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Measurement of the inclusive isolated-photon production cross section in
pp and Pb–Pb collisions at √sNN = 5.02 TeV
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Abstract

The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section
of isolated photons at midrapidity as a function of the photon transverse momentum (pγ

T), in Pb–Pb
collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per
nucleon pair of

√
sNN = 5.02 TeV. The photon transverse momentum range is between 10–14 and

40–140 GeV/c, depending on the collision system and on the Pb–Pb centrality class. The result
extends to lower pγ

T than previously published results by the ATLAS and CMS experiments at the
same collision energy. The covered pseudorapidity range is |ηγ | < 0.67. The isolation selection is
based on a charged particle isolation momentum threshold piso, ch

T = 1.5 GeV/c within a cone of radii
R = 0.2 and 0.4. The nuclear modification factor is calculated and found to be consistent with unity
in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event
selection and geometry biases that affect the centrality determination in peripheral Pb–Pb collisions.
The measurement is compared to next-to-leading order perturbative QCD calculations and to the
measurements of isolated photons and Z0 bosons from the CMS experiment, which are all found to
be in agreement.

*See Appendix A for the list of collaboration members
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1 Introduction

Heavy-ion collisions (AA) at ultrarelativistic energies produce a quark–gluon plasma (QGP) [1–9], a
state of deconfined quarks and gluons. The properties of the QGP can be investigated by measuring
the different observables related to final-state particles, such as transverse momentum (pT) or angular
distributions, as a function of parameters like the plasma volume, density, temperature, or lifetime. The
range of such parameters can be changed by varying the collision energy, the size of the colliding nuclei,
or the collision centrality. The observables measured in heavy-ion collisions are compared to the same
observables measured in proton–proton (pp) or proton–nucleus reference collision systems to obtain
estimations of the QGP properties via the comparison to theoretical models.

AA collisions occur with different values of the impact parameter between the trajectories of the nuclei,
ranging from central collisions with small impact parameter, to peripheral collisions. Experimentally,
centrality classes are defined in terms of percentiles of the hadronic cross section [10]: 0–10%, for
example, is the class of the most central collisions in the analyses presented in this article.

The high-energy quarks and gluons produced by partonic hard scatterings, which occur at the early
stages of the collision, lose energy via collisional and radiational processes in the presence of a QGP. As
a consequence, the high-pT jet and hadron production, scaled by the average number of nucleon–nucleon
binary collisions ⟨Ncoll⟩, is modified with respect to their production in pp collisions: this effect is known
as “jet quenching” [11, 12]. This modification can be quantified by the nuclear modification factor

RAA =
1

⟨Ncoll⟩
σ INEL

NN
Nevt

AA

d2Nparticle, jet
AA /(dpT dη)

d2σ
particle, jet
pp /(dpT dη)

, (1)

where Nevt
AA is the number of AA minimum bias (MB) collisions, Nparticle, jet

AA is the number of particles or
jets measured in AA collisions, σ

particle, jet
pp is the jet or particle production cross section in pp collisions,

η is the pseudorapidity, and σ INEL
NN is the nucleon–nucleon inelastic cross section. The value of ⟨Ncoll⟩ is

obtained from a Glauber model calculation [13, 14].

The electroweak bosons – photons, Z0, and W±– do not interact strongly with the QGP. Therefore, while
the RAA of jets and high-pT hadrons is expected to be smaller than unity because of the energy loss of the
parent parton in the plasma, that of the electroweak bosons produced before the QGP formation should
be equal to unity when only the ⟨Ncoll⟩ scaling of their production in hard scatterings is considered.
However, deviations from unity can arise from cold nuclear matter effects. These include modification
of the parton distribution functions in the nuclei (nPDF) compared to the proton PDF, such as shadowing
at small Bjorken-x values, as well as isospin effects [15–18]. Small-x PDF modifications can be probed
by low-pT jets, hadrons, and photons. As expected, the LHC and RHIC experiments have reported a
strong suppression of the production of jets and hadrons for pT ≳ 5 GeV/c in central Pb–Pb and Au–Au
collisions, which has been attributed to jet quenching [19–28]. In contrast, it has been shown that in AA
collisions there is no modification of either the W± and Z0 boson production at the LHC [29–35] or of
high-pT direct photons, i.e. photons which are directly produced in elementary processes, and as such
are not products from hadronic decays [16, 36–38].

Direct photons include thermal photons (QGP thermal radiation), which are a significant contribution
only for pT ≲ 4 GeV/c, and prompt photons originating from hard scatterings. At the leading order (LO)
in perturbative Quantum Chromodynamics (pQCD), prompt photons are produced via 2 → 2 processes:
(i) quark–gluon Compton scattering qg → qγ , and (ii) quark–antiquark annihilation qq → gγ and, with
a much smaller contribution, qq → γγ . In addition, prompt photons are produced by higher order pro-
cesses like parton fragmentation or bremsstrahlung. The collinear part of such processes has been shown
to contribute effectively also at LO [39]. A clean separation of the different prompt photon sources is
neither experimentally achievable nor possible theoretically. However, requiring the photons to be “iso-
lated” allows suppression of the contributions from fragmentation and bremsstrahlung [40], which are

2



Isolated-γ production in pp & Pb–Pb col. at
√

sNN = 5.02 TeV ALICE Collaboration

commonly accompanied by other parton fragments. The isolation criterion typically consists of requiring
that the sum of the transverse momenta of the produced particles (piso

T ) in a cone with angular radius R
around the photon direction is smaller than a given threshold value. The advantage of this selection is
that it can be implemented both in the experimental measurements and in the theoretical calculations. A
strong additional motivation for applying an isolation selection is to reduce the background due to pho-
tons originating from hadron decays, as hadrons at reasonably high pT would, in general, be produced in
jet fragmentation and accompanied by other fragments nearby.

Since isolated prompt photons do not interact strongly and are produced before the QGP formation, they
can be used as a calibrated reference for the rate of hard processes. Given that ⟨Ncoll⟩ is not measured
directly, but rather linked to the centrality by means of the Glauber model, measurements of prompt
photons via isolation as a function of centrality, compared with pp measurements at the same centre-of-
momentum energy per nucleon pair (

√
sNN) and high pγ

T with negligible cold nuclear matter effects, allow
the test of the ⟨Ncoll⟩ scaling. It has indeed been shown that the Glauber model does not fully capture
the experimental biases on the centrality selection, which are significant for peripheral collisions [41].
These biases are due to initial-state geometry effects and to correlations between the hard processes
producing jets and the soft particle yield, which is used for estimating the centrality. These biases can be
understood and modelled, e.g. via simulations with the HG-PYTHIA event generator [41], such that their
effect on the hadron RAA measurements can be disentangled from the energy loss [42]. High-precision
measurements of electroweak bosons can allow to further pinpoint the bias and provide an experimental
baseline for the RAA calculations of hadrons and jets. The Z0-boson measurement in Pb–Pb collisions at√

sNN = 5.02 TeV by the CMS experiment [35] quantified the bias and observed that the cross section
for Z0 bosons in the 70–90% centrality class is approximately 25% lower than the unbiased cross section
in the 0–100% centrality class, in agreement with the HG-PYTHIA calculations [41, 43].

