
MACHINE LEARNING-BASED EXTRACTION OF
LONGITUDINAL BEAM PARAMETERS IN THE LHC

K. Iliakis∗, T. Argyropoulos, B. E. Karlsen-Baeck, H. Timko, G. Trad, M. Zampetakis
European Organization for Nuclear Research, CERN, Geneva, Switzerland

Abstract
Accurate knowledge of beam parameters is essential for

optimizing the performance of particle accelerators like the
Large Hadron Collider (LHC). An initial machine-learning
(ML) model for beam diagnostics has been extended to ex-
tract the main parameters of multiple bunches at LHC injec-
tion. The extended model utilizes an encoder architecture
to analyze sets of longitudinal profile measurements. Its
development was partially driven by the need of a real-time
beam energy error estimate, which was not directly available
in the past. The derived beam parameters moreover include
bunch length as well as RF voltage at capture in the LHC. In
this paper, we compare the results of the ML model with con-
ventional measurements of bunch length, energy error, and
RF voltage from the beam quality monitor (BQM), the orbit
acquisition system, and the beam-based voltage calibration
system, respectively. These benchmarks demonstrate the po-
tential of applying the ML model for operational exploitation
in LHC.

INTRODUCTION
In the era of the High-Luminosity Large Hadron Col-

lider (HL-LHC), the bunch intensity will be required to dou-
ble wwith respect to its original design value [1]. Among
other systems, also the Radio-Frequency (RF) system of
the LHC will be pushed to its limits in terms of its power
requirements at beam injection, and it will have to cope with
tighter operational margins [2]. In order to operate in the
HL-LHC regime, some parameters, such as the SPS-LHC
energy matching, will have to be constantly monitored and
frequently re-adjusted, calling for new, online beam diagnos-
tic tools.

Longitudinal beam profiles from wide-band pick-ups pro-
vide the raw information, from which bunch length, energy
mismatch, RF voltage, and many more parameters can be
derived. In the LHC, high-resolution bunch profiles can be
extracted using the APWL wide-band pick-up signal [3],
processed by a 40 GS/s oscilloscope [4].

To calculate the energy error, bunch length and RF volt-
age, conventional methods can be used [5]. In this paper,
a Machine Learning (ML) model that leverages only the
longitudinal bunch profiles to calculate the above beam pa-
rameters is presented. The model is trained specifically for
the injection at the LHC but can be re-trained or extended
for other phases of the acceleration, synchrotrons, or particle
types.

A realistic dataset is generated to train the supervised ML
model. The model is then benchmarked against the most
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Figure 1: Training dataset generation and model architec-
ture.

precise methods for measuring three relevant longitudinal
beam parameters in the LHC: the bunch length, the energy
error at injection, and the RF voltage. Finally, by making use
of CERN’s ML integration infrastructure, and the unified
framework for diagnostics and display in the CERN Con-
trol Center (CCC), a pipeline is established that provides in
real-time and with permanent storage, the beam parameters
predicted by the ML model at each injection in the LHC.

INPUT DATA PREPARATION
Supervised and unsupervised learning are the two primary

approaches in machine learning, each with distinct advan-
tages and use cases. Our specific application, which involves
inferring three bunch parameters from longitudinal bunch
profiles, supervised learning is an ideal choice, provided we
have a well-labeled training dataset.

Assembling a high-quality dataset is on of the most im-
portant first steps in every supervised ML application. To
this end, we utilize the well established beam longitudinal
dynamics simulator BLonD [6,7], that can replicate measure-
ment data in various scenarios [8]. Our simulation scenario
starts with a single-bunch beam at flat-bottom in the SPS
just before transfer to the LHC. The bunch is tracked for an
interval longer than one synchrotron period, taking into ac-
count intensity effects. The profile of the bunch is recorded
after each LHC revolution period (turn), together with the
values of the three bunch parameters that the model will be
trained to predict, as sketched in Fig. 1.

To ensure that the simulation-based training dataset covers
a broad spectrum of operational configurations, we decided
to sample a design space composed of seven beam param-
eters listed in Table 1. In total, 2 ⋅ 104 training samples
were generated, partitioned in 85% for training, 7.5% for
validation, and 7.5% for testing.
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Table 1: The minimum and maximum values of the sampled
parameters. In total 2 ⋅ 104 random combinations were se-
lected, each leading to a unique simulation.

Parameter Min Max

Phase error Δ𝜙, [deg] -50 50
Energy error Δ𝐸, [MeV] -100 100
Bunch length 4𝜎, [ns] 1.2 1.8
Bunch intensity 𝑁𝑏, [×1010 p] 1 30
LHC RF voltage 𝑉RF,LHC, [MV] 3 9.2
SPS 200 MHz voltage 𝑉RF,SPS, [MV] 5 12
Binomial distribution 𝜇, [a.u.] 1 5

The recorded bunch profiles as input dataset for the model
are organized in a two-dimensional image with the columns
corresponding to the time (𝛿𝜏) coordinate and the rows
correspond to the number of simulated turns. To reduce the
model’s input dimensions, only one profile out of three from
the first 300 turns is retained. To obtain simulated profiles
which are directly comparable with the raw measured ones,
the remaining time profiles are convolved with the transfer
function of the signal acquisition path for the beam profile.
Finally, the convolved data is padded with zeros, which is
known to improve the performance of the two-dimensional
convolutional layers in certain occasions. The final input
data dimension is 128 × 128. The training data generation
and pre-processing steps are also illustrated in Fig. 1.

