
Quantum Machine Intelligence (2024) 6:59
https://doi.org/10.1007/s42484-024-00198-5

RESEARCH ART ICLE

Distributed hybrid quantum-classical performance prediction
for hyperparameter optimization

Eric Wulff1 · Juan Pablo Garcia Amboage1 ·Marcel Aach2,3 · Thorsteinn Eli Gislason3 ·
Thorsteinn Kristinn Ingolfsson3 · Tomas Kristinn Ingolfsson3 · Edoardo Pasetto2,4 · Amer Delilbasic2,3 ·
Morris Riedel2,3 · Rakesh Sarma2 ·Maria Girone1 · Andreas Lintermann2

Received: 15 April 2024 / Accepted: 3 September 2024
© The Author(s) 2024

Abstract
Hyperparameter optimization (HPO) of neural networks is a computationally expensive procedure, which requires a large
number of different model configurations to be trained. To reduce such costs, this work presents a distributed, hybrid workflow,
that runs the training of the neural networks on multiple graphics processing units (GPUs) on a classical supercomputer, while
predicting the configurations’ performance with quantum-trained support vector regression (QT-SVR) on a quantum annealer
(QA). The workflow is shown to run on up to 50 GPUs and a QA at the same time, completely automating the communication
between the classical and the quantum systems. The approach is evaluated extensively on several benchmarking datasets
from the computer vision (CV), high-energy physics (HEP), and natural language processing (NLP) domains. Empirical
results show that resource costs for performing HPO can be reduced by up to 9% when using the hybrid workflow with
performance prediction, compared to using a plainHPOalgorithmwithout performance prediction. Additionally, theworkflow
obtains similar and in some cases even better accuracy of the final hyperparameter configuration, when combining multiple
heuristically obtained predictions from the QA, compared to using just a single classically obtained prediction. The results
highlight the potential of hybrid quantum-classical machine learning algorithms. The workflow code is made available open-
source to foster adoption in the community.

Keywords Hyperparameter optimization · Quantum annealing · Hyperband · Distributed computing

1 Introduction

The performance of neural networks with respect to their
accuracy is highly sensitive to the choice of hyperparam-
eters (HPs). To optimize HPs efficiently, current popular

Eric Wulff, Juan Pablo Garcia Amboage, and Marcel Aach contributed
equally to this work.

B Eric Wulff
eric.wulff@cern.ch

1 CERN, Espl. de Particules 1, 1211 Meyrin,
Geneva, Switzerland

2 Jülich Supercomputing Centre, Forschungszentrum Jülich,
Wilhelm-Johnen-Straße, 52428 Jülich, Germany

3 School of Engineering and Natural Sciences, University of
Iceland, 107 Reykjavík, Iceland

4 RWTH Aachen University, 52056 Aachen, Germany

hyperparameter optimization (HPO) algorithms, such as
Hyperband (Li et al. 2017), the Asynchronous Successive
Halving Algorithm (ASHA) (Li et al. 2018), and Bayesian
Optimization Hyperband (BOHB) (Falkner et al. 2018), rely
on early termination. In this method, underperforming trials
are automatically terminated to free up compute resources for
more promising trials. Choosing, e.g., the validation accuracy
or the validation loss as a metric to relatively rank the trials
may lead to a suboptimal selection of trials to terminate due to
the non-linearity of the training process. That is, the ranking
of trials is unpredictably dynamic over the number of epochs.
In practice, this problem is often mitigated by training such
a large number of total model configurations that the impact
of wrongfully early stopping a few promising configurations
is minimized.

A potential extension of the early termination approach is
to use a non-linear stopping criterion, e.g., using amodel per-
formance predictor that predicts future model performance

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-024-00198-5&domain=pdf

 59 Page 2 of 14 Quantum Machine Intelligence (2024) 6:59

improvements from a partially trained model. Such predic-
tions can be used to either rank configurations in a more
informed manner or to make the evaluation process more
aggressive, i.e., by replacing actual evaluations of some con-
figurations that have been trained up to a certain epoch with
predictions of their performance. This was first suggested
byBaker et al. (2017),where support vector regression (SVR)
was used as a performance predictor. In conclusion, the train-
ing of the most promising configurations can be prioritized
based on the predicted performance. Thisway, it is avoided to
fully train configurations predicted to perform poorly. Con-
sequently, this approach holds great potential for reducing
the time and computational resources required for HPO.

In this work, a novel HPO algorithm called Swift-
Hyperband (Amboage et al. 2023) (an extension of the
original Hyperband method) is incorporated into a hybrid
high-performance computing (HPC) environment where it
distributes the training of the target models onto multiple
graphics processing units (GPUs) and trains the performance
predictors on a quantum annealer (QA) in an autonomous
fashion. Results show that Swift-Hyperband accelerates the
HPO process of a high-energy physics (HEP)-based algo-
rithm, machine-learned particle flow (MLPF) (Pata et al.
2021a), and other machine learning models that run on HPC
systems. The goal of this paper is to show empirically how
such a way of integrating a quantum system in a machine
learning (ML) workflow can lead to resource savings in
comparison to the plain Hyperband algorithm without any
performance prediction and how leveraging a QA for the per-
formance prediction can match and sometimes outperform
classical performance prediction. In specific, the workflow
can be applied to MLmodels of any size, as only a small part
of the computation needs to be done on the QA, and the main
training of the models is performed on classical GPUs. This
makes it different from pure quantumML workflows, which
can currently only handle small problems. It should be noted
that currently, there is not a clear, theoretical advantage of
integrating QAs.

The presented hybrid workflow serves as a proof of con-
cept for the integration of HPC and quantum computing
technologies in a large-scale distributed fashion. By demon-
strating the feasibility of such an integration, the way for
future endeavors in harnessing the combined power of these
computing paradigms, such as applying classic HPO tech-
niques to quantum models among other future use cases, is
paved.

The paper is structured as follows: The technical back-
ground and related work are explained in Section 2. Sec-
tion3 presents the experimental setup as well as the dis-
tributed Swift-Hyperband algorithm. The empirical results

are detailed in Section 4, while Section 5 provides a conclu-
sion and directions for future work.

2 Related work and theoretical background

In this section, the relevant literature regarding HPO in gen-
eral, the process of performance prediction to speed it up,
and the foundations of classical and quantum SVR methods
are summarized.

2.1 Quantum annealing and QUBO problems

Quantum annealing (Apolloni et al. 1989; Kadowaki and
Nishimori 1998) is a heuristic for optimization based on
quantum computation that is often used to solve quadratic
unconstrained binary optimization (QUBO) problems, i.e.,
discrete unconstrained optimization problems in which the
problem variables can take values over a binary set (Date
et al. 2021). The general cost function E(v1, . . . , vM) of a
QUBO problem with M binary variables vi , i = 1, . . . M is
given by the following:

E(v1, . . . , vM) :=
∑

i≤ j

Qi jviv j , (1)

where Q is the QUBO weight matrix that stores the coeffi-
cients of the problem. In quantum annealing, the quantum
system is set to the ground state of an initial Hamiltonian Hi ,
whose ground state is known and easy to prepare. The system
is then slowly evolved for a total annealing time Ta by adding
the contribution of a target Hamiltonian Hp, whose ground
state encodes the solution of the optimization problem to be
solved, and by reducing the contribution of the initial Hamil-
tonian Hi . The resulting Hamiltonian is then given by the
following:

H(t) = A(t)Hi + B(t)Hp (2)

where A(t) is a monotonically decreasing function such that
A(t = 1) = 1 and A(t = Ta) = 0, and B(t) is a mono-
tonically increasing function such that B(t = 0) = 0 and
B(t = Ta) = 1 (McGeoch 2014). QAs from the company
D-Wave implement a specific default annealing schedule,
for which the corresponding values of the functions A(t)
and B(t) can be found in the documentation.1 On D-Wave
systems, a default annealing time of 20μs is set. Both the

1 D-Wave annealing schedule: https://docs.dwavesys.com/docs/latest/
doc_physical_properties.html.

123

https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html

Quantum Machine Intelligence (2024) 6:59 Page 3 of 14 59

annealing schedule and annealing time are set to their default
values in this study.