The measurement of the isolated-photon production rate can also be used to test pQCD theory calcula-
tions, in particular, the need to include higher orders than leading order and next-to-leading order (NLO).
A detailed discussion of the dependence on the isolation-cone radius and of the different isolation-
momentum definitions in pp collisions at the LHC can be found in Ref. [44]. It is found that decreasing
the cone radius for a fixed isolation-momentum threshold increases the cross section at higher orders than
LO since part of the QCD radiation out of the cone is not vetoed. Due to the better description of the
QCD radiation of the additional higher-order external partons, such an increase can still be of the order
of 5% from NLO to NNLO (next-to-next-to-leading order) for the isolation criteria used in this study.
The ATLAS Collaboration performed this measurement in pp collisions at centre-of-momentum energy√

s = 13 TeV for pγ

T > 250 GeV/c, and found a good agreement with the NNLO calculations [45]. Such
studies of the dependence of the measured isolated photon cross section on the isolation-cone radius
value can further constrain the treatment of the QCD radiation isolation in the models. In particular, the
effect can be more significant at the lower pγ

T reached in the measurement presented in this paper since
the fraction of fragmentation photons is larger. Hence, this measurement tests the model predictions in
an unexplored momentum regime.

Isolated photons can also be used to constrain the (n)PDF in the proton and in the nucleus, in particular
via their measurement at pγ

T < 20 GeV/c, where shadowing effects are more significant [17]. The dom-
inant contribution to the prompt photon production at the LHC is the quark–gluon Compton diagram,
which is directly sensitive to the gluon density. The high

√
s of collisions at the LHC allows access

to very small values of the longitudinal momentum fraction x of the initial-state partons, which are es-
sentially gluons. The gluon PDF has a much larger uncertainty than the quark PDFs [17, 40, 46–48].
Therefore, isolated-photon measurements allow probing the low-x gluon content of one of the incoming
protons or nuclei and thus constrain the PDF and nPDF [49].
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Measurements of isolated photons and direct photons have been performed at SPS [50], Tevatron [51, 52],
and RHIC [36, 53–56], and also at fixed target experiments [57]. The measurements by the ATLAS
and CMS Collaborations at the LHC in pp and Pb–Pb collisions at various energies can be found in
Refs. [37, 38, 45, 58–66]. The ALICE Collaboration has measured the isolated-photon yield in pp
collisions at

√
s = 7 TeV [49] and 13 TeV [67], as well as the direct-photon yield: via the excess of

the inclusive-photon yield versus decay-photon yields in pp collisions at
√

s = 2.76 and 8 TeV [68], and
in Pb–Pb collisions at

√
sNN = 2.76 TeV [69]; and via dielectron measurements in Pb–Pb collisions at√

sNN = 5.02 TeV [70].

This paper presents the isolated-photon cross section in Pb–Pb and pp collisions at
√

sNN = 5.02 TeV
measured by ALICE, using a data sample collected in the years 2015 and 2018 for Pb–Pb collisions,
and a data sample collected in the year 2017 for pp collisions. The results from Pb–Pb collisions are
provided in the centrality classes 0–10%, 10–30%, 30–50%, 50–70%, and 70–90%. These analyses have
been performed with isolated photons measured at midrapidity (|ηγ | < 0.67) with a transverse momen-
tum range 10− 14 < pγ

T < 40− 140 GeV/c (depending on the collision system and centrality class),
which corresponds to (3.8−5.4)×10−3 < xγ

T < (15.4−26.9)×10−3, with xγ

T = 2pγ

T/
√

s ≈ Bjorken-x
at midrapidity. The measurement follows closely the analysis strategy presented in the previous ALICE
measurements in pp collisions at

√
s = 7 TeV [49] and

√
s = 13 TeV [67]. The isolated-photon nu-

clear modification factor is also calculated, together with the ratio of cross sections in pp collisions with
different

√
s. For the first time with ALICE, and for the first time at the LHC for pγ

T < 250 GeV/c, the
ratio of the cross sections obtained with different isolation-cone angular radii values R = 0.4 (used for
the previous measurements) and R = 0.2 is presented. This paper is divided into the following sections:
Section 2 presents the detector setup and the data sample used for the analysis; Section 3 describes the
analysis procedure; the systematic uncertainties are presented in Sect. 4; the final results compared to
model calculations and conclusions are presented in Sect. 5 and 6, respectively.

2 Detector description and data selection

The ALICE experiment and its performance during the LHC Run 2 (2015–2018) are described in Refs. [71,
72]. Photon reconstruction was performed using the Electromagnetic Calorimeter (EMCal) [73] while
charged particles used in the photon isolation were reconstructed with the combination of the Inner Track-
ing System (ITS) [74] and the Time Projection Chamber (TPC) [75], which are the main components the
ALICE central tracking detectors.

The ITS is composed of six cylindrical layers of silicon detectors with full azimuthal acceptance and
surrounds the interaction point. The different layers provide a pseudorapidity coverage of |η |< 2 (inner)
to |η | < 0.9 (outer). The two innermost layers have fine granularity and small radial distances (3.9 and
7.6 cm) from the beam line providing high spatial precision for tracking close to the primary vertex.
The high-precision points and the low material budget of the ITS guarantee excellent resolution on the
charged-particle track parameters in the vicinity of the primary vertex and on the reconstructed position
of the primary vertex of the collision.

The TPC is a large (≈ 90 m3) cylindrical drift detector filled with gas. It covers |η | < 0.9 over the full
azimuth angle, with a maximum of 159 reconstructed space points along the track path. The TPC and
ITS tracking points are matched when possible, forming reconstructed charged particle tracks. Since the
ITS and TPC are placed in a longitudinal magnetic field, track momentum can be calculated from the
measured track curvature radius.

The EMCal is a lead-scintillator sampling electromagnetic calorimeter used to measure photons and elec-
trons via the electromagnetic showers they create in the calorimeter. The scintillation light is collected
by optical fibres coupled to Avalanche Photo Diodes that amplify the signal. The energy resolution is
σE/E = (1.4±0.1)%⊕ (9.5±0.2)%/

√
E ⊕ (2.9±0.9)%/E, with energy E in units of GeV. The EM-
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Cal is installed at a radial distance of 4.28 m from the ALICE interaction point. The basic unit of the
EMCal is called “cell”. There are 17664 cells installed in total. Cells have a transverse size of 6×6 cm2,
which corresponds to ∆ϕ ×∆η ≃ 0.0143× 0.0143 rad2, approximately twice the Molière radius. The
calorimeter consists of twenty supermodules (SM) with different number of cells: twelve of them at
80◦ < ϕ < 187◦, tagged as EMCal SMs; and the other eight SMs at 260◦ < ϕ < 327◦, tagged as DCal
SMs. The pseudorapidity coverage is |η |< 0.7, although DCal does not cover |η |< 0.22 for most of its
ϕ coverage. Details on the SM configuration can be found in Ref. [67, 73].

The V0 detector consists of two arrays of 32 plastic scintillators located at 2.8 < η < 5.1 (V0A) and
−3.7 < η < −1.7 (V0C) [76]. Each of the V0 arrays consists of 32 channels and is segmented in four
rings in the radial direction, and each ring is divided into eight sectors in the azimuthal direction. The
V0 detector signals, which are proportional to the charged-particle multiplicities, are used to divide the
Pb–Pb event sample into centrality classes. A Glauber Monte Carlo model is fitted to the V0 amplitude
distribution to compute the fraction of the hadronic cross section corresponding to any given range of V0
amplitudes.

The data were taken with a minimum bias interaction trigger and EMCal Level-1 photon-dedicated trig-
gers (L1-γ). The MB trigger is defined as a coincidence between the V0A and the V0C trigger signals. In
the 2015 Pb–Pb sample, the MB triggered data were taken so that the centrality distribution was uniform,
but for the 2018 data sample, the 0–10% and 30–50% centrality classes were enhanced with dedicated
V0 triggers. Events above 90% centrality are excluded, since there are substantial contributions from
electromagnetic processes, and their low multiplicity results in an inefficient trigger. The L1-γ triggers
are based on energy depositions in 4×4 calorimeter cells larger than 4 GeV in pp collisions in the year
2017, and larger than 10 GeV in Pb–Pb for the year 2015. For the 2018 Pb–Pb collisions, the thresh-
old has been set at 10 GeV for the 50% more central collisions (L1-γ-high), and at 5 GeV otherwise
(L1-γ-low). A detailed description of the L1-γ triggers can be found in Refs. [73, 77].

