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Harmonic analysis has provided powerful tools to accurately determine the tune from turn-by-turn data
originating from numerical simulations or beam measurements in circular accelerators and storage rings.
Methods that have been developed since the 1990s are suitable for stationary signals, i.e., time series whose
properties do not vary with time and are represented by stationary signals. However, it is common
experience that accelerator physics is a rich source of time series in which the signal amplitude varies over
time. Furthermore, the properties of the amplitude variation of the signal often contain essential information
about the phenomena under consideration. In this paper, a novel approach is presented, suitable for
determining the tune of a nonstationary signal, which is based on the use of the Hilbert transform. The
accuracy of the proposed methods is assessed in detail, and an application to the analysis of beam data
collected at the CERN Large Hadron Collider is presented and discussed in detail.
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I. INTRODUCTION

It is well known that the dynamics of a charged particle
under the influence of the nonlinear fields generated by the
magnetic lattice of a circular accelerator can be described in
the form of a quasiperiodic function:

zðnÞ¼ uðnÞ− ipuðnÞ

¼
XM
j¼1

aj expf2πiωjng; aj∈C; ωj∈R; ð1Þ

where n is the number of turns, u; pu represent conjugate
variables (u stands for x or y), ωj; 1 ≤ j ≤ M are the
frequencies describing the particle’s motion, and aj is
the corresponding amplitudes. The tune is represented by
the ωj that corresponds to the largest jajj. It is customary to
order the frequencies by decreasing values of jajj so that
the tune corresponds to ω1. The properties of the orbit are
closely related to the set of ωj, and their determination from
knowledge of the time series zðnÞ is a fundamental problem
that is addressed by harmonic analysis.

In the general case of 4D betatron oscillations, the
motion is described by two vectors:

zðnÞ ¼ xðnÞ − ipxðnÞ;
wðnÞ ¼ yðnÞ − ipyðnÞ; ð2Þ

each vector zðnÞ and wðnÞ being represented in the form
given in Eq. (1). The tune in each plane is given by the
frequency with the highest amplitude within that plane.
Other frequency components may arise due to various types
of coupling, whether linear or nonlinear, between the x and
y planes. However, as long as these components are well
separated from the tunes and possess lower amplitudes,
the coupling effects can be ignored, making the one-
dimensional analysis presented in the remainder of this
paper valid.
The fundamental tool for harmonic analysis is the

discrete Fourier transform (DFT) that provides the fre-
quency spectrum of zðnÞ. However, each frequency com-
ponent of the Fourier spectrum is determined with an
accuracy that scales as 1=N, where N represents the
maximum number of points in the time series zðnÞ.
In the 1990s, intense efforts were devoted to improve

methods for computing ωj with a precision higher than
that provided by DFT, i.e., 1=N. In several cases, these
developments originated in the field of celestial
mechanics [1–5] and were then promoted to the field of
accelerator physics (see, e.g., Ref. [6]). These algorithms
have been implemented in a number of codes that are now
of standard use for the analysis of beam dynamics [7,8] and
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in the analysis of massive simulation data in the form of
what is called frequency map analysis [9–19].
Independently, alternative techniques were developed,

based on the closed-form formula approach that provides
the value of ωj as a refinement of the estimate obtained
from the application of the DFT algorithm [20], and this is
the approach that will be followed in the rest of this article.
It is important to note that this method has not been
extensively explored, and we leverage these recent studies
to advance it further. The key results can be summarized as
follows: The tune estimate provided by the DFT spectrum
can be improved to achieve an accuracy that scales as 1=N2

(this approach will be called interpolated DFT in the rest of
this paper). Moreover, when the Hanning filter is applied to
the original time series, the tune estimate provided by the
DFT spectrum can be improved to an accuracy that scales
as 1=N4 (this approach will be called interpolated DFTwith
the Hanning filter in the rest of this paper).
It is also worth mentioning that methods based on DFT

are not the only options available to compute ωj with high
accuracy. In fact, the average phase advance [20] is an
excellent alternative that has been further developed in
recent years [21]. However, this approach will not be
discussed or used in this paper. The primary justification for
this selection is that DFT-based methods allow for the
analysis of the entire spectrum of the time series, unlike the
average phase advance, which yields only the dominant
frequency, namely, the tune.
When other phenomena are considered, e.g., instead of a

single particle an ensemble of particles is considered to
mimic the result of a beam measurement, or a coupling
between transverse and longitudinal dynamics is consid-
ered, the measured turn-by-turn signal features decoherence
and the model of Eq. (1) is no longer valid. An appropriate
description is then given, in general terms, by

zðnÞ¼uðnÞ−ipuðnÞ

¼fðnÞ
�XM

j¼1

ajexpf2πiωjng
�

aj∈C; ωj∈R: ð3Þ

In this case, the signal zðnÞ is nonstationary and the
function fðnÞ represents a modulation of the signal
amplitude. It is important to stress that, in general, fðnÞ
contains key information about the physical process that
governs the dynamics, and determining its form and the
parameters that describe it is essential. Furthermore, apply-
ing the DFT approach (or any DFT-based approach) does
not provide the correct answer to the problem of determin-
ing ωj. In this paper, we show how it is possible to devise
an appropriate technique that is capable of determining not
only ωj, but also the physical parameters that model fðnÞ.
The structure of this paper is as follows: In Sec. II,

phenomena that generate nonstationary signals are pre-
sented and discussed in detail, with particular emphasis on

the dependence of the amplitude variation of the key
theoretical parameters describing the phenomenon under
consideration. In Sec. III, the novel method is presented and
discussed in detail. The comparison of the accuracy of the
various methods is presented in Sec. IV. In Sec. V, the novel
techniques are used for the analysis of a set of beam
measurements performed at the CERN Large Hadron
Collider (LHC) in 2012 [22] that show very promising
reconstruction performance. Finally, conclusions are pre-
sented in Sec. VI, and mathematical details are provided in
the Appendixes.

II. MODELS OF KICKED-BEAM DYNAMICS
AND TUNE DETERMINATION

In a circular accelerator, the transverse tune is measured
by kicking the beam in a given transverse plane so that the
subsequent oscillations are recorded on a turn-by-turn
basis. Therefore, analysis of the accuracy of tune determi-
nation in a storage ring or a collider requires modeling the
evolution of the transverse beam barycenter of kicked
beams. In general, the measured signal represents the
barycenter of the charge distribution measured by a beam
position monitor (BPM), and it features amplitude varia-
tions. There are several phenomena that can generate such
oscillations, and in the following some models will be
described from a mathematical and accelerator physics
point of view to highlight the essential parameters and
define their typical values for real-life applications.
Figure 1 shows the turn-by-turn evolution of the bary-

center of the beam for the four damping phenomena
analyzed in the following. Note that the general model
of the oscillation of a kicked beam is given in Eq. (3),
however, as we will discuss in the following, the function
fðnÞ will take an exponential form

fðnÞ ∝ e−λgðnÞ: ð4Þ

In the four panels, the time dependence of the oscil-
lations is shown, together with the dependence of the
damping characteristics on the key parameter λ, which
varies for the four phenomena under consideration.

