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Abstract
The Super Proton Synchrotron at CERN serves the fixed-

target experiments of the North Area, providing protons and
ions via slow extraction, and employs the crystal shadow-
ing technique to significantly minimise losses. Over the
past three operational years, the use of a crystal, positioned
upstream of the electrostatic septum to shadow its blade,
has allowed to achieve a 25% reduction in losses. Addi-
tionally, a novel non-local shadowing technique, utilising
a different crystal location, has successfully halved these
losses. While using a single crystal in this location resulted
in a temporary 50% reduction in slow extraction losses at
nominal intensity, this effect was not sustainable beyond
a few hours. This limitation is primarily attributed to the
magnetic non-reproducibility and hysteresis inherent to the
SPS main dipoles and quadrupoles. In this paper, we intro-
duce the application of the Rank-Weighted Gaussian Process
Ensemble to the setup of shadowing. We demonstrate its
superior efficiency and effectiveness in comparison to tradi-
tional Bayesian optimisation and other numerical methods,
particularly in managing the complex dynamics of local and
non-local shadowing.

INTRODUCTION
The Super Proton Synchrotron (SPS) at CERN is a ver-

satile accelerator that provides beams to a variety of fixed-
target experiments in the North Area [1]. The SPS is the
last accelerator in the LHC injector chain, and it accelerates
protons and heavy ions to high energies. The slow extraction
of the SPS is performed by means of third-integer resonant
slow extraction [2, 3]. The slow extraction process is a criti-
cal operation for the SPS, as it is the main source of beam
losses. The losses are mainly due to the beam particles that
are not extracted by the septum and are instead lost in the
machine.

The slow extraction losses are the main limitation to the
maximum intensity that can be extracted from the SPS. In
this context, a significant R&D effort has been dedicated to
the development of techniques to improve the slow extraction
efficiency. One of the most successful techniques is crystal
shadowing[4]. The crystal shadowing technique consists in
placing a crystal [5] upstream of the electrostatic septum to
shadow the septum wires. The crystal is oriented in such a
way that the particles interacting with it are deflected away
from the septum wires. This technique has been successfully
used in the last three years of operation of the SPS, resulting
in about 25% reduction in losses [6].
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Furthermore, a novel non-local shadowing technique has
been developed, which consists in placing a crystal (TECA)
in a different location, upstream of the extraction channel.
This technique has been successfully demonstrated in the
SPS to reduce the losses by 50% [7]. However, the effect of
the non-local shadowing is very sensitive to the SPS closed
orbit variations, which are mainly due to the magnetic non-
reproducibility and hysteresis of the SPS main dipoles and
quadrupoles.

In this paper, we introduce the application of Bayesian Op-
timisation (BO) aided with Rank-weighted Gaussian Process
Ensemble (RGPE) to the setup of non-local shadowing. We
demonstrate the potential gain in efficiency and we discuss
possible operational challenges. Finally, we report on the
latest results obtained with non-local shadowing in the SPS
and the challenges that should be addressed to make this
technique operational.

METHOD
The RGPE [8] is a method designed to enhance BO by

utilising information from previous optimisation tasks. It
involves combining multiple base models and a target model
to predict the function of interest, using ensemble methods
weighted by the performance of each model on the target
task. In simpler words, the RGPE method will attempt to
exploit the available previous knowledge (via the base mod-
els), to speed up the search of the global optimum. This
is done by ranking the prediction of each individual base
models to decide for the next point to explore and then by
building a surrogate of the target function via weighting of
the predictions by their quality.

More in details, RGPE constructs an ensemble model
from multiple base Gaussian Process (GP) models and one
target GP model. The target GP model is specific to the new
task, while the base models are pre-trained on related tasks.
The prediction for the new input points is a weighted sum of
predictions from all these models, forming an ensemble.

The ensemble prediction ̄𝑓 is calculated as follows:

̄𝑓 (x|𝒟) =
𝑡

∑
𝑖=1

𝑤𝑖𝑓 𝑖(x|𝒟𝑖) (1)

where 𝑓 𝑖(x|𝒟𝑖) is the prediction of the 𝑖-th base model on
the new input x, 𝒟𝑖 is the dataset used to train the 𝑖-th base
model, and 𝑤𝑖 is the weight assigned to the 𝑖-th base model.
The weights are calculated based on the performance of each
base model on the target task.

Weights 𝑤𝑖 for each model are determined based on the
”ranking loss”, which assesses how well the model’s predic-
tions align with the ranking of the observed outcomes from
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the target task:

ℒ(𝑓 𝑖, 𝒟𝑡) =
𝑛𝑡

∑
𝑗=1

𝑛𝑡

∑
𝑘=1

1 [(𝑓 𝑖(x𝑡
𝑗) < 𝑓 𝑖(x𝑡

𝑘)) ⊕ (𝑦𝑡
𝑗 < 𝑦𝑡

𝑘)]

(2)
where ℒ denotes the ranking loss function, (𝑓 𝑖, 𝒟𝑡) specifies
that the loss is calculated for the 𝑖-th model on the dataset
𝒟𝑡, the sum is done over all pairs of observations 𝑗 and 𝑘 in
the target dataset 𝒟𝑡, ⊕ denotes the exclusive OR operation
and checks if exactly one of the two conditions is true.

The ensemble model itself is a Gaussian Process:

̄𝑓 (x|𝒟) ∼ 𝒩 (
𝑡

∑
𝑖=1

𝑤𝑖𝜇𝑖(x),
𝑡

∑
𝑖=1

𝑤2
𝑖 𝜎2

𝑖 (x)) (3)

where 𝜇𝑖(x) and 𝜎2
𝑖 (x) are the mean and variance of the

predictions of each model.
This method leverages the strengths of individual models

and mitigates their weaknesses, leading to a more robust
prediction, especially in cases where data on the new task
is limited but related historical data is plentiful. The imple-
mentation of this method is openly available on the official
BoTorch website [9].

