Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

Nairit Sur

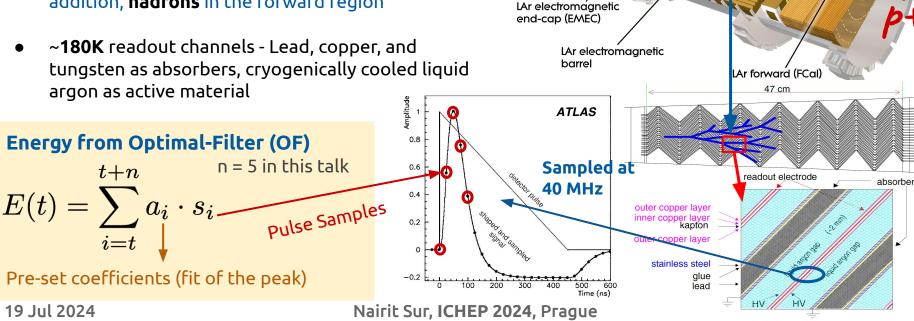
CPPM - CNRS/IN2P3

on behalf of the ATLAS Liquid Argon Calorimeter Group

The Liquid Argon Calorimeter:

A crucial component of the **ATLAS** detector

- So far, 160 fb⁻¹ p-p collision data were reconstructed with high quality and precision
- Designed to measure the time, position, and energy deposited by electrons and photons, and in addition, hadrons in the forward region



LAr hadronic

end-cap (HEC)

Towards HL-LHC

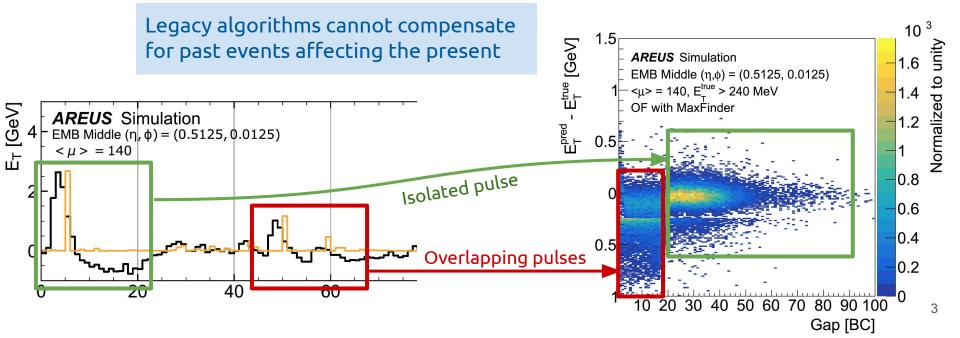
The high luminosity phase of the LHC (**HL-LHC**) will produce **140-200** simultaneous p-p interactions (pile-up), compared to the current value of around **40**

Energy deposits **continuously** sampled and digitized at 40 MHz:

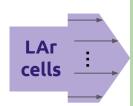
⇒ requires peak finder/trigger (to select the correct BCIDs)

Real-time energies for triggers:

⇒ requires compact algorithms on high-end FPGAs



LAr Upgrade



Gensolen (CPPM)

1/t: Fabrice

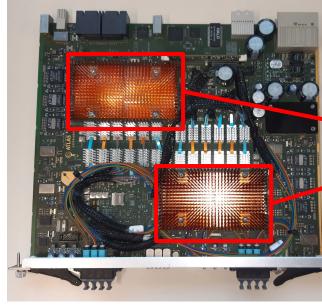
Upgrade of readout electronic chain for AI algorithms

- One FPGA should process 384 channels
- About 150 ns allocated latency for energy computation

New off-detector electronics:

LAr Signal Processor (LASP)

- Two FPGAs (Intel Agilex)
- ~Tb/s(~700 channels)
- ~300 boards



Test boards were built with Stratix10, but production ones will use higher grade Agilex FPGAs

Energy reconstruction with NNs

Comput Softw Big Sci 5, 19 (2021)

LArCalo Upgrade Public Results

Two neural network types are tested:

Convolutional Neural Networks (CNN) - Developed by the TU Dresden group

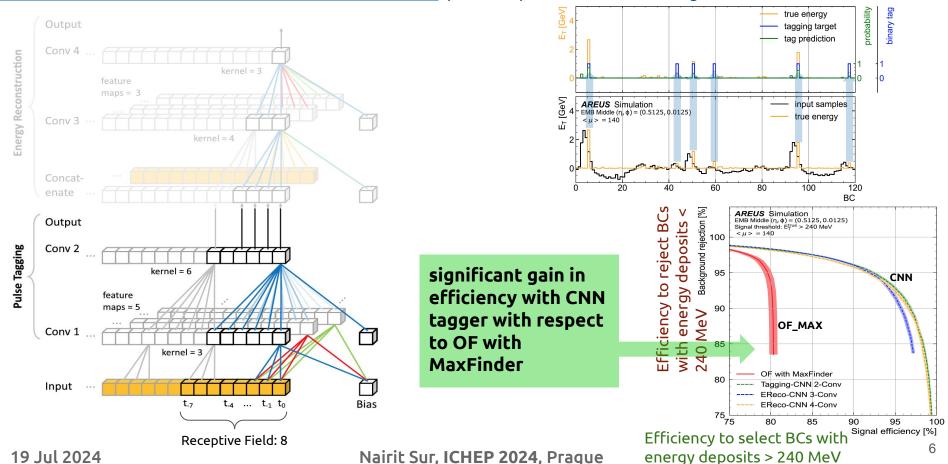
and

Recurrent Neural Networks (RNN) - Developed by the CPPM group

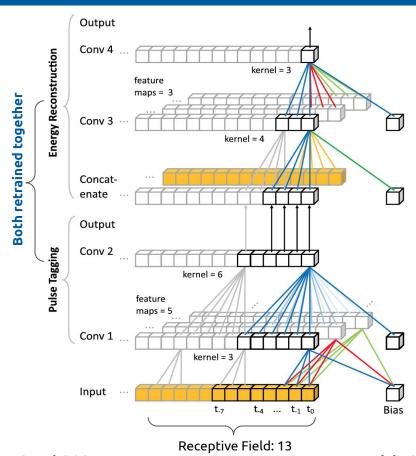
CNN step 1: Pulse tagging

CNN for pulse tagging:

Trained to detect energy deposits 3σ above noise (240 MeV) using pulse samples for 8 bunch crossings

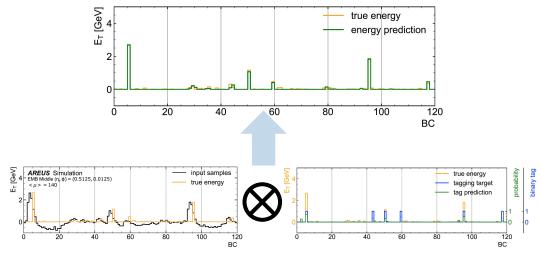


CNN step 2: Energy inference



CNN for energy reconstruction:

Energy reconstruction layers are added to the tagging layers and retrained together



4-Conv CNN

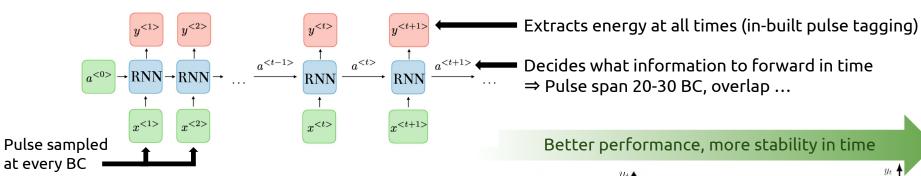
- 2 layers for energy reconstruction
- Receptive field: **13** BC
 - **88** parameters in total

3-Conv CNN

- 1 layer for energy reconstruction
- Receptive field: **28** BC
- **94** parameters in total

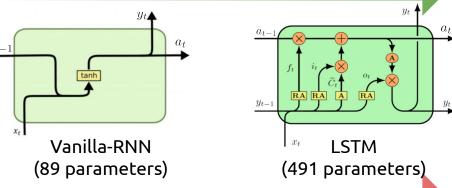
Recurrent Neural Networks

Designed for handling sequential data, RNNs consist of internal neural networks that process new input combined with the past processed state



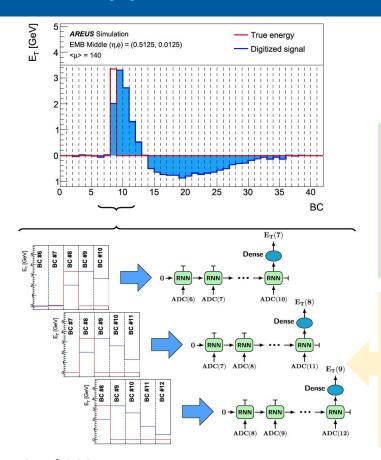
Two RNN internal architectures explored:

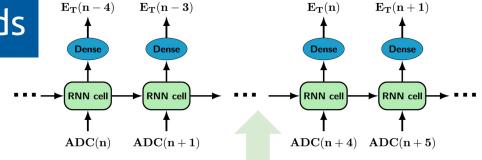
- Optimised for smaller number of parameters
- Long Short-Term Memory (LSTM) 10 internal dimensions
- Vanilla-RNN 8 internal dimensions



Higher complexity, bigger size on hardware

RNN applications: two methods





Single Cell Method:

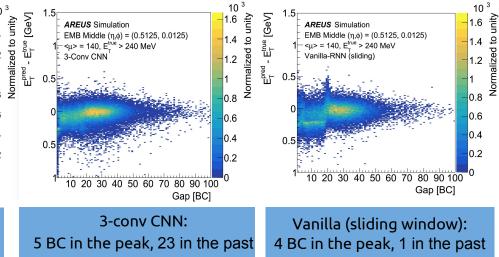
- ✓ Long range correction, full signal is processed in a stream
- ✗ Significant amount of complexity needed to process data in time (LSTM only)

Sliding window Method (5 BC):

- ✓ Robust against long-lived effects due to unforeseen behaviour of the detector, simpler training
- Short range correction only (1 BC in the past)

AREUS Simulation EMB Middle $(\eta,\phi) = (0.5125, 0.0125)$ 1.4 1.2 Normalized to L EMB Middle $(\eta,\phi) = (0.5125, 0.0125)$ <u>> = 140. E^{true} > 240 MeV 0.6 0.4 0.4 0.2 0.2 30 40 50 60 70 Gap [BC] Gap [BC] LSTM (single cell): Legacy algorithm: 5 BC in the peak 5 BC in the peak, ∞ in the past

Comparisons on single LAr cell simulations (*AREUS* software)



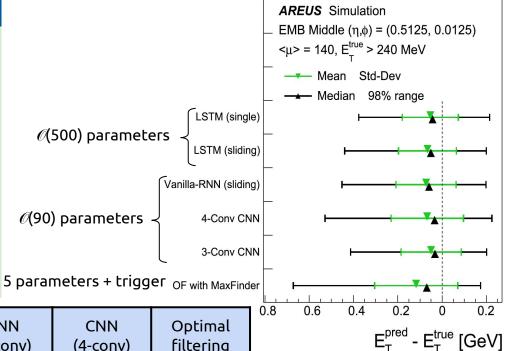
- Legacy algorithm exhibits big distribution tails especially at low gap
- The tails are reduced significantly with all the new NN methods

NN Performance:

HL-LHC condition with pileup of 140

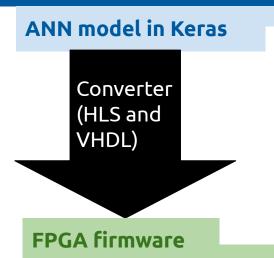
- Overall better energy scale and resolution for all NNs with respect to OF_MAX
 - Lower tails as seen from the 98% median range
- All NNs optimized to reduce as much as possible the required computing resources
 - While keeping good performance
- LSTM perform best but have a larger number of parameters
 - Harder to fit in the FPGAs

Comput Softw Big Sci 5, 19 (2021)



Algorithm	LSTM (single)	LSTM (sliding)	Vanilla (sliding)	CNN (3-conv)	CNN (4-conv)	Optimal filtering	
Number of parameters	491	491	89	94	88	5	
MAC units	480	2360	368	87	78	5	

Implementation on FPGAs



- Set of weights optimised by training
- architecture(layers, dimensions, ...)
- Mathematical operations

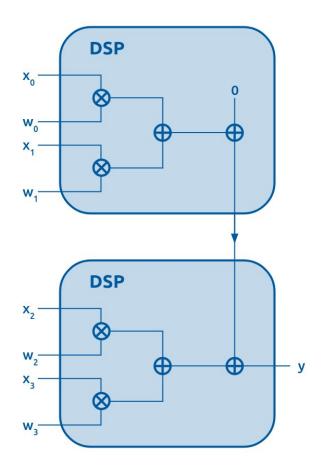
- **ALM**: adaptive logic modules
- DSP: digital signal processors
- Fixed-point arithmetic, LUT for non-linear functions

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = A \begin{pmatrix} \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

Activation function for non-linear element operations

CNN Firmware Implementation

- CNN implemented in VHDL with full configurability -
 - Configurable layer building blocks: I/O, activation functions
 - Configurable component connections: Kernel sizes, filters per layer, dilation
- Model architecture parameters automatically extracted from Keras output
- Designed to support pipelining and time-division multiplexing:
 - Runs at 12 times the ADC frequency and processes 12 detector cells cyclically
- Calculations can be done in 18-bit fixed point numbers



RNN Firmware Implementation: HLS

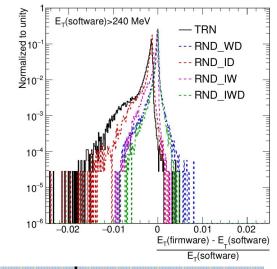
- RNN initially implemented in Intel HLS which adds an additional level of abstraction
 - Advantages: fast and efficient optimisation of parameters and implementation