A. Amplitude variation from energy damping

An exponential damping of the signal amplitude is
typical of kicked electron beams, where, under the
assumption of linear transverse beam dynamics, which
implies that no amplitude detuning is present, the trans-
verse amplitude decays exponentially due to synchrotron
radiation. The possibility of determining the tune and
damping factor using an analytical approach makes this
case very interesting. The turn-by-turn evolution of the
beam barycenter can be described as

xðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JxðnÞβx

p
cos 2πnν; ð5Þ
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where 2JxðnÞ, describes the turn-by-turn evolution of the
single-particle emittance of an electron beam, defined as

JxðnÞ ¼ Jxð0Þ exp ð−λnÞ; ð6Þ

where generic damping parameter λ becomes

λ ¼ jxU0

2E0T0

; ð7Þ

with T0 the revolution period, U0 the energy loss per unit
turn, E0 the reference energy of the particle, and

jx ¼ 1 −
I4
I2

ð8Þ

is the damping partition number defined in terms of the
second (I2) and fourth (I4) synchrotron radiation
integrals [23]. By performing a renormalization of
Eq. (5), the beam barycenter reads as

x̃ðnÞ ¼ xðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βxJxðn ¼ 0Þp ¼ exp ð−λ=2nÞ cos 2πnν: ð9Þ

In an ideal case where there is no damping, λ is zero,
otherwise, λ can range in the interval

1 × 10−5 ≤ λ ≤ 1 × 10−2; ð10Þ
the lower value corresponding to the case of the CERN
Electron Positron Accumulator [24] and the upper value to
the CERN Large Electron Positron (LEP) ring [25]. The
given range is broad enough to encompass scenarios related
to various accelerators globally.
Figure 1(a) represents the evolution of the BPM signal

according to the model (9), in which λ is varied from zero,
corresponding to a constant-amplitude signal, to the highly
damped signal, corresponding to the LEP case.

B. Amplitude variation from chromatic decoherence

The model describing the turn-by-turn evolution of a
kicked beam under the influence of chromatic decoherence

(a) (b)

(c) (d)

FIG. 1. Simulated signals representing the oscillation of the barycenter of a kicked beam as a result of energy damping (a), chromatic
decoherence (b), nonlinearities (c), and acceleration (d). These signals are shown as functions of the number of turns n (up to the
maximum of 1024 turns). For each signal, the characteristic scaling factor λ has been varied in the interval shown on the color scale.
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was first described by Meller et al. in Ref. [26], where the
evolution of the centroid of a proton beam after a transverse
kick is described considering the effect of energy spread
and transverse tune variation due to linear chromaticity.
The energy spread does not cause a change in the

betatron tune of the centroid, but rather creates a periodic
amplitude modulation of the beam centroid that reads as

x̃ðnÞ ¼ expð−λsin2πνsnÞ cos 2πnν; ð11Þ

where the generic damping parameter λ becomes

λ ¼ 1

2

�
2
σδξ

νs

�
2

; ð12Þ

and σδ, ξ ¼ dQ=dδ and νs are the rms relative momentum
spread, the horizontal chromaticity, δ is the relative
momentum offset, and the synchrotron tune, respectively.
Note that νs is expressed in units of turns and is hence
dimensionless.
These parameters vary a lot between accelerators and

even for the same ring, depending on the type of beam
produced.
Figure 1(b) represents the evolution of the BPM signal

according to the model (11) using typical beam parameters
from the CERN Proton Synchrotron (PS) to determine the
value of λ. It should be noted the peculiar behavior of the
BPM signal, with periodic increases and decreases in
the envelope amplitude generated by the periodic term in
the argument of the exponential in Eq. (11).

C. Amplitude variation from nonlinearities

There are several sources of nonlinearities in an accel-
erator ring, but here we refer to nonlinear magnetic-field
errors. Under the influence of these errors, when a proton
beam is kicked at a given amplitude, its transverse
distribution will undergo filamentation, thus occupying a
larger region in phase space [23]. The decoherence of
betatron oscillations under the influence of nonlinear
effects was first described by Meller et al. in Ref. [26],
where a Gaussian transverse beam distribution was
assumed. Note that more refined models have been derived
and discussed in Refs. [27,28]. Its turn-by-turn evolution
after a transverse kick can be analytically determined under
the assumption that the tune depends on the action J, which
is expressed in units of the beam size, as

νðJÞ ¼ νþ μJ; ð13Þ

and where μ represents the amplitude detuning and is
dimensionless. The beam centroid evolution can be
described as follows:

xðnÞ ¼ σxZAðnÞ cos ð2πnνþ ΔϕðnÞÞ; ð14Þ

where ΔϕðnÞ is the phase shift of the centroid, Z the kick
amplitude expressed in units of beam size, which makes Z
dimensionless, and σx the transverse rms beam size. AðnÞ is
the decoherence factor, in a form that depends on the
amplitude of the kick and, if it is larger than the beam size,
which is the case in many applications, one obtains the
following:

AðnÞ ¼ exp

�
−
1

2
ð4πμZnÞ2

�
: ð15Þ

By normalizing Eq. (14) with respect to the beam size
and the kick, the evolution of the beam centroid reads as

x̃ðnÞ ¼ xðnÞ
σxZ

¼ exp ð−λn2Þ cos ð2πnνþ ΔϕðnÞÞ; ð16Þ

where generic damping parameter λ becomes

λ ¼ 8π2μ2Z2; ð17Þ

where one notes that λ does not depend on the sign of μ.
The decoherence of betatron oscillations is characterized

by a Gaussian amplitude modulation due to the accelerator
nonlinearities. The range of values of μ used in the
numerical simulations has been taken from those measured
in the PS and LHC rings at their injection energies, namely
up to a maximum of

μ ¼ 10−3: ð18Þ

In Fig. 1(c), a typical example of signal decoherence is
shown due to the presence of amplitude detuning, in which
the fast Gaussian decay is clearly visible.

D. Amplitude variation from acceleration

The physical beam emittance is not a constant of motion
during acceleration. In this case, the Lorentz factor γrel, the
relative speed βrel, and the normalized beam emittance ϵ�
fully describe the emittance damping phenomenon as

ϵx ¼
ϵ�x

βrelγrel
; ð19Þ

from which one obtains that the amplitude of the coherent
oscillations of the kicked beam varies as

xðnÞ ¼ xð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βi;relγi;rel

βrelðnÞγrelðnÞ

s
cos 2πnν; ð20Þ

where the subscript i refers to the initial value of the
Lorentz factor and relative speed when the beam was
displaced to an amplitude xð0Þ, while βrelðnÞ; γrelðnÞ refer
to the turn-by-turn evolution of the same quantities. These
parameters may vary in several different ways depending
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on the form of the energy acceleration used in the ring. If a
linear variation of the beam momentum is performed from
pi to pf over N turns, the turn-by-turn damping of the
coherent betatron oscillations reads

x̃ðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1−n

1−N ðpf
pi
− 1Þ

q cos 2πnν

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1−n

1−N λ
q cos 2πnν

¼ exp

�
−
1

2
log

�
1þ 1 − n

1 − N
λ

��
cos 2πnν; ð21Þ

where λ is a scaling factor related to the Lorentz factor and
βrel. It should be noted that among the mechanisms of
damped transverse oscillations, this is the slowest, with a
logarithmic dependence on the turn number n.
In Fig. 1(d), an example of damped oscillations during

beam acceleration is presented. The slow decay, slower
than that of the other mechanism, is clearly visible.