2.2 Hyperparameter optimization algorithms

Early termination algorithms are nowadays one of the main
tools for HPO of deep neural networks. They have been
shown to save considerable amounts of resources in the HPO
process without losing the ability to find good configurations
for the target model (Li et al. 2018; Falkner et al. 2018; Yu
and Zhu 2020). The successive halving algorithm (Jamieson
and Talwalkar 2016) is the foundation of most of the relevant
early termination algorithms. Successive halving trains a set
of randomly generated configurations for a certain number of
epochs, discards the worst-performing half, and repeats this
process until only one configuration remains. TheHyperband
algorithm (Li et al. 2017) runs multiple instances of succes-
sive halving sequentially with different numbers of initial
configurations and different locations of the decision points.
BOHB (Falkner et al. 2018) is an algorithm that extends
Hyperband by following a Bayesian optimization approach
for selecting the configurations instead of generating them
randomly. Finally, ASHA (Li et al. 2018) stands for asyn-
chronous successive halving and extends successive halving
to efficiently benefit from large-scale distributed resources.

2.3 Performance prediction

Performance prediction aims at predicting the future per-
formance of a model under a given set of hyperparameters
based on the early results of the training, e.g., using a par-
tial learning curve (see Fig. 1). The problem can formally be
defined as predicting the validation loss or validation accu-
racy l(λ)R at training epoch R ∈ N that will be obtained by a
machine learning model with the hyperparameter configura-
tion λ ∈ � ⊂ R

h , where h is the number of hyperparameters
of the network (see Baker et al. 2017 and Liu et al. 2022).
The performance of the target model at previous training
epochs can be used for this prediction. If the auxiliary model
chosen to be used as a performance predictor is fast to train
relative to the target model, performance prediction can be
used to accelerate the HPO process. In this regard, it has
been shown that computationally cheap regression methods,
such as SVR, are good choices to be used as performance
predictors (Baker et al. 2017).

A simple strategy to integrate performance prediction in
an HPO process can be described as follows. First, a series of
randomHPconfigurations fromagiven search space is gener-
ated, a fewof themare trained for R epochs, and the generated
learning curves are used to train a performance predictor
model such as an SVR. Next, the remaining configurations
are initially trained for τ < R epochs (e.g., τ = R

2), where-
after their future performances are predicted. Finally, only

those configurations that are considered promising, accord-
ing to the predicted performance, are allowed to continue
training until epoch R. Note that the initial full and partial
trainings can be done in parallel.

2.4 Support vector regressionmethods

Support vector machines (Boser et al. 1992; Drucker et al.
1996) are popular supervised learning algorithms that can
be applied to classification and regression tasks. One of
the reasons for their popularity is found in the fact that
the determination of the model parameters amounts to a
convex optimization problem; therefore, any local solution
corresponds to a global one (Bishop 2006). However, it is
important to point out that the globalminimumof the training
cost functionmay not be optimal in terms of generalization to
the test set (Willsch et al. 2020). Moreover, they can approx-
imate non-linear functions by applying the so-called kernel
trick (Burges 1998) thus increasing the algorithm’s expres-
sive potential.

Themathematical formulation of the SVR is subsequently
briefly outlined. Given a training dataset {(xn, yn), n =
1, . . . , N }, where xn ∈ R

z is the input vector, N is the num-
ber of training samples, and yn is its corresponding target
value. The objective is to approximate a regression function

g(x) =
N∑

n=1

(αn − α̂n)κ(xn, x) + b, (3)

which maps from R
z to R. The parameters αn, α̂n are deter-

mined in the optimization process. The term κ(xn, x) denotes
the kernel function, which is in this study the RBF kernel
with formula e(−γ ||xn−xm ||2). More generally, a RBF kernel
is a kernel whose value depends only on the distance of the
input vectors, i.e., κ(xm, xn) = κ(||xm − xn||). RBF kernels
are one of the most popular choices for SVR kernels along
with polynomial and sigmoid kernels (Bishop 2006). It can
be shown that the training phase amounts to solving the fol-
lowing constrained optimization problem (also referred to as
the cost function):

L(ααα, α̂αα) =1

2

N−1∑

n=0

N−1∑

m=0

(αn − α̂n)(αm − α̂m)κ(xn, xm)+ (4)

− ε

N−1∑

n=0

(αn + α̂n) +
N−1∑

n=0

(αn − α̂n)yn,

satisfying the constraints:

N−1∑

n=0

(αn − α̂n) = 0, (5a)

123

 59 Page 4 of 14 Quantum Machine Intelligence (2024) 6:59

Fig. 1 Example learning curves
of different convolutional neural
networks (CNNs) on the
CIFAR-10 and TinyImageNet
dataset

0 ≤ αn ≤ C, (5b)

0 ≤ α̂n ≤ C, (5c)

where the terms C and ε are hyperparameters that control
the overfitting and the error sensitivity. The vectors ααα and
α̂αα are defined as ααα = {α1, . . . , αN } and α̂αα = {α̂1, . . . , α̂N },
respectively. The value of b can be obtained from any point
for which 0 < αn < C by

b = yn − ε −
N∑

m=1

(αm − α̂m)κ(xn, xm). (6)

Due to the constraints, it must satisfy ε + g(xn)− yn = 0.
It is, however, preferable to average over different estimates
of b to yield a stable solution, i.e.,

b = 1

|S|
∑

n∈S

(
yn − ε −

N∑

m=1

(αm − α̂m)κ(xn, xm)

)
. (7)

In this equation, S corresponds to the set of support vec-
tors, i.e., those vectors that contribute to the prediction of the
target value (c.f. Eq. 3) (Bishop 2006).

2.5 Quantum support vector regression

To optimize the training phase of a quantum-trained support
vector regression (QT-SVR) (Pasetto et al. 2022), it is nec-
essary to reformulate the optimization problem as either an
Ising or QUBO problem. In the current study, the problem is
restructured as a QUBO problem by carrying out a three-step
problem conversion procedure, which consists of (i) encod-
ing the problem variables, (ii) adding penalty terms to encode
the constraints, and (iii) defining the QUBO matrix. These
steps are subsequently explained in more detail.

2.5.1 Problem variable encoding

The first step towards the construction of the QUBO prob-
lem consists of turning the problem variables into binary

ones. Specifically, each of the original problem variables is
encoded using K qubits according to

αn =
K−1∑

k=0

Bk−PaKn+k, (8)

α̂n =
K−1∑

k=0

Bk−PaK (N+n)+k, (9)

where B is an encoding basis and a is the value of the qubits.
The parameter P is used to allow the usage of negative expo-
nents in the encoding procedure.

