00168(2) +0.6% 0.0012(1) 0.0014(1) +16.6%

α
(1)
2,−2 −0.01000(2) −0.01002(2) +0.2% −0.0120(3) −0.0118(3) −1.7%

α
(3)
2,−2 −0.01001(2) −0.00999(2) −0.2% −0.0074(3) −0.0078(4) +5.4%

Table 1. Angular coefficients for ZZ and W+Z at NLO QCD accuracy in the full off-shell and DPA
calculation, computed by Monte Carlo integration of fully differential weights multiplied by suitable
spherical harmonics (l ≤ 2) in the decay angles, according to the structure of eq. (2.6). The label
1(3) is associated to coefficients associated to the first (second) boson. The inclusive setup defined
in eq. (3.2) is understood. Numerical-integration uncertainties are shown in parentheses. A fixed
renormalisation and factorisation scale µF = µR = (MV1 + MV2)/2 is assumed. The δ percentages are
defined as the difference between the DPA and full off-shell results, relative to the full off-shell ones.
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σ α
(1)
2,0

full off-shell DPA δ full off-shell DPA δ

LO 21.483(8) 21.209(7) −1.28% 0.02977(2) 0.02982(3) +0.16%
NLO QCD 28.63(1) 28.22(1) −1.43% 0.02807(5) 0.02806(5) −0.04%
NLO EW 19.15(1) 18.94(1) −1.10% 0.02932(5) 0.02944(5) +0.41%

Table 2. Integrated cross section (σinc) and coefficient α
(1)
2,0 for ZZ in the full off-shell and DPA

calculation. δ (shown in percentage) is defined as the difference between the DPA and the full off-shell
result, normalised to the full off-shell one. Results have been computed with MoCaNLO [14, 18]. The
inclusive setup defined in eq. (3.2) is understood. Numerical uncertainties are shown in parentheses.
A fixed renormalisation and factorisation scale µF = µR = MZ is assumed.

inclusive setups, even for W bosons the DPA and the full off-shell one give compatible results,
as shown by the coefficients α

(1)
1,0 and α

(1)
2,0 in the two rightmost columns of table 1.

Although a broad discussion of radiative corrections is carried out in section 4.2, we point
out that the DPA description of di-boson processes reproduces full off-shell results by roughly
1% not only at NLO QCD but also at LO and at NLO EW [14–16, 18, 19]. As a numerical
proof of this, we have calculated with MoCaNLO [14, 18] the integrated cross section and the
coefficient α

(1)
2,0 for ZZ production at the three different perturbative accuracies, both in the

DPA and in the full off-shell case. The results are reported in table 2 (the NLO QCD ones are
the same as in table 1). One can see how the discrepancy between the DPA and full off-shell
results found for of total cross sections is at the 1% level, while the analogous discrepancy for
the α

(1)
2,0 is at the sub-percent level, with the largest one (0.4%) found at NLO EW.

We have proven that the off-shell description of inclusive di-boson production and decay
is well reproduced by the DPA, also for the radiative corrections, whose impact is discussed
in section 4.2. The treatment of off-shell effects in Higgs-boson decays deserves a separate
discussion which is presented in section 4.3.

4.2 Higher-order corrections

In section 4.1 we have shown that the complete description of four leptons production
including non-resonant contributions gives the same results as on-shell approximations for
angular coefficients extracted according to the angular structure of eq. (2.6), both at LO
and with radiative corrections. However, we consider in the following the complete matrix
elements for four-lepton production and decay, to systematically include subleading effects,
which might be relevant in the precision determination of entanglement parameters.

Including higher-order corrections is crucial for the correct interpretation of SM predictions
with LHC data. For the ZZ process both QCD and EW corrections are rather large and
therefore crucial for the proper modeling of both total cross section and distribution shapes.
In the inclusive setup (see eq. (3.2)) the relative NLO corrections read, for the full off-shell
description,

δNLO
EW = −11% , δNLO

QCD = +33% . (4.1)
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ZZ
LO NLO QCD δQCD NLO EW δEW

α
(1)
1,0 −0.00001(9) −0.00097(10) −0.00004(9)

α
(1)
2,0 0.03009(11) 0.02794(13) −7.1% 0.02960(11) −1.6%

α
(3)
1,0 0.00012(13) −0.00086(15) 0.00018(14)

α
(3)
2,0 0.03006(7) 0.02796(6) −7.0% 0.02964(7) −1.4%

γ1,0,1,0 −0.00173(3) −0.00148(3) −14.5% −0.00043(3) −75.0%
γ2,0,2,0 0.00188(2) 0.00168(2) −10.6% 0.00187(2) −0.5%

α
(1)
2,−2 −0.00967(7) −0.00993(9) +2.7% −0.00991(7) +2.5%

α
(3)
2,−2 −0.00973(4) −0.01003(4) +3.1% −0.00996(4) +2.4%

Table 3. Angular coefficients for ZZ at LO, NLO QCD and NLO EW accuracy in the full off-shell
process. All numbers have been computed integrating fully differential weights from POWHEG-
BOX-RES [57] multiplied by suitable combinations of spherical harmonics (ℓ ≤ 2) in the decay angles,
according to eq. (2.6). The inclusive setup defined in eq. (3.2) is understood. Numerical uncertainties
are shown in parenthesis. A fixed renormalisation and factorisation scale µF = µR = MZ is assumed.
The δi percentages are defined as the difference between the NLOi and LO results, relative to the LO
ones. The δ’s are not shown if LO values are compatible with zero within numerical uncertainties.