E. Assessment of accuracy of the tune determination

The damping phenomena described in the previous
sections have a characteristic scaling factor λ and a different
dependence on the number of turns n that will generally be
called from now on fðλ; nÞ. Therefore, it is possible to write
a general analytical expression that combines all the
damping phenomena considered, as

xðnÞ ¼ ae−fðλ;nÞ
�
cos 2πnνþ

X4
k¼1

ak cos 2πnkν

�
; ð22Þ

where

ak ¼ e−k

ν ¼ 6.281; ð23Þ

where the value of ν is representative for the CERN PS ring.
Four additional harmonics have been added, representing
additional terms of the measured signal (see, e.g., [20]).
The signals generated by the four damping mechanisms

have been analyzed with the methods briefly reviewed in
Sec. I to determine the impact of modulation of the
amplitude on the reconstruction of the tune. Note that
accuracy is defined as the error in the calculation of the
tune, namely

ΔνðNÞ ¼ νðNÞ − ν; ð24Þ

where ν is the value of the tune used to generate the signal
and νðNÞ is the tune obtained using the reconstruction
methods applied to a signal of length N. The results of this
analysis are reported in Fig. 2 for two cases: interpolated
DFT (top) and interpolated DFT with the Hanning filter
(bottom), where it is clearly visible that the limit λ → 0 is
often discontinuous. For comparative purposes, the dashed
lines depict the curves 1=N2 (top) and 1=N4 (bottom),
which illustrate the scaling of the tune error for the

(a) (b) (c) (d)

(a) (b) (c) (d)

FIG. 2. The tune error ΔνðNÞ is computed (from left to right) for the signals with amplitude variation from energy damping (a),
chromatic decoherence (b), nonlinearities (c), and acceleration (d). Two methods have been used, namely, the interpolated DFT (top) and
the interpolated DFT with Hanning filter (bottom). The scaling of the tune error corresponding to the case λ ¼ 0 is represented by the
back dashed lines with a dependence as 1=N2 (top) and 1=N4 (bottom). When λ ≠ 0 the colored curves representing the tune error show
a very different scaling with respect to the case of stationary signals.
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benchmark methods, specifically the interpolated DFT and
the interpolated DFT with Hanning filter, respectively.
The performance of these two methods is very different

and critically depends on the damping mechanism and the
value of the damping parameter. For the sake of comparison,
the performance for the case without amplitude variation is
also shown. In general, one observes that the error hardly
decreases as a function ofN when the dampingmechanism is
different from zero. Furthermore, ΔνðNÞ tends to increase
with N for increasing damping effects. These observations
clearly indicate that the application of the interpolated DFT
and interpolated DFT with Hanning filter, derived for
constant-amplitude signals, to varying-amplitude signals is
not justified and generates errors in the tune reconstruction.
In turn, these observations support the need for alternative
approaches to deal with varying-amplitude signals, which
will be presented and discussed in the next section.

III. NOVEL METHODS FOR DETERMINING THE
TUNE OF A VARYING-AMPLITUDE SIGNAL

In this section, new closed-form solutions are presented
to determine ν and λ for a signal with exponential damping.
Furthermore, the general method based on the use of the
Hilbert transform [29,30] for amplitude-varying signals is
discussed.

A. Closed-form solution for tune determination
of exponentially damped signals

Considering a signal of the form

xðnÞ ¼ ae−λn cos 2πnν; ð25Þ

it is possible to obtain a closed-form solution to compute
the value of ν and λ using an interpolated DFT or an
interpolated DFT with Hanning filter approaches and in
doing so, we take advantage of previous studies carried out
in 2015 and discussed in Ref. [31].
For the signal defined in Eq. (25), the DFT coefficients

read

ϕðνjÞ ¼
1

N

XN
n¼1

e2πiðν−νjÞn−λn; ð26Þ

from which one obtains

jϕðνjÞj2 ¼
1

N2
e−λðNþ1Þ sin

2ðπNΔνjÞ þ sinh2 λN
2

sin2ðπΔνjÞ þ sinh2 λ
2

; ð27Þ

where

Δνj ¼ ν − νj: ð28Þ

If k indicates the index at which jϕðνjÞj2 reaches its
maximum, it is possible to use the Fourier components

corresponding to the indices k, k� 1 to determine ν and λ,
which are given in terms of two solutions, namely

ν� ¼ k
N
þ 1

π
arctan

�
1

tan π
N

�
ηþ 1

η − 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ηþ 1

η − 1

�
2

þ tan2
π

N

s ��
; ð29Þ

where

η ¼ χþ − 1

χ− − 1
χ� ¼ jϕðνkÞj2

jϕðνk�1Þj2
: ð30Þ

The choice between ν− and νþ depends on which of the
coefficients jϕðνk−1Þj and jϕðνkþ1Þj is the largest, i.e., ν− is
to be selected if

jϕðνk−1Þj > jϕðνkþ1Þj: ð31Þ

For the determination of the value of λ, one finds

λ� ¼ 2 arcsinh

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϕðνk�1Þj2sin2ðπΔνk ∓ π

NÞ − jϕðνkÞj2sin2πΔνk
jϕðνkÞj2 − jϕðνk�1Þj2

s
;

ð32Þ

where

Δνk ¼ ν − νk; ð33Þ

and the choice between λ− and λþ is made similarly to the
case of the tune.
Note that this approach provides an estimate of ν and λ

that are affected by an error that scales as 1=N2 (see
Appendix A for the details).
In case the Hanning filter

wðnÞ ¼ 2 sin2
�
πn
N

�
ð34Þ

is applied to the signal (25), the DFT coefficients read

ϕðνjÞ ¼
1

N

XN
n¼1

e2πiðν−νjÞn−λnwðnÞ

¼ 2

N

XN
n¼1

e2πiðν−νjÞn−λnsin2
πn
N

: ð35Þ

By introducing the complex variable

θjðλÞ ¼ πðν − νjÞ þ i
λ

2
;
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Eq. (35) can be simplified and analytically solved, provid-
ing a closed-form expression for ν and λ. A complex-valued
quadratic equation is found in the unknown sin 2θk, where
k is again the index corresponding to the maximum of the
amplitude of the Fourier spectrum, and its solutions are
given by

λ ¼ ln
�
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p �
; ð36Þ

and

ν ¼ k
N
þ 1

2π
arcsin β; ð37Þ

where the parameters α and β are defined according to
Eq. (4.4.37) in Ref. [32], and additional details on the
mathematical derivation can be found in Appendix B.
Note that this approach provides an estimate of ν and λ

that are affected by an error that scales as 1=N3 (see
Appendix B for the details).