APPLICATION TO NON-LOCAL
SHADOWING

In our case, we have a very accurate model of the SPS
slow extraction with a crystal shadowing setup, which is used
to generate the data to train a deep neural network (DNN)
model (Fig. 1). The DNN model is a fully connected neural
network with two hidden layers, each with 512 neurons and
hyperbolic tangent activation functions. The input to the
DNN model is the crystal angle and position, and the output
is the slow extraction losses.

The DNN model is then used to generate the data to train
the base models, by shifting the response in the two input
dimensions, i.e. the crystal angle and the crystal position.
The optimisation task is the unchanged DNN model, which
is sampled at every step of the optimisation routine.

The RGPE method is then used to optimise the crystal
angle and position to minimise losses. All the results that
we present in this paper are obtained using exclusively the
DNN model and future work will include the test carried
out at the CERN-SPS.

RESULTS
The RGPE method was applied to the non-local shadow-

ing setup, together with classic BO and random search, as
baseline. For both RGPE and BO, the acquisition function
used was the Expected Improvement (EI). The upper confi-
dence bound (UCB) was also tested but the results were not
as good as with EI, in all the cases.

In Fig. 2 the results of three optimisation runs are shown.
For all methods, the optimisation was performed 5 times,
with 50 iterations each. The results show that RGPE con-
verges faster than the other methods, and both RGPE and BO
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Figure 1: (Top) Relative losses in the SPS slow extraction as
a function of the crystal angle and position obtained from nu-
merical tracking simulations. (Bottom) DNN model trained
on the numerical data.

achieve similar final results, which is in line with the previ-
ous experience on local shadowing. RGPE converges to the
global optimum (blue dashed line) after about 30 machine it-
erations, instead the vanilla BO at around 50 iterations. The
difference recorded at 30 iterations between the two methods
is indeed significant, as only RGPE actually reaches the deep
of full loss reduction highlighted by a red circle in Fig 1.
Random search is the slowest to converge and achieves the
worst final result.
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Figure 2: Comparison of RGPE, vanilla BO and random
search on the non-local shadowing setting up task. The best
observed value at each iteration is plotted.
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From these results, we would expect a significant im-
provement in the speed of convergence of the RGPE method
compared to BO, when applied to the real machine. The
speed of convergence for RGPE significantly depends on
the quality of the base models. In our case, the base models
are generated only by shifting the input space. Prior knowl-
edge of the correlation between the base models and the real
response could drastically improve the performance of the
RGPE method.

If this method shows the same performance observed on
simulations on the real SPS, it can be a significant improve-
ment in the context of the SPS operation, where the time to
perform the optimisation is a critical factor to maximise the
physics throughput.

EXPERIENCE WITH NON-LOCAL
SHADOWING IN OPERATION

The non-local shadowing technique has been tested in the
SPS [7] and has shown promising results. Loss reduction
up to a factor 2 was demonstrated during dedicated beam
time [7]. Furthermore, this technique was tested in realis-
tic physic conditions, with up to 2 × 1013 p extracted to the
North Area. The main challenge that was encountered was
the stability of shadowing in time.

In order to study this effect, a dedicated test was performed
in the SPS, where the TECA was aligned in shadowing via
classic BO. Once the optimal crystal angle and position were
found, the losses were monitored for 1 hour. The results are
summarised in Fig. 3. The first observation is that the TECA
cannot be placed exactly at the optimal configuration found
via BO due to the limits in the crystal motor movements -
now set to a minimum of 8 µrad and 0.1 mm for the angle
and position, respectively. Once the crystal is set up, the
losses drift in time, and after about 30 minutes the losses are
significantly increased, and the shadowing effect is almost
completely lost. As a possible explanation, the last plot in
Fig. 3 shows the change in beam position measured in the
proximity of the crystal and the change of the beam momen-
tum offset1. These two quantities are very well correlated,
and their change in time is also correlated with the change
in losses.

FUTURE WORK
A full solution to the observed behaviour is two-fold. First,

RGPE can be used to reduce the time needed to find the
optimal configuration of the crystal, and second, a real-time
controller, that would continuously monitor the losses and
beam position while adjusting the crystal angle and position
accordingly, can be implemented.

Further studies are needed to deploy RGPE in the SPS
and this will be the main focus of the upcoming machine
development period.

Finally, a possible method for the real-time control of
the crystal could be the implementation of a Model Predic-
1 The momentum offset is calculated via the requested change in machine

reference momentum, exploiting the COSE extraction methodology [10].
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Figure 3: (Top) Time evolution of the crystal angle and
position during the test. (Middle) Relative losses at the
extraction septum as a function of time. (Bottom) Time
evolution of the relative momentum offset and horizontal
beam position (BPM.41408).

tive Control (MPC) algorithm based on the available DNN
surrogate model and the available numerical model of the
SPS.

CONCLUSION
In this paper, we have introduced the application of the

Rank-Weighted Gaussian Process Ensemble to the setup of
shadowing in the CERN-SPS. We have demonstrated its
superior efficiency and effectiveness in comparison to tradi-
tional BO, particularly in managing the complex dynamics
of non-local shadowing. We have shown that the RGPE
method can provide a significant improvement in the speed
of convergence of the optimisation routine, which is a critical
factor in the context of the SPS operation. Future work will
focus on machine development tests of the RGPE method
and the implementation of a real-time controller to adjust
the crystal angle and position based on the current beam
conditions.
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