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Abstract
The luminosity of particle colliders depends, among other

parameters, on the transverse profiles of the colliding beams.
At the LHC at CERN, heavy-tailed transverse beam distri-
butions are typically observed in routine operation. The
luminosity is usually modelled with the assumption that the
𝑥-𝑦 planes are independent (i.e. statistically uncorrelated
particle distributions between the planes) in each beam. An-
alytical calculations show that the solution of inverting 1D
heavy-tailed beam profiles to transverse 4D phase-space dis-
tributions is not unique. For a given transverse beam profile,
the distributions can be dependent (i.e. statistically corre-
lated) or independent in the transverse planes, even in the
absence of machine coupling. In this work, the effect of
transverse 𝑥-𝑦 dependence of the 4D phase space distribu-
tion on the luminosity of a particle collider is evaluated for
heavy-tailed beams.

INTRODUCTION
During the operation of accelerators, it is important to

control the beam profile, e.g. to minimize beam losses or
optimise the luminosity of colliders. The beam profile is a
projection of the total distribution onto one plane. For exam-
ple, a wire scanner can measure the transverse distribution in
the horizontal or in the vertical plane. Mathematically, this
is equivalent to performing the integral of the beam distribu-
tion over the other planes of the phase space. For example,
assuming a 4D phase space distribution 𝑓4𝐷 (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦)
the profile in the horizontal plane is obtained as:

𝑓1𝐷 (𝑥) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
𝑓4𝐷 (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦)𝑑𝑝𝑥𝑑𝑦𝑑𝑝𝑦 ,

where we consider a distribution with the normalisation
condition:∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
𝑓4𝐷 (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦)𝑑𝑥𝑑𝑝𝑥𝑑𝑦𝑑𝑝𝑦 = 1.

(1)
If only the profile 𝑓1𝐷 (𝑥) is known, and we want to invert

it to find the 4D phase space distribution, the solution is
not unique. The only constraints are that the projection of
𝑓4𝐷 (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦) must match the observed 𝑓1𝐷 (𝑥). In addi-
tion, the distribution 𝑓2𝐷 (𝑥, 𝑝𝑥) and 𝑓2𝐷 (𝑦, 𝑝𝑦) need to be
circularly symmetric in the action-angle space, (normalised
phase space), in order for the distribution to be matched to
the Hamiltonian of the system. In recent work it was shown
experimentally how correlations in the 6D phase space can
be introduced via space charge induced periodic crossing of
coupled resonances [1].
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INVERSION OF BEAM PROFILES
From an observed beam profile, we can get the radial

distribution of the canonical phase space variables using
the Abel transform [2, 3]. To find the beam distribution in
a higher dimension we could impose one of the following
additional constraints,

1. circular symmetry (i.e. round distributions in 𝑥-𝑦),

2. forcing the transverse planes to be factorizable.

For case 1, imposing circular symmetry in all planes, we
define the following variables, or radii, from the canonical
variables:

𝑟𝑥 =

√︃
𝑥2 + 𝑝2

𝑥 , (2)

𝑟𝑦 =

√︃
𝑦2 + 𝑝2

𝑦 , (3)

𝑠 =

√︃
𝑥2 + 𝑝2

𝑥 + 𝑦2, (4)

and a 4D ‘super-radius’:

𝑚 =

√︃
𝑟2
𝑥 + 𝑟2

𝑦 =

√︃
𝑥2 + 𝑝2

𝑥 + 𝑦2 + 𝑝2
𝑦 . (5)

To find 𝑓2𝐷 (𝑟𝑥), the Abel transform is applied once on
𝑓1𝐷 (𝑥). To find 𝑓4𝐷 (𝑚), and the inverse Abel transform is
applied three times to 𝑓1𝐷 (𝑥) in accordance with the prop-
erty of extension to higher dimensions. Thus, any 4D distri-
bution can be found given that the inverse Abel transform
is real for an 𝑓1𝐷 (𝑥). The constraint is however that the
normalised (with respect to emittance) distributions are the
same in 𝑥 and 𝑦.

Starting from a projection in 1D, e.g. in 𝑥, 𝑓1𝐷 (𝑥), we
obtain

𝑓2𝐷 (𝑟𝑥) = − 1
𝜋

∫ ∞

𝑟

𝑑𝑓1𝐷 (𝑥)
𝑑𝑥

𝑑𝑥√︁
𝑥2 − 𝑟2

𝑥

, (6)

𝑓3𝐷 (𝑠) = − 1
𝜋

∫ ∞

𝑠

𝑑𝑓2𝐷 (𝑟𝑥)
𝑑𝑟𝑥

𝑑𝑟𝑥√︁
𝑟2
𝑥 − 𝑠2

, (7)

𝑓4𝐷 (𝑚) = − 1
𝜋

∫ ∞

𝑚

𝑑𝑓3𝐷 (𝑠)
𝑑𝑠

𝑑𝑠
√
𝑠2 − 𝑚2

, (8)

This is equivalent to

𝑓4𝐷 (𝑚) = 𝒜
−1 [𝒜−1 [𝒜−1 [ 𝑓1𝐷 (𝑥)]]], (9)

where 𝒜 is the Abel transform. Conversely, we can compute
the 1D distribution from a given 4D with forward Abel trans-
forms, equivalent to a Cartesian integration in 𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑦,

𝑓1𝐷 (𝑥) = 𝒜 [𝒜 [𝒜 [ 𝑓4𝐷 (𝑚)]]]

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
𝑓4𝐷 (𝑚)𝑑𝑦𝑑𝑝𝑦𝑑𝑝𝑥 .

