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Multimuons in cosmic-ray events as seen in ALICE at the LHC
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Abstract

ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground,
its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere.
In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015–2018)
are described. The analysis is limited to multimuon events defined as events with more than four
detected muons (Nµ > 4) and in the zenith angle range 0◦ < θ < 50◦. The results are compared
with Monte Carlo simulations using three of the main hadronic interaction models describing the air
shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3. The interval
of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about
4×1015 < Eprim < 6×1016 eV. In this interval none of the three models is able to describe precisely
the trend of the composition of cosmic rays as the energy increases. However, QGSJET is found to
be the only model capable of reproducing reasonably well the muon multiplicity distribution, assum-
ing a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL
and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than
20% and 30%, respectively. The rate of high muon multiplicity events (Nµ > 100) obtained with
QGSJET and SIBYLL is compatible with the data, while EPOS-LHC produces a significantly lower
rate (55% of the measured rate). For both QGSJET and SIBYLL, the rate is close to the data when
the composition is assumed to be dominated by heavy elements, an outcome compatible with the
average energy Eprim ∼ 1017 eV of these events. This result places significant constraints on more
exotic production mechanisms.
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1 Introduction

The collision between a cosmic ray with an atomic nucleus of the atmosphere, mostly Oxygen or Nitro-
gen, produces a shower of particles called Extensive Air Shower (EAS) developing in the atmosphere
from the interaction point downwards. The center of the shower, also referred to as the core, can be
thought as the prolongation of the direction of the primary cosmic ray along the atmosphere to the sur-
face of the Earth. The main particles created in the shower are hadrons, muons, electrons, positrons,
photons, and neutrinos. Only muons and neutrinos can reach the ALICE detectors, while the other par-
ticles are absorbed by the layer of rock overlaying the experiment. In this analysis the focus is on tracks
that are identified as muons created in EAS, referred here to as cosmic muons.

Most of the primary cosmic rays are protons or He nuclei, but at higher energies heavier elements
(C, N, O, ..., Fe) become more abundant. The number of muons produced in an EAS depends on the
energy of the primary cosmic ray and on its mass. This number is therefore an observable that gives
information on the atomic mass number of cosmic rays [1, 2] and also allows one to get insight into
the energy spectrum of the primaries [3]. The importance of having theoretical models that accurately
describe the development of an EAS and its muon production is therefore evident. In the last years most
of the surface experiments detecting muons produced by cosmic rays with very high energy found a dis-
crepancy between the muon multiplicity measured in the data and the corresponding value obtained with
simulations [4–9] with a significant underestimation in the number of simulated muons. This deficit is
usually called the Muon Puzzle [10], not yet solved by parameter tunings of the different hadronic mod-
els. This discrepancy is studied in this paper by comparing the muon multiplicity distribution (MMD) of
the data with the distributions obtained with different hadronic models.

The analysis of the data recorded in LHC Run 1 (2010–2013), described in a previous paper [11], was
dedicated to the study of high muon multiplicity (HMM) events. The study was motivated by the inability
of the LEP experiments ALEPH [12] and DELPHI [13] to account for the frequency of the highest muon-
multiplicity events when studying the MMD of cosmic events. The HMM event rate measured in Run
1 [11] was compared to results from QGSJET II-04 [14] as hadronic interaction model for EAS. This
study showed that the HMM events observed in ALICE are produced by primary cosmic rays with
energies above 1016 eV, and the rate was successfully predicted by assuming dominance of a heavy-
mass component. ALICE, with its capabilities to track a high density of particles and to measure high-
multiplicity events, is the first experiment at the LHC which analyzed HMM events. It is therefore
interesting, as pointed out in Ref. [15], to record and analyze new samples of data and compare them
with different hadronic interaction models. An alternative interpretation of the data taken in Run 1 was
given in [16], in which the authors suggest the hypothesis that muon bundles of very high multiplicities
are produced by strangelets.

In order to improve the measurements of the multiplicity distribution and the rate of events with very
high multiplicities, a new cosmic data-taking campaign was carried out during LHC Run 2 (2015–2018)
to record a larger sample of data. The trigger configuration was updated to increase the data-taking rate
of the events, while the capabilities to track cosmic muons were exploited with only minor changes with
respect to Run 1. The live time of the recorded data was 62.5 days doubling the live time of Run 1 (30.8
days). All the data of Run 2 were collected during pauses of the accelerator beams, with magnetic field
on. The decreasing trend of the MMD, and the small number of events detected at high multiplicity,
led to study this distribution for low and intermediate multiplicities (4 < Nµ < 50) where the number of
events is reasonably high, while for events with higher multiplicities, it was decided to measure the rate
of the events with more than 100 muons.