Very similar values are found in the fiducial setup of eq. (3.3). It is worth recalling that the
ZZ receives a contribution from the gg channel which, though formally of NNLO accuracy
in QCD, gives a +15% enhancement to the integrated cross section. The complete NNLO
QCD corrections are known [65, 66] but not considered in our work.

In the considered case of leptonic decays, the QCD corrections only come from initial-
state radiation (ISR) as shown in the sample diagrams in figure 2(b). It is in fact well
known [32] that without cuts applied to the leptons the angular structure in eqs. (2.2)
and (2.6) remains valid after including QCD corrections, because it depends only on the
interaction vertex of the Z boson with the leptons. In other words, the formal structure
of the spin-density matrix does not change between LO and (N)NLO QCD. However, the
QCD corrections change the production rate in the leading qq̄ contribution and open up new
gluon-induced partonic channels. Effectively, this translates into a different relative weight
of the various helicity contributions to the ZZ production cross section compared to LO.
Therefore, a change is to be expected in the value of angular coefficients. This can be clearly
seen comparing the LO and NLO QCD numerical results shown in table 3 for a small set
of coefficients. The single-boson polar coefficients α2,0 are diminished by 7%, owing to the
opening of the gluon-induced channel which increase the fraction of events with at least one
longitudinal boson [14]. For the same motivation, the almost perfect balance between left
and right helicity of each boson found at LO is not there at NLO QCD [14], resulting in
small but not vanishing α1,0 coefficients. The polar spin-correlation coefficients γ2,0,2,0 and
γ1,0,1,0 are strongly affected by QCD radiative corrections, with 10-to-15% changes. Notice
that the correlation coefficient γ1,0,1,0 is finite and negative although the α1,0’s are either
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compatible with zero (LO) or suppressed (NLO QCD). This is motivated by the left-right
(and right-left) transverse modes of the bosons which dominate in the qq̄ channel in the SM
(f±± ≈ 2% ≪ f±∓ ≈ 35%). The QCD effects are less severe but not negligible (3%) for the
considered CP-even azimuthal coefficients α2,−2. The inclusion of the QCD corrections is
essential when measuring spin-correlation probes like the Rc pseudo-observable defined in
eq. (2.12). Their inclusion sizeably diminishes the Rc value for ZZ,

R (LO)
c = 1.89(3) R (NLO QCD)

c = 1.73(2) , (4.2)

where numerical uncertainties come from the standard error propagation from coefficients
in table 3. It is worth noticing that the effect of QCD corrections on Rc is even stronger
for the W+Z process,

R (LO)
c = 2.39(3) R (NLO QCD)

c = 1.31(2) . (4.3)

We remark that this sizeable effect coming from NLO QCD corrections is not covered by
the LO-uncertainty estimate based on QCD-scale and PDF variations.

The inclusion of EW radiative corrections in the modeling of angular coefficients makes
the picture a bit more involved than the one found at (N)NLO in QCD. In the presence
of additional photons coming from real corrections, it is in fact crucial to define the decay
angles as infrared-safe quantities. We choose to consider the kinematics of dressed leptons,
reconstructed through a cone dressing with Rℓγ = 0.1 resolution radius. This strategy is
well defined theoretically and already used in ATLAS and CMS analyses. Real photons
can be emitted both from initial-state quarks and from final-state leptons, as depicted in
figure 2(d), thus changing both the production and the decay structure of the di-boson
process. In particular, real photons emitted from the final state (FSR) change the analytic
structure of eq. (2.2), making the boson undergo a three-body decay and therefore introducing
higher-rank spherical harmonics. Also one-loop EW corrections affect both the production
and the decay of EW bosons. They introduce new non-resonant topologies absent at LO, up
to 5- and 6-point functions (second and third diagram in figure 2(c)), but also box corrections
to the production sub-amplitude (analogous to the QCD ones, first diagram in figure 2(c)),
and triangle corrections to the two-body decays of weak-boson decays (fourth diagram in
figure 2(c)). This means that in principle larger effects are expected than at NLO QCD,
but suppressed due to power counting. The results in table 3, obtained with full off-shell
calculations, show that the effect of EW corrections on single-boson polar coefficients is small
(1.5% on α2,0), slightly larger for azimuthal coefficients (2.5% on α2,0). While negligible
effects are found for γ2,0,2,0, the EW corrections completely change the LO transverse-helicity
balance, with a marked decrease (in absolute value) for γ1,0,1,0.

We have proven that the inclusion of the NLO EW corrections is unavoidable for a
sound description of angular coefficients. More specifically, it has been shown [14] that the
dominant effects on decay-angle differential distributions come from one-loop factorisable
corrections and ISR real radiation. The QED FSR effects on angular coefficients are minor,
as far as dressed leptons are concerned.

One last remark is in order. Although we have only discussed fixed-order corrections to
the tree-level picture of di-boson processes. The parton-shower effects have been found to be
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Figure 3. Sample diagrams contributing to the Higgs-boson decay into four charged leptons. A tree-
level and diagram is shown (a, left), along with a real-radiation (a, right) and one-loop diagrams (b).

negligible for the extraction of angular coefficients. This has been numerically checked by
matching the NLO calculations of the ZZ and WZ processes to the QCD+QED Pythia8
shower [67] within the PowHeg-Box di-boson package [21, 57].