An offline event selection based on the V0 timing information is applied to remove beam-induced back-
ground events. In addition, in Pb–Pb collisions further beam-background reduction is obtained using
the information from two zero-degree calorimeters (ZDCs) positioned at 112.5 m on either side of the
nominal interaction point. In particular, a selection is applied on the correlation between the sum and the
difference of times measured in each of the ZDCs [72]. Furthermore, in pp collisions only events with
one reconstructed primary vertex are accepted in the analysis to exclude pileup events within the same
bunch crossing. Out-of-bunch pileup is removed with cuts on the V0 timing [72]. In Pb–Pb collisions,
the same event pileup is negligible and such rejection is not applied. Finally, only events with a primary
vertex along the beam direction within ±10 cm from the centre of the apparatus are considered in this
analysis, to grant a uniform pseudorapidity acceptance.

The measurements in Pb–Pb collisions presented here are performed in five centrality classes: 0–10%,
10–30%, 30–50%, 50–70%, and 70–90%. The corresponding ⟨Ncoll⟩ values are: 1572 ± 17, 783 ± 7,
265 ± 3, 65.9 ± 1.2, and 10.9 ± 0.2, respectively, obtained from [10]. The integrated luminosity per
each centrality class, collision system, and trigger combination are discussed in Sect. 3.6.

Note that the TPC was not included in the data sample of pp collisions at
√

s = 5.02 TeV triggered
by the EMCal taken in the year 2017. A lightweight readout approach with only the EMCal and ITS
detectors was used, which allowed an enhanced sampled luminosity by reading out at a higher rate. This
data sample has been used in previous isolated-photon measurements [78].
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3 Isolated-photon reconstruction and corrections

The analysis procedure followed to measure isolated photons consists of the following steps: (a) re-
construction of clusters of cells in the calorimeter and of tracks with the ITS and the TPC; (b) photon
identification via charged particle vetoing (CPV) using track–cluster matching and via the cell energy
spread (shower shape); and (c) selection of isolated-photon candidates. A more detailed description and
discussion of the steps presented here can be found in Refs. [49, 67, 73, 79].

In order to obtain correction factors to the raw isolated photon spectra, the detector response is modelled
by Monte Carlo (MC) simulations reproducing the detector conditions of the data-taking periods. The
corrections discussed in the next subsections are obtained using PYTHIA 8 (version 8.210 [80] using
the Monash 2013 tune [81]) as a particle generator, creating pp collisions in intervals of transverse
momentum of the hard scattering with two jets (jet–jet, background events) or with a prompt photon and
a jet (γ–jet, mainly Compton and annihilation processes, signal events) in the final state. The transport
of the generated particles in the detector material is done using GEANT3 [82]. For the γ–jet event
generation, the event is accepted when the prompt photon enters the EMCal acceptance. For the jet–jet
event generation, the event is accepted when at least one jet produces a high-pT photon, requested to
originate from a hadron decay, in the EMCal acceptance. This enables to enhance the number of such
photons, which are the main background in this analysis. Two samples with different trigger thresholds
(pγ

T > 3.5 or 7 GeV/c) have been used in the jet–jet event generation.

For the calculation of the correction factors for Pb–Pb collisions, each simulated pp collision is embedded
into a real Pb–Pb minimum bias triggered event selected within the different centrality classes considered
in this analysis, so that the effect of the underlying event (UE) low-energy particles is properly taken into
account. For the calorimeter, the embedding is performed at the cell level by summing the cell energy of
the data and the simulation. For the charged particles measured with the tracking systems, the embedding
is done at the track level, adding to the list of available tracks from the simulation those coming from the
data.

In the analysis procedure, the outputs of the γ–jet and jet–jet simulations are combined to calculate the
prompt-photon purity (see Sect. 3.4). To take into account the suppression of high-pT hadron production
due to jet quenching in heavy-ion collisions, the contribution of the particles of hadronic origin in the jet–
jet simulation is scaled by the nuclear modification factor of charged particles, obtained by combining
the ALICE [22] and CMS [23] results, so as to cover the full pT range of this measurement.

3.1 Cluster reconstruction and selection

Particles deposit their energy in several calorimeter cells, forming a cluster. The different cluster recon-
struction algorithms used in the EMCal are described in detail in Ref. [73] together with the calibration
procedure and corrections. Clusters are obtained by grouping all cells with common sides whose energy
is above an aggregation threshold, starting from a seed cell. Clusterisation thresholds are given in Ta-
ble 1. Because of the large particle multiplicity of the UE, contributions from several particles are likely
to be merged into the same cluster in central heavy-ion collisions. To avoid this, an additional condition
is applied with respect to previous ALICE measurements of isolated photons to restrict the growth of the
cluster: cells are added to the cluster only if the energy of the cell to be added is lower than the already
added neighbouring cell in the direction of the seed cell. Although this condition was targeted to Pb–Pb
collisions, it has also been applied to the pp measurements presented here for consistency.

The cluster quality selection criteria applied in this measurement are listed in Table 1. A more detailed
description can be found in Ref. [79]. As the charged particle veto needs TPC tracks, this selection
criterion was only applied in Pb–Pb collisions. In addition, the two calorimeter sections located at the
highest ϕ are excluded and lead to the calorimeter acceptances also listed in Table 1. Clusters that pass
these selection criteria are called “inclusive clusters”.
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Table 1: Cluster reconstruction and selection criteria. Description and discussion can be found in Ref. [79].

Cluster seed threshold Eseed > 500 MeV
Cluster aggregation threshold Eagg > 100 MeV

Number of cells Ncell > 1
N cells from highest E cell to SM border Nborder > 1

Cluster time - bunch crossing time |∆tcluster|< 20 ns
Abnormal signal removal F+ = 1− ∑cell Eadjacent to highest E

Ehighest E cell
< 0.95

Charged particle veto (Pb–Pb only):
when Ecluster/ptrack < 1/7

track–cluster η residual ∆η residual > 0.010+(ptrack
T +4.07)−2.5 rad

track–cluster ϕ residual ∆ϕ residual > 0.015+(ptrack
T +3.65)−2 rad

Acceptance:
EMCal 81.2◦ < ϕ < 185.8◦ |η |< 0.67
DCal 261.2◦ < ϕ < 318.8◦ 0.25 < |η |< 0.67

3.2 Photon identification via cluster shower shape measurement

Inclusive clusters can have a wider elongated shape if one or several additional particles deposit their en-
ergy nearby in the detector. The most frequent case in pp collisions is a two-particle merged cluster when
the distance between them is larger than two cells and their electromagnetic showers overlap partially.

In particular, the neutral-meson decays to two photons generate elongated clusters when the opening an-
gle between the decay photons is larger than the angular size of an EMCal cell (otherwise, both showers
completely overlap), but smaller than the electromagnetic shower size. This translates into the approxi-
mate ranges 8 < pT < 20 GeV/c and 40 < pT < 60 GeV/c for π0 and η mesons, respectively [73].

Merged and single photon clusters can be discriminated by the variable σ2
long, called “shower shape”,

which is the square of the larger eigenvalue of the cluster cell spatial distribution weighted by the cell
energy in the η −ϕ plane [73], and can be calculated as

σ
2
long = (σ2

ϕϕ +σ
2
ηη)/2+

√
(σ2

ϕϕ −σ2
ηη)

2/4+σ4
ηϕ , (2)

where σ2
xz =

〈
xz
〉
−
〈
x
〉〈

z
〉

and
〈
x
〉
= (1/wtot)∑wixi (xi are in cell units, and therefore σ2

xz are dimen-
sionless) are weighted over all cells associated with the cluster in the ϕ or η direction. The weights
wi depend logarithmically on the ratio of the energy Ei of the i-th cell to the cluster energy Ecluster as
wi = max(0,4.5+ ln(Ei/Ecluster)), and wtot = ∑wi [83].