B. Hilbert transform

The Hilbert transform (HT) is one of the most powerful
methods for determining the envelope of a signal. It is
widely used in the processing of signals whose properties,
such as amplitude, frequency, and statistical properties like
mean and vary over time (see, e.g., [29,33]). HT has been
used mainly in the analysis of real-valued signals, for this
reason, we focus on real signals, and in this case, the HT is
defined as

HðxÞðtÞ ¼ −
1

π
p:v:

Z þ∞

−∞

xðτÞ
t − τ

dτ; ð38Þ

where p.v. is the Cauchy principal value integral. In the case
of a discrete-time signal, it is convenient to use the
relationship between DFT and HT, which is given by

HðxÞðnÞ ¼ F−1f−i sgnðνDFTÞF ½xðnÞ�g; ð39Þ

with νDFT the signal frequency vector, as determined with
the DFT, F the DFT operator, and F−1 its inverse.
It can be shown that the following complex-valued

signal:

oxðnÞ ¼ xðnÞ þ iHðxðnÞÞ; ð40Þ

where the real part is the original time series and the
imaginary part is the HTof the original time series, which is
an analytic signal.
Consider a modulated signal of the form:

xðnÞ ¼ uðnÞx0ðnÞ; ð41Þ

where uðnÞ is a modulating function, and x0ðnÞ a constant-
amplitude signal with a single harmonic component of
frequency ν. Provided the frequency spectra of uðnÞ and
x0ðnÞ do not overlap, and assuming that uðnÞ contains the
low-frequency and x0ðnÞ the high-frequency component of
the spectrum, then the theorem of Bedrosian [34] can be
applied and the HT of xðnÞ is given by

HðxÞðnÞ ¼ uðnÞHðx0ÞðnÞ; ð42Þ

which guarantees that joxðnÞj is the envelope of the
analyzed signal, namely

joxðnÞj ¼ juðnÞjjx0ðnÞ þ iHðx0ÞðnÞÞj
¼ juðnÞjjx0ðnÞj
¼ juðnÞj: ð43Þ

By using the envelope, the original signal xðnÞ can be
normalized obtaining a constant-amplitude signal

x̃ðnÞ ¼ xðnÞ
joxðnÞj

ð44Þ

to which the methods to determine the tune developed in
the past can be applied.
We note that the form of the prototype signal in Eq. (22)

is very close to the factorization form needed by the
Bedrosian theorem. The main difference is that the function
xðnÞ does not contain a single harmonic component, but
rather a set of components. In this case, assuming that the
conditions on the spectra of the two factors of the signal are
satisfied, we obtain

oxðnÞ ¼ aefðλ;nÞ
��

cos 2πnνþ
X4
k¼1

ak cos 2πnkν

�

þi

�
sin 2πnνþ

X4
k¼1

ak sin 2πnkν

��
; ð45Þ

by applying the properties of the HT to the harmonic
components of the function representing xðnÞ. In this case,
joxðnÞj is not exactly the envelope of the function xðnÞ but
reads

joxðnÞj ¼ aefðλ;nÞ
�
1þ 2

X4
k¼1

ak cos 2πnðk − 1Þνþ
X4
k¼1

a2k

þ 2
X4

k¼1;j>k

akaj cos 2πnðk − jÞν
�1=2

≈ aefðλ;nÞ
�
1þ

X4
k¼1

ak cos 2πnðk − 1Þν
�
; ð46Þ

HARMONIC ANALYSIS OF NONSTATIONARY … PHYS. REV. ACCEL. BEAMS 27, 094001 (2024)

094001-7



where the last step assumes that

ak ≪ 1; ð47Þ

i.e., the harmonic components are indeed perturbations of
the main component. The normalized signal then reads

x̃ðnÞ ≈
�
cos 2πnνþ

X4
k¼1

ak cos 2πnkν

�

×

�
1 −

X4
k¼1

ak cos 2πnðk − 1Þν
�

≈ cos 2πnνþ 1

2

X4
k¼1

ak cos 2πnkν−

− 1

2

X4
k¼1

ak cos 2πnðk − 2Þν: ð48Þ

The signal x̃ðnÞ contains the same frequencies as the
original signal, but the amplitudes are affected by the
application of HT. The situation would be even more
involved if the original signal were made by a spectrum
consisting of several different frequencies, not being
harmonics of a single frequency, as in this case, the
equations above predict the generation of new spurious
frequencies in the normalized signal. A similar situation
would occur in the case where the perturbative approach
cannot be used and higher-order terms should be added to
Eqs. (46) and (48).
Note also that the feasibility of reconstructing the

function uðnÞ can be seen as an a posteriori validation
of the applicability conditions of the Bedrosian theorem.
All these considerations confirm that the approach based

on the HT is a very powerful tool for performing harmonic
analysis of signals with varying amplitude. In fact, it allows
methods, such as interpolated DFT and interpolated DFT,
with the Hanning filter to be applied in this case as well.
Furthermore, it provides a means to reconstruct the
envelope of the signal, which contains essential information
to describe the physical phenomenon that generates the
variation of the amplitude. This aspect will be used in the
following to propose an alternative method for measuring
the amplitude detuning that will be applied to the analysis
of the LHC data in Sec. V.

IV. ACCURACY STUDIES

In this section, we present the numerical studies per-
formed to assess the accuracy of the proposed methods for
reconstructing the tune of amplitude-varying signals. For
every amplitude modulation model discussed in Sec. II, the
tune is computed by applying the Hilbert transform to
normalize the original signal and then using the two
standard methods, the interpolated DFT and the

interpolated DFT with Hanning filter, applied to the
normalized signal.
A special analysis will be performed on the signal

describing the energy-damping case, as the closed-form
solution can be applied here to determine the tune ν and the
damping factor λ.
First, it is necessary to verify whether the use of the HT

to normalize the signal is justified according to the
conditions stated in the Bedrossian theorem. Figure 3
shows the envelopes of the four modulated amplitude
signals that are used as prototypes in our study. Key
information is shown in Fig. 4, where the error in the
reconstruction of the signal envelope as a function of λ is
visible for the four signals. As an estimate of the error, we
used the quantity

ΔeðNÞ ¼ 1

N

XN
n¼1

�joxðnÞj − jomodel
x ðnÞj

joxðnÞj
�

2

; ð49Þ

which corresponds to the mean square error, where joxðnÞj
and jomodel

x ðnÞj are the signal envelope reconstructed
using the HT and that computed using the physical model,
respectively. Globally, the quality of the envelope
reconstruction is very good, which confirms the applicabil-
ity of the Bedrossian theorem and the fact that it is possible
to determine the tune of the normalized signal with HT by
using the interpolated DFT with or without the Hanning
filter. For each amplitude-modulated signal, the tune error
is displayed as a function of N, the number of samples in
the signal. Note that for a given value of λ, N is limited to
values for which the signal amplitude is approximately not
less than 10% of its initial value. This choice agrees with
the common practice employed when analyzing real turn-
by-turn beam data. Therefore, signals with a strong
modulation of amplitude, corresponding to high values
of λ, are analyzed using a shorter value of N. The results of
the numerical simulations for the interpolated DFT (top)
and the interpolated DFT with Hanning filter (bottom) are
shown in Fig. 5. For comparative purposes, the dashed lines
depict the curves 1=N2 (top) and 1=N4 (bottom), which
illustrate the scaling of the tune error for the benchmark
methods, specifically the interpolated DFT and the inter-
polated DFT with Hanning filter, respectively.

A. Amplitude variation from energy damping

The results of the application of the HT method are
reported in Fig. 5(a), where the tune error is shown when
using the interpolated DFT (top) and the interpolated DFT
with Hanning filter (bottom). Faster error reduction is
observed, as expected, for the interpolated DFT with the
Hanning filter. Moreover, the tune error is almost inde-
pendent of λ for the case of interpolated DFT, whereas a
variation is visible for the use of interpolated DFT with
Hanning filter.
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The damped exponential is the only type of signal for
which there is an exact equation to determine the tune and
damping factor, and the results of the application of the
equations derived in Sec. III A are shown in Fig. 6. For
comparative purposes, the dashed lines depict the curves
1=N2 (top) and 1=N4 (bottom), which illustrate the scaling
of the tune error for the benchmark methods, specifically,
the interpolated DFT and the interpolated DFT with
Hanning filter, respectively. The two methods provide a
tune error that scales as 1=N2 for the interpolated DFT and
1=N4 for the interpolated DFT with the Hanning filter.
The interesting feature of the exact equations is the

possibility of also finding a solution for the damping
parameter λ. The error of the reconstructed values of λ
scales are 1=N2 and 1=N4 for the interpolated DFT and the
interpolated DFT with Hanning filter, respectively.
In the reconstruction of λ, it is observed that the error on λ

saturates beyond a certain value N. This is due to the
exponential damping of the signal amplitude: beyond a
certain value of N the signal is compatible with zero with
the double precision accuracy of the numerical computations.