4.3 Higgs-boson decay

In this section we scrutinise the angular coefficients in the four-lepton decay of a SM Higgs
boson, for which the discussion of off-shell effects and the one of NLO EW corrections are
strictly connected.

Due to the very narrow width, we ignore interference and off-shell effects associated to
the Higgs-boson modeling and focus on its on-shell regime. The decay process is shown in
eq. (3.5) and sample diagrams are depicted in figure 3.

Owing to a pole mass of 125GeV, an on-shell Higgs boson cannot decay into two on-shell
Z bosons. Thanks to the simple SM tree-level amplitude structure with two s-channel Z-boson
propagators (left diagram in figure 3(a)), the angular expansion of eq. (2.6) is still valid [44, 46].
This is no longer true at NLO EW, due to the appearance of non-factorisable corrections, like
the second and third diagram in figure 3(b). In fact, the factorisable corrections are expected
to be dominant for the on-shell Z boson, leading to a reliable estimate of the coefficients
associated to it. This can be proven explicitly through a single-pole approximation [68, 69].
On the contrary, it is not guaranteed that the factorisable corrections are dominant if the
lepton pair is off-shell. Therefore, since eq. (2.6) assumes two intermediate Z bosons in
s-channel both dominated by on-shell kinematics, at NLO EW the analytical structure of
eq. (2.6) is no longer valid, owing to missing higher-rank contributions. If we stick to LO
structure, we implicitly embed higher-rank effects into l ≤ 2 coefficients, thus obtaining
large modifications of their numerical value. This suggests that the interpretation of l ≤ 2
coefficients as if they were describing a system of two spin-1 massive bosons is misleading. In
turn, the translation into quantum observables may be significantly affected.

As introduced for inclusive di-boson production in section 4.2, the lepton dressing with
real photons is needed for a theoretically sound, i.e. infrared-safe, decay-angle definition.
Additionally, in the Higgs-boson decay (but also in general) the presence of real photons at
NLO EW (or from QED parton shower) opens up two possibilities for the reference frame
where the spin of intermediate Z bosons is quantised: (i) the Higgs-boson rest frame (H-rest),
and (ii) the four-lepton CM frame (4ℓ-CM). The two frames coincide at LO, but differ at
NLO EW by real contributions with a photon that is not recombined with charged leptons.
While the former option seems more natural from a theoretical viewpoint, the latter is more
realistic in a collider environment, i.e. when the Higgs boson is boosted.
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According to the simple tree-level structure of the CP-conserving SM amplitude with
massless leptons, i.e. first diagram in figure 3(a), and to our definition of decay angles (see
figure 1), just a few angular coefficients do not vanish [44] and they are related to each
other through the relations,

α
(1)
2,0 = α

(3)
2,0 , γ2,2,2,−2 = γ2,−2,2,2 , γ2,1,2,−1 = γ2,−1,2,1 , γ1,1,1,−1 = γ1,−1,1,1 , (4.4)

20π (γ2,2,2,−2+γ2,0,2,0) = 1 , 40πγ2,2,2,−2 =
√
20πα

(1)
2,0+1 , (4.5)

5η2
ℓ γ2,1,2,−1 = γ1,1,1,−1 , η2

ℓ (1−20π γ2,0,2,0) = 4πγ1,0,1,0 . (4.6)

In table 4 we present the angular coefficients obtained at LO and NLO EW with the 4ℓ-CM
and H-rest frame choices. In addition, numerical results are shown in both the default setup
defined in eq. (3.6) and in a setup where the electron-positron pair is in the on-shell region,

81GeV < Me+e− < 101GeV , Mµ+µ− > 10GeV . (4.7)

The relations of eq. (4.4) are confirmed numerically at LO in both setups. In the default
setup, for which the invariant mass of both fermion pairs is integrated over the whole available
range (10GeV < Mℓ+ℓ− <

√
1252 − 102 GeV), the equalities are fulfilled also at NLO EW,

with both definitions of the angular variables (4ℓ-CM and H-rest). In the setup of eq. (4.7),
the α2,0 coefficients are different, with α

(1)
2,0, associated to the boson in the on-shell region,

getting closer to the LO value than α
(3)
2,0. This effect comes from one-loop contributions with

no s-channel Z-boson propagator associated to the Z∗ → µ+µ− off-shell decay.
The first tree-level relation of eq. (4.5) is mildly violated by NLO EW corrections

especially if decay angles are defined in the H-rest frame and the default setup is considered.
The 4ℓ-CM definition gives more LO-like results in both setups. The second relation of
eq. (4.5) is violated at NLO EW for both frame choices.

Both equalities of eq. (4.6) involve (l = 2, m) coefficients on the left side and the
corresponding (l = 1, m) coefficients on the right side. A mild modification of (l = 2, m)
coefficients is found at NLO EW, while strikingly large EW corrections characterise the
(l = 1, m) coefficients. Such a large change, and in particular the sign flip found in the setup
of eq. (4.7), cannot come from one-loop corrections to sin2 θ eff

ℓ [70] and their implication
on ηℓ, therefore they can be traced back to large non-factorisable effects that clearly break
the tree-level angular structure.