In the previous isolated-photon measurements in pp and p–Pb collisions made by ALICE [49, 67, 78],
the limitation on the aggregation of the cells to the cluster (Sect. 3.1) was not applied, which allowed
the use of the shower-shape parameter to reject efficiently the clusters from π0 and η mesons decaying
into two photons for meson energies up to 20 and 60 GeV, respectively. The cell aggregation restriction
applied in the measurements presented in this article significantly decreases this rejection power, since
the two showers from meson decays are reconstructed as two different clusters. To increase the rejection
of the decay photons contribution to a similar level as in previous measurements while leaving untouched
the other cluster reconstruction performances in Pb–Pb collisions, the selection of cells used for the σ2

long
calculation is enlarged with respect to the set of cells used to calculate the cluster energy and position
– these latter parameters would otherwise be affected by the underlying event. The cells used for the
shower shape calculation are those with an energy deposit above the aggregation threshold, which share
a common side, and are located in a window of 5× 5 cells centred at the highest energy cell of the
cluster [79]. The shower shape obtained this way is denoted σ2

long, 5×5.
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The inclusive-cluster σ2
long, 5×5 distributions as a function of pT are shown in Fig. 1 for data in pp and

Pb–Pb collisions in the 0–10% and 30–50% centrality classes (other centrality classes can be found in
Ref. [79]). Most of the single photons are reconstructed as clusters with σ2

long, 5×5 ≈ 0.25. The presence
of the collision underlying event has a tendency to enlarge the σ2

long, 5×5 value at low pT. At higher
σ2

long, 5×5, a clear pT-dependent band is observed between 8 and 20 GeV/c: This band is populated by
two π0-decay photons contributing to a single cluster. Due to the kinematic boost and resulting opening
angle decrease, the value of σ2

long, 5×5 for this type of cluster decreases with increasing energy, which
leads to a progressive overlap with the single photon band for 20 < pT < 40 GeV/c. Another fainter
band, due to the merged η meson decays, appears above 40 GeV/c.
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Figure 1: (colour online) Inclusive-cluster σ2
long, 5×5 distribution as a function of pT in data for pp (bottom left

frame) and Pb–Pb collisions for two different centrality classes 0–10% central (top left frame) and 30–50% semi-
central (top right frame). The dotted line corresponds to the tight value of the upper selection limit for single
photon candidate clusters (narrow clusters) and the dashed line corresponds to a looser photon upper selection
used in Pb–Pb collisions below 18 GeV/c. The dotted-dashed line corresponds to the narrow cluster’s lower limit.

In this analysis, “photon candidates” refer to clusters with a narrow shape, i.e. a small value of σ2
long, 5×5.

In pp collisions, they can be distinguished from the merged meson decays by applying an upper limit
σ2

long, 5×5 < 0.3. In Pb–Pb collisions, this limit is also used, but only for pT > 18 GeV/c: below, a looser
pT dependent upper limit σ2

max(pT) = 0.6− 0.016× pT is applied, so that single photon clusters with
a significant UE contribution can still be selected, without increasing the number of accepted merged
decay-photon clusters. A lower limit at σ2

long, 5×5 = 0.1 is used in addition to cleaning the cluster
sample from anomalous high-energy depositions [73, 79].
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Figure 2 shows a projection of the inclusive-cluster σ2
long, 5×5 distribution shown for data in Fig. 1, and

from simulation (γ–jet plus jet–jet PYTHIA 8) for a low- and a high-pT interval and for central Pb–Pb
collisions and pp collisions: a reasonable description is achieved in simulation after including a mod-
elling, at the cell energy level, of the electronics cross talk. The model consists of the addition of a small
fraction of energy (at the per cent level) from a given cell into the surrounding cells, depending on the
reference cell energy and location in the calorimeter. This modelling is the same one used in previous
ALICE measurements [49, 67, 84], but an updated parameterisation of the model has been used for this
analysis to better describe the calorimeter performance in Pb–Pb collisions [79]. This same parameteri-
sation is used in the pp collisions measurement for consistency, improving the performance as well. The
results do not change significantly compared to the previous parameterisation for pp collisions.
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Figure 2: (colour online) Inclusive-cluster σ2
long, 5×5 distribution in data (black bullets) and PYTHIA 8 simulation

(jet–jet+γ–jet processes, blue squares). The four panels display these distributions for two selected cluster pT

ranges, 12 < pT < 14 GeV/c on the left and 40 < pT < 60 GeV/c on the right, and two collision systems: pp
(top) and Pb–Pb 0–10% central (bottom). The simulation is decomposed in its different particle origins: prompt γ

(γprompt, green line), not merged decay γ (γdecay, blue area), merged decay photon clusters (γγ) from π0 (red area)
or η (brown area). The threshold value σ2

long, 5×5 = 0.3 or 0.392 (corresponding to σ2
max(13 GeV/c)) is shown on

all plots as a dotted or dashed vertical line, respectively.

Figure 2 also shows the contributions from the simulations for different particles creating the clusters.
At low pT, the dominant contributions to the narrow shower shape region are from single π0-decay
photons, while the merged photon clusters from π0-decay photons contribute more at high pT. Prompt-
photon show a peaked distribution at 0.25, which has in central Pb–Pb collisions a significant tail at high
σ2

long, 5×5 due to the UE contribution. Decay-photon clusters without contribution from a second decay
photon in the cluster show a similar distribution to prompt photons, but the tail is more significant due
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to nearby particles originating from the same jet and overlapping with the cluster. Merged clusters from
π0 (resp. η) meson decays have two maxima in the σ2

long, 5×5 distribution for 12 < pT < 14 GeV/c (resp.
40 < pT < 60 GeV/c): the maximum in the range σ2

long, 5×5 = 0.6− 0.9 is due to the merging of rather
symmetric energy photon decays; the maximum at σ2

long, 5×5 = 0.25 is due to clusters for which most of
the energy comes from one of the decay photons, while the contribution of the second one does not affect
the shower shape parameter. For pT > 20 GeV/c, the merged clusters from π0 meson decays have only
one maximum at σ2

long, 5×5 = 0.25 with a significant tail at high σ2
long, 5×5.

3.3 Isolated-photon selection

Direct prompt photons are mostly isolated, i.e. have no hadronic activity in their vicinity except for the
underlying event of the collision, in contrast to other photon sources like photons from parton fragmenta-
tion or from decays of hadrons, which have a high probability to be accompanied by other fragments [40].
An isolation criterion is applied to the photon candidate to suppress the contribution by fragmentation
and decay photon production. An equivalent isolation criterion is commonly included in theoretical cal-
culations to account for the suppression of the fragmentation contribution to the total prompt photon
cross section [40, 44]. The isolation criterion is based on the so-called “isolation momentum” piso

T , i.e.
the transverse momentum sum of all particles measured inside a cone of radius R around the photon
candidate, located at coordinates ηγ and ϕγ in the angular space. A particle of coordinates η and ϕ is
inside the cone when √

(η −ηγ)2 +(ϕ −ϕγ)2 < R. (3)

The cone radius value R = 0.4 is commonly used for pp and p–Pb collisions as it contains the dominant
fraction of the jet energy [85]. However, in Pb–Pb collisions the number of UE particles entering the
cone is considerable, so a smaller cone radius can be considered to give better control over the UE
contribution. In this article, both R = 0.4 and 0.2 are used.

