CERN Accelerating science

002910844 001__ 2910844
002910844 005__ 20241111162008.0
002910844 0248_ $$aoai:cds.cern.ch:2910844$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002910844 037__ $$9arXiv$$aarXiv:2409.07324$$cnucl-ex
002910844 035__ $$9arXiv$$aoai:arXiv.org:2409.07324
002910844 035__ $$9Inspire$$aoai:inspirehep.net:2827185$$d2024-10-09T16:36:09Z$$h2024-10-11T02:34:44Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002910844 035__ $$9Inspire$$a2827185
002910844 041__ $$aeng
002910844 100__ $$aLalanne, L.$$uLeuven U.$$uCERN$$uStrasbourg, IPHC$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium$$vCERN, CH-1211 Geneva 23, Switzerland$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
002910844 245__ $$9arXiv$$a$^{61}$Cr as a Doorway to the $N = 40$ Island of Inversion
002910844 269__ $$c2024-09-11
002910844 300__ $$a6 p
002910844 520__ $$9arXiv$$aThis paper reports on the measurement of the ground-state spin and nuclear magnetic dipole moment of $^{61}$Cr. The radioactive ion beam was produced at the CERN-ISOLDE facility and was probed using high-resolution resonance ionization laser spectroscopy with the CRIS apparatus. The present ground-state spin measurement $I = \frac{1}{2}$, differing from the previously adopted $I =(\frac{5}{2})$, has significant consequences on the interpretation of existing beta decay data and nuclear structure in the region. The structure and shape of $^{61}$Cr is interpreted with state-of-the-art Large-Scale Shell Model and Discrete-Non-Orthogonal Shell Model calculations. From the measured magnetic dipole moment $\mu(^{61}$Cr$)=+0.539(7)~\mu_N$ and the theoretical findings, its configuration is understood to be driven by 2 particle - 2 hole neutron excitations with an unpaired $1p_{1/2}$ neutron. This establishes the western border of the $N=40$ Island Of Inversion (IoI), characterized by 4 particle - 4 hole neutron components. We discuss the shape evolution along the Cr isotopic chain as a quantum phase transition at the entrance of the $N=40$ IoI.
002910844 540__ $$3preprint$$aCC BY-NC-SA 4.0$$uhttp://creativecommons.org/licenses/by-nc-sa/4.0/
002910844 595__ $$cHAL
002910844 65017 $$2arXiv$$anucl-th
002910844 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002910844 65017 $$2arXiv$$anucl-ex
002910844 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002910844 690C_ $$aCERN
002910844 690C_ $$aPREPRINT
002910844 700__ $$aAthanasakis-Kaklamanakis, M.$$uLeuven U.$$uCERN$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium$$vCERN, CH-1211 Geneva 23, Switzerland
002910844 700__ $$aDao, D.D.$$uStrasbourg, IPHC$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
002910844 700__ $$aKoszorús, Á.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aLiu, Y.C.$$uPeking U., SKLNPT$$vSchool of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
002910844 700__ $$aMancheva, R.$$uLeuven U.$$uCERN$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium$$vCERN, CH-1211 Geneva 23, Switzerland
002910844 700__ $$aNowacki, F.$$uStrasbourg, IPHC$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
002910844 700__ $$aReilly, J.$$uManchester U.$$vDepartment of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
002910844 700__ $$aBernerd, C.$$uCERN$$vCERN, CH-1211 Geneva 23, Switzerland
002910844 700__ $$aChrysalidis, K.$$uCERN$$vCERN, CH-1211 Geneva 23, Switzerland
002910844 700__ $$aCocolios, T.E.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$ade Groote, R.P.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aFlanagan, K.T.$$uManchester U.$$vDepartment of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
002910844 700__ $$aGarcia Ruiz, R.F.$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002910844 700__ $$aHanstorp, D.$$uU. Gothenburg (main)$$vDepartment of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
002910844 700__ $$aHeinke, R.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aHeines, M.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aLassegues, P.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aMack, K.$$uManchester U.$$vDepartment of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
002910844 700__ $$aMarsh, B.A.$$uCERN$$vCERN, CH-1211 Geneva 23, Switzerland
002910844 700__ $$aMcGlone, A.$$vDepartment of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
002910844 700__ $$aLynch, K.M.$$vDepartment of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
002910844 700__ $$aNeyens, G.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aBorne, B. van den$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aVan Duyse, R.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, B-3001 Leuven, Belgium
002910844 700__ $$aYang, X.F.$$uPeking U., SKLNPT$$vSchool of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
002910844 700__ $$aWessolek, J.$$uCERN$$uManchester U.$$vCERN, CH-1211 Geneva 23, Switzerland$$vDepartment of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
002910844 8564_ $$82557966$$s38565$$uhttps://cds.cern.ch/record/2910844/files/61CrDNOSM.png$$y00002 Left: ground-state wavefunction of $^{61}$Cr  expanded in the $(\beta,\gamma)$ plane.  Right: Theoretical amplitudes of the deformed neutron $2p-2h$ (blue) and $4p-4h$ (red) components into all the  $\frac{1}{2}^-$ states.
002910844 8564_ $$82557967$$s60661$$uhttps://cds.cern.ch/record/2910844/files/HFS.png$$y00000 Hyperfine spectrum of a) $^{61}$Cr, b) $^{51}$Cr and c) $^{53}$Cr: count rate in the ion detector as a function of the frequency of the first excitation step, relative to the centroid of the hyperfine structure. Black markers are experimental data while colored lines represent fits using different nuclear spin $I$ hypothesis. The inset in a) shows a schematic of the three-step laser ionization scheme. $\chi^2_\nu$ is the reduced chi-square per degree of freedom.
002910844 8564_ $$82557968$$s110615$$uhttps://cds.cern.ch/record/2910844/files/SystDNOSM_vert.png$$y00003 Same as Fig~\ref{fig:61CrTh} for ground-state wavefunctions of $^{60,62,64}$Cr.
002910844 8564_ $$82557969$$s5803$$uhttps://cds.cern.ch/record/2910844/files/ExScheme.png$$y00001 Experimental and theoretical partial level scheme of $^{61}$Cr with spin-parities $I^\pi$, excitation energies $E_x$ and magnetic dipole moments $\mu$. Experimental excitation energies are from Ref.\cite{Suc14}.
002910844 8564_ $$82557970$$s2082044$$uhttps://cds.cern.ch/record/2910844/files/2409.07324.pdf$$yFulltext
002910844 960__ $$a11
002910844 980__ $$aPREPRINT