In section 2.1 we have highlighted the role of the reference-frame choice in the angular-
coefficient extraction. The results of table 4, especially for what concerns l = 2 coefficients
illustrates the non-negligible impact of different frame choice at NLO EW. The radiative
effects are the 6.5% level for α2,0 in the 4ℓ-CM frame, while 14% corrections are found in
the H-rest frame. Similarly, while γ2,0,2,0 receives a −1.5% correction in the 4ℓ-CM frame,
−7% is found in the H-rest one. Also for azimuthal-dependent coefficients the NLO EW
values are sizeably closer to the LO ones if the 4ℓ-CM frame is considered. In the setup of
eq. (4.7) the differences between the two frame choices decrease to the 1% level, although
the results in the 4ℓ-CM frame are again closer to the LO counterparts.

As discussed in section 2.3, at LO two spin-1 bosons produced in the decay of a scalar
particle are in an entangled state if and only if γ2,1,2,−1 ̸= 0 or γ2,2,2,−2 ̸= 0 [44]. From table 4,
it can be seen that the entanglement level is sizeable. Additionally, the NLO EW value
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LO NLO EW (4ℓ-CM) δEW NLO EW (H-rest) δEW
Me+e− > 10GeV, Mµ+µ− > 10GeV

α
(1)
2,0 −0.04792(4) −0.04498(6) −6.1% −0.04215(6) −12.0%

α
(3)
2,0 −0.04792(4) −0.04506(6) −6.0% −0.04224(6) −11.9%

γ1,0,1,0 0.00117(1) 0.00012(2) −90% 0.00011(2) −91%
γ2,0,2,0 0.01097(1) 0.01079(2) −1.6% 0.01019(2) −7.1%
γ1,1,1,−1 −0.00185(2) −0.00048(2) −74% −0.00047(2) −75%
γ1,−1,1,1 −0.00186(2) −0.00047(2) −75% −0.00047(2) −75%
γ2,1,2,−1 −0.00776(1) −0.00779(2) +0.4% −0.00715(2) −7.9%
γ2,−1,2,1 −0.00778(1) −0.00783(2) +0.6% −0.00709(2) −8.9%
γ2,2,2,−2 0.00493(2) 0.00489(2) −0.8% 0.00481(2) −2.4%
γ2,−2,2,2 0.00494(2) 0.00488(2) −1.2% 0.00479(2) −3.0%

81GeV < Me+e− < 101GeV, Mµ+µ− > 10GeV

α
(1)
2,0 −0.04395(8) −0.0435(1) −1.0% −0.0430(1) −2.2%

α
(3)
2,0 −0.04385(8) −0.0418(1) −4.7% −0.0412(1) −6.0%

γ1,0,1,0 0.00122(2) −0.00023(3) −0.00024(3)
γ2,0,2,0 0.01071(2) 0.01064(3) −0.7% 0.01045(3) −2.4%
γ1,1,1,−1 −0.00189(3) 0.00012(5) 0.00012(5)
γ1,−1,1,1 −0.00189(3) 0.00017(5) 0.00016(5)
γ2,1,2,−1 −0.00794(3) −0.00798(4) +0.5% −0.00773(4) −2.6%
γ2,−1,2,1 −0.00797(3) −0.00801(4) +0.5% −0.00771(4) −3.3%
γ2,2,2,−2 0.00518(3) 0.00515(5) −0.6% 0.00511(5) −1.4%
γ2,−2,2,2 0.00521(3) 0.00516(5) −1.0% 0.00509(5) −2.3%

Table 4. Angular coefficients for a SM Higgs-boson decay into four charged leptons (see eq. (3.5))
at LO and NLO EW accuracy in the default setup of eq. (3.6) and the one of eq. (4.7). Numerical
uncertainties are shown in parenthesis. For NLO EW results two frames are chosen for the quantisation
axis of the intermediate-boson spin: the CM frame of the four dressed leptons (4ℓ-CM) and the Higgs
rest frame (H-rest). The δEW percentages are defined as the difference between the NLO EW and LO
results, relative to the LO ones. The δ’s are not shown if they flip the sign of the results.

for the two azimuthal coefficients are numerically compatible with the corresponding LO
one as far as the 4ℓ-CM frame is concerned. For the γ2,±1,2,∓1 coefficients the H-rest frame
choice leads to NLO EW corrections of about −8% and −4% for the two considered setups.
Given the foreseen experimental accuracy after the high-luminosity LHC run [44], the LO
results are likely to be enough to claim entanglement in the Higgs-boson decay, according to
eq. (2.17). Note that the latter conditions are strictly valid only at LO. We leave for future
investigation the derivation of analogous conditions which include the complete structure of
the NLO spin-density matrix, including decays with one additional photon.
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Figure 4. Dependence of the polar coefficients α
(1)
2,0 (left plot, associated to Z(∗) → e+e−) and

α
(3)
2,0 (right plot, associated to Z(∗) → µ+µ−) on the off-shell-ness of the e+e− pair (Me+e−), in the

Higgs-boson decay into four charged leptons (see eq. (3.5)) at LO and NLO EW accuracy. In the case
of NLO EW results, two different choices are made for the reference frame where polarisations of
intermediate Z(∗) bosons are defined: the four-lepton CM frame (red) and the Higgs-boson rest frame
(green). Dashed lines are reference values obtained integrating over Me+e− .

For what concerns Bell-inequality violation, we have evaluated the quantity I3, defined
in eq. (2.20), at LO and at NLO EW in different reference frames, obtaining

LO : I3 = 2.671(2) ,

NLO EW, 4ℓ-CM : I3 = 2.682(4) , (4.8)
NLO EW, H-rest : I3 = 2.571(4) .