Accepted tracks in the cone are required to satisfy |η track| < 0.9 and ptrack
T > 0.15 GeV/c, the track

definition is given in Refs. [67, 79]. Note that in the pp collision data sample triggered by the EMCal,
the TPC was not included in the readout, and therefore ITS-only tracks are used for the isolation, like
in Ref. [78]. The same η acceptance as in Pb–Pb collisions is used, along with a transverse momentum
selection 0.15 < pITS track

T < 15 GeV/c to reduce the fake-track rate at high pT. The isolation momentum
is calculated as the sum of the transverse momenta of all the charged tracks (ch) that fall into the cone,
from which an estimate of the transverse momentum due to the UE inside the cone is subtracted

piso, ch
T = ∑ ptrack

T −π ×R2 ×ρUE, (4)

where ρUE is the estimation of the UE track pT density. The density ρUE is estimated event by event
by summing the track pT in a rectangular area called “η-band” centred around the azimuth ϕγ of the
candidate cluster. The width ∆ϕ of the rectangular area along the azimuth depends on the analysis
parameters, while the width ∆η along the pseudorapidity covers the full track acceptance: |η | < 0.9.
The area covered by this band is shown schematically in Fig. 3. This band is chosen because this area
should be affected by the same elliptic flow [86] as the isolation cone area in Pb–Pb collisions since the ϕ

region is the same in the isolation cone and the band. Other bands, depicted schematically also in Fig. 3,
which cover other ϕ values, have been tested and used in the estimation of the systematic uncertainty
(see Sect. 4), with similar final results [79].

The isolation cone is excluded from this η-band, but when the photon cluster is the result of jet frag-
mentation, jet hadronic remnants can still be found outside the selected isolation-cone radius R. They
can thus contribute to the track-pT measured in the band used for the UE estimation, biasing it to a
higher value. To get rid of this possible bias, an additional parameter is introduced: a gap ∆RUE gap such
that the region excluded from the band is a cone of radius R+∆RUE gap as shown in Fig. 3. The width
of the η-band along the azimuth is chosen to be ∆ϕ = 2× (R+∆RUE gap), and the UE density is then
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ρUE = (Σptrack in η band)/(∆ϕ ×∆η −π(R+∆RUE gap)
2). In this measurement, ∆RUE gap = 0.1 is used

as default, but the values ∆RUE gap = 0, as well as 0.3 for R = 0.2, are also considered for a systematic
uncertainty evaluation. The default gap value for R = 0.2 is chosen the same as for R = 0.4 so that the
inspected area for the ρUE estimation is larger than for the R = 0.4 case: it reduces the UE fluctuations
while still excluding the jet core.

φγφγ − π/2

TPC

EMCal

-bandη

𝜑-band

⟂-cone ⟂-cone

Candidate 
cluster

⟂-band ⟂-band

φγ + π/2

ηγ R
R

ΔRUE gap

R

ΔRUE gap

ΔRUE gap

Figure 3: (colour online) Schematic view of the UE estimation areas considered in the analysis and for the esti-
mation of the associated systematic uncertainty. The radius gap ∆RUE gap (see text) is also illustrated.

As expected, the UE track density, shown in Fig. 4 for events with high-pT inclusive clusters at the centre
of the isolation cone, strongly depends on the centrality. For a given centrality percentile, its distribution
has a large width due to the UE event-by-event fluctuations. The density is beyond 100 GeV/(c rad2) in
central (0–10%) Pb–Pb collisions, still reaches several tens of GeV/(c rad2) in semi-central (30–50%)
collisions, but its value is only a few GeV/(c rad2) for the most peripheral Pb–Pb collisions, and less than
1 GeV/(c rad2) in pp collisions.

When the cluster candidate for isolation has a pseudorapidity 0.5 < |η | < 0.67, a small fraction of the
isolation cone of radius R = 0.4 is out of the tracking acceptance |η track|< 0.9. To maximise the photon
acceptance, such candidate clusters are kept in the analysis, but the measured isolation momentum is
scaled up to account for the cone area that is out of the tracking acceptance [67, 78].

Figure 5 shows the piso, ch
T distribution for both R values, for clusters with a shower shape between

0.1 < σ2
long, 5×5 < 0.3 and pT > 16 GeV/c, in data as well as in PYTHIA 8 simulations of prompt photons

(γ–jet process), either native pp collisions, or embedded into real Pb–Pb collision data in two extreme
centrality classes (other centrality classes are reported in Ref. [79]). Even though the UE energy to
be subtracted is large, the distributions are centred around zero, even for the most central events. In
the prompt-photon simulation, the distribution is symmetric since there is no jet contribution. On the
contrary, the data contain a jet contribution when the cluster does not originate from a prompt photon.
This contribution induces a widening of the distribution tail at positive values of piso, ch

T . The width of
the distribution is larger for R = 0.4 than for R = 0.2, due to the larger UE fluctuations in the isolation
cone. For the same reason, the width decreases when moving to more peripheral collisions.
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data calculated in the η-band with ∆RUE gap = 0.1 out of an isolation cone centred at inclusive clusters with
pT > 10 GeV/c. Left: for Pb–Pb collisions and the cone radius R = 0.2 as a function of centrality. Right: for pp
and Pb–Pb collisions for different centrality classes for the cone radius R = 0.4.

The candidate photon is declared isolated if piso, ch
T < 1.5 GeV/c, following previous ALICE measure-

ments [67, 78]. For the most central Pb–Pb collisions, the chosen threshold value for the isolation
momentum is smaller than the width of the piso, ch

T distribution, which has an r.m.s. of about 5 (12) GeV/c
for R = 0.2 (0.4) in the 0–10% centrality class [79]. This may suggest increasing the threshold value
for central collisions in order to preserve more signal. However, the use of the same value for all the
considered centrality classes is preferred to ease the comparison with other collision systems, collision
energies, or models.

3.4 Purity of the isolated-photon candidate sample

The isolated-photon candidate sample still contains a sizeable contribution from background clusters,
mainly from neutral-meson decay photons. To estimate the background contamination, the same proce-
dure as in Refs. [49, 67, 79] is followed, also known as the ABCD method.

Different classes of measured clusters are used: (1) classes based on the shower shape σ2
long, 5×5, i.e.

narrow (photon-like) or wide (most often elongated, i.e. non-circular), and (2) classes defined by the
isolation momentum piso, ch

T , i.e. isolated (iso) and anti-isolated (iso). The different classes are denoted
by sub- and superscripts, e.g. narrow isolated clusters are denoted X iso

n , and wide anti-isolated clusters
as X iso

w . The yield of isolated-photon candidates in this nomenclature is Niso
n . It consists of signal (S)

and background (B) contributions: Niso
n = Siso

n +Biso
n . The contamination of the candidate sample is then

C = Biso
n /Niso

n , and the purity P is P ≡ 1−C.

The σ2
long, 5×5-parameter values for narrow and wide clusters correspond to the signal and background

clusters introduced in Sect. 3.2: the wide clusters (mostly background) correspond to clusters with
0.4< σ2

long, 5×5 < 2 in pp collisions, and in Pb–Pb collisions when pT > 18 GeV/c. When pT < 18 GeV/c
in Pb–Pb collisions, clusters are considered wide when 0.1+σ2

max(pT) < σ2
long, 5×5 < 2. The narrow

clusters (containing most of the signal) are defined in Sect. 3.2. The anti-isolation criterion is set to
4 < piso, ch

T < 25 GeV/c for all collision systems: the lower limit is placed far from the signal isolation
momentum threshold at piso, ch

T < 1.5 GeV/c, to have a gap available for systematic studies.
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Figure 5: (colour online) piso, ch
T distribution for narrow clusters with 0.1 < σ2

long, 5×5 < 0.3 for pT > 16 GeV/c,
in pp (bottom left frame) and Pb–Pb collisions in two centrality classes, 0–10% central (top left frame) and 70–90%
peripheral (top right frame), with R = 0.2 (black bullets) and R = 0.4 (blue squares), in data (full markers) and
simulated PYTHIA 8 γ–jet (open markers), embedded into data in the considered centrality class for the Pb–Pb
collision case.