This results in 2K N QUBO variables, where the first KN
variables are used to encodeααα, whereas the lastKN variables
are used to represent α̂αα. Theααα and α̂αα are then substituted into
(4).

2.5.2 Penalty term addition

The QUBO problem must be unconstrained. It is, therefore,
necessary to add penalty terms, whose influence is regulated
by hyperparameters, to implicitly enforce the constraints. To
enforce (5a), a square penalty regulated by the hyperparam-
eter ξ is added to the cost function in Eq. 4:

ξ

(N∑

n=1

(αn − α̂)n

)2

. (10)

The constraints defined by Eqs. 5b and 5c, which are also
referred to as box constraints, are implicitly satisfied by the
encoding equations. As the qubit values collapse to either 0
or 1, the maximum value that each αn and α̂n can take is

K∑

i=0

BK−1−P , (11)

This is obtained if all qubit values aKn+k or aK (N+n)+k

collapse to 1 for k = 0, . . . , K − 1.

123

Quantum Machine Intelligence (2024) 6:59 Page 5 of 14 59

2.5.3 QUBOmatrix definition

After the addition of the penalty terms (see Eq. 10) to the
cost function (see Eq. 4) and the subsequent encoding of the
problem variables (see Eq. 8), the final QUBO cost function
takes the form:

N−1∑

n,m=0

K−1∑

i, j=0

1∑

s,t=0

aK (sN+n)+i Q̃K (sN+n)+i,K (t N+m)+ j aK (t N+m)+ j ,

(12)

where Q̃ is an 2K N×2K N matrix that encodes the problem
and whose elements are given by

Q̃K (sN+n)+i,K (t N+m)+ j =(−1)(1−δst)Bi+ j−2P
(
1

2
κ(xn, xm) + ξ

)

(13)

+ δnmδi j B
i−Pδst

(
ε + (−1)(1−s)(1−t)yn

)

(14)

To obtain a problem formulation similar to Eq. 1, it is
necessary to construct the upper-triangular 2K N × 2K N
QUBO matrix Q from Q̃ by using

Qi, j =

⎧
⎪⎨

⎪⎩

Q̃i, j + Q̃ j,i , if i < j;
Q̃i, j , if i = j;
0, otherwise.

(15)

The minimization problem can then be written as

min
aaa∈{0,1}2K N

aaaT Q aaa, (16)

where aaa is the 2K N vector obtained by the concatenation of
aaa and âaa.

The final step to run a problem instance on theQA is creat-
ing aminor embedding (Choi 2011). This arises from the fact
that the graph structure of the quantumprocessing unit (QPU)
is not fully connected. It is, therefore, necessary to represent
a logical qubit with a group of connected qubits that are con-
strained to have the same values. For a givenQUBOproblem,
it is possible to construct the corresponding problem graph
G(V , E) by considering as the set of nodesV = {ai , . . . , an},
where each node corresponds to a problem variable and the
set of edges E = {(ai , a j), ∀ (i, j) such that Qi, j �= 0}.
The D-Wave Advantage system uses a Pegasus (Boothby
et al. 2020) topology graph. For the experiments conducted
in this study, the problem graph always had the same struc-
ture for each test run since it is a fully connected graph with
a number of nodes equal to 2K N . The values of K and N

were always the same for each experimental run. Therefore,
the embedding was calculated only once using the functions
provided by the officialD-WaveOcean tools ,2 which provide
an interface to the QA machine.

2.5.4 Advantages of Q-SVMs over classical counterparts

So far, established work combining support vector machines
(SVMs) and general quantum computing (QC) has focused
on performing the computation of the kernel on the quantum
hardware (Rebentrost et al. 2014). This approach has a theo-
retical advantage in runtime, as kernel computation requires
only logarithmic runtime in the quantum setting but at least
quadratic runtime in the classical setting. However, comput-
ing not the kernel but the training process (as performed in
this study) on a QA has two advantages:

• Time complexity: Usually, the whole training proce-
dure of (classical) SVMs and SVRs in specific has cubic
time complexity (Bottou et al. 2007; Abdiansah Abdi-
ansah 2015), which can lead to long runtimes for large
datasets. To the contrary, a QUBO solved on QAs returns
a set of low-energy solutions after a predefined amount
of time, independent of the input problem size (Date
et al. 2021). This can lead to potential speed-ups for large
training datasets in the future.

• Solution combinations: While classical SVMs return
a single optimal solution, QAs provide multiple low-
energy solutions to a given problem. These different solu-
tions can be combined, analogous to ensembling. This
has empirically been shown to improve generalization
performance in classical learning algorithms (Dietterich
2000), and a similar effect can be observed in quantum
learning algorithms (Willsch et al. 2020; Cavallaro et al.
2020).

It should be noted that the set of QAs solutions is not guar-
anteed to be theoretically optimal (as in the case of classical
SVMs) and that limitations in terms of the number of avail-
able qubits on current QAs also limit the problem size that
can be solved in a quantum setting. For D-Wave QAs, the
number of available qubits has however grown steadily from
2000 to more than 5000 during the past years .3

2 D-Wave Ocean SDK version 6.9.0: https://www.dwavesys.com/
solutions-and-products/ocean/.
3 D-Wave QAs: https://www.dwavesys.com/solutions-and-products/
systems/.

123

https://www.dwavesys.com/solutions-and-products/ocean/
https://www.dwavesys.com/solutions-and-products/ocean/
https://www.dwavesys.com/solutions-and-products/systems/
https://www.dwavesys.com/solutions-and-products/systems/

 59 Page 6 of 14 Quantum Machine Intelligence (2024) 6:59

3 Experimental setup

3.1 Machines

Two different types of machines are used for the hybrid setup
of the workflow. The classical calculations are executed on
the Extreme Scale Booster partition of the DEEP-EST super-
computer.4 It features a total of 75 nodes, where each node is
equipped with an Intel Xeon Central Processing Unit (CPU)
with 8 cores and a NVIDIA V100 GPU. The quantum calcu-
lations take place on the D-Wave Advantage system JUPSI ,5

as of 04/2024 the largestQA inEuropewith 5614qubits.Both
machines are located at the Jülich Supercomputing Centre.

3.2 Performance prediction algorithm

The Fast-Hyperband (Baker et al. 2017) algorithm is a
modified version of Hyperband that adds an additional, per-
formance prediction-based decision point at the end of every
epoch. This allows the algorithm to estimate which config-
urations are less likely to be promoted to the next round
and terminate them earlier than the original Hyperband. Nat-
urally, this saves computational resources compared to the
classical Hyperband algorithm.

The Swift-Hyperband algorithm is similar to Fast-Hyper-
band but adds only one extra decision point based on per-
formance prediction inside each Hyperband bracket round
(instead of one extra decision point every epoch) (see Fig. 2).
Therefore, Swift-Hyperband requires training considerably
fewer performance predictors than Fast-Hyperband. This
enables Swift-Hyperband to run in a hybrid quantum-
classical workflow, where the performance predictors are
trained using a QA. Furthermore, each round of Swift-
Hyperband can be parallelized as the trial trainings can be
performed in parallel in contrast to Fast-Hyperband, which
is a sequential approach.