(10)
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If we have a distribution function in 4D which is a function
of 𝑚, the beam is matched and stationary, as 𝑚 depends on
the canonical variables.

Gaussian Distribution
For Gaussian 𝑓1𝐷 (𝑥) profiles, the 𝑓4𝐷 (𝑚) for a round

distribution in 𝑥 − 𝑦 is trivially found, and is identical to
the case of a “factorizable” constraint, as the distribution
can be split into parts corresponding to 𝑥 and 𝑦, with 𝑚0 a
constant which can be changed depending on the specific
distribution:

𝑓4𝐷 (𝑚) = 1
𝜋2𝑚4

0
exp

(
−𝑚2

𝑚2
0

)
=

1
𝜋2𝑚4

0
exp

(
−
𝑥2 + 𝑝2

𝑥 + 𝑦2 + 𝑝2
𝑦

𝑚2
0

)
.

(11)

Waterbag and Parabolic Distributions
The use of the Abel transform to find axis-symmetric

distributions can be validated on the waterbag and parabolic
distributions, matching the 4D density functions given in [4].

Defining the 2D distribution 𝑓2𝐷 (𝑟𝑥) as waterbag yields:

𝑓2𝐷 (𝑟𝑥) =
2(1 − 𝑟2

𝑥

𝑚2
0
)

𝜋𝑚2
0

, (12)

𝑓3𝐷 (𝑠) = 𝒜
−1 [ 𝑓2𝐷 (𝑟𝑥)] =

4
√︃
𝑚2

0 − 𝑠2

𝜋2𝑚4
0

, (13)

𝑓4𝐷 (𝑚) = 𝒜
−1 [ 𝑓3𝐷 (𝑠)] = 2

𝜋2𝑚4
0
. (14)

where 𝑚 < 𝑚0 defines the region where the distribution is
non-zero.

The case of a parabolic 2D 𝑓2𝐷 (𝑟𝑥) distribution yields:

𝑓2𝐷 (𝑟𝑥) =
1

𝜋𝑚2
0
3(1 − 𝑟2

𝑥

𝑚2
0
)2, (15)

𝑓3𝐷 (𝑠) = 𝒜
−1 [ 𝑓2𝐷 (𝑟𝑥)] =

8(𝑚2
0 − 𝑠2)3/2

𝜋2𝑚6
0

, (16)

𝑓4𝐷 (𝑚) = 𝒜
−1 [ 𝑓3𝐷 (𝑠)] =

6(𝑚2
0 − 𝑚2)
𝜋2𝑚6

0
. (17)

It can be shown that these results are in agreement with [4].

q-Gaussian
Beam profiles in the CERN accelerator complex have

been observed to follow q-Gaussian distributions [5, 6]. We
can find the q-Gaussian distribution function for the round
symmetric case, starting from the 1D q-Gaussian [7]:

𝑓1𝐷 (𝑥) =
√︁
𝛽𝑞

𝐶𝑞

e𝑞 (−𝛽𝑞𝑥2), (18)

where e𝑞 (𝑥) = [1 + (1 − 𝑞)𝑥]
1

1−𝑞
+ , 𝑞 and 𝛽𝑞 are the parame-

ters of the q-Gaussian function, and 𝐶𝑞 is a normalization
constant. The variance of the distribution is given by:

1
𝛽𝑞 (5 − 3𝑞) , for 𝑞 <

5
3

∞, for
5
3
≤ 𝑞 < 2

(19)

The 1D profile is transformed to a 2D density via the
inverse Abel transform:

𝑓2𝐷 (𝑟𝑥) = −
𝛽

3/2
𝑞 (𝑞 − 3)

√︁
𝑞 − 1𝑟𝑥

2𝜋

×
(

1
𝛽𝑞 (𝑞 − 1)𝑟2

𝑥

+ 1
) 𝑞+1

2−2𝑞 (
𝛽𝑞 (𝑞 − 1)𝑟2

𝑥

) 𝑞

1−𝑞
,

(20)

Assuming a density in the form 𝑓4𝐷 (𝑚), the equation for the
4D density function is obtained via two further inverse Abel
transforms:

𝑓4𝐷 (𝑚) = −
𝛽𝑞 (𝑞 − 3) (𝑞 + 1)

(
1

𝛽𝑞 (𝑞−1)

) 1
1−𝑞

4𝜋2𝑚3Γ
(

1
𝑞−1

)
× (𝛽𝑞 (𝑞 − 1))

𝑞+1
2−2𝑞 Γ

(
𝑞

𝑞 − 1

)
×

(
1

𝛽𝑞𝑚
2 (𝑞 − 1)