The LO result is hardly changed by EW corrections in the 4ℓ-CM frame, slightly larger effects
(−4%) are found in the H-rest frame. Similarly to the case of the entanglement conditions,
assuming the tree-level expansion of the spin-density matrix and using the LO results is
likely to be sufficient to claim the violation of the CGLMP Bell inequality. These results
point out that the considered quantum observables are robust under radiative corrections,
which is not guaranteed a priori. While the experimental accuracy at the LHC makes LO
predictions sufficient, the precise theoretical determination of the level of entanglement and
Bell-inequality violation requires in general to assess the impact of EW corrections and to
define carefully the reference frame for the spin quantisation.

As a last comment of this section, we further scrutinise the relation between the off-
shell-ness of same-flavour lepton pairs and the corresponding α2,0 coefficients. In figure 4
we consider the values of α

(1)
2,0 (left, associated to the e+e− pair) and α

(3)
2,0 (right, associated

to the µ+µ− pair), as functions of the invariant mass of the e+e− system. For reference,
we show as dashed flat lines the results obtained in the default setup (first two rows of
table 4) averaging over the whole available invariant-mass range. The tree level results are
the same for the two coefficients, owing to the scalar coupling of the Higgs to Z bosons and
to the s-channel topology of both lepton pairs. However, the numerical value depends rather
strongly on Me+e− regions, especially when one of the two lepton-pairs is far from the Z pole.
The inclusion of NLO EW corrections gives a small change in both coefficients around the
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on-shell region, while a more sizeable modification is found going towards the off-shell regime.
When comparing the two considered reference frames, it can be noticed that for α

(1)
2,0 the

NLO EW results deviate from each other for (35GeV < Me+e− < 85GeV, while for α
(3)
2,0 the

NLO EW results differ in the region Me+e− < 45GeV. Looking at the overall trend of NLO
EW results in figure 4, it is again clear that the 4ℓ-CM helicity frame is better suited than
the H-rest one, as the results are closer to the LO both in normalisation and in shape.

In conclusion, including NLO EW corrections changes the numerical values of the entries
of the LO spin-density matrix. For some angular coefficients the LO values are not sizeably
changed by EW radiative effects, while for others the NLO corrections are dramatically
large. In addition, NLO EW corrections come with real-photon and non-factorisable virtual
contributions that introduce higher-rank spherical harmonics in the angular structure, and
therefore cannot be described by eq. (2.6) (l ≤ 2).

4.4 Selection cuts and neutrino reconstruction

In the previous sections we have shown the manifold effects of the inclusion of higher-order
corrections and off-shell effects on the extraction of angular coefficients from di-boson events,
leading to potentially wrong conclusions when using the extracted coefficients to build
observables sensitive to boson-pair spin correlation and entanglement. The last, but definitely
not the least, realistic effect that we would like to scrutinise is represented by selection cuts
applied to boson-decay products.

We come back to the angular structure of the EW-boson decay into two leptons introduced
in eq. (2.2). If pT,ℓ, ηℓ cuts are applied on decay leptons, we write a set of coefficients {α̃lm}
in the following way,∫ +1

−1
d cos θ

∫ 2π

0
dϕ

dσ

dϕ d cos θ dX f
(X )
cut (θ, ϕ) Ylm(θ, ϕ) = dσ

dX α̃lm(X ) , (4.9)

where f
(X )
cut (θ, ϕ) parametrises the application of cuts on the inclusive phase space. In

formulas, the action of f
(X )
cut (θ, ϕ) is defined by,∫

inc
dpT,ℓ dηℓ h(pT,ℓ, ηℓ)Θ(pT,ℓ − pT,cut)Θ(η(cut)

ℓ − |ηℓ|) = (4.10)

=
∫ 1

−1
d cos θ

∫ 2π

0
dϕ h(pT,ℓ(cos θ, ϕ), ηℓ(cos θ, ϕ)) ∂(pT,ℓ, ηℓ)

∂(cos θ, ϕ) f
(X )
cut (cos θ, ϕ) ,

where h(pT,ℓ, ηℓ) is a generic function of the lepton kinematics. Since only the set of {αi(X )}
coefficients allows for an interpretation in terms of spin polarisations and correlations, it is
desirable to extract {αi(X )} directly from the data (or from simulated events). Expanding
in terms of the first 8 spherical harmonics (l ≤ 2) and weighting by the extracted {α̃i(X )}
coefficients is known to be insufficient to reproduce correctly the correct shape of the cut
unpolarised angular distributions [33] and therefore, in general,

α̃lm(X ) ̸= αlm(X ) . (4.11)

The same reasoning applies also to two-boson coefficents γl1,m1,l2,m2 .
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ZZ
inclusive ATLAS fiducial

α
(1)
1,0 −0.00093(5) −0.00025(7)

α
(1)
2,0 0.02807(5) 0.02075(7)

α
(3)
1,0 −0.00102(5) −0.00141(7)

α
(3)
2,0 0.02794(5) 0.02371(7)

γ1,0,1,0 −0.00146(2) −0.00145(2)
γ2,0,2,0 0.00167(1) 0.00195(2)

α
(1)
2,−2 −0.01000(2) −0.02614(3)

α
(2)
2,−2 −0.01001(2) −0.02223(4)

Table 5. Angular coefficients at NLO QCD for off-shell ZZ production at the LHC. All numbers have
been computed integrating numerically fully differential weights from POWHEG-BOX-RES [57]
multiplied by suitable combinations of spherical harmonics (ℓ ≤ 2) in the decay angles, according
to eq. (2.6). The inclusive setup defined in eq. (3.2) (left) and the fiducial setup of eq. (3.3) (right)
are understood. Numerical uncertainties are shown in parenthesis. A fixed renormalisation and
factorisation scale µF = µR = MZ is assumed.