In this paper, a brief description of the detectors involved in the muon detection, their performance, and
the collected data sample is given in Section 2. The analysis procedure to measure the MMD and the
comparison with the distributions obtained with three different hadronic interaction models is explained
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in Section 3, while the rate measurement of HMM events compared with the ones obtained with the
models is described in Section 4. A summary of these results is given in the final section.

2 The ALICE experiment, event reconstruction, and data selection

The ALICE apparatus is located at Point 2 of the LHC accelerator complex [17], approximately 450
m above sea level in a cavern 52 m underground. It has 28 m of overburden rock, and 1 m of iron
magnet yoke above it, both corresponding to about 80 m water equivalent. The rock absorbs all the
electromagnetic and hadronic components of the observed EAS, so that only muons with an energy
at the surface of the Earth larger than 16 GeV (8 GeV for some particular paths crossing the shafts
of the experiment) reach the detectors. A large solenoidal magnet forms a central barrel that houses
several detectors, including a large cylindrical Time-Of-Flight detector (TOF) completely surrounding
the cylindrical Time Projection Chamber (TPC), the two detectors used in this work.

A dedicated trigger for cosmic events is provided by the TOF, which consists of a cylindrical array of
multi-gap resistive-plate chambers [18]. The TOF has a modular structure composed of 18 sectors, each
spanning 20◦ in azimuth to form a complete cylinder. The hardware for the TOF multiplicity trigger is
discussed in detail in [19]. The TOF trigger for cosmic events requires a signal in one of the 9 upper
sectors and another signal in the opposite lower sector with respect to the central axis of the detector, or
in one of the three adjacent sectors on either side, forming a back-to-back ± 3 coincidence. The average
trigger rate is ∼ 70 Hz. It is an improvement in comparison to Run 1, where simply back-to-back
coincidences allowed to reach a rate of ∼ 20 Hz. The TOF trigger efficiency ε , as a function of the muon
multiplicity Nµ , is shown in Fig. 1. It was estimated from events of different multiplicities produced by
the Monte Carlo (MC) simulations described in detail in Section 3. Since the TOF multiplicity trigger is
based on the high granularity of the detector, also at very high muon muliplicities (Nµ > 100) it operates
with an efficiency of 100% without any saturation problem. A comparison with the efficiency of the TOF
trigger in Run 1 as a function of the muon multiplicity displayed in Fig. 1 shows the improvement of the
new trigger in the low multiplicity regime.
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Run 1 TOF trigger

Run 2 TOF trigger

Figure 1: TOF trigger efficiency ε in Run 2 compared to the efficiency in Run 1 as a function of muon multiplicity,
Nµ .

The ALICE TPC [20] is used to reconstruct the trajectories of cosmic muons passing through its active
volume divided vertically into two halves by a central membrane. The TPC has an inner radius of 0.8 m,
an outer radius of 2.8 m and a total length of 5.0 m along the LHC beam direction. At each end of
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Table 1: Track selection parameters to define a cosmic muon track in the matching algorithm.

Parameter Nominal value

NTPC
cl ≥ 50

p > 0.5 GeV/c

dxz < 6 cm

cos(∆ψ) > 0.990

the cylindrical volume there are multi-wire proportional chambers with pad readout. For the purpose
of detecting cosmic muons, the maximum acceptance of the detector, due to its cylindrical geometry,
is the horizontal median plane of approximately 25 m2. However, after imposing a selection on the
minimum length required to reconstruct a cosmic-ray track in the TPC, the maximum effective area
reduces to approximately 17 m2. The acceptance of the TPC also varies with the zenith angle of the
incident muons.

Cosmic muons are typically reconstructed as two individual tracks in the upper and lower halves of the
TPC. These tracks are referred to as up and down tracks. An algorithm is applied to match each up track
with its corresponding down track to reconstruct the full trajectory of the muons and to remove double
counting. Starting with single muon events (producing two TPC tracks), where the matching of tracks is
straightforward, the reconstruction code was tuned to handle events containing hundreds of muons.

