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Introduction: HL-LHC and ITk

e High-Luminosity LHC (HL-LHC) will enable
collisions at ~10 % rate of LHC

o Will provide 3000 fb™" of data by its end-of-life,
enabling precision tests of physics

e [o accommodate the increased complexity
of collisions, ATLAS is upgrading its inner
detector: Inner Tracker (ITk) Upgrade

o All silicon with improved radiation hardness and
less material

o Higher granularity: 100M — 5000M channels
o Improved |n| coverage: 2.5 — 4.0
o Faster response
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23 collisions per BC (LHC)

230 collisions per BC (HL-LHC)
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What makes up an endcap?

e Each endcap consists of 6 disks along the
beam (z) axis
Each disk consists of 32 double-sided petals

e Each side of a petal is composed of 9 silicon
strip sensors, grouped into 6 modules

e Each module consists PCB flexes providing
readout and power which are glued and RO

bonded to a silicon strip sensor
o Labelled RO to R5 in order of increasing radius
(4K-7K channels per module)

e This talk will focus on how we assemble and
characterize petals
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A closer look at petals

Exploded view _=3w

. e Carbon-fibre “core” provides a scaffold for modules
or core -

o Ticooling pipes embedded in core’s thermally conductive
foam (end-of-life operating temperature: -35 °C)

Copper-on-polyimide “bus tapes” route data and
power

Modules are glued to the core and bonded to the
bus tape
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Automated loading of petals

e Loading = mounting modules onto

petals
o Loading occurs at several international sites
(Canada, Germany, and Spain)
e For uniformity and simplicity of
production, an automated loading
system has been developed, consisting

of a robot gantry capable of:
o Dispensing adhesive
o Placing modules with micron-level precision
using custom vacuum tools
o Performing post-loading visual capture,
module accuracy, and metrology surveys , W
@) Also see B Stelzer’s
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Quality metrics
for petal loading

el

fiducials, allowing its centre and angle to
be determined

(@)

Specification: #50 ym
O

Most modules are placed within #20 pm!
®

Out-of-plane metrology performed using

confocal displacement sensor (or similar
means)

(@)

Height set by adhesive, 110 ym, and sensor
thickness, 300 ym

based on 10 sensor

m)

>

0
X (um)

0
X (pm)

o Verifies petals are ready for endcap insertion
e Nearly* all petals met specifications
* Nearly, as a few are out-of-spec, but for known reasons
ATLAS
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Electrical characterization

e Includes measurements of the HV sensor
current (IV) as well as per-channel input

noise for each module
o  Current should be < 10 uA @ 550 V bias, noise should
be low enough @ 350 V bias to ensure signal-to-noise
is high enough at end-of-life
m Breakdown voltage = voltage at which an
immediate and held increase in current occurs
o Should not be impacted by loading

e Petals are tested in a light-tight fridge with

controlled a temperature and humidity
o CO, or ethanol coolant flowed through petal core

e Measurements performed using the ITk’'s data
acquisition (DAQ) software
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Example of input noise

Exploded view of “petal” plot

before and after |oading (ENC = electron noise charge)
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Sensor cracking

e ~10% of all sensors on cores
exhibited HV breakdown (< 100 V)
in the relevant QC temperature
range, —35 °C or colder

e Found to be a result of sensor
cracks, typically in the sensor
areas between flexes VY.

e Mismatch in coefficients of thermal +15°C
expansion (CTE) of the sensor and
the , resulting

1 3

. . -35°C
in localized stress at cold = N NN
temperatu res Also see S. Diez’s poster at PM2024 and A.
@) Tishelman-Charny’s poster at LHCP2024
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Crack occurred in the
space between flexes

mmuwm‘ TV T

- Crack below §
red line

Initial cracking
signatures on petals

e Cracking on any sensor at
any temperature 2 =55 °C is
considered problematic

o To test for cracks, petals have
been thermal cycled (TC-ed)

from —35 °C to progressively
colder temperatures

e Cracks also result in regions
of low/high input noise

e First petal TC-ed exhibited | sl =1
cracks already at -40 °C — [t™
campaign to explore
mitigation strategies
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Mitigation strategies

e Mechanical simulations have corroborated cracks as

locations of high physical stress

o Also confirmed the importance of the choice of adhesive and its
pattern

e Mitigation strateqies:
o Choice of sensor-core adhesive: a stiffer glue (Hysol) instead
of a softer glue (SE4445) can reduce stress by 50%
o Pattern of sensor-core adhesive: improved glue coverage to
better support regions of high stress
o Interposer: inclusion of a Kapton layer between the flexes and
the sensor can reduce stress by 95%

e We'll present results for the first two

TL Matthew Basso (TRIUMF/SFU)
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https://dm.henkel-dam.com/is/content/henkel/brochure-structural-adhesive-solutions-composite-repair-loctite
https://www.ellsworth.com/products/by-market/consumer-products/thermally-conductive-materials/encapsulants/dow-se-4445-cv-thermally-conductive-gel-gray-210-ml-cartridge/