MODEL DESIGN AND OPTIMIZATION

Convolutional Neural Networks (CNNs) take advantage of
the local connectivity between the input features, represented
by pixels of the two-dimensional waterfall image in our case.
This allows CNNs to be translation invariant, meaning that
they can recognize patterns found in the input regardless of
their specific location in the image. This inherent property
of CNNs has made them particularly effective in the field of
computer vision.

Our model architecture is composed of a sequence of two-
dimensional CNN layers. Typically, deeper layers encode
more complex and abstract features. Strided convolutions
are used to gradually reduce the input’s dimensions. Next, a
series of fully-connected layers enables the cross-association
of all features detected by the CNN layers. The number of
nodes of the fully-connected layers is progressively reduced
down to a single output node, which corresponds to one of
the three desired beam features. The loss function is simply
the mean square error between the predicted and true values
of the beam features.

Initially, a single model was used to predict all three beam
parameters simultaneously. However, it soon became appar-
ent that the loss function of the model would saturate near
the level of the hardest to predict parameter. To mitigate
this premature saturation, we trained a separate model per
parameter, which led to improved prediction accuracy.

Table 2: Model evaluation on simulation-generated test data,
unseen during the training process.

Parameter MAE 95-%ile

Energy Error Δ𝐸, [MeV] 0.467 1.193
Bunch Length 4𝜎, [ns] 0.005 0.012
LHC RF Voltage 𝑉RF,LHC, [MV] 0.018 0.045

(a) Beam 1. Median deviation: 7.01 MeV

(b) Beam 2. Median deviation: 5.79 MeV

Figure 2: Energy error from orbit measurement versus ML
benchmark.

MODEL BENCHMARKING

The ML model was evaluated on a set of measurement
data collected over a two-month period spanning from mid-
May to mid-July 2023. Injections designated for purposes
other than physics production, such as pilot beams, were
filtered out. Due to limitations in the data storage system,
only the first bunch of each injected batch was recorded,
and utilized as input for the model. Notably, a dedicated,
one-week long, machine development (MD) period in mid-
June, was excluded from the analysis due to irregular beam
settings.

Energy Error from Orbit

As any energy mismatch at injection translates to a radial
offset, the energy error in the LHC is traditionally measured
from the orbit displacement of the beam. Figure 2 shows that
the orbit-based and ML-based energy error measurements
agree globally well over the entire period.
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(a) Beam 1. Median deviation: 0.18 MV

(b) Beam 2. Median deviation: 0.18 MV

Figure 3: Calibrated RF voltage versus ML benchmark.

RF Voltage from Low-Level Acquisition
The RF voltage can be acquired from the cavity field

antenna acquisition in the low-level RF system. These ac-
quisitions were calibrated by conventional RF measurement
techniques, and we further apply correction factors from the
recent beam-based observations, in which the synchrotron
frequency at a given voltage has been accurately measured,
cavity by cavity [9]. Figure 3 summarizes the ML-based
voltage estimates with respect to the calibrated RF voltage
with its error bar. The calibrated voltage is well established
and is expected to be re-confirmed by beam-based measure-
ments this year. The 𝑉RF derived by the ML set-up seems to
be systematically overestimating the LHC voltage by ∼3 %.
The source of this error will have to be investigated in con-
junction with the SPS 𝑉RF and bunch length estimates.

Bunch Length from BQM
Operationally, bunch lengths are obtained from measure-

ments of the beam quality monitor (BQM) [10], which ac-
quires the bunch profiles with 8 GS/s and extracts from it the
bunch length in regular intervals. The ML model provides
us with an estimate of the first-turn bunch length, while the
BQM only measures the bunch length after filamentation.
In first approximation, the bunch length at LHC injection
can be reconstructed from the BQM measurements for a
constant longitudinal emmetance, and using the SPS and
LHC RF voltages. Comparing then the BQM and ML bunch
lengths, see Fig. 4, the ML-based values seem to be sys-
tematically lower, and more strikingly, in certain periods of
time, two groups of bunch lengths are detected by the ML

(a) Beam 1. Median Deviation: 70 ps

(b) Beam 2. Median Deviation: 90 ps

Figure 4: BQM versus ML benchmark.

model, which is not seen on the BQM data. A more detailed
fill-by-fill analysis is planned to understand the origin of this
behaviour.

Deployment in the CERN Control Center
Our beam diagnostics ML model has been integrated with

CERN’s Machine Learning Platform (MLP) [11], to stan-
dardize and simplify its storage, versioning and deployment
within the CCC. In addition, a UCAP [12] node has been set-
up, triggering the model’s inference for every newly injected
batch of bunches. The UCAP node makes the model’s predic-
tion available for both on-line display and off-line analysis.
Finally, a Graphical User Interface (GUI) has been devel-
oped to visualize the predicted beam parameter values for
each injected bunch, supporting the efficient diagnosis of
beam quality issues.

CONCLUSION
This paper presents a comprehensive ML approach to

longitudinal beam diagnostics. The successful validation
against established methods such as orbit, BQM, and voltage
calibration underlines the reliability of the ML model predic-
tions. Notably, the short execution time of the model enables
on-line usage with multi-bunch beams. With the integration
to CERN’s MLP, the implementation of a UCAP node and a
GUI front-end, the deployment of the model in the CCC has
been streamlined. The new system also facilitates operators
to swiftly diagnose and address beam quality concerns.
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