The requirements on the TPC tracks (up and down) to determine a muon track are the following:

1) minimum number of TPC clusters for each track NTPC
cl ≥ 50 (over a maximum of 159 clusters) to

reconstruct good quality tracks,

2) a track momentum p > 0.5 GeV/c in order to eliminate all possible background from electrons and
positrons,

3) distance of closest approach between the up and the nearest down track at the horizontal mid plane
to match the two tracks dxz < 6 cm. This value is chosen to be large enough to maximize the matching
efficiency in high multiplicity events, while keeping combinatorial background at a minimum.

4) the scalar product of the direction of the analyzed track ~ta with the reference track ~tr, requiring that
~ta ·~tr = cos(∆ψ)> 0.990, where ∆ψ is the angle defined by~ta and~tr. This selection assures the parallelism
of the tracks. The reference track is chosen to give the largest number of tracks satisfying this parallelism
requirement. This condition exploits the parallelism of the muons coming from the same EAS.

A muon reconstructed with two TPC tracks (up and down) is called a “matched muon”. If an up or down
track fulfills all the criteria to be a muon track (number of space points, momentum, and parallelism), but
does not have a corresponding track within dxz < 6 cm on the opposite side of the TPC, it is still accepted
as a muon candidate but flagged as a "single-track muon". Most single-track muons are found to cross
the TPC near the borders where part of the muon trajectory falls outside the detector. The values of the
selection parameters of the matching algorithm are summarized in Table 1.

To study the efficiency of the track reconstruction and the matching algorithm described above, eight
different samples (each containing 1000 events) were generated. Each sample was characterized by a
given muon multiplicity value ranging from 10 up to 300. In each event, the muons were generated
parallel to each other, like in EAS, and crossing the whole TPC volume. The simulated events were then
reconstructed in the same way as the experimental data.

To obtain the resolution on the number of muons crossing the TPC, the distribution of the quantity
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∆Nµ = (Ngen
µ −Nrec

µ )/N
gen
µ (1)

was studied for each multiplicity interval, where N
gen
µ and Nrec

µ are the number of generated and recon-
structed muons, respectively.

The mean value ∆Nµ of this distribution is the bias in reconstructing a fixed multiplicity, while the root-
mean-square ∆NRMS

µ represents the resolution in measuring that multiplicity. Figure 2 shows ∆Nµ and
∆NRMS

µ as a function of the generated multiplicity.
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Figure 2: Mean value and root-mean-square of the ∆Nµ distribution.

As can be seen, the bias increases almost linearly with multiplicity with a value around 1% when Nµ = 20,
increasing to 4% for Nµ = 100, and reaching about 12% for Nµ = 300, while the resolution for multimuon
events is quite flat over the whole multiplicity range with a value around 2%.

Data were taken whenever no beams were circulating in the LHC. The effective running time accumu-
lated was 62.5 days for a total number of events of around 165 million with at least one reconstructed
muon, and 15702 multimuon events for which the number of reconstructed muons is greater than 4
(Nµ > 4).

3 Muon multiplicity distribution

The first step of the analysis was to obtain the MMD for multimuon events from the whole sample of
data. Since the TOF trigger efficiency is 100% for multimuon events, no trigger correction was applied
to the measured distribution. To avoid reconstruction inaccuracies associated with the most inclined
showers, the zenith angle of the events was restricted to the range 0◦ < θ < 50◦. The zenith angle of the
event is given by the mean value of the zenith angles of the muons. In Fig. 3 the MMD is shown without
any correction and with its statistical uncertainties. The data points are grouped in multiplicity intervals
having a width of five units (5–9, 10–14, ...) starting from Nµ = 5 and are located at the center of the
interval (7, 12, ...).

5



ALICE Cosmic Rays ALICE Collaboration

0 50 100 150 200 250 300
µN

1

10

210

310

410

N
u

m
b

e
r 

o
f 

e
n

tr
ie

s
ALICE cosmicray muons

62.5 days of data taking

Figure 3: Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data
sample of Run 2 corresponding to a live time of 62.5 days. The data points are grouped in multiplicity intervals
with a width of five units (Nµ = 5− 9, Nµ = 10− 14, ...), and are located at the center of each interval (Nµ =

7, Nµ = 12, ...). The vertical error bars represent the statistical uncertainties.