Algorithms 1 and 2 inAppendixA present the pseudocode
for Swift-Hyperband and its auxiliary routine run_then_
return_val_loss, where the performance predictors
are both trained and used to make predictions. For sim-
plicity, only the pseudocode of the sequential version of
Swift-Hyperband is presented. In the distributed implemen-
tation, the parallelization is performed at a round level
in the same way that is described for Hyperband in Li
et al. (2018). This is, the outer for loop in the routine
run_then_return_val_loss is adapted to run its
multiple iterations in parallel. The only disadvantage of this
type of parallelization is the same as the one discussed for the

4 DEEP-EST: https://www.fz-juelich.de/en/ias/jsc/systems/
prototype-systems/deep_system
5 JUPSI: https://www.fz-juelich.de/en/ias/jsc/systems/quantum-
computing/juniq-facility/juniq/d-wave-advantagetm-system-jupsi

classical version of Hyperband in Li et al. (2018). That is, the
number of iterations in the parallelized for loop is not con-
stant throughout the whole algorithm but instead decreases
from the start to the end of each bracket. For this reason,
using a high number of parallel computing nodes may result
in some of them being idle towards the end of each bracket.

3.3 Hybrid quantum-classical workflow

Swift-Hyperband is suited for hybrid quantum-classical
workflows. A QT-SVR trained on a QA can be used as
the performance predictor, while the trainings of the target
model can be performed in parallel across several nodes in an
HPC center. However, this does not hold for Fast-Hyperband.
Note that, apart from being a sequential algorithm, Fast-
Hyperband has the disadvantage that a high number of
performance predictors are necessary. This makes it infea-
sible to run with QT-SVRs due to the time needed to
communicate with the QA.

For this work, a hybrid quantum-classical implementation
of Swift-Hyperband that uses the Message Passing Interface
(MPI) standard to communicate across multiple nodes in an
HPC cluster and relies on the D-WaveOcean SDK to connect
to a D-Wave Advantage System to train the QT-SVRs has
been developed. In this implementation, one node of theHPC
cluster acts as a head node, communicating with the QA as
well as coordinating up to 50 GPU-equipped worker nodes,
where the different target model configurations are trained.
This workflow is illustrated graphically in Fig. 3.

On current quantum hardware, the size of problems that
can be computed is still limited. Considering the cubic time
complexity associated with the training of classical SVR
predictors and the capability of a quantum system to run
calculations in a matter of milliseconds, a speed-up can,
however, be expected for large datasets on future quantum
hardware (Date et al. 2021).

3.3.1 QT-SVR solution combination

As mentioned in Sect. 2.5.4, the QA returns a set of low-
energy solutions after a fixed amount of time, instead of just
a single one. These multiple solutions can then be combined
to create a more robust prediction, which has already been
performed in earlier literature (Willsch et al. 2020; Pasetto
et al. 2022). Given the true training target values ytrain and
the predicted target values ỹtraini , where i = 1, . . . , s in
the range of the total number of solutions s, each of the s
candidate solutions (i.e., the different set of values for αn

and α̂n) is assigned a weight wi , i = 1, . . . , s. To do so,
for each set of αn and α̂n , the mean squared error loss Li is

123

https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system
https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system
https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility/juniq/d-wave-advantagetm-system-jupsi
https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility/juniq/d-wave-advantagetm-system-jupsi

Quantum Machine Intelligence (2024) 6:59 Page 7 of 14 59

Fig. 2 Graphic representation
of the Swift-Hyperband
algorithm, taken from Amboage
et al. (2023)

computed on the training dataset:

Li = 1

N

N∑

j=1

(ytrain(j) − ỹtrain(j))2 (17)

In order to givemore credit to the solutionswhich achieved
better performance (on the training data) and to reduce the
contributions of the solutions that performed worse, for each
i = 1, . . . , s, a coefficient is defined ŵi as ŵi := 1

Li
. Finally,

the solution combination coefficients are obtained as

wi := ŵi∑s
l=1 wl

(18)

These weights are then used to obtain the final solution
α f inal := {α f inal

1 , . . . , α
f inal
N } as a weighted average over

the solutions returned by the QA:

α f inal :=
s∑

i=1

wiαi , (19)

with αi := {αi , . . . , αs}. Essentially, this resembles a set
of weak classifiers, that combined yield a strong classi-
fier (Willsch et al. 2020; Cavallaro et al. 2020). In this study,
the number of solutions combined is set to s = 4.

3.4 Datasets andmodels

For this study, the capabilities of the hybrid workflow are
evaluated on multiple datasets and neural network models.
Fully connected neural networks (FCNN) are trained on
small regression datasets from the OpenML project (Van-
schoren et al. 2014), CNNs are trained on two well-known

Fig. 3 Components along with
their communication protocols
used for the Swift-Hyperband
distributed hybrid
quantum-classical
implementation

123

 59 Page 8 of 14 Quantum Machine Intelligence (2024) 6:59

Table 1 Hyperparamters from the HPOBench search space used on the
OpenML datasets

Hyperparameter Type Range

Alpha Float Log[1e-8, 1]

Batch size Int Log[4,256]

Depth Int [1,3]

Learning rate Float Log[1e-5, 1]

Width Int [16,1024]

Depth andwidth determine the general shape of the networkwhile batch
size, initial learning rate, and weight decay (alpha) influence the Adam
optimizer

medium-sized datasets from the computer vision (CV)
domain, a long short-term memory (LSTM) is trained on
a natural language processing (NLP) dataset, and the MLPF
algorithm is trained on a HEP dataset. In the following, the
datasets as well are explained. To enable the reproducibility
of the empirical results, also, the HP search spaces that the
HPs are sampled from a provided in detail.

3.4.1 OpenML datasets

The OpenML platform6 features a wide selection of easily
accessible datasets, algorithms, and experiments. To make
sure the results are reproducible, the method is tested on
three datasets from the OpenMLCurated Tabular Regression
benchmark (Fischer et al. 2023). The focus of this benchmark
is on tabular, high-quality datasets from different domains
with 500 to 100,000 observations that are not trivially solv-
able by linear methods. For this study, the Grid Stability (id
44973), Video Transcoding (id 44974), andNaval Propulsion
Plant (id 44969) datasets are selected.

However, to generate reproducible learning curves, not
only the dataset and evaluation procedure are important,
but also the hyperparameter search space that the different
model configurations are sampled from has to be consistent.
Therefore, the chosen OpenML datasets are trained on the
hyperparameter search space detailed in the HPOBenchmark
library (Eggensperger et al. 2021), a general benchmark for
HPO. The search space consists of two architectural parame-
ters of FCNNs (depth and width) and three optimizer-related
parameters (batch size, initial learning rate, and weight
decay). The range the hyperparameters are sampled from
is shown in Table 1. Each model is trained for a maximum
of 50 epochs.