Choice of adhesive: Hysol

e Instead of SE4445 in a “snake-like” pattern, a petal was loaded using Hysol in
the same pattern and TC-ed from -35 to —70 °C in =5 °C steps
e 20 cracks observed (out of 23 suspected), the first at -35 °C... why?

M_ROH1 under stream at 1.50fC injected charge

— No TC @ -350V
— 1x-55C @ -350V
5 x -55C @ -350V
P~ 1 x -60C @ -200V
5x-60C @ -170V
5

x -65C @ -115V
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A closer look at the cracks
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Understanding Hysol results

e Simulation informs of the relative

(not absolute) change in stress from | cue.

tand

design choices K )

o SE4445 vs. Hysol comparison assumed i Tl os
SE4445 remains softer when cold ol 04

e Mechanical analysis revealed )
SE4445’s modulus increases by 2
orders of magnitude below =40 °C | ~ 000000 onnegormecpnnd

o  Other studies of silicone-based gels align R e L i e

well with this conclusion
e Explains why Hysol did not lead Modulus for SE4445

to an improvement on its own

6-I-‘S’L ‘ :b Matthew Basso (TRIUMF/SFU) 15


https://www.ipc.org/system/files/technical_resource/E14%26S05-04.pdf

Pattern of adhesive: Hysol

e For the petal with the snake-like
Hysol pattern, it was noticed
that many cracks occurred

along glue edges
o Edges are not well supported

e Next petal utilized a
“full-coverage” glue pattern,
which was optimized to cover
as much of the core-sensor

interface as possible
Snake-like

a é ‘ ES) Matthew Basso (TRIUMF/SFU)

Full-coverage
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Results for full-coverage pattern

e Cracks were still observed: while there were fewer cracks (11) compared to
the snake-like Hysol pattern, one crack occurred in a region well-supported
by glue after the —45 °C TC — an improvement, but not sufficient

M_R4HO under stream at 1.50fC injected charge
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Directions of further study

e Remaining 10 cracks occurred

around “glue-dot” regions
o  Glue pattern for modules (“True
Blue”) utilizes glue dots throughout
— simulation has shown these to be
localized regions of stress
o  Will load a petal using SE4445 and
modules built without glue dots

e Interposers have been shown to
be a promising route to prevent
cracking down to -70 °C — will
also load a petal using
interposed modules

S_R2H1 under stream at 1.50fC injected charge

aaaaaa

Picture is for a
different petal, but
arises from the

same mechanism
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https://www.henkel-adhesives.com/ca/en/product/electrically-non-conductive-adhesives/loctite_eccobondf1120.html
https://www.henkel-adhesives.com/ca/en/product/electrically-non-conductive-adhesives/loctite_eccobondf1120.html

Summary

e Presented a summary of the procedures for -
building and testing petals for the ATLAS ITk . Rl
Upgrade

o Demonstrated that we are building petals which meet
both their mechanical and electrical specifications

e Also presented a summary of the steps taken

thus far to address sensor cracking on cores
o Complex issue: at the intersection of module building
and petal loading, mitigation strategies take time to fully
realize (need to fully load and test petals cold), etc.
o Two mitigation strategies shown were not sufficient, but
the issue is well understood and we have a
promising path forward
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Backup
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Example of HV breakdown

M_RO AMAC IV

No TC @ 550V
1x-35C @ 500V
2 x -35C @ 500V
5 x -35C @ 500V
1 x -40C @ 500V
5 x -40C @ 410V
2 x -45C @ 500V
5 x -45C @ 500V
1 x -50C @ 500V
5 x -50C @ 500V
1 x-55C @ 500V
5 x -55C @ 360V
1 x -60C @ 330V
5 x -60C @ 220V
5 x -65C @ 140V
5x-70C @ 10V

ARXY

Current (uA)

bhé

1071 T T T
-500 —400 -300 -200 —-100 0
Bias Voltage (V)

Past the , breakdown is visible
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Summary of observed cracks

Previous HY SOL-Snake Petal Current HYSOL-Full Coverage Petal

Crack Temp. Color:
-35C ||
-40C |1
-45C
-50C
-55C
-60C
-65C
-70C

Crack
(No Visual)
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epuodag
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