The distribution is quite smooth up to a muon multiplicity around 50–60, showing a well defined de-
creasing behavior, while for higher multiplicities the distribution has a very small number of events with
large fluctuations. The distribution at low and intermediate multiplicities (4 < Nµ < 50), where the statis-
tical uncertainties are small, is studied by comparing the measured MMD with simulations. A different
approach is used to study the higher multiplicities, for which the aim is to measure the rate of HMM
events (Nµ > 100) and compare this value with the expectations given by the simulations. In this way the
statistical and systematic uncertainties are estimated for the Nµ distribution at low and intermediate mul-
tiplicity, in which the fluctuations in the number of events are small, while for the highest multiplicities
these uncertainties are estimated for the measured rate.

The properties of the production of many particles in hadron–air interactions suffer large uncertainties
because of the lack of experimental results at the energies and kinematical regions involved in cosmic-ray
studies. Model parameters, such as the total inelastic hadron–proton cross sections and the diffractive
structure functions are constrained by some extrapolations of the measurements performed at acceler-
ators. Consequently, large uncertainties arise in describing the cascade of particles following the first
interaction and in particular the number of muons reaching the ground level. One of the widely used
event generators for its reliability and completeness is Corsika [21] which incorporates a large variety of
low-energy and high-energy hadronic interaction models. In this analysis the Corsika generator with the
UrQMD model [22] has been adopted to describe the devolopment at low energies (less than 100 GeV) of
the EAS, while for higher energies three different hadronic interaction models were used: QGSJET-II-04
(Corsika 7.74), EPOS-LHC (Corsika 7.56), and SIBYLL 2.3 (Corsika 7.74).

The QGSJET-II-04 event generator is described in detail in [14]. The model parameters were retuned
using the early LHC data. Most relevant to the present study is that pion exchange is assumed to dominate
forward neutral hadron production, which has been shown to enhance the production of ρ0 mesons
resulting in an enhancement of the muon content of EAS by about 20% [23] with respect to the previous
versions.
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EPOS is an event generator for minimum bias hadronic interactions simulating the air showers produced
by cosmic rays. A first version was released before the results of LHC experiments [24]. The version
used in the current analysis, called EPOS-LHC [25], takes into account the first data collected by the
LHC experiments. In particular, the total inelastic and elastic cross sections measured by TOTEM [26]
in pp collisions, were employed to constrain the model at high energies.

SIBYLL [27] is one of the first microscopic interaction models that was specifically developed for in-
terpreting cosmic-ray data. It implemented the minijet model [28] developed in the 1980s to explain the
results of the SPS at CERN in pp collisions. In 2000 a new version of SIBYLL was released with the
inclusion of multiple soft interactions, going beyond the classical minijet model. The version SIBYLL
2.3 [29], with substantial improvements, was released in 2016. The SIBYLL cross sections for pp and
pp collisions at various energies were adjusted to fit the LHC data by modifying the shape of the distri-
butions of the partons in the transverse plane.

Cosmic-ray MC events were generated over the zenith angular range 0◦ < θ < 52◦ with the core of
each shower scattered randomly at ground level over an area covering 205×205 m2 centered around the
nominal LHC beam crossing point in ALICE. This area minimizes the number of events to be generated
without losing events useful for the analysis. Previous studies on Run 1 data showed a negligible con-
tribution of multimuon events produced by primaries with an energy below 1014 eV while the measured
events with the highest multiplicities are given by primaries with an energy below 1018 eV, limiting the
required energy range of the MC simulations. Although the composition of cosmic rays in this energy
range is a mixture of many species of nuclei, varying with the energy by a not well-known percentage,
the analysis is simplified by adopting a pure proton and pure iron (56Fe) composition. The proton sample,
representing a composition dominated by light nuclei, provides a lower limit on the number of events
for a given muon multiplicity, while the iron sample, representing a composition dominated by heavy
nuclei, gives an upper limit. A typical power law energy spectrum, E−γ , was adopted with a spectral
index γ = 2.70 for energies below the knee (Ek = 3×1015 eV) and γk = 3.0 for energies above the knee.
The total (“all-particle”) flux of cosmic rays was calculated by summing the individual fluxes of the
main chemical elements at 1 TeV [30]. The flux was estimated to be F(1 TeV) = 0.225 (m2 s sr TeV)−1.
Since the same values were used in the analysis of Run 1 data, the results of the two simulations can be
directly compared. The MC events are generated for a proton and an iron sample corresponding to the
live time of the data taking. In this way, an absolute normalization in the number of events is obtained,
instead of applying an arbitrary normalization factor. The ALICE experimental hall and the environment
above and around the apparatus as well as all the detectors are accurately described, while the muons are
propagated through this environment with GEANT3 [31].