6 OpenML: https://www.openml.org/

Table 2 Hyperparameter search space used on CIFAR-10 and TinyIm-
ageNet

Hyperparameter Type Range

Layers Int [2,3,4]

Filters Int [16,32,48,64]

Batch size Int [64,128,256,512]

Learning rate Float Log[1e-4, 1]

Momentum Float Log[1e-4,0.9]

Layers and filters determine the general shape of the CNN while batch
size, learning rate, and momentum influence the optimizer

3.4.2 Computer vision datasets

The two datasets of choice from the CV domain are the
CIFAR-10 (Krizhevsky 2009) and TinyImageNet
(Mnmoustafa 2017) datasets. The CIFAR-10 dataset con-
sists of 60,000 images in ten different classes. The train-
ing is performed on 50,000 images while the remaining
10,000 images are used to compute the validation accu-
racy. TinyImageNet contains 100,000 images, split into
200 classes. For each class, there are 500 training images
and 50 validation images. For both datasets, the image
pre-processing steps involved a RandomCrop, Resize,
RandomHorizontalFlip, and Normalization oper-
ation from the torchvision library.7 Similarly to Baker et al.
(2017), small architectures with varying numbers of con-
volutional layers, convolutional filters, batch size, learning
rate, and momentum are sampled from the hyperparameter
search space (see Table 2) for the CIFAR-10 models, which
are trained for a maximum of 100 epochs. For the TinyIm-
ageNet case, a fixed ResNet18 architecture (He et al. 2016)
is trained for a maximum of 35 epochs and only optimizer-
related parameters (batch size, learning rate, andmomentum)
are tuned. Performance prediction in both cases is performed
on the validation set learning curves.

3.4.3 HEPmodel and dataset

In response to the considerable surge in data generation antic-
ipated in large HEP experiments in the forthcoming decades,
there are ongoing efforts towards substituting conventional
CPU-based algorithms with neural network-powered ones
that can be efficiently and readily executed on GPUs,
field-programmable gate arrays (FGPAs), or other hardware
accelerators. A prime illustration of such novel algorithms is
the so-calledMLPF (Pata et al. 2021a) algorithm, designed to
perform particle-flow reconstruction (Sirunyan et al. 2017)

7 Torchvision library: https://pytorch.org/vision/stable/index.html

123

https://www.openml.org/
https://pytorch.org/vision/stable/index.html

Quantum Machine Intelligence (2024) 6:59 Page 9 of 14 59

Table 3 Hyperparameter search space used on MLPF

Hyperparameter Type Range

Learning rate Float Log[1e-6, 3e-2]

Dropout Float [0,0.5]

Weight decay Float Log[1e-6,1e-1]

Num graph layers id Int [0,4]

Num graph layers reg Int [0,4]

Bin size Int [8,16,32,64,128]

Output dim Int [8,16,32,64,128,256]

through a data-driven methodology. Advantages of MLPF
include extensibility, portability, and scalability. Extensi-
bility because the algorithm can easily be adapted to new
detector geometries or conditions by retraining, portability,
because themodel can be executed on awide variety of differ-
ent hardware accelerators, and scalability, because runtime
and memory consumption scale approximately linearly with
the input collision event size.

The dataset used for HPO studies in this work is the open
and publicly available DELPHES dataset (Pata et al. 2021b)
first presented in Pata et al. (2021a). HPO is performed on a
seven-dimensional search space (see Table 3), and each trial
is trained for a maximum of 100 epochs.

3.4.4 NLPmodel and dataset

The dataset of choice from the NLP domain is the bAbI
tasks dataset (Weston et al. 2015), in particular task 17. The
bAbI tasks dataset consists of 20 elementary reasoning tasks,
where task 17 is related to spatial and positional reasoning.
Each particular instance of task 17 is conformed by a group of
sentences related to the relative position of multiple colored
blocks followed by a “yes or no” question about the loca-
tion of one of the blocks. Therefore, the goal of the model is
to infer the correct “yes/no” answer to the question given its
precedent sentences. The training is performed on 1000 ques-
tions, and another 10,000 questions are used to compute the
validation accuracy. A fixed LSTM architecture with vary-
ing training hyperparameters (seeTable 4),where eachmodel
can be trained up to 300 epochs, is used .8

4 Results and evaluation

For performance evaluation, the distributed quantum-classical
implementation of Swift-Hyperband is compared to the origi-

8 LSTM Training: https://docs.ray.io/en/latest/tune/examples/
includes/pbt_memnn_example.html

Table 4 Hyperparameter search space used on the LSTM

Hyperparameter Type Range

Learning rate Float Log[1e-10, 1]

Dropout Float [0,1]

Rho Float [0,1]

Weight decay Float Log[1e-5, 0.1]

nalHyperband algorithm and to Swift-Hyperband using clas-
sical SVRs. Several target models from different domains,
i.e., from CV, NLP, and HEP, are optimized. For each target
model, the best accuracy or loss achieved by each algorithm
is reported along with the average resources consumed (in
terms of the total number of training epochs), using an aver-
age of three runs, each one initializedwith a different random
seed (0, 1, and 2). Detailed information on the target models
and the HPO processes used to test the algorithms are shown
in Table 5. The results, computed on 51 nodes of the DEEP-
EST supercomputer in combination with the JUPSI QA, are
shown in Figs. 4 and 5.

From Figs. 4 and 5, it can be seen that Swift-Hyperband,
both in the case of usingSVRs andQT-SVRs, achieves results
similar to classical Hyperband in terms of the target model
performance while consuming less computational resources
in all cases. The largest savings of ∼ 9.4% are observed for
the CNN training on CIFAR-10 (Fig. 4a), where Hyperband
takes 3237 epochs, Swift-Hyperband SVR takes 3014, and
Swift-HyperbandQT-SVRonly 2960 epochs on average. For
the Tiny ImageNet cases (Fig. 4b) Hyperband requires 872
training iterations, while Swift-Hyperband QT-SVR finishes
in 834, resulting in a resource saving of ∼ 4.6% with only a
small difference in validation loss (0.012 vs. 0.014).

For all other cases, ∼ 2–5% in savings can be seen. While
plain Hyperband only bases the future performance of a
trial based on the current validation loss or accuracy, Swift-
Hyperband canmake use of performance predictionmethods
and thus terminate some trials earlier, resulting in fewer total
training epochs.When comparing the Swift-Hyperband SVR
andQT-SVRversions, the quantum-based regressionmethod
is able to match the validation set performance of the classi-
cal method in almost all cases, and in the majority of cases
even outperforms it. As explained in Section 2.5.4, the main
difference between the quantum and classical SVR is that
the QT-SVR makes use of multiple, heuristically obtained
predictions, which are weighted and combined into a sin-
gle prediction. On the contrary, the classical SVR only uses
a single deterministic prediction. The empirical results of
these experiments prove that for these benchmarking cases,
the QT-SVR produces more robust predictions of the future
performance of trials when used inside a distributed version

123

https://docs.ray.io/en/latest/tune/examples/includes/pbt_memnn_example.html
https://docs.ray.io/en/latest/tune/examples/includes/pbt_memnn_example.html

 59 Page 10 of 14 Quantum Machine Intelligence (2024) 6:59

Table 5 Summary of the benchmarking cases used to test the HPO algorithms

NN Dataset Domain Evaluation # HPs for Target epoch # GPU Nodes
architecture metric HPO for HPO for HPO

CNN CIFAR-10 (Krizhevsky 2009) CV Accuracy 5 100 50

CNN TinyImageNet (Le and Yang 2015) CV Cross entropy loss 3 35 50

LSTM bABI (Weston et al. 2015), task 17 NLP Accuracy 4 300 50

MLPF (Pata et al. 2021a) Delphes (Pata et al. 2021b) HEP Focal loss + huber loss 7 100 Simulated

FCNN OpenML Tabular Mean squared error loss 5 50 50

of Swift-Hyperband, which then leads to higher validation
scores in the majority of cases.