In table 5 we show how the standard fiducial cuts of eq. (3.3) distort the values of most of
angular coefficients, extracted as usual by Monte Carlo integration of fully differential weights
multiplied by spherical harmonics with l ≤ 2, according to eq. (2.6). In the shown results we
include the dominant NLO QCD corrections, but similar results can be derived at LO and in
the presence of EW corrections. For some coefficients, e.g. γ1,0,1,0, the effect of cuts is almost
absent, while for others, both of single-boson and of two-boson kind, the effects of selection
cuts is even beyond 100%. This further confirms that the l ≤ 2 expansion does not apply
anymore in fiducial setups, even with rather loose selections. The Rc correlation observable at
NLO QCD in the presence of fiducial ATLAS cuts reads Rfid

c = 1.87(2), to be compared with
the Rinc

c = 1.73(2) obtained in the inclusive setup. The distortion is milder than expected,
owing to partial cancellations between the numerator and denominator in eq. (2.12).

The cut effects on coefficients associated to the Higgs-boson decay are weaker than in EW
production. We consider a Higgs boson produced with finite transverse momentum at the
LHC. We choose pT,H = 25, 200GeV, in order to investigate both an inclusive and a boosted
regime. In addition to the setup of eq. (3.6), we apply ATLAS selections on charged leptons [1],

pT,e > 7GeV , pT,µ > 5GeV , |ye| < 2.47 , |yµ| < 2.7 . (4.12)

The numerical results at NLO EW accuracy are presented in table 6. As found for inclusive
ZZ production, the selection cuts hamper the projection method, leading to large, unphysical
modifications to all considered coefficients. Owing to different selections for different lepton
flavours, the symmetry relations of eq. (4.4) are also violated. The moderate cut effects
compared to those in table 5 can be traced back to the special structure of a narrow-width
scalar resonance (the Higgs boson) which is boosted and produces two rather collinear
vector bosons, while in EW production the two bosons are typically back to back. In
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pT,H 25GeV 25GeV 200GeV
lepton cuts no cuts Eq. (4.12) Eq. (4.12)

α
(1)
2,0 −0.04511(7) −0.07312(8) −0.05518(8)

α
(3)
2,0 −0.04515(7) −0.06498(8) −0.05336(8)

γ1,0,1,0 0.00011(2) 0.00025(2) 0.00016(2)
γ2,0,2,0 0.01082(2) 0.01229(2) 0.01134(2)
γ1,1,1−1 −0.00047(2) −0.00058(3) −0.00056(3)
γ1,−1,1,1 −0.00047(2) −0.00068(3) −0.00055(3)
γ2,1,2,−1 −0.00779(2) −0.00845(3) −0.00724(2)
γ2,−1,2,1 −0.00783(2) −0.00592(2) −0.00788(2)
γ2,2,2,−2 0.00488(2) 0.00549(3) 0.00523(3)
γ2,−2,2,2 0.00489(2) 0.00577(3) 0.00504(3)

Table 6. Angular coefficients at NLO EW for a SM Higgs-boson decay into four charged leptons (see
eq. (3.5)) in the default setup of eq. (3.6), assuming a finite-pT Higgs boson and including selections
on the charged-leptons kinematics. All numbers have been computed integrating fully differential
weights from MG5_aMC@NLO [58, 59] multiplied by suitable combinations of spherical harmonics
(ℓ ≤ 2) in the decay angles, according to eq. (2.7). Numerical uncertainties are shown in parentheses.
The 4ℓ-CM helicity frame is understood.

addition, the weak bosons in the Higgs-boson rest frame decays are mostly longitudinally
polarised and therefore the decay products are less sensitive to transverse-momentum cuts
than in EW production, where the bosons are mostly transverse [14]. In table 6 we have
considered the case of a Higgs boson produced with zero rapidity, which is the most favoured
configuration in gluon-fusion production. Although not shown, we have checked numerically
that a boosted Higgs with non-vanishing rapidity would lead to even stronger distortions
of angular-coefficient values.

The extraction of coefficients can be also hampered by neutrino reconstruction. This
is the case for inclusive W±Z production at the LHC. The standard techniques relying
on on-shell requirements [1], as well as alternative machine-learning methods [71], do not
enable to reconstruct properly the single-neutrino kinematics from W-boson decays, leading
to bad distortions of the decay-angle distribution shapes, even in the absence of fiducial
cuts. In table 7 we consider the inclusive setup of eq. (3.2) for W+Z production, comparing
the coefficients computed with MC-truth neutrino kinematics with those obtained with
reconstructed neutrino kinematics (according to the ATLAS on-shell technique [1]). The
reconstruction effects are remarkably large for almost all considered coefficients. Notice that
the reconstruction does not only affect coefficients associated to the W boson. In order to
define decay angles starting from the di-boson CM frame (see discussion in section 2.1),
the neutrino reconstruction is needed to access di-boson system, therefore affecting also the
coefficients associated to the Z boson.
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W+Z
MC-truth ν-reco

α
(1)
1,0 −0.0464(3) −0.0222(3)