The systematic uncertainties on the measured MMD were estimated by varying the parameters of the
track reconstruction and matching algorithm. Four track-selection criteria were varied: the number of
clusters for a TPC track, the maximum distance between up and down track (dxz) to obtain a matched
track, the minimum momentum of the track, and the maximum angle between two tracks to be considered
parallel. To study the effect of the selection on the number of TPC clusters, the MMD obtained requiring
at least 60 TPC clusters was compared to the MMD with standard track-selection criteria (minimum
NTPC

cl = 50), after correcting both distributions for the corresponding tracking efficiencies extracted from
the simulations. The systematic uncertainty was estimated from the average value of the deviations
in the nine multiplicity intervals of the MMD (4 < Nµ < 50) and for this track-selection variation a
4% uncertainty was assigned. Similar result was obtained requiring at least 40 TPC clusters. Using a
dxz < 3 cm rather than the default selection criterion led to a 9% systematic uncertainty. Increasing the
minimum track momentum to 0.6 GeV/c from 0.5 GeV/c led to a systematic uncertainty of 1%, while
the uncertainty due to the parallelism requirement, changing the standard selection value cos(∆ψ) >
0.990 by ± 0.003 (corresponding to 1σ ), was estimated to be 2%. The systematic uncertainties are
summarized in Table 2.
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Table 2: Estimated contributions to the systematic uncertainties for the measured MMD.

NTPC
cl Distance dxz Momentum p cos(∆ψ) Total

4% 9% 1% 2% 10%

Table 3: The estimated contributions to the systematic uncertainties of MMD for proton and iron MC samples
using the QGSJET-II-04 [14], SIBYLL 2.3 [29], and EPOS-LHC [25] models.

Model Element γ γk Rock Flux Live time Total

QGSJET p 9% 6% 7% 4% 1% 14%

QGSJET Fe 8% 6% 5% 3% 1% 12%

SIBYLL p 8% 6% 8% 1% 1% 13%

SIBYLL Fe 9% 6% 6% 2% 1% 13%

EPOS-LHC p 8% 4% 6% 2% 0% 11%

EPOS-LHC Fe 9% 6% 6% 2% 1% 12%

The systematic uncertainties in the simulations are due to uncertainties in the slope of the energy spec-
trum below and above the knee, in the description of the rock above the ALICE cavern, in the flux of
cosmic rays at 1 TeV, and in the live time of the data taking. The systematic uncertainties are estimated
for the three hadronic models separately for the proton and iron samples. The largest contribution to
the systematic uncertainty for all the three models is due to the uncertainty in the spectral index be-
low the knee (γ = 2.70± 0.03 [30]), which gives an uncertainty of approximately 8–9% in the MMD
for the proton and iron MC samples, while the uncertainty due to the spectral index above the knee
(γk = 3.00± 0.03) is around 6% for proton and iron. The systematic uncertainty due to the uncertainty
in the description of the rock above ALICE, that changes the energy threshold of the muons, is 6–8% for
the proton sample, depending on the model, and 5–6% for the iron sample , while the uncertainty in the
estimated flux at 1 TeV F(1 TeV)= 0.225±0.005 (m2 s sr TeV)−1 gives a contribution to the uncertainty
in the MMD of around 1–4% for proton and 2–3% for iron. Finally, the uncertainty for the total live time
of the data taking (Teff = 62.5±0.5 days) gives a very low contribution with an uncertainty of around 1%
for both elements. The total systematic uncertainties in measuring each multiplicity in the simulations
is σsyst(p) = 14% and σsyst(Fe) = 12% for QGSJET, σsyst(p) = 13% and σsyst(Fe) = 13% for SIBYLL,
and σsyst(p) = 11% and σsyst(Fe) = 12% for EPOS-LHC. In Table 3 a summary of the different sources
of systematic uncertainties for the MMD for proton and iron MC samples is given.