In terms of computing resources, the QT-SVR version
requires fewer epochs than the SVR for the CNN cases (see

Fig. 4 Average resource consumption and performance of the best con-
figuration found for each HPO algorithm applied to different target
models. Results are averaged over three different random seeds, and

error bars are shown. Note that the number of epochs for Hyperband is
deterministic, and therefore, no error bar is shown for the algorithm

123

Quantum Machine Intelligence (2024) 6:59 Page 11 of 14 59

Fig. 5 Average resource consumption and performance of the best con-
figuration found for each HPO algorithm on the grid stability dataset,
including D-Waves internal hybrid solver. Results are averaged over

three different random seeds, and error bars are shown. Note that the
number of epochs for plain Hyperband is deterministic, and therefore,
no error bar is shown for the algorithm

Figs. 4a and b), butmore for all other instances. This indicates
that on the one hand, the QT-SVR version tends to over-
estimate the performance of the target models, hence early
stopping fewer configurations in the prediction-based deci-
sion points (and use more compute resources) for the LSTM,
MLPF, and FCNN models. For the CNN models, on the
other hand, it tends to underestimate the performance, thus
early stopping more configurations and saving resources, but
still achieves comparable target model performance. This
is because the shapes of the learning curves (to which the
regression method is applied) are highly dependent on the
nature of the target model and the application case. It is
interesting to observe that the dimension of the hyperparam-
eter search space (e.g., a seven-dimensional search space for
Fig. 4d and only a three-dimensional one for Fig. 4b) does
not influence the performance of the algorithms.

As an alternative to solving the QUBO problem purely
on the QA, D-Wave offers the option to use a cloud-based
hybrid solver.9 This solver internally solves a part of the prob-
lem with state-of-the-art classical algorithms, while sending
only those parts to the QPU that primarily benefit from it. In
this case, also, the combination of the solutions is performed
internally and is not public. While this takes notably longer
than pure GPU calculations (a few seconds vs. a few hundred
milliseconds), it can also handle larger problems. A compari-
son on the Grid Stability dataset (see Fig. 5) shows the hybrid
solver to outperform both SVR and QT-SVR-based Swift-
Hyperband in terms of best-found model and the number of
epochs used. The plain Hyperband algorithm achieves the
lowest loss overall, but at the cost of a much higher compute
resource consumption. In total, the results still indicate that

9 D-Wave Hybrid Solver: https://docs.ocean.dwavesys.com/en/latest/
overview/hybrid.html

the hybrid solver is able to estimate the performance of the
target model with high accuracy.

5 Summary, conclusion, and outlook

This study presented a workflow for performing distributed,
quantum-classical performance prediction for HPO. Com-
pared to the established Hyperband algorithm, the proposed
workflow saves resources with minimal sacrifices in terms
of validation set performance of the best-found model. Espe-
cially in a distributed setting of 50 GPU running neural
network training at the same time, resource savings of more
than 9% are substantial. It was also evident that choosing a
QT-SVR or a hybrid-solver method results empirically in
better-performing models for a wide range of application
cases compared to classical SVR, due to combining multiple
heuristically obtained solutions. This stresses the potential
of using quantum machine learning methods.

This work presents an important first step in the direc-
tion of automated integration of quantum devices in the
supercomputing environment. This is of great importance, as
current quantum machines are still too small to solve mean-
ingful problems on their own. By combining them with a
powerful supercomputer, it becomes possible to tackle rel-
evant, real-world problems from a diverse set of scientific
domains. The proposed workflow is agnostic to the under-
lying machine learning model and can be applied to any
problem. As the code of the workflow is open-source,10 the
research community can benefit directly from this work.

10 GitHub link: https://github.com/JP-Amboage/qtml-hybrid-
workflow

123

https://docs.ocean.dwavesys.com/en/latest/overview/hybrid.html
https://docs.ocean.dwavesys.com/en/latest/overview/hybrid.html
https://github.com/JP-Amboage/qtml-hybrid-workflow
https://github.com/JP-Amboage/qtml-hybrid-workflow

 59 Page 12 of 14 Quantum Machine Intelligence (2024) 6:59

The most promising direction of future work is the usage
of larger and more advanced quantum hardware. For this
study, a QA was chosen, as it is able to handle a much
larger problem size than current, gate-based machines. With
increases in the number of qubits of gate-basedmachines and
advances in algorithm development, it might be possible to
run other, more advanced quantum optimization algorithms
that have the potential to not only save compute resources
in a quantum-classical setting but also find more accurate
solutions.

Appendix: Swfit-Hyperband pseudocode

Algorithm 1 Swift-Hyperband.
Input: R, η, d, φ, known_curve
Output: Configuration with lowest loss seen during the algorithm
1: Initialize: smax = �logη(R)	, B = (smax + 1)R, D = Dict(), M =

Dict()
2: for s ∈ {smax, smax−1, ..., 0} do
3: n =
 Bη

R(s+1) �, r = Rη−s

/* Begin Succesive Halving with n different
configurations */

4: for i ∈ {0, ..., s} do
5: ni = �nη−i	
6: ri = rηi

7: if ri /∈ D.keys: D[ri] = List()
8: if ri /∈ M .keys: M[ri] = Dict()
9: nnext = � ni

η
	 if i �= s, else 1

/* Performance prediction and
parallelization (if applied) take part
inside the following routine */

10: L = run_then_return_val_loss(T , rprev, ri , nnext , d, φ, D,

M, known_curve)
11: T = top_k(T , L, �ni/η)
12: rprev = ri
13: end for
14: end for

In this appendix, the pseudocode of the sequential version
of Swift-Hypeband is presented. As it can be seen in Algo-
rithm 1, Swift-Hyperband has five parameters: R, η, d, φ,
and known_curve. The parameters η and R have the same
function as the parameters with the same respective name
in the original Hyperband algorithm. That is, η controls the
trial discarding ratio at the end of every round. For η = 2,
only the best-performing half of all configurations at the end
of a given round are promoted to the next round; for η = 3,
only the best third is promoted, etc. Therefore, increasing the
value of η makes the algorithm more aggressive. The least
aggressive setting η = 2 is used by default in the experiments
of this study. The quantity R defines the target epoch for the
HPO process, i.e., no configuration is trained for more than
R epochs. It is a problem-dependent parameter that is chosen

Algorithm 2 Routine run_then_return_val_loss for Swift-
Hyperband.
Input: T , rprev, ri , nnext , D, M, d, φ, known_curve
Output: L (List with the final loss for each configuration in T)
1: Initialize:

L = List(), f ully_trained = 0, dp = rprev +
(ri −
rprev)known_curve�, thres = 0

2: for t ∈ T do
3: l = List()
4: for i ∈ {0, .., dp − 1} do
5: li = loss_of_t_at_epoch_i(t, i)
6: l.append(li)
7: end for
8: if f ully_trained < φ · nnext or D[ri].length < d then
9: for i ∈ {dp, .., ri } do
10: li = loss_of_t_at_epoch_i(t, i)
11: l.append(li)
12: end for
13: L .append(li)
14: f ully_trained = f ully_trained + 1
15: D[ri].append(l)
16: thres = L .get_quantile(0.25)
17: else
18: if dp /∈ M[ri].keys then

/* model to predict performance at r_i using
the learning curve until dp */

19: M[ri][dp] = PerformancePredictor()
20: M[ri][dp].train(D[ri][: , 0 : dp], D[ri][: , ri])
21: end if
22: pred = M[ri][dp].predict(l)
23: if pred < thres then
24: for i ∈ {dp, .., ri } do
25: li = loss_of_t_at_epoch_i(t, i)
26: l.append(li)
27: end for
28: L .append(li)
29: f ully_trained = f ully_trained + 1
30: D[ri].append(l)
31: else
32: L .append(∞)
33: end if
34: end if
35: end for

by the user depending on the model or architecture to opti-
mize. The remaining parameters d, φ, and known_curve are
specific for Swift-Hyperband. The quantity d represents the
minimum number of learning curves required to train each
performance predictor, φ is the minimum fraction of trials
that is trained until the end of each round independently
of their predicted performance, and known_curve controls
the position of the extra decision point. The natural choice
known_curve = 0.5 places the new decision points exactly
in the middle of each Hyperband round.