FIG. 4. Mean square error of the reconstruction of the signal
envelopes reported in Fig. 3 as a function of the parameter λN,
normalized in the interval [0, 1].

(a) (b)

(c) (d)

FIG. 3. Reconstruction of the beam envelopes by means of the Hilbert transform for the signals with amplitude variation from
energy damping (a), chromatic decoherence (b), nonlinearities (c), and acceleration (d) are shown as a function of the number of
turns n (up to the maximum of 1024 turns). For each signal, the characteristic factor λ has been varied in the interval shown on the
color scale.
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B. Amplitude variation from chromatic decoherence

The chromatic signal described in Eq. (11) has an
amplitude modulation that depends on the number of turns
according to a sinusoidal function. This feature makes it
impossible to find a closed-form solution of the equation of
the DFT coefficient for the tune. The tune of the chromatic
signal can be determined by exploiting Hilbert normaliza-
tion and the methods described above. The results are
shown in Fig. 5(b). In general, the results confirm that
normalization by means of HT restores the accuracy of the
methods based on DFT for signals of constant amplitude.
This type of signal has been used to assess the accuracy

in determining the physical parameters from the knowledge
of the signal envelope reconstructed by means of the HT
technique.
The modulation of the amplitude described by the

exponential term of Eq. (11) has been fitted to the envelope.
The three physical parameters, namely synchrotron tune νs,
chromaticity ξ, and rms relative momentum spread σδ, can
be used as model fit parameters in various combinations.
The experimental determination of σδ is not difficult, as it
can be measured quite easily. In principle, the synchrotron
tune can be derived from knowledge of the fundamental
machine parameters. However, it is more critical to deter-
mine the chromaticity, as it requires measuring the tune for
various values of the momentum offset and the synchro-
nous tune. The approach consisted of studying the best pair
of parameters to fit the envelope. Calculating ξ and σδ from
the fit proved to be quite challenging, and the associated
error was large. In fact, in Eq. (12), ξ and σδ are multiplied

by each other, so the fit tends to optimize their product
rather than the single variable. If νs and σδ are used as fit
parameters, large errors are observed in the synchrotron
tune (approximately ≈40% for the configuration where no
recoherence occurs within the first 1024 turns). Therefore,
the best set of parameters for the fit procedure was that of ξ
and νs and the results are reported in Fig. 7.
The error associated with the reconstruction of the

synchrotron tune is reduced as the value of chromaticity
increases. In fact, the longer the time interval of the
recoherence phenomenon, for a fixed number of turns,
the more precise the reconstruction of νs, as it is closely
related to the phenomena of chromatic decoherence
and recoherence. As ξ increases, a larger error is observed,
but it is still always below 10%. To summarize, this method
appears to be an effective way to ascertain fundamental
machine parameters like chromaticity and synchrotron
tune.

C. Amplitude variation from nonlinearities
and acceleration

The damping of coherent oscillations caused by non-
linearities and acceleration is characterized by amplitude
modulations that cannot be treated using a direct DFT-based
method because no exact closed-form solution can be found.
Therefore, the HT-based approach is the only remaining
option.
The results are shown in Figs. 5(c) and 5(d) for the case of

signals with nonlinearity and acceleration, respectively. The
efficient reconstruction of the tune value is clearly visible,

(a) (b) (c) (d)

(a) (b) (c) (d)

FIG. 5. The tune error ΔνðNÞ is computed for the signals with amplitude variation from energy damping (a), chromatic decoherence
(b), nonlinearities (c), and acceleration (d) (from left to right). Two methods have been used, the interpolated DFT (top) and the
interpolated DFTwith Hanning filter (bottom), and the tune is computed after having normalized the signal using the Hilbert transform.
The scaling of the tune error corresponding to the case λ ¼ 0 is represented by the back dashed lines with a dependence as 1=N2 (top)
and 1=N4 (bottom). In general, one observes that when the HT is applied, the original performance of the tune determination using the
DFT-based methods is restored, i.e., it is independent on the value of λ.
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with an accuracy that is, to a large extent, independent of
the value of the damping parameter λ. Thus, employing the
HT-based method for tune determination, which is the sole
suitable technique in these scenarios, has proven to be highly
precise, reinstating the efficiency of the high-accuracy tune
determination methods developed for stationary signals.

V. APPLICATION TO LHC DATA

The promising results discussed in the previous sections
suggested the application of the HT-based approach to
beam data collected at the LHC.
During the 2012 experimental campaign, an attempt was

made to measure the detuning with amplitude of the LHC
lattice using kicked beams [22]. The data had already been
analyzed using the standard approach, relying on harmonic
analysis of the raw data, which includes a non-negligible
variation of the signal amplitude (see Fig. 8 for an
example). A new analysis could be based on the use of
the HT to normalize the original data and then perform a
harmonic analysis of the normalized data.
We note here that the signal decoherence model that

corresponds to the LHC measurements is the one discussed
in Sec. II C and presented in Ref. [26], which relies on two
main assumptions, namely that the transverse beam dis-
tribution is Gaussian and the amplitude detuning is a
quadratic function of the betatron amplitude (hence, linear
in the action variable). Therefore, the envelope information
of the signal could be used to fit the model parameters and
hence determine the amplitude detuning from each single
turn-by-turn measurement. In fact, we stress that, unlike the
standard approach to determine the amplitude detuning,
which consists of displacing the beam at various amplitudes
and determining the tune at each amplitude to reconstruct
the dependence of the tune from the amplitude, the
proposed approach is capable of reconstructing the

FIG. 6. Dependence on N of the error on ν (left) and λ (right) for the damped exponential signal using the interpolated DFT [Eqs. (29)
and (32), top] and interpolated DFTwith Hanning filter [Eqs. (37) and (36), bottom] for several values of λ. The expected scaling of the
tune error is represented by the back dashed lines with a dependence as 1=N2 (top) and 1=N4 (bottom). The colored curves are all
featuring a slope in agreement with the expectations.