The MMD measured in the low-intermediate multiplicity interval is compared with the MC simulations
of the three models in Fig. 4. The ALICE data are shown as red full circles. The vertical bars represent
the statistical uncertainties, while the boxes around the data points indicate the systematic uncertainties.
For the simulated points, shown separately for the proton and iron samples, the vertical bars represent the
total uncertainties. Iron points are slightly shifted to the right to avoid overlapping with the data points.
It is important to note that no correction is applied for the tracking efficiency, neither to the data, nor
to the simulations (which include a detailed description of the ALICE apparatus) and the comparison is
done at the level of the number of reconstructed muons in the data and the models.

Although the limited data sample does not allow for a quantitative study of the composition, for the
QGSJET model the measured MMD is found to lie in between a light (proton) and a heavy (Fe) com-
position, as expected. As can be seen in Fig. 4 (top), over the whole range of multiplicity the iron MC
distribution is closer to the data, while the proton MC distribution is consistently below the data, also at a
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Figure 4: Measured muon multiplicity distribution compared with simulations from CORSIKA Monte Carlo
generator using QGSJET-II-04 [14] (top), SIBYLL 2.3 [29] (middle), and EPOS-LHC [25] (bottom) as hadronic
interaction models for proton and iron primary cosmic rays. Iron points are slightly shifted to the right to avoid
overlapping with the data points. The total uncertainties in the MC simulations are given by the vertical bars, while
the boxes give the systematic uncertainties of the data and the vertical bars the statistical ones.

small number of muons where the primary cosmic rays are expected to be composed of lighter elements.
For both SIBYLL and EPOS-LHC the data points are above those of iron highlighting a lack of muons
in these generators.

To obtain a direct relationship between the energy of the primary cosmic rays, Eprim, and the measured
multiplicity, the distribution of the primary energy, for each interval of multiplicity, was studied with the
proton and iron MC samples using the QGSJET-II-04 model. The mean value of each energy distribution
gives the average energy in the specific range of multiplicity that is shown in Fig. 5. In the interval 4 <
Nµ < 45 the average value of the primary cosmic ray energy Eprim increases with increasing multiplicity
from about 4×1015 eV to about 6×1016 eV.

The ratio between the MMD given by the simulations with respect to the data (MC/Data) is obtained
from Fig. 4 and is shown in Fig. 6 for the three models. The sky blue line represents unity.
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Figure 5: Average energy of the primary as a function of the muon multiplicity for proton and iron MC samples.

For the QGSJET model the ratio between the proton MC sample points (black) and the data is almost
flat as a function of the muon multiplicity up to 30 muons with a value of about 0.55, while the higher
multiplicities are dominated by large fluctuations. The iron points (blue) are slightly, but not significantly,
above the data also with a flat behavior as a function of the multiplicity. As the multiplicity increases,
the energy of the primary cosmic rays increases, as shown in Fig. 5 and in this interval of energy the
composition becomes heavier, as suggested by several experiments [32–35]. According to these results,
at low multiplicities the proton MC sample is expected to be close to the data, with a decreasing trend
of the ratio MC/Data as the multiplicity increases, while the iron points are expected to be well above
the data at low multiplicities, approching the data at high multiplicities. Neither proton nor iron MC
samples show this decreasing trend of the ratio MC/Data as the multiplicity increases, suggesting a
slight deficit of muons in the simulations. The QGSJET model is not able to reproduce the fine trend
of a mixed composition as expected. However, it shows that heavy elements dominate, as confirmed by
recent experiments that give access to a similar range of energy [1, 36, 37], keeping in mind that the
first multiplicity interval is dominated by primary cosmic-ray energies around the knee of the energy
spectrum. It is noteworthy that the experimental points are in between the two curves, that is, the sky
blue line lies between the proton and iron values, as expected.

In the SIBYLL generator the ratio MC/DATA as a function of the multiplicity is flat for the proton sample
with a value around 0.5 up to a multiplicity of 35 muons, while the muon deficit in the iron sample is
less evident than in EPOS-LHC, with a ratio of 0.8 up to a multiplicity of 30 muons and values greater
than 1 for higher multiplicities.

In the EPOS-LHC generator the ratio between the proton MC sample points and the data is constant
as a function of multiplicity with a value of about 0.4 as compared to the 0.55 obtained with QGSJET-
II-04. Even assuming a composition of pure iron, the ratio MC/Data has a value of around 0.7 up to
a multiplicity of 30 muons. Only at higher multiplicities, where the statistical uncertainties are larger
because of the smaller number of events, this value increases to about 0.9.
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Figure 6: Ratio between the number of events obtained with the Monte Carlo simulation (QGSJET-II-04, SIBYLL
2.3, and EPOS-LHC) with respect to the data for the muon multiplicity distributions. The sky blue line represents
unity.