Acknowledgements The authors gratefully acknowledge the com-
puting time granted through JARA on the supercomputer JURECA
(Jülich Supercomputing Centre, 2021) at Forschungszentrum Jülich.
The authors gratefully acknowledge the Jülich Supercomputing Cen-
tre for funding this project by providing computing time through the

123

Quantum Machine Intelligence (2024) 6:59 Page 13 of 14 59

Jülich UNified Infrastructure for Quantum computing (JUNIQ) on the
D-Wave AdvantageT M System JUPSI.

Author Contributions E.W.,M.A. and JP. GA.wrote themainmanuscript
text. All authors reviewed the manuscript. M.A. prepared Figs. 4 and 5.
JP.GA. prepared Figs. 3 and 4. E. W. was in charge of the datasets and
models in Section 3.4.3 and their respective implementation. M. A. was
in charge of the datasets and models in Sections 3.4.1 and 3.4.2 and
their respective implementation. JP.GA. was in charge of the datasets
and models Section 3.4.4. and their respective implementation. JP.GA.
implemented the final hybrid distributed workflow algorithm.
E.W.: conceptualization, running experiments, writing, supervision,

review. JP.GA.: conceptualization, running experiments, contribution to
distributed hybrid workflow code on theHPC side, writing, supervision,
review. M.A.: conceptualization, running experiments, contribution to
distributed hybrid workflow code on the HPC side, writing, review.
T.E.G, T.K.I, T.K.I, A. D.: contribution to quantum workflow code. E.
P.: contribution to quantum workflow code and theoretical background,
review. M. R., R.S.: supervision, contribution to analysis, review. A. L.:
supervision, funding, contribution to analysis, review. M.G.: supervi-
sion, funding.

Funding Open access funding provided by CERN (European Orga-
nization for Nuclear Research). E. Wulff, J.P. García Amboage, M.
Aach, R. Sarma, M. Riedel, and A. Lintermann were supported by
CoE RAISE. The CoE RAISE project has received funding from the
European Union’s Horizon 2020 - Research and Innovation Frame-
work Programme H2020-INFRAEDI-2019-1 under grant agreement
no. 951733.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abdiansah Abdiansah RW (2015) Time complexity analysis of
support vector machines (SVM) in LIBSVM. Int J Comput
Appl 128(3):28–34. https://doi.org/10.5120/ijca2015906480.
https://ijcaonline.org/archives/volume128/number3/22854-
2015906480/

Amboage JG, Wulff E, Girone M et al (2023) Optimizing AI-based
HEP algorithms using HPC and quantum computing. https://

indico.jlab.org/event/459/contributions/11847/attachments/
9508/13784/CHEP2023___RAISE_Poster_FINAL.pdf

Apolloni B, Carvalho C, de Falco D (1989) Quantum stochastic
optimization. Stoch Process Appl 33(2):233–244. https://doi.org/
10.1016/0304-4149(89)90040-9. https://www.sciencedirect.com/
science/article/pii/0304414989900409

Baker B, Gupta O, Raskar R et al (2017) Accelerating neural archi-
tecture search using performance prediction. https://doi.org/10.
48550/ARXIV.1705.10823

Bishop CM (2006) Pattern Recognit Mach Learn (Inf Sci Stat).
Springer-Verlag, Berlin, Heidelberg

Boothby K, Bunyk P, Raymond J et al (2020) Next-generation topology
of D-Wave quantum processors. https://doi.org/10.48550/ARXIV.
2003.00133

Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for
optimal margin classifiers. In: Proceedings of the Fifth annual
workshop on computational learning theory. Association for Com-
puting Machinery, New York, NY, USA, COLT ’92, p 144–152.
https://doi.org/10.1145/130385.130401

Bottou L, Chapelle O, DeCoste D et al (2007) Support vector machine
solvers, pp 1–27

Burges CJ (1998) Data Min Knowl Disc 2(2):121–167. https://doi.org/
10.1023/a:1009715923555

Cavallaro G, Willsch D, Willsch M et al (2020) Approaching remote
sensing image classification with ensembles of support vector
machines on the D-Wave quantum annealer. In: IGARSS 2020
- 2020 IEEE international geoscience and remote sensing sym-
posium, pp 1973–1976. https://doi.org/10.1109/IGARSS39084.
2020.9323544

Choi V (2011) Minor-embedding in adiabatic quantum computation:
Ii. minor-universal graph design. Quantum Inf Process 10(3):343–
353. https://doi.org/10.1007/s11128-010-0200-3

Date P, Arthur D, Pusey-Nazzaro L (2021) QUBO formulations for
training machine learning models. Sci Rep 11(1):10029. https://
doi.org/10.1038/s41598-021-89461-4

Dietterich TG (2000) Ensemble methods in machine learning. Mult
Classifier Syst. Springer, Berlin Heidelberg, Berlin, Heidelberg,
pp 1–15

Drucker H, Burges CJC, Kaufman L et al (1996) Support vector
regression machines. In: Mozer M, Jordan M, Petsche T (eds)
Advances in neural information processing systems, vol 9. MIT
Press. https://proceedings.neurips.cc/paper_files/paper/1996/file/
d38901788c533e8286cb6400b40b386d-Paper.pdf

Eggensperger K, Müller P, Mallik N et al (2021) HPOBench: a collec-
tion of reproducible multi-fidelity benchmark problems for HPO.
In: 35th Conference on neural information processing systems
datasets and benchmarks track (round 2). https://openreview.net/
forum?id=1k4rJYEwda-

Falkner S, Klein A, Hutter F (2018) BOHB: robust and efficient
hyperparameter optimization at scale. In: Proceedings of the 35th
international conference on machine learning, pp 1436–1445

Fischer SF, FeurerM, Bischl B (2023) OpenML-CTR23 – a curated tab-
ular regression benchmarking suite. In: AutoML conference 2023
(workshop). https://openreview.net/forum?id=HebAOoMm94

He K, Zhang X, Ren S et al (2016) Deep residual learning for image
recognition. In: 2016 IEEE Conference on computer vision and
pattern recognition (CVPR), pp 770–778. https://doi.org/10.1109/
CVPR.2016.90