α
(1)
2,0 0.0283(3) 0.0147(3)

α
(3)
1,0 0.0040(3) 0.0010(3)

α
(3)
2,0 0.0298(3) 0.0228(3)

γ1,0,1,0 −0.0052(1) −0.0012(1)
γ2,0,2,0 0.0013(1) −0.0013(1)

α
(1)
2,−2 −0.0120(2) −0.0002(2)

α
(3)
2,−2 −0.0074(2) −0.0023(2)

Table 7. Angular coefficients at NLO QCD for off-shell W+Z production at the LHC in the inclusive
setup defined in eq. (3.2), with (ν-reco) and without (MC-truth) neutrino reconstruction. All numbers
have been computed integrating fully differential weights from POWHEG-BOX-RES [57] multiplied
by suitable combinations of spherical harmonics (ℓ ≤ 2) in the decay angles, according to eq. (2.7).
Numerical uncertainties are shown in parentheses. A fixed renormalisation and factorisation scale
µF = µR = MZ is assumed.

4.5 Extrapolation to the inclusive phase space

The results of section 4.4 confirm that both selection cuts and neutrino reconstruction
invalidate the projection method (see eqs. (4.9) and (4.10)). An extrapolation to the inclusive
phase space is therefore unavoidable for a meaningful extraction of the angular coefficients.

For simplicity we focus on single-boson coefficients αl,m in a generic LHC process. Thus,
the needed extrapolation boils down to accessing the function f

(X )
cut (θ, ϕ) introduced in

eq. (4.9). If one assumes that nature is SM-like, f
(X )
cut (θ, ϕ) can be extracted via a numerical

simulation of the angular distributions both in the inclusive phase space and after applying
the wanted fiducial cuts. The ratio between such inclusive and fiducial distributions, up to an
overall normalisation factor, represents the f

(X )
cut (θ, ϕ) angular acceptance in the SM. It can

be computed to the highest perturbative accuracy (in QCD and EW couplings), including
parton-shower, hadronisation and detector effects, associating to it a suitable systematic
uncertainty of both theoretical and experimental kind. Then it can be applied to signal
events in the fiducial volume to obtain the angular distributions in the inclusive phase space.
This procedure is model dependent, as the effect of cuts and neutrino reconstruction can
be different for SM distributions compared to those found in the presence of new-physics
effects, leading to a model-dependent shape of f

(X )
cut (θ, ϕ).

To illustrate this aspect, we have computed angular distributions for W+Z production at
NLO QCD accuracy, both in the SM and in the presence of dimension-six SMEFT effects
modifying the triple-gauge coupling in the EW sector. In order to scrutinise both CP-even
and CP-odd effects we have employed an extended version of the SMEFT@NLO UFO
model [72, 73]. In figure 5 we present the numerical results for polar- and azimuthal-angle
distributions associated to the W-boson decay. For the polar angle we have included both
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Figure 5. Angular acceptance in the SM and in the SMEFT for a W+-boson leptonic decay in
off-shell W+Z production at the LHC. Numerical results have been obtained at NLO QCD with
MG5_aMC@NLO [58, 72, 73]. Linear and quadratic effects from the dimension-six, CP-even operator
O3W are considered for the polar angle (left). Linear effects from the dimension-six, CP-odd operator
O ˜3W are considered for the azimuthal angle (right). Top panels: distributions (normalised to have unit
integral) in the inclusive setup (solid), after applying ATLAS fiducial cuts [1] (dashed), and neutrino
reconstruction (dotted). Middle panels: ratio of fiducial distributions over inclusive ones (without
neutrino reconstruction). Bottom panels: same as middle panels but with neutrino reconstruction.

linear and quadratic effects coming from the CP-even operator O3W, assuming a Wilson
coefficient c3W/Λ2 = 1TeV−2. The same value is chosen for the CP-odd operator O3W̃ which
is considered at linear level in the case of the azimuthal-angle distribution. Inclusively, the
O3W operator is expected to enhance the right-handed component of the W boson compared
to the SM [73], i.e. increasing the number of events in the region cos θ1 ≈ 1. The O3W̃
introduces an additional sin 2ϕ1 modulation in the azimuthal distribution, leading to a finite
α

(1)
2,2 coefficients (zero in the SM). In the main panels of figure 5 it can be seen how the

inclusive distributions are heavily distorted by fiducial selections and neutrino reconstruction,
leading to a depletion in the most populated region in the case of the polar angle, and to
additional modulations in the azimuthal angle. At a first glance, the angular acceptances do
not look so different between SM and SMEFT, especially if the MC-truth neutrino kinematics
is considered. Somewhat larger shape differences are visible when neutrino reconstruction
is applied. We have applied SM angular acceptances to the corresponding fiducial SMEFT
distributions and then extracted the most relevant angular coefficients. The same QCD
accuracy (NLO) is considered for both SM and SMEFT distributions. In table 8 we compare
the results of this procedure with the known SMEFT results obtained in the inclusive phase
space. In the absence of neutrino reconstruction some coefficients are reproduced by less
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CP-even O3W CP-odd O3W̃

α
(1)
1,0 α

(1)
2,0 α

(1)
2,−2 α

(1)
2,2

SM, truth −0.0464(1) 0.0283(1) −0.0122(2) 0.0001(2)
SMEFT, truth −0.0411(1) 0.0313(1) −0.0120(2) −0.0066(2)
Extrapol., no ν-reco. −0.038(2) 0.039(2) −0.0116(3) −0.0082(3)
Extrapol., with ν-reco. −0.049(2) 0.041(2) −0.0119(3) 0.0035(3)

Table 8. SM extrapolation applied to fiducial SMEFT angular distributions of figure 5 with or
without neutrino reconstruction. The coefficients are extracted with the usual projections according
to eq. (2.2).

than 10%. This is the case of the α
(1)
1,0 and α

(1)
2,−2 coefficients. In the most realistic situation

where both fiducial cuts and neutrino reconstruction are accounted for, the expected SMEFT
coefficients are badly reproduced by the extrapolation with up to 30% discrepancies for polar
coefficients, and even a wrong sign for α

(1)
2,2.