Considering the partial assumption that the ratios of isolated over anti-isolated background are the same
in the narrow cluster range and in the wide cluster range and that the signal contribution to the background
classes is negligible, the purity is calculated in a semi-data-driven way as

P = 1−
(

Niso
n /Niso

n

Niso
w /Niso

w

)
data

×
(

Biso
n /Niso

n

Niso
w /Niso

w

)
MC

. (5)

The MC factor corrects the correlation between isolation momentum and shower shape. It is calculated
via the addition of jet–jet (background) and γ–jet (signal) counts scaled to their respective cross sections.
This difference between the degree of the correlation between isolation momentum and shower shape
distribution in data and simulation is a potential source of bias and is discussed in Ref. [79]. A similar
approach as in previous ALICE isolated-photon measurements is followed to estimate this difference [49,
67].

Figure 6 shows the purity calculated using Eq. (5). The boxes indicate the systematic uncertainty, whose
estimation is explained in Sect. 4. The purity found at low pγ

T is small, due to a large contamination from
π0: at pγ

T = 10− 12 GeV/c the contamination reaches 70–80% for Pb–Pb collisions and approximately
90% for pp collisions. For higher pγ

T, the contamination decreases and stabilises around pγ

T ≃ 18 GeV/c
at 40–50% in Pb–Pb collisions and 60% in pp collisions. It then decreases again above 40 GeV/c, reach-
ing about 20% above 80 GeV/c for central Pb–Pb collisions. The purity for pp collisions calculated for
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R = 0.4 is consistent with the previous ALICE isolated photon–hadron correlation measurements [78]
since the differences in the analysis procedure, such as shower shape and cluster definition, larger accep-
tance, and different energy density calculation methods, do not lead to changes within the uncertainties.
In Pb–Pb collisions, the purity decreases when moving from central to peripheral collisions, due to the
fact that the pT of the main contamination background – photons from neutral-meson decays – is shifted
due to the jet quenching in the more central collisions. Still, the purity for most peripheral (70–90%) col-
lisions remains larger than that measured in pp collisions (about 50% in the range 20 < pγ

T < 40 GeV/c
instead of 40%), in part because of the lack of TPC information in pp collisions that impedes doing
cluster–track association.

In 0–10% Pb–Pb collisions, the purity is larger by a factor of 1.1 for R = 0.2 with respect to R = 0.4. The
values get closer for less central collisions, and become almost identical for peripheral Pb–Pb collisions.
In pp collisions, the situation is reversed: the purity is larger for R = 0.4 than for R = 0.2 by a factor of
about 1.2. This ordering in pp collisions is due to the fact that the larger the cone radius, the more jet
fragments can enter when one triggers on decay photons, and thus the larger is piso, ch

T as seen in Fig. 5.
The change in ordering in the more central Pb–Pb collisions is due to the larger UE fluctuations in piso, ch

T
for R = 0.4, also seen in Fig. 5, that allow more background clusters produced by jet particles to be
considered isolated.
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Figure 6: (colour online) Purity of the isolated-photon sample as a function of pγ

T calculated using Eq. (5) and
with the statistical and systematic uncertainty discussed in Sect. 4 for R = 0.2 and 0.4. The curves (plain for
low pγ

T, dashed for high pγ

T) are the two sigmoid functions as defined in Eq. (6), obtained by fitting the points as
explained in the text.

The pγ

T dependence of the purity is caused by an interplay of physics and detector effects. Most of the
contamination is due to π0-decay photons. On the one hand, the pT spectra of prompt photons are harder
than those of neutral pions, mainly because the latter undergo fragmentation, as is also found in pQCD
calculations [47, 84]. For this reason, the Nγ2→2/Nγ(π0) yield ratio rises with pγ

T, and therefore, the pho-
ton purity increases with pγ

T. Also, the probability of tagging a photon as isolated varies with pγ

T. At
higher decay-photon pγ

T, isolation is less probable for a fixed isolation momentum. On the other hand,
the rejection of clusters from π0 and η decays at high pT becomes less effective due to the decreas-
ing decay-photon opening angle when increasing the meson pT. Below 18 GeV/c, the contamination is
dominated by single (i.e. unmerged) decay photons from π0 mesons, as shown by Fig. 2-left, the remain-
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ing contributors being mainly photons from η meson decays. Above 18 GeV/c, a large fraction of the
π0 → γγ decays produces two photons with narrow opening angle and gives rise to merged clusters in
the EMCal with a narrow shower shape that satisfies the condition for the single photon signal, as can be
appreciated in Fig. 1 and Fig. 2-right. The clusters produced by merged photons from η-meson decays
contribute to the narrow shower shape region for pT > 60 GeV/c but they remain subdominant compared
to merged π0-decay clusters. Instead, in the range 40 < pT < 60 GeV/c, most of the merged η-decay
clusters have wide shower shapes, which is in part the reason for the increase of purity in this pγ

T region
since the contribution of single photon clusters from η decays to the narrow clusters decreases. The
combined effect of these mechanisms leads to the rise of the purity at low pγ

T, followed by a plateau for
18 < pγ

T < 40 GeV/c, then by a rise above pγ

T = 40 GeV/c. Above 80 GeV/c, another plateau is expected,
as observed in the ALICE measurement in pp collisions at

√
s = 13 TeV [67].

To reduce the point-to-point statistical fluctuations in the purity used to correct the isolated-photon raw
yield, the distribution is fitted by one or two sigmoid functions to reproduce the trend of the purity with
pγ

T

fi, fit−sigm(pγ

T) =
ai

1+ exp(−bi × (pγ

T − ci))
, (6)

where i indicates the different fitting ranges, which depend on the collision system. The first fit is
done from pγ

T = 10–14 to 40–60 GeV/c. In most of the Pb–Pb centrality classes between 0 and 50%,
enough points are available beyond 60 GeV/c to reliably describe the tendency by a second fit function
from pγ

T = 20 GeV/c to pγ

T = 80− 140 GeV/c. Although these fits start at 20 GeV/c, they are used
for the purity correction only above 60 GeV/c. In pp collisions, the purity calculation is done up to
pγ

T = 40 GeV/c, but the result of the fit is extrapolated to pγ

T = 80 GeV/c since the last two pγ

T interval
uncertainties are too large to obtain a reliable high-pγ

T fit. In this range, a slow rise with pγ

T is observed
in simulation as well as in pp collisions at

√
s = 13 TeV, but the estimated size of the rise is covered

by the assigned uncertainties. The fit results are shown in Fig. 6 and the fit parameters are provided in
Ref. [79]. The systematic uncertainties on the purity are used during the fitting as discussed in Sect. 4.

3.5 Isolated-photon efficiency

The photon reconstruction, identification and isolation efficiencies have been computed using PYTHIA 8
simulations of γ–jet processes in which, for each event, a prompt photon from a 2 → 2 Compton or
annihilation process is emitted in the EMCal acceptance. Only those falling in the fiducial acceptance
defined in Table 1 are considered in the efficiency calculation.

Different efficiencies can be considered depending on the selection criteria: reconstruction ε rec (in-
clusive cluster selection), photon identification ε id (shower shape selection), and isolation ε iso. They
are calculated as the ratio of pγ

T spectra, where the denominator is the number of generated photons
dNgen

γ /dpgen
T , and the factors in the numerator are the reconstructed spectra after different selection cri-

teria, dNrec
cut/dprec

T . Figure 7 presents the different contributions as a function of pγ

T for pp collisions and
Pb–Pb collisions in the centrality classes 0–10% and 70–90%:

(i) The reconstruction efficiency of photons is ε rec ≈ 70− 80%; the efficiency loss is mainly due to
excluded regions in the calorimeter and exclusion of clusters close to the border of the EMCal
supermodules. This efficiency is higher for more central collisions due to the shift of the spectrum
to higher pγ

T induced by the additional UE energy.