FIG. 7. Relative error of the reconstructed values of νs and ξ
from the fit of the signal envelope obtained using the HT
approach. The color code represents the value of the damping
factor λ. The large relative error associated with small chroma-
ticity values highlights the difficulty in reconstructing the
parameter when the modulation of the amplitude due to chro-
matic decoherence is relatively small, namely below 10%.
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amplitude detuning with a single measurement. The poten-
tial gain of the new approach is clearly apparent.
The amplitude detuning is defined as the Taylor expan-

sion of the tune according to:

QuðJx; JyÞ ¼ Qu;0 þ
∂Qu

∂Jx
Jx þ

∂Qu

∂Jy
Jy

þ 1

2

�
∂
2Qu

∂J2x
J2x þ

∂
2Qu

∂Jx∂yJy
JxJy þ

∂
2Qu

∂J2y
J2y

�
;

ð50Þ

where u ¼ x, y and Ju stands for the single-particle linear
action. Note that the action is not normalized to beam size,
and the amplitude detuning coefficients μ and μ2 introduced
later are not dimensionless as for the case of model C in
Sec. II C. Furthermore, it should be noted that the coef-
ficients in Eq. (50) are not all independent but satisfy the
following relationships:

∂Qx

∂Jy
¼ ∂Qy

∂Jx
; ð51Þ

∂
2Qx

∂J2y
¼ 2

∂
2Qy

∂Jx∂Jy

∂
2Qy

∂J2x
¼ 2

∂
2Qx

∂Jx∂Jy
: ð52Þ

Amplitude detuning is measured by kicking the beam
and recording the position of the beam centroid on a turn-
by-turn basis. At the end of the measurement, a signal
sampled over N turns is available for analysis. DFT-based
techniques, such as NAFF [5] or SUSSIX [7,8], are used to
determine the tune for each of approximately 500 LHC

BPMs, and the average, over the BPMs, of the tune values
provides an estimate of the tune, while the standard
deviation provides an estimate of the associated tune error
due to the reproducibility of the beam measurement. When
the measurement and frequency analysis are repeated for
different kick amplitudes, it is possible to obtain the tune as
a function of the single-particle action. A fit is then
performed on the experimental tune data to determine
the form of the tune variation, and thus the partial derivative
terms in Eq. (50) are determined.

A. Comparison with 2012 measurements results

An example of a BPM signal acquired during 2012 LHC
measurements is shown in Fig. 8, where a clear reduction of
the signal amplitude is visible, which confirms that, based
on previous considerations, conventional Fourier transform
analysis as executed by the NAFF software [5] is not
applicable.
The new analysis is based on the following steps: The

envelope of every BPM signal is reconstructed by HT and
used to normalize the signal. Then the tune is calculated
using the interpolated DFT on the constant-amplitude
signal. Finally, the envelope is fitted with a Gaussian
function, namely

joFitðnÞj ¼ Ae−λn
2

; ð53Þ

where the factor λ and the amplitude A are the fit
parameters. In Fig. 8, the reconstructed envelope is shown
in orange, while the result of the BPM fit procedure is
shown in green.
During the 2012 measurement campaign, the amplitude

detuning was measured for two LHC configurations: An
uncorrected configuration, where no adjustment of the
lattice nonlinear corrector magnets was performed; a
corrected configuration, where the strengths of specific
lattice nonlinear corrector magnets were adjusted to min-
imize the effects of nonlinear field errors, which was used
in operations (additional details can be found in Ref. [22]).
The results of the new analysis performed on the two

datasets are shown in Fig. 9, where the uncorrected
configuration is shown in red, and the corrected configu-
ration is shown in blue. The plots show the vertical (top)
and horizontal (bottom) tune as a function of a horizontal
(left) and vertical (right) single-particle linear action.
Analysis of the experimental data includes error bars for
the tune and action, respectively.
The measured data are also fitted with

QuðJu0 Þ ¼ Qu;0 þ μJu0 þ
1

2
μ2J2u0 ; ð54Þ

where the subscripts u and u0 stand for x, y in all possible
combinations and μ has the same meaning as the parameter
of Eq. (13), while μ2 represents a second-order detuning

FIG. 8. Turn-by-turn BPM measurement of the beam centroid
(blue). The BPM is located in cell 5 to the left of the ATLAS
interaction point and provides the horizontal position of the
counterclockwise beam. The envelope computedwith theHT-based
approach is also shown (orange), together with the result of the fit
procedure (green) based on themodel describing the decoherence in
the presence of nonlinearities.
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term that is not present in the derivation of the model
describing the amplitude variation due to nonlinearities of
Eq. (14). The result of the linear (μ2 ¼ 0) or parabolic fit
from Eq. (54) is shown in Fig. 9 with a continuous line, and
the rms error of the fit procedure is shown with the colored
area. The dashed black curve and the corresponding gray
error area refer to the fit and its error obtained in 2012 with
the previous approach (see Ref. [22] for more details).
When comparing the results obtained with the two

approaches, i.e., the standard approach (black lines and
gray areas) and the new approach (colored lines and
colored areas), it is possible to observe general agreement.
The uncorrected configuration (in red) shows a reduction in
the fit uncertainty. A visible discrepancy is observed in the
uncorrected case for the variation in the tune as a function
of Jx (left plots). It is worth mentioning that when the
current analysis is compared with that presented in

Ref. [22], a quadratic term is missing in the new data.
This is the consequence of dropping a couple of exper-
imental points a large value of Jx. This choice is based on
the observation that at the largest amplitudes the beam is
trapped in stable islands. Hence, the measured tune value is
not representative of the natural amplitude detuning. As far
as the variation of the tune as a function of Jy is concerned
(plots in the right column), the agreement between the fitted
lines (red and blue for the new analyses and black for the
2012 analyses) is much better, with a slope that agrees at
the level of ≈7%, which is within the 10% level that is
commonly assumed as the measurement accuracy of this
type of beam dynamics measurements at the LHC.
As far as the corrected configuration (blue curve) is

concerned, the uncertainty associated with the fit is larger
than that obtained from the previous method. However, the
fit curve represents the experimental data well, which is

FIG. 9. The data collected during the 2012 experimental campaign at LHC have been analyzed using the HT-based approach. The red
data and the corresponding fit refer to the uncorrected LHC configuration, whereas the blue data refer to the corrected LHC
configuration. The results obtained in 2012 with the standard analysis are shown in black and gray. The picture shows the change of the
vertical (top row) and horizontal (bottom row) tunes as functions of the horizontal (left column) and vertical (right column) linear
actions. The colored bands represent the rms error from the fit procedure.
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also confirmed by the value of the reduced chi-square test.
The coefficients in Eq. (54) and the corresponding reduced
χ2 are reported in Table I.
From the results reported in Table I, the largest uncer-

tainty is related to the determination of the first-order

coefficient μ for the case of the corrected configuration, but
this is a consequence of the reduction in the first-order
detuning due to the correction procedure. As a conse-
quence, the tune dependence is strongly dominated by the
second-order term, and this makes the determination of the

TABLE I. Results of the fit of the tune as a function of the single-particle action using Eq. (54).

Qy vs Jx Qy vs Jy Qx vs Jx Qx vs Jy

Uncorrected LHC configuration
Qu;0 0.3121� 0.0001 0.31419� 0.00004 0.2824� 0.0003 0.2804� 0.0002
μ (104 μm−1) 2.3� 0.3 −3.4� 0.1 −3.3� 0.3 2.9� 0.2
μ2 (1010 μm−2) · · · · · · · · · · · ·
χ2 ð10−2Þ 2 3 1 0.02

Corrected LHC configuration
Qu;0 0.3115� 0.0009 0.3116� 0.0003 0.2810� 0.0007 0.2800� 0.0003
μ (104 μm−1) −0.9� 0.5 0.3� 0.2 −0.1� 0.4 0.1� 0.2
μ2 (1010 μm−2) 0.70771� 0.00001 −2.35561� 0.00007 −1.69195� 0.00001 0.17039� 0.00001
χ2 ð10−2Þ 0.02 0.05 0.002 0.002