+ 1
) 1

1−𝑞 − 3
2

(𝛽𝑞𝑚2 (𝑞 − 1))
1

1−𝑞 ,

(21)

which is valid for the specific case of 𝑞-values of 1 < 𝑞 < 3.
The function can be used to populate the phase space via a 4D
Box-Müller [8] type inverse sampling method from [4]. The
population of the phase space with a q-Gaussian of 𝑞 = 1.4
yields the 𝑥-𝑦 projection shown in Fig. 1, which is elliptically
symmetric. The projection on the 𝑥 or 𝑦 planes shows the
histogram of the distribution and the fit of a q-Gaussian with
𝑞 = 1.4. The densities for non-Gaussian beams with hyper-
elliptic symmetry are non-factorizable. The solutions are
however matched, as they are a function of 𝑚 only.

In order to generate a particle distribution for factorizable
distributions in 𝑥 − 𝑦 (case 2), the 4D density function is a
product of two 2D density functions, one in 𝑥 − 𝑝𝑥 and one
𝑦 − 𝑝𝑦 , which are in themselves functions of only 𝑟𝑥 and 𝑟𝑦 .
They can be found via one inverse Abel transform for each
plane:

𝑓4𝐷 (𝑟𝑥 , 𝑟𝑦) = 𝑓2𝐷 (𝑟𝑥) × 𝑓2𝐷 (𝑟𝑦). (22)
The 𝑥 − 𝑝𝑥 and 𝑦 − 𝑝𝑥 distributions are then found via two
separate Box-Müller type random sampling methods [8].
Figure 2 shows the projection of the density function made
from the multiplication of two 2D distributions (case 2). The
projection in 𝑥-𝑦 has a characteristic cross shape, a conse-
quence of the heavy tails and an independent distribution.
As before, the projection in 𝑥 and 𝑦 fits the q-Gaussian dis-
tribution.
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Figure 1: Projection in the 𝑥 − 𝑦-plane (left) and the 𝑥-plane
and 𝑦-plane (right) for a distribution with elliptical symmetry
in all planes (case 1).

Figure 2: Projection in the 𝑥 − 𝑦-plane (left) and the 𝑥-plane
and 𝑦-plane (right) for a factorizable distribution (case 2).

APPLICATION TO LUMINOSITY
In the LHC, the luminosity integral is typically calculated

assuming factorizable distributions in 𝑥 and 𝑦. Below we
evaluate the relative luminosity difference for q-Gaussian
profiles. We calculate the luminosity for the axis-symmetric
distributions as:

L ∝
∫ ∞

−∞

∫ ∞

−∞
𝑓 2
1,2 (𝑥, 𝑦)𝑑𝑥𝑑𝑦. (23)

The integral is done numerically using Eq. (20) for 𝑓1,2 (𝑥, 𝑦),
replacing 𝑟𝑥 with

√︁
𝑥2 + 𝑦2.

For factorizable beam distributions we obtain the lumi-
nosity as:

L ∝
∫ ∞

−∞

∫ ∞

−∞
𝑓 2
1,2 (𝑥) 𝑓

2
1,2 (𝑦)𝑑𝑥𝑑𝑦, (24)

where 𝑓1,2 (𝑦), 𝑓1,2 (𝑥) are the q-Gaussian 1D distributions,
and 1,2 denotes the two incoming bunches.

Figure 3 shows the luminosity for case 1) and case 2),
given the constraint of a q-Gaussian profile in the 𝑥 and 𝑦

planes, relative to a normal Gaussian distribution. The graph
shows as a function of 𝑞 a set of q-Gaussian distributions
with constant variance and another set keeping 𝛽𝑞 constant.
The difference in relative luminosity between factorizable
and non-factorizable distributions becomes larger as the 𝑞-
parameter increases. This shows that it is important to know
the properties of the full phase space distribution to accu-
rately calculate the luminosity integrals. For completeness,
Fig. 4 shows the q-Gaussians beam profiles (1D projections

Figure 3: Luminosity variation for different 𝑞, but the same
𝛽𝑞 (red and blue markers), and for constant variance (green
and black markers), with axis-symmetric (crosses) or factor-
izable (points) distributions in 𝑥-𝑦.

Figure 4: The profile for a q-Gaussian with different 𝑞-
parameters for constant variance.

of the phase space) corresponding to the same 𝑞-parameters
as of Fig. 3 for the case of constant variance.

The analysis can be extended to include different distribu-
tions, correlations, and reconstruction constraints, to see how
the crossing angle, luminosity burn-off, and time integrated
luminosity are affected depending on the full phase-space
distribution. Here we have shown one dependent heavy tail
distribution, of which there are infinite.

CONCLUSION
Given a beam profile, the corresponding 4D phase space

distribution is not uniquely defined. Two examples of
matched 4D phase space distributions have been recon-
structed, one circular symmetric and one factorizable in
𝑥 − 𝑦, resulting in the same q-Gaussian beam profile. It has
been shown that, the resulting luminosity integrals differ
depending if the phase space distribution is factorizable in
the 𝑥 − 𝑦 plane or not.
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