Jamieson K, Talwalkar A (2016) Non-stochastic best arm identification
and hyperparameter optimization. In: Gretton A, Robert CC (eds)
Proceedings of the 19th international conference on artificial intel-
ligence and statistics, proceedings of machine learning research,
vol 51. PMLR, Cadiz, Spain, pp 240–248. https://proceedings.mlr.
press/v51/jamieson16.html

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5120/ijca2015906480
https://ijcaonline.org/archives/volume128/number3/22854-2015906480/
https://ijcaonline.org/archives/volume128/number3/22854-2015906480/
https://indico.jlab.org/event/459/contributions/11847/attachments/9508/13784/CHEP2023___RAISE_Poster_FINAL.pdf
https://indico.jlab.org/event/459/contributions/11847/attachments/9508/13784/CHEP2023___RAISE_Poster_FINAL.pdf
https://indico.jlab.org/event/459/contributions/11847/attachments/9508/13784/CHEP2023___RAISE_Poster_FINAL.pdf
https://doi.org/10.1016/0304-4149(89)90040-9
https://doi.org/10.1016/0304-4149(89)90040-9
https://www.sciencedirect.com/science/article/pii/0304414989900409
https://www.sciencedirect.com/science/article/pii/0304414989900409
https://doi.org/10.48550/ARXIV.1705.10823
https://doi.org/10.48550/ARXIV.1705.10823
https://doi.org/10.48550/ARXIV.2003.00133
https://doi.org/10.48550/ARXIV.2003.00133
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/a:1009715923555
https://doi.org/10.1023/a:1009715923555
https://doi.org/10.1109/IGARSS39084.2020.9323544
https://doi.org/10.1109/IGARSS39084.2020.9323544
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1038/s41598-021-89461-4
https://doi.org/10.1038/s41598-021-89461-4
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://openreview.net/forum?id=1k4rJYEwda-
https://openreview.net/forum?id=1k4rJYEwda-
https://openreview.net/forum?id=HebAOoMm94
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v51/jamieson16.html

 59 Page 14 of 14 Quantum Machine Intelligence (2024) 6:59

Kadowaki T, Nishimori H (1998) Quantum annealing in the transverse
Isingmodel. PhysRevEStat Phys Plasmas FluidsRelat Interdiscip
Top 58:5355–5363. https://doi.org/10.1103/PHYSREVE.58.5355

Krizhevsky A (2009) Learning multiple layers of features from tiny
images

Le Y, Yang XS (2015) Tiny imagenet visual recognition challenge
Li L, Jamieson K, DeSalvo G et al (2017) Hyperband: a novel

bandit-based approach to hyperparameter optimization. J Mach
Learn Res 18(1):6765–6816. https://dl.acm.org/doi/abs/10.5555/
3122009.3242042

Li L, Jamieson KG, Rostamizadeh A et al (2018) Mas-
sively parallel hyperparameter tuning. CoRR abs/1810.05934.
https://arxiv.org/abs/1810.059341810.05934

Liu S, Zhang H, Jin Y (2022) A survey on computation-
ally efficient neural architecture search. J Autom Intell
1(1):100002. https://doi.org/10.1016/j.jai.2022.100002, https://
www.sciencedirect.com/science/article/pii/S2949855422000028

McGeoch CC (2014) Adiabatic quantum computation and quantum
annealing: theory and practice, vol 5.Morgan&Claypool Publish-
ers. https://doi.org/10.2200/S00585ED1V01Y201407QMC008

Mnmoustafa MA (2017) Tiny imagenet. https://kaggle.com/
competitions/tiny-imagenet

Pasetto E, Riedel M, Melgani F et al (2022) Quantum SVR for chloro-
phyll concentration estimation in water with remote sensing. IEEE
Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.
2022.3200325

Pata J, Duarte J, Vlimant J et al (2021a) MLPF: efficient machine-
learned particle-flow reconstruction using graph neural networks.

Eur Phys J C 81(5). https://doi.org/10.1140/epjc/s10052-021-
09158-w

Pata J et al (2021b) Simulated particle-level events of tt̄ and QCD with
PU200 using PYTHIA8+DELPHES3 formachine learned particle
flow (MLPF). https://zenodo.org/record/4559324

Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support
vector machine for big data classification. Phys Rev Lett
113(13). https://doi.org/10.1103/physrevlett.113.130503. http://
dx.doi.org/10.1103/PhysRevLett.113.130503

Sirunyan AM et al (2017) Particle-flow reconstruction and
global even description with the CMS detector. J Instrum
12(10):P10003–P10003. https://doi.org/10.1088/1748-0221/12/
10/p10003, https://arxiv.org/abs/1706.049651706.04965

Vanschoren J, van Rijn JN, Bischl B et al (2014) OpenML: networked
science inmachine learning. SIGKDDExplor Newsl 15(2):49–60.
https://doi.org/10.1145/2641190.2641198

Weston J, Bordes A, Chopra S et al (2015) Towards AI-complete ques-
tion answering: a set of prerequisite toy tasks. 1502.05698

Willsch D, Willsch M, Raedt HD et al (2020) Support vector machines
on the D-Wave quantum annealer. Comput Phys Commun 248.
https://doi.org/10.1016/j.cpc.2019.107006

Yu T, Zhu H (2020) Hyper-parameter optimization: a review of
algorithms and applications. arXiv:abs/2003.05689. https://api.
semanticscholar.org/CorpusID:212675087

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1103/PHYSREVE.58.5355
https://dl.acm.org/doi/abs/10.5555/3122009.3242042
https://dl.acm.org/doi/abs/10.5555/3122009.3242042
https://doi.org/10.1016/j.jai.2022.100002
https://www.sciencedirect.com/science/article/pii/S2949855422000028
https://www.sciencedirect.com/science/article/pii/S2949855422000028
https://doi.org/10.2200/S00585ED1V01Y201407QMC008
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://doi.org/10.1109/LGRS.2022.3200325
https://doi.org/10.1109/LGRS.2022.3200325
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://zenodo.org/record/4559324
https://doi.org/10.1103/physrevlett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1088/1748-0221/12/10/p10003
https://doi.org/10.1088/1748-0221/12/10/p10003
https://arxiv.org/abs/1706.049651706.04965
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1016/j.cpc.2019.107006
http://arxiv.org/2003.05689
https://api.semanticscholar.org/CorpusID:212675087
https://api.semanticscholar.org/CorpusID:212675087

	Distributed hybrid quantum-classical performance prediction for hyperparameter optimization
	Abstract
	1 Introduction
	2 Related work and theoretical background
	2.1 Quantum annealing and QUBO problems
	2.2 Hyperparameter optimization algorithms
	2.3 Performance prediction
	2.4 Support vector regression methods
	2.5 Quantum support vector regression
	2.5.1 Problem variable encoding
	2.5.2 Penalty term addition
	2.5.3 QUBO matrix definition
	2.5.4 Advantages of Q-SVMs over classical counterparts

	3 Experimental setup
	3.1 Machines
	3.2 Performance prediction algorithm
	3.3 Hybrid quantum-classical workflow
	3.3.1 QT-SVR solution combination

	3.4 Datasets and models
	3.4.1 OpenML datasets
	3.4.2 Computer vision datasets
	3.4.3 HEP model and dataset
	3.4.4 NLP model and dataset

	4 Results and evaluation
	5 Summary, conclusion, and outlook
	Appendix: Swfit-Hyperband pseudocode
	Acknowledgements
	References