FIG. 10. Amplitude detuning in the horizontal (bottom row) and vertical (top row) planes is reported as a function of the horizontal
(left column) and vertical (right column) single-particle action for the uncorrected (red) and corrected (blue) configurations of the LHC
using the data collected in 2012. Continuous lines refer to the fit procedure using Eq. (55) and the corresponding fit errors are shown
with colored bars. The data points and the corresponding error bars are obtained from the proposed fit of the signal envelope. The dashed
lines refer to the amplitude detuning evaluated as the derivative of the curve that fits the tune as a function of the action in Fig. 9. The nice
agreement between the various methods to determine the amplitude detuning is clearly visible.
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first-order term difficult and, in all the cases, the values are
compatible with zero. However, the low value of the
reduced χ2 confirms the good quality of the fit.
So far, the information from the signal envelope (53) has

not been fully exploited. From the measurements shown in
Fig. 9, the presence of a quadratic term in the tune variation
is clearly visible. However, in Eq. (13), there is no such
quadratic term. It can be observed that this difficulty can be
overcome considering that in a case similar to that of
Eq. (54), the parabolic tune dependence on action can be
locally linearized as μþ μ2J̄u at the amplitude given by J̄u.
If multiple action values are probed, then it is possible to
reconstruct the coefficients μ and μ2 using the proposed
approach of fitting the signal envelope. Alternative
approaches consist of determining the tune from the
Hilbert normalized signal (as proposed here) or using
the NAFF technique on the amplitude-modulated signal
(as performed in 2012). Finally, for the uncorrected
configuration, it is also possible to estimate the amplitude
detuning using the LHC MAD-X model, which is based on
the measured field errors of the ring magnets. In this case,
the detuning coefficients are obtained from the tracking
data. Note that for the corrected configuration, the MAD-X

model was matched with the experimental data, which
prevents it from being used for comparisons with inde-
pendent beam measurement results.
The results of the first three approaches are shown in

Fig. 10, where the plotted curve is given by

μuðJuÞ ¼ μþ μ2Ju: ð55Þ

As shown in Fig. 10, the uncorrected configuration has
an amplitude detuning that does not depend on the action.
The corrected configuration shows a linear trend of the
horizontal and vertical amplitude detuning coefficients as a
function of Jx or Jy. We stress that the linear dependence
observed of μ on the action corresponds to the measure-
ment of a second-order amplitude detuning. Once again,
there is generally good agreement between the results of the
various methods applied to the experimental data. Some
outliers are observed at very small amplitudes, which are
explained by a weaker decoherence that makes the fit of the
signal envelope inaccurate. Therefore, even second-order
terms can be accurately measured by the new method based
on the signal envelope.
The results of the fit procedure, including also the fit

errors, are summarized in Table II, where also the
reconstruction of the amplitude detuning from the 2012
data analysis and the LHC MAD-X model is reported.
In inspecting the numerical values of the reconstructed

physical parameters, the overall good agreement between
the various approaches is clearly visible. It is also remark-
able that the values obtained from the envelope analysis or
those from the normalized signal are closer together than
those based on the original analysis.

TABLE II. Value of μ and μ2 for the various measurement strategies, and LHC configurations, i.e., corrected or uncorrected. Empty
cells refer to the cases where a linear fit of the tune-action data has been performed or to the results of the MAD-X simulations that are not
available for the corrected LHC case.

μ (1 × 10−4 μm−1) Fitted envelope Fitted tune vs action Fitted tune vs action (2012) MAD-X

μy vs Jx Uncorrected 1.3� 0.3 1.2� 0.2 0.8� 0.1 0.88� 0.06
Corrected −0.01� 0.03 −0.05� 0.02 −0.07� 0.02

μy vs Jy Uncorrected −1.5� 0.1 −1.44� 0.02 −1.64� 0.02 −1.53� 0.04
Corrected 0.10� 0.02 0.12� 0.09 0.12� 0.04

μx vs Jx Uncorrected −1.4� 0.3 −1.5� 0.3 −1.16� 0.03 −1.08� 0.03
Corrected −0.06� 0.02 −0.01� 0.02 −0.04� 0.05

μx vs Jy Uncorrected 1.3� 0.2 1.16� 0.07 1.0� 0.2 0.88� 0.06
Corrected 0.01� 0.03 0.06� 0.02 0.08� 0.03

μ2 (1 × 10−2 μm−2)
μy vs Jx Uncorrected 1.4� 0.4 0.7� 0.3

Corrected 0.7� 0.1 0.76� 0.15 0.30� 0.05

μy vs Jy Uncorrected −0.7� 0.2 −0.2� 0.2
Corrected −0.91� 0.05 −0.9� 0.1 −0.8� 0.1

μx vs Jx Uncorrected −2� 1 −0.6� 0.1
Corrected −0.60� 0.05 −0.8� 0.1 −0.9� 0.3

μx vs Jy Uncorrected 0� 1 −0.4� 0.4
Corrected 0.41� 0.07 0.3� 0.1 0.4� 0.1
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VI. CONCLUSIONS

In this paper, we discussed the analysis of nonstationary
signals with the goal of extracting useful physical infor-
mation by applying harmonic analysis. This topic is
particularly relevant for applications in beam dynamics
and is rarely considered. In fact, most of the theoretical
tools developed so far to extract accurate information about
the tune of a given orbit are, strictly speaking, not
applicable to the case of nonstationary signals, i.e., signals
whose amplitude varies in time.
In this paper, we proposed new approaches, based on

closed-form expressions to derive the tune and the damping
parameter, or on the use of the Hilbert transform. The first
approach is suitable for a restricted number of physical
cases, as it requires the capability of analytically computing
the form of the Fourier amplitudes for a given signal form.
This can be achieved for the case of pure exponential
damping of a harmonic signal. Whenever closed-form
expressions have been provided, the corresponding accu-
racy, i.e., the error on the determination of the tune and of
the damping coefficient, has been determined analytically.
The second approach based on the Hilbert transform is of
general use and, strictly speaking, is the only correct
method under the condition of the Bedrosian theorem [34].
It is used to determine the signal envelope, which is then

used to normalize the original signal. At this stage, high-
accuracy interpolated DFT or interpolated DFT with
Hanning filter methods can be applied to the normalized
signal. Both methods, i.e., the analytical one for an
exponential damping and that based on the Hilbert trans-
form, have been studied in detail on sample signals to
assess their performance.
The appeal of the methodology based on the Hilbert

transform lies in its applicability to a wide spectrum of
generic nonstationary signals for the determination of their
envelopes. Should the analytical representation of the
envelope be ascertained, based on an understanding of
the underlying physical phenomena, the envelope can
subsequently be employed to determine the values of the
physical parameters through a fitting procedure.
For the specific case of amplitude detuning measure-

ments, which is a particularly relevant application for
storage rings and colliders, the proposed method allows
for extracting more accurate information about the tune,
and hence of the amplitude detuning, not only from a direct
tune measurement as a function of the transverse amplitude
but also from the decoherence properties of the signal
envelope. Generally speaking, a unique beam measurement
is needed to compute the amplitude detuning using the
proposed method. In practice, several measurements are
needed, but the possibility of extracting more information
from each measurement allows the overall procedure to be
improved.
The proposed method based on the Hilbert transform

has been applied to the available LHC data collected in

2012, and the results of the new analysis have been
compared with the original published results. A global
agreement has been found between the results of the
various techniques.
This promising result encourages us to promote the

Hilbert transform method as a new standard not only for the
LHC but also more generally for storage rings. This method
opens up several novel applications, such as monitoring the
reproducibility of nonlinear effects in a storage ring by
looking at the reproducibility of the damping properties of
the turn-by-turn position signal. This would be a parasitic
measurement when injection oscillations are used.
Furthermore, the variation of nonlinear effects along a
bunch train, generated by electron-cloud effects, could be
probed by displacing the bunches in the transverse direc-
tions and measuring the damping properties of the turn-by-
turn position signal.