4 Rate of high muon multiplicity events

Thirteen HMM events (Nµ > 100) were found in 62.5 days of data taking, as can be seen from the MMD
shown in Fig. 3. Each one of these 13 events was scrutinized with the event display of ALICE and
studied in detail (spatial and angular muon distribution), to ascertain that they are due to EAS and not to
secondary interactions, such as a particle interacting with the iron of the magnet or with the rock above
the apparatus creating a shower. In Fig. 7 the event display of the event with the highest multiplicity
(Nµ = 287) is shown. All the muons are roughly parallel to each other and cross a large part of the TPC,
as expected from a typical EAS event.

The rate of HMM events is defined as the ratio between the number of events with Nµ > 100 and the
live time of the data taking (62.5 days). The statistical uncertainty on the HMM event rate is 28%.
The difference between the number of HMM events obtained with the standard parameters of the muon
reconstruction algorithm, described in Section 2, and the number of events obtained by varying these
parameters as described in Section 3 gives the systematic uncertainties due to each parameter. The
different contributions to the systematic uncertainty (indicated in percentage) are reported in Table 4.
The data rate is found to be (2.4± 0.7)× 10−6 Hz where 0.7 is the combination of the statistical and
systematic uncertainties.

The comparison between the rate of HMM events and the rate obtained with the simulations for the three
hadronic models is carried out with the same simulation framework described previously in Section 3.
From MC simulations it was found that only primaries with energy Eprim > 1016 eV contribute to the
HMM events, both for proton and iron elements. Therefore, only events with a primary energy in the
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Figure 7: Event display of the event with 287 muons detected in the TPC.

Table 4: Estimation of the contributions to the systematic uncertainties of the measured rate of HMM events.

NTPC
cl Distance dxz Momentum p cos(∆ψ) Total

3% 3% 0% 9% 10%

range of 1016 < Eprim < 1018 eV were generated to study this rate. The average energy of these events,
studied with a large sample, was found to be 〈Eprim〉 ∼ 1017 eV.

To reduce the statistical uncertainty of the simulations with respect to the data, one year (365 days) of live
time was used in the event generation with the three models both for the proton and iron MC samples.
As a further step, the same sample (one year live time) was used five times by randomly assigning the
core of each shower to the aforementioned surface level area of 205×205 m2. Given that the acceptance
of the TPC is almost 3000 times smaller, this ensures that the samples are statistically independent. With
this procedure, five estimations of the rate were obtained, each of them corresponding to a live time of
one year, for a total of five years. The mean value of the five estimations gives the expected rate for one
year, while the statistical uncertainty is estimated from the standard deviation of the five values from the
mean value. The difference in the number of HMM events in one year using the standard reconstruction
parameters and the number of events obtained by varying these parameters, as described in Section 3,
gives the systematic uncertainties on the simulated rates.

In Table 5 the final results of the rate of HMM events are presented and compared to the previous results
from Run 1 [11] and to the three models. The statistical and the total uncertainties are given for the
proton and iron sample for each model, and for the data. These results are also shown in Fig. 8.

The rate measured with the Run 2 data sample is compatible within 1σ with the one measured in Run 1
[11] and has a significantly smaller uncertainty. For all the three models, the predicted rate for the pure
proton composition is below the data. The rate predicted by QGSJET-II-04 with an iron composition is
the closest to the data and is compatible with the measured rate within uncertainties. The rate obtained
with SIBYLL 2.3 (Fe), although lower, is still compatible with the data while the EPOS-LHC (Fe) is
outside the 1σ range. The data suggest that a composition of cosmic rays that are predominantly heavy
elements is required to explain the measured rate of high multiplicity events. The best description of
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CORSIKA 7.7400 CORSIKA 7.5600 CORSIKA 7.7400

HMM events Data Data QGSJET-II-04 EPOS-LHC SIBYLL 2.3

Run 2 Run 1 proton iron proton iron proton iron

Period [days per event] 4.8 6.2 10.9 5.8 15.0 9.2 13.6 6.2

Rate [×10−6 Hz] 2.4 1.9 1.1 2.0 0.8 1.3 0.9 1.9

Statistical uncertainty 28% 45% 4% 5% 10% 10% 10% 8%

Uncertainty (syst
⊕

stat) 30% 49% 23% 22% 11% 16% 19% 19%

Table 5: Comparison of the rate of HMM events measured with the data from Run 2 and Run 1 and the rate
calculated with MC simulations of proton and iron samples with the three hadronic models (QGSJET, EPOS-
LHC, SIBYLL). The statistical and total uncertainties are given for simulations and data.