(ii) The photon identification by shower shape selection induces a strong decrease of the efficiency
ε rec×ε id in 0–10% central collisions, by about 40% below pγ

T = 40 GeV/c, because the UE enlarges
the photon cluster shape. In peripheral Pb–Pb and in pp collisions, the efficiency is only reduced
by 10–20%.
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(iii) Applying the isolation criterion on top of the previous selections further decreases the overall effi-
ciency, as the isolation cone radius is large. The efficiency is then ε rec × ε id × ε iso ≈ 20−40% for
the most central Pb–Pb collisions, and 50–60% in the most peripheral Pb–Pb and in pp collisions.

In addition, the fraction κ iso of generated photons which are isolated has to be considered. It varies from
low to high pγ

T at 95.5–93.5% for R = 0.4, and 99–98.5% for R = 0.2, identically for all the collision
systems considered.
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Figure 7: (colour online) Contributions from reconstruction, identification, and isolation to the total efficiency
calculated using Eq. (7), as a function of the reconstructed photon pγ

T for pp (bottom left frame) collisions and
Pb–Pb collisions for two centrality classes: 0–10% (upper left frame) and 70–90% (upper right frame). Green
markers: reconstruction efficiency ε rec. Red or brown markers: efficiency additionally due to the photon identi-
fication by shower shape selection ε rec × ε id or the isolation criterion ε rec × ε iso. Blue markers: efficiency due to
the isolation criterion and shower shape selection ε rec × ε id × ε iso. Black markers: fraction κ iso of generated pho-
tons which are isolated. The efficiency is obtained from PYTHIA 8 simulations of pp collisions γ–jet processes,
embedded into data in the considered centrality class for the Pb–Pb collision case.

The total efficiency corresponds to the ratio of the reconstruction, identification, and isolation efficiency
to the isolated generated photon fraction and is calculated as follows

ε
iso
γ =

dNrec
n, iso

dprec
T

/
dNgen

γ, iso

dpgen
T

≡ ε rec × ε id × ε iso

κ iso , (7)

where Nrec
n, iso is the number of clusters which are reconstructed and identified as isolated photons and

which are produced by a prompt photon, and Ngen
γ, iso is the number of generated prompt photons which
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pass the isolation selection criteria in the same way as at the detector level. Figure 8 shows the ε iso
γ with

the corresponding systematic uncertainties discussed in Sect. 4. The kink observed at pγ

T = 20 GeV/c
is due to the kink which separates the two shower shape selection criteria used (Fig. 1). In all Pb–Pb
collision centralities, the efficiency for R= 0.4 is lower by a factor of about 0.85–0.9 than that for R= 0.2.
This is a consequence of using the same piso, ch

T isolation threshold value for both cone radii, which makes
isolation less efficient when larger cones are used. In pp collisions, the efficiency for R = 0.2 is much
closer to the one for R = 0.4 due to the small contribution from the UE in such collisions.
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Figure 8: (colour online) Total isolated-photon efficiency as a function of pγ

T calculated using Eq. (7) with
the systematic uncertainty discussed in Sect. 4 for R = 0.2 and 0.4, for pp collisions and Pb–Pb collisions for
five centrality classes. The efficiency is obtained from PYTHIA 8 simulations of pp collisions γ–jet processes,
embedded into data in the considered centrality class for the Pb–Pb collision case.

3.6 Trigger efficiency, rejection factor and luminosity

The isolated-photon yield correction needs to take into account the performance of the calorimeter trig-
ger, in particular when calculating the event normalisation and luminosity. The EMCal L1-γ-low and
-high trigger efficiency εtrig is the probability that the trigger selects events in which a high-energy clus-
ter is reconstructed in the EMCal acceptance above a given trigger energy threshold. The threshold values
are listed in Sect. 2. This trigger efficiency does not reach 100% above the trigger threshold because of
the reduced geometric coverage of the trigger compared to the EMCal acceptance: some trigger cell tiles
(2× 2 cells) and even full TRU cards (Trigger Region Unit, 24× 16 cells along ϕ ×η) were inactive
or masked during the data taking. Furthermore, a pT dependence of the trigger is observed since higher
energy clusters cover more cells (owing to nearby jet particles in the event and meson decay merging).
These are less affected by small masked regions.

The trigger efficiency is calculated from simulation, combining the jet–jet and γ–jet PYTHIA 8 simula-
tions, by applying the same trigger logic as in the data, and it is shown in Fig. 9-left. In pp collisions, the
trigger efficiency for inclusive clusters εclus

trig varies from nearly 90% at pT = 7 GeV/c to close to 97% at
80 GeV/c. In Pb–Pb collisions, a dependence on the trigger threshold is observed, but not on the central-
ity. For the lower threshold (5 GeV), below pT = 12 GeV/c, the efficiency is indeed found to be close to
the efficiency in pp collisions, which had a similar trigger threshold. For the higher threshold in Pb–Pb
collisions (10 GeV), the efficiency for inclusive clusters rises from about 85% at pT = 12 GeV/c to about
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93% at pT = 140 GeV/c. The trigger efficiency for isolated and narrow clusters ε iso
trig is lower than εclus

trig
by 1–3% for all trigger thresholds, since narrow clusters are less likely to trigger near masked regions
due to their smaller size. For peripheral collisions, both L1-γ-low and -high triggers are combined for
pT > 12 GeV/c. Figure 9-left also shows the trigger efficiencies for the combined sample: the points are
overall 2% higher than for the high threshold alone.

The EMCal trigger rejection factor RF trig
εtrig quantifies the enhancement fraction of calorimeter triggers

with respect to MB triggers. It is calculated via the ratio of the inclusive-cluster pT spectra corrected by
the inclusive-cluster trigger efficiency

RF trig
εtrig =

1
εclus

trig

1/NL1-γ
evt ×dNL1-γ/dpT

1/NMB
evt ×dNMB/dpT

, (8)

where Ntrig
evt is the number of events and Ntrig is the number of inclusive clusters, each for a given trigger.

Figure 9-right shows the trigger rejection factors calculated with Eq. (8) for the different trigger con-
figurations in the analysed samples, and Table 2 lists the results of the fit in the plateau region, with an
uncertainty explained in the next Section. Note that for the calculation in pp collisions, the MB sample
contained 8.41× 108 events and it was collected not at the same time but some days before since it in-
cluded the TPC. Although this sample is used for calculating the rejection factor, it is not included in the
isolated photon analysis since these events are negligible compared to the EMCal L1-γ triggered sample.