APPENDIX A: CLOSED-FORM SOLUTION
FOR ν AND λ FOR EXPONENTIALLY DAMPED

SIGNALS USING AN INTERPOLATED
DFT APPROACH

Considering a damped exponential signal with frequency
ν defined as

zðnÞ ¼ e−λne2πiνn: ðA1Þ

Deriving a closed-form solution to determine the tune,
consists of computing the DFT coefficients and solving and
appropriate equation for the tune. First, it is possible to
write the DFT coefficients as

ϕðνjÞ ¼
1

N

XN
n¼1

e2πiðν−νjÞ−λn; ðA2Þ

where

νj ¼
j
N
: ðA3Þ

Equation (A2) can be written as

jϕðνjÞj2¼
1

N2
e−λðNþ1Þ sin

2ðπNΔνj∓ πÞþ sinh2 λN
2

sin2ðπΔνj ∓ πÞþ sinh2 λ
2

; ðA4Þ

where

Δνj ¼ ν − νj: ðA5Þ

It is possible to solve Eq. (A4) in terms of ν and λ if,
assuming that the maximum of jϕðνjÞj corresponds to

νk ¼
k
N
; ðA6Þ
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we use the expressions for jϕðνkÞj and jϕðνk�1Þj. It is then
possible to show that

ν� ¼ k
N
þ 1

π
arctan

�
1

tan π
N

�
ηþ 1

η − 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ηþ 1

η − 1

�
2

þ tan2
π

N

s ��
; ðA7Þ

where

η ¼ χþ − 1

χ− − 1
; χ� ¼ jϕðνkÞj2

jϕðνk�1Þj2
ðA8Þ

is an estimate of ν. The choice between ν− and νþ is based
on the values of jϕðνk�1Þj. If jϕðνk−1Þj > jϕðνkþ1Þj then ν−
should be selected; otherwise, νþ should be selected.
Similarly, it is possible to show that the following holds:

λ� ¼ 2 arcsinh

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϕðνk�1Þj2sin2ðπΔνk ∓ π

NÞ − jϕðνkÞj2sin2 πΔνk
jϕðνkÞj2 − jϕðνk�1Þj2

s
;

ðA9Þ

where

Δνk ¼ ν − νk; ðA10Þ

the choice between the two values of λ is made in a similar
way as for the tune (additional details of the determination
of Eqs. (A7) and (A9) can be found in Ref. [31]).
The determination of the precision with which Eqs. (A7)

and (A9) provide the tune and the damping factor is carried
out by perturbing the DFT coefficients due to the inclusion
of an additional frequency (as done in Ref. [20]). The
perturbed DFT coefficient will read

ϕ̂ðνjÞ ¼ ϕðνjÞ þO

�
1

N

�
; ðA11Þ

and it is immediate to obtain

jϕ̂ðνjÞj ¼ jϕðνjÞj þO

�
1

N

�
;

jϕ̂ðνjÞj2 ¼ jϕðνjÞj2 þO

�
1

N2

�
; ðA12Þ

where the second relation is obtained by noting that
ϕðνjÞ ≈Oð1NÞ.
Using the previous relationships and replacing them in

Eqs. (A7) and (A9), one obtains the following results:

ν̂ ¼ νþO

�
1

N2

�
;

λ̂ ¼ λþO

�
1

N2

�
; ðA13Þ

which provide an estimate of the error affecting the closed-
form expressions for ν and λ as a function of N.

APPENDIX B: CLOSED-FORM SOLUTION FOR ν
AND λ FOR EXPONENTIALLY DAMPED

SIGNALS USING AN INTERPOLATED DFT
WITH HANNING FILTER APPROACH

For the case of a signal including the Hanning filter, one
obtains that the DFT coefficients read

ϕðνjÞ ¼
2

N

XN
n¼1

e2πiðν−νjÞn−λnsin2
πn
N

; ðB1Þ

which can be cast in the form

ϕðνjÞ ¼
ie−λNsin2 π

N cot θjðλÞð−eλN þ e2πiðν−νjÞNÞ
N½cos 2πN − cos 2θjðλÞ�

; ðB2Þ

where θjðλÞ is a complex variable defined as

θjðλÞ ¼ πðν − νjÞ þ i
λ

2
: ðB3Þ

It is possible to find a closed-form solution of Eq. (B2)
for ν and λ considering Eq. (B2) for νk ¼ k=N, representing
the maximum of the DFT spectrum and its neighboring
coefficients for k� 1.
In fact, it is possible to obtain two trigonometric

equations in the complex domain in the unknown θkðλÞ
that read

�
cos

2π

N
− χþ

�
sin 2θkðλÞ − sin

2π

N
cos 2θkðλÞ

− sin
2π

N
ðχþ þ 1Þ ¼ 0; ðB4Þ

or

�
cos

2π

N
− χ−

�
sin 2θkðλÞ þ sin

2π

N
cos 2θkðλÞ

þ sin
2π

N
ðχ− þ 1Þ ¼ 0; ðB5Þ

where χ� is defined as

χ� ¼ ϕðνkÞ
ϕðνk�1Þ

: ðB6Þ
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The two equations can be summed up to obtain�
2cos

2π

N
− ðχþþχ−Þ

�
sin2θkðλÞ¼ sin

2π

N
ðχþ−χ−Þ; ðB7Þ

from which one obtains

θkðλÞ ¼
1

2
arcsin

�
sin 2π

N ðχþ − χ−Þ
2 cos 2πN − ðχþ þ χ−Þ

�
: ðB8Þ

To determine the tune and damping factor, it is necessary
to determine the inverse sine function of a complex number.
It is possible to find its definition in Ref. [32] using the
formula

arcsinðzÞ¼ arcsinðxþ iyÞ¼ kπþð−1Þk arcsin β
þð−1Þki ln

�
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2þ1Þ

q �
k∈N0; ðB9Þ

and

α ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ y2

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 1Þ2 þ y2

q
;

β ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ y2

q
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 1Þ2 þ y2

q
: ðB10Þ

Thus, from the following equalities:

2πðν−νkÞþ iλ¼ arcsin βþ i ln
�
αþ

ffiffiffiffiffiffiffiffiffiffiffiffi
α2þ1

p �
; ðB11Þ

one obtains

ν ¼ k
N
þ 1

2π
arcsin β;

λ ¼ ln
�
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 1

p �
: ðB12Þ

Also in this case, it is possible to determine the error
scaling law by determining ν and λ. The approach is similar
to what is used for the case of interpolated DFT of an
exponentially damped signal. Adding a frequency to the
original signal for which the closed-form solutions have
been determined implies that the perturbed DFT coefficient
reads

ϕ̂ðνjÞ ¼ ϕðνjÞ þO

�
1

N3

�
; ðB13Þ

and it is immediate to obtain

χ̂� ¼ χ� þO

�
1

N3

�
; ðB14Þ

and similarly, one finds

ẑ ¼ zþO

�
1

N3

�
; ðB15Þ

and finally, using Eqs. (B10) and (B12), one obtains the
final estimate

ν̂ ¼ νþO

�
1

N3

�
;

λ̂ ¼ λþO

�
1

N3

�
: ðB16Þ
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