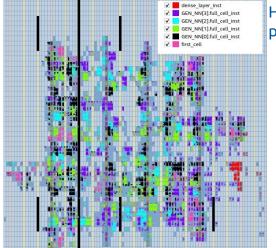
• Optimisation of arithmetic operations:

- Different quantisation schemes tested for optimal fixed point operation performance
- truncation(TRN) vs. rounding (RND) of internal type(I), I/O type(D), and weight type(W) data categories

Disadvantages:

- Cannot achieve target frequency and resource utilisation constraints when several instances of NNs are placed on the same FPGA
- During compilation, each instance gets different placement shape, which, moreover, gets randomised between compilations → complicates optimisation of timing-critical paths needed to reach higher frequency and multiplexing





HLS placement

RNN Firmware Implementation: VHDL

(2023)GEN NN[0].neural_network_inst[c2_bn|GEN_NN[3]

Implementation in VHDL enables finer optimisations which are not tunable in HLS

Reuse of common computations:

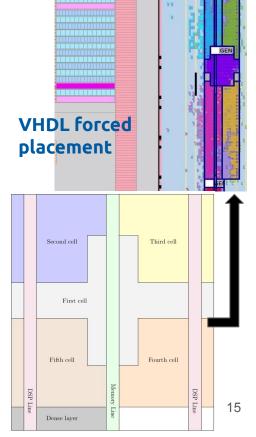
- Common computations in cells differing only in time are propagated between each other at the proper time instead of recalculation, unnecessary calculation for certain cells removed
- Reduction of DSP usage by 10%, ALM usage by 21%

Optimised placements:

- Placement of 5 network cells designed to minimise distance between them
- Placement constraints force all NN instances to have the same shape

Incremental compilation of multi-partitioned firmware design:

Preserve partitions (1 NN instance each) that do not exhibit timing violations and recompile the rest until the target frequency is reached for the whole design → reached **560 MHz** with **28 NN** instances within 4 compilations



GEN NN[0].neural network instlc2 bnlGEN NN[2]

GEN NN[0].neural network inst[c2 bn|dense layer inst

Estimation of FPGA Resource Usage

- Both CNN and RNN implementations in VHDL satisfy ATLAS requirements:
 - Trigger latency ≈ 150 ns
 - Process 384 channels per FPGA with multiplexing
- Estimated resource usage based on Intel Quartus reports:

FPGA	Network	Multiplexing	Channels	F _{max} [MHz]	ALMs	DSPs
Stratix-10	RNN (HLS)	10	370	393	90%	100%
	RNN (VHDL)	14	392	561	18%	66%
	2-Conv CNN	12	396	415	8%	28%
	4-Conv CNN	12	396	481	18%	27%
Agilex	2-Conv CNN	12	396	539	4%	13%
	4-Conv CNN	12	396	549	9%	12%

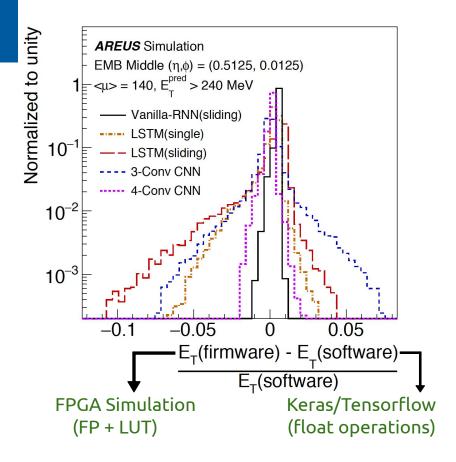
Summary

- CNN and RNN networks outperform the optimal filtering algorithm for the energy reconstruction in the ATLAS LAr Calorimeter, particularly in the region with overlap between multiple pulses
- Studies to quantify the effect on object (electrons, photons) reconstruction and physics performance is underway using Phase-II montecarlo samples and Athena simulation.
- All networks are designed to reduce to a maximum the resource usage while keeping the performance
- CNN and Vanilla RNN are serious candidates that can fit the stringent requirements on the LASP firmware
- Network optimisations in VHDL allow reaching the requirements in terms of resource usage and latency
 - Testing on hardware (Stratix10 DevKits) started and shows good results
 - Need to check timing violations with all other components of the LASP firmware
- Quantisation-aware training has proven to be effective in significantly reducing the required bit width for number representation on the FPGA, thereby minimising resource usage

Backup

Firmware vs. Software

- Energy computed with Quartus simulation and verified on target
- O(1%) resolution due to firmware approximation, viz. LUT for activation functions, Fixed point arithmetic



Quantisation mode optimisation for RNN

- Comparison of resource usage in terms of DSPs, arithmetic look-up tables (ALUT), flip-flops (FF), and random access memory (RAM) for different quantisation modes available in Intel HLS
- comparison of the transverse energy computed in firmware and the one computed in software, with a full floating point implementation, for the different quantisation modes