5 10 15
Days per event

ALICE data, Run 1

ALICE data, Run 2

EPOSLHC: Fe

EPOSLHC: p

QGSJETII04: Fe

QGSJETII04: p

SIBYLL: Fe

SIBYLL: p

Figure 8: Rate of HMM events (days to yield 1 event) for the data taken in Run 1 and Run 2 compared with the
rates obtained with MC simulations with proton and iron samples for the three hadronic interaction models used.
The green shaded band is the value of the rate for Run 2 with limits given by 1 standard deviation.

the data for the MMD and the rate of HMM events is given by the iron sample of QGSJET-II-04, while
SIBYLL 2.3 appears to have a small deficit of muons. A larger deficit is found for EPOS-LHC.

The estimated average energy of HMM events is about 1017 eV. Keeping in mind that the measured
position of the spectral break of the heavy elements (heavy knee) was found at an energy of about
8 × 1016 eV [37], the HMM events are likely due to primary energies close to the heavy knee. A
composition dominated by heavy elements at energies of about 1017 eV is compatible with a cosmic-ray
energy spectrum featuring a first knee at around 3× 1015 eV due to the light component, as well as a
dependence on the atomic number Z of the primary for the knee of the heavier elements.
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5 Conclusions

During LHC Run 2 ALICE collected cosmic-ray data over 62.5 days, recording approximately 165 mil-
lion events containing at least one reconstructed muon and 15702 multimuon events (Nµ > 4). The live
time has doubled compared to Run 1 and correspondingly the number of multimuon events.

The measured muon multiplicity distribution (MMD) was compared with a statistical equivalent sample
of Monte Carlo events, generated with Corsika code [21] with three different hadronic interaction models:
QGSJET-II-04, SIBYLL 2.3, and EPOS-LHC. Two extreme compositions of primary cosmic rays were
simulated: pure proton, representing the lightest possible composition, and pure iron, representing an
extremely heavy composition.

Among the three models only QGSJET-II-04 is able to describe the measured MMD within the whole
investigated muon multiplicity interval (4 < Nµ < 50) assuming a heavy composition of the primary
cosmic rays. A study of the energies involved suggests that the lower multiplicities are due to average
energies of about 4× 1015 eV increasing up to Eprim > 6× 1016 eV for multiplicities greater than 50.
The expected increase of the average mass from low to high multiplicities, suggesting a mixed-ion com-
position in this interval, is not seen in the MMD not even with QGSJET. This can be interpreted as a
muon deficit of the model at least for the lower multiplicities. On the other hand, neither SIBYLL 2.3
nor EPOS-LHC can describe the distribution even assuming a heavy composition, with a lack of muons
in the iron sample around 20% for SIBYLL, although compatible within 1σ for Nµ > 14, and a deficit
of muons of around 30% for EPOS-LHC over a large range of multiplicities (4 < Nµ < 30).

The higher multiplicities were studied by measuring the rate of the high muon multiplicity (HMM)
events (Nµ > 100) in the data and comparing it with the rates obtained with the Monte Carlo simulations
based on the three hadronic models. It has to be kept in mind that this study was already performed in
Run 1 because high multiplicity events were observed in the past, by experiments at LEP, without any
explanation, while ALICE was able to satisfactorily explain their frequency.

While the rate predicted by QGSJET and SIBYLL, assuming a pure iron composition for the primary
cosmic rays, is consistent with the observed rate, EPOS-LHC is not able to reproduce it. Since the
average primary energy producing this kind of events is about 1017 eV, the results of the first two models
are compatible with a knee in the cosmic-ray energy spectrum at around 3× 1015 eV due to the light
component followed by a spectral steepening, the onset of which depends on the atomic number (Z) of
the primary cosmic rays. These results further confirm the earlier conclusions from the analysis of the
Run 1 data samples [11], and place significant constraints on more exotic production mechanisms.
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