In conclusion, assuming a SM-like angular acceptance and applying it to data which
may embed new-physics effects could lead to wrong results for the angular coefficients. The
SM extrapolation, relying on the highest accuracy available, leads to meaningful results
only in experimental investigations aiming at confirming or excluding the SM. Pursuing a
model-independent extrapolation to the inclusive phase space needs more refined techniques.
In particular, if one assumes SM dynamics in the boson decay while remaining agnostic
w.r.t. potential new physics in the production mechanism, it is indispensable to compute
angular acceptances separately for each helicity state of the intermediate boson. In fact, for
a definite helicity state, an EW boson decays in the same manner whatever the production
mechanism, therefore a polarised-template fit would allow to extract in a model-independent
way the angular coefficients in the inclusive phase space. The multiple calculations [7–
16, 18–24] of LHC processes with definite helicities for intermediate bosons already allow
to pursue this objective, at least for what concerns polar coefficients, thanks to their direct
relation to polarisation fractions (see section 2.2). Carrying out the same procedure for
azimuthal coefficients is more cumbersome, owing to differential distributions that are not
positive definite.

5 Conclusions and outlook

Accessing the intricate spin structure in di-boson processes is becoming a substantial part
of the LHC physics program as it allows to probe the electroweak and scalar sectors of
the Standard Model, but also enhances the sensitivity to new-physics effects. Measuring
polarisations and spin correlations is gaining further interest because of their deep connection
with quantum entanglement and Bell-inequality violation.

It is known that the spin state associated to an electroweak-boson pair is encoded in the
angular structures that characterise the decay products of the bosons. An angular expansion
in spherical harmonics up to rank-2 is known to describe the system at tree level, in the
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case of two-body boson decays, and in the absence of kinematic selections on individual
decay products. Extracting the coefficients of this expansion gives a direct access to the
spin-density-matrix entries which then can be combined to construct observables, dubbed
quantum observables, sensitive to entanglement and to the violation of Bell inequalities.

However, such a simple extraction is hampered by a number of effects that introduce
higher-rank spherical harmonics in the decay-angle expansion, and possibly invalidate the
two-qutrits interpretation of the considered processes. By means of a phenomenological
analysis of di-boson systems at the LHC, we have scrutinised such effects, focusing on the
off-shell modeling of weak bosons, the inclusion of higher-order corrections in the QCD and
electroweak coupling, and realistic collider effects like fiducial-cut application and neutrino-
kinematic reconstruction.

The off-shell effects are found to be negligible in phase-space regions which are dominated
by two on-shell intermediate weak bosons, while they become crucial for the interpretation of
angular coefficients associated to non-resonant production mechanisms. This is especially
true for boson pairs produced in the decay of a Standard-Model Higgs boson.

The inclusion of NLO QCD corrections in the case of leptonic decays of weak bosons
does not introduce higher-rank contributions, but sizeably modifies the helicity structure in
the production mechanism, leading to a change in the numerical value of several coefficients.
Despite the power counting, the impact of NLO EW corrections is not much smaller, in
particular for l = 1 spin-correlation coefficients that are suppressed at LO.

In the case of the Higgs-boson decay, we have provided an estimate at both LO and
NLO EW accuracy for two quantities known to provide sensitivity to entanglement and to
the violation of the CGLMP Bell inequality, respectively. For both quantum observables,
the Standard-Model predictions are robust under radiative EW corrections, making the
tree-level description sufficient to claim entanglement and Bell-inequality violation at the
LHC. However, the impact of radiative corrections has to be assessed case-by-case for other
quantum observables, since there is no general argument for the suppression of such effects.

By means of a comparison performed in the Higgs-boson decay, we have also revived the
importance of choosing a suitable reference frame for the quantisation of the boson spin, in
order to enhance the sensitivity to entanglement and Bell non-locality.

The application of selection cuts and, when needed, the reconstruction of neutrino
kinematics are part of the experimental measurement of the final-state leptons at the LHC,
and constitute an obstacle to the faithful determination of the coefficients according to
the tree-level angular expansion. Our results confirm the presence of higher-rank spherical
harmonics contributions, which in turn make it problematic to interpret the l ≤ 2 coefficients
in terms of spin states. An extrapolation to the fully inclusive phase space is therefore
essential to recover the correct interpretation of such quantities. However, we have shown
that such a procedure, on top of being subject to theoretical and experimental systematic
uncertainties, is not model independent.

Our results broaden the understanding of unavoidable effects that may distort the
tree-level picture of the spin-density matrix and consequently of the quantum observables.
The improved theoretical grounds pave the way for refined experimental analyses and more
complete interpretations of the spin structure of boson pairs produced at the LHC.
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