The rejection factor depends on the trigger threshold and on the centrality: it is more likely to find a
high-energy and large-size cluster in central compared to peripheral Pb–Pb collisions due to the larger
number of nucleon–nucleon binary collisions. The rejection factor ranges from about 45 for the 0–10%
Pb–Pb collisions to about 300 (L1-γ-low) and 1000 (L1-γ-high, not shown in Fig. 9-right) for 70–90%
Pb–Pb collisions, and close to 1000 for pp collisions. Combining the two trigger thresholds in peripheral
Pb–Pb collisions, a factor around 100 (400) is obtained for the 50-70% (70–90%) centrality class.
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Figure 9: (colour online) Left: L1-γ trigger efficiency for inclusive clusters and isolated-narrow clusters with R =

0.2 (similar for R = 0.4) obtained with PYTHIA 8 simulations combining γ–jet and jet–jet processes, embedded
in data in the considered centrality class for Pb–Pb collisions and considering the corresponding trigger thresholds
(Etrig) in each system. Right: L1-γ trigger rejection factor calculated by applying the trigger efficiency for pp
collisions and for each of the Pb–Pb centrality classes considered. Solid lines over points result from a constant
fit, values given in Table 2, dashed lines indicate the fit uncertainty obtained with the procedure explained in
Sect. 4. For clusters above 12 GeV/c and peripheral Pb–Pb collisions, the rejection factor and trigger efficiency are
calculated for the sum of the two triggered samples with thresholds at 5 and 10 GeV.
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The integrated luminosity collected with each trigger (L trig
int ) has been determined using the expression

L trig
int =

Ntrig
evt RF trig

εtrig

σ
col. system
NN

×⟨Ncoll⟩= L trig
NN ×⟨Ncoll⟩ (9)

where σ
col. system
NN is the measured nucleon–nucleon cross section, that corresponds to σ

pp
MB = 50.9 ±

1.1 mb for pp collisions [87] and to σ INEL
NN = 67.6± 0.6 mb for Pb–Pb collisions [10], and L trig

NN is
the cross-section normalisation factor used in Eq. 10 of Sect. 5. The final production cross section is
measured as a function of pγ

T, thus, the different triggers are combined depending on the trigger threshold,
except in pp collisions, where only the L1-γ triggered data are used. In Pb–Pb collisions, the L1-γ-high
trigger threshold is at E = 10 GeV but a satisfactory efficiency is reached only above slightly larger
energies. The spectrum was therefore measured in the following way:

– below pγ

T = 12 GeV/c, using only the MB trigger for the centrality classes within 0–50%, and a
combination of MB plus L1-γ-low trigger for the peripheral centrality classes;

– above 12 GeV/c, using the combination of the MB and L1-γ-high trigger for the centrality classes
within 0–50%, and a combination of the three triggers for the peripheral centrality classes.

The corresponding values of the integrated luminosity per trigger combination are presented in Table 2.

Table 2: Trigger RF trig
εtrig (Eq. (8)) fits to a constant in Fig. 9-right, L trig

NN , and L trig
int (Eq. (9)), for pp and Pb–Pb

collisions per centrality class and per trigger inclusive cluster pT range. The L trig
NN uncertainty contains both the

σ
col. system
NN and rejection factor uncertainties. The integrated luminosity uncertainty includes in addition the ⟨Ncoll⟩

uncertainty.

Trigger System pT (GeV/c) RF trig
εtrig L trig

NN (nb−1) L trig
int (nb−1)

L1-γ pp pT > 11 997 ± 10 265 ± 7 265 ± 7
Pb–Pb:

MB 0–10% pT < 12 1.189 ± 0.011 1869 ± 26
MB 10–30% pT < 12 0.522 ± 0.005 409 ± 5
MB 30–50% pT < 12 1.163 ± 0.010 308 ± 5
MB+L1-γ-high 0–10% pT > 12 45.0 ± 0.2 2.50 ± 0.02 3936 ± 55
MB+L1-γ-high 10–30% pT > 12 79.2 ± 0.4 4.90 ± 0.05 3834 ± 51
MB+L1-γ-high 30–50% pT > 12 179.3 ± 1.5 5.01 ± 0.05 1325 ± 21
MB+L1-γ-low 50–70% pT < 12 72.2 ± 1.2 3.5 ± 0.5 230 ± 5
MB+L1-γ-low 70–90% pT < 12 315 ± 13 3.62 ± 0.11 39.5 ± 1.3
MB+L1-γ-high+low 50–70% pT > 12 98.2 ± 1.2 4.88 ± 0.07 322 ± 7
MB+L1-γ-high+low 70–90% pT > 12 410 ± 20 5.1 ± 0.2 55 ± 2

4 Systematic uncertainties

Figure 10 displays the estimated relative systematic uncertainties for all the considered sources for the
purity calculation for R = 0.2 in pp collisions and Pb–Pb collisions in two centrality classes. Equiva-
lently, Fig. 11 collects all the estimated relative systematic uncertainty sources considered for the cross
section measurement. The uncertainty contributions from all the sources are added in quadrature, and the
individual contributions and their sum are shown in the figures. All sources are considered uncorrelated.
The contributions to the cross section include the total uncertainty for the purity. Summary tables and
figures for all the centrality classes and both cone radii can be found in Ref. [79].
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The uncertainty contributions assigned to the purity correction using the ABCD method described in
Sect. 3.4 are estimated from variations of the anti-isolation momentum (labelled bkg. piso, ch

T in Fig. 10)
and the shower shape for wide-cluster (bkg. σ2

long, 5×5) ranges, their correlation effect on the MC cor-
rection (isolation probability), the amount of signal in the simulation with respect the background (MC
signal amount), and from the errors of the fit to the purity including the statistical uncertainty.

The uncertainty due to the choice of the background wide-cluster σ2
long, 5×5 range is investigated by

comparing the results obtained for various σ2
long, 5×5 selections. The lower limit is moved between 0.35

and 0.6, and the upper limit is chosen below or equal to 2 such that the interval width is at least 0.5.
The anti-isolation piso, ch

T background range is also varied: the lower piso, ch
T limit is chosen between 2

and 6 GeV/c and the upper limit is chosen below or equal to 70 GeV/c such that the range size is at least
10 GeV/c. For both the wide-cluster and anti-isolation range variation, the average of the differences due
to these variations is used to estimate each uncertainty.

The systematic uncertainty related to the correlation effects between piso, ch
T and σ2

long, 5×5 mentioned in
Sect. 3.4, labelled as “isolation probability”, is obtained by the difference between the variations of the
MC factors in Eq. (5) according to the procedure explained in Refs. [67, 79].
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Figure 10: (colour online) Contributions to the systematic uncertainty of the isolated-photon purity and their
quadratic sum as a function of pγ

T for R = 0.2, in pp collisions (bottom left frame) and two Pb–Pb collisions
centrality classes: 0–10% (top left frame) and 30–50% (top right frame). The statistical uncertainty is also shown
and may appear larger than the total uncertainty as a result of the smoothing done by the fit over the purity (see text).

The signal-to-background ratio in the simulation influences the aforementioned leakage of signal into
the background regions used to estimate the purity. This uncertainty is labelled as “MC signal amount”
in the figures and is quantified by varying by ±20% in the simulation the amount of signal events (γ–jet)
with respect to the background events (jet–jet).
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The purity total uncertainty is calculated by adding all the systematic-uncertainty sources together with
the statistical uncertainty in quadrature to obtain an uncertainty σP. The purity points are then shifted
up and down by 1σP and fitted again by the sigmoid functions. In each pγ

T interval, the total purity
uncertainty is calculated as the average of the difference between the middle purity fit value and each of
both shifted fit values. This procedure allows to also naturally take into account possible biases due to
the fitting.

The statistical uncertainty in the purity determination dominates over the whole pγ

T range in pp and
peripheral Pb–Pb collisions and at high pγ

T in central and semi-central Pb–Pb collisions. Among the sys-
tematic uncertainty sources, the “isolation probability” by far dominates the others in pp and peripheral
Pb–Pb collisions, and it is also the dominant uncertainty at low pγ

T in the 0–10% and 10–30% centrality
classes in Pb–Pb collisions. In the latter collisions though, the “MC signal amount” uncertainty source
dominates at intermediate to high pγ

T, especially for R = 0.4. Overall, the uncertainties for both radii are
comparable, although slightly smaller for R = 0.2 compared to R = 0.4 at intermediate to high pγ

T.

For the systematic uncertainty on the cross section, different sources of uncertainty are evaluated on top
of the uncertainty due to the purity. The uncertainties due to the choice of the neutral cluster selection
criteria are evaluated via variations with respect to the default selections reported in Table 1: the track–
cluster matching (CPV), distance to masked channels dmask, cluster time ∆tcluster, and the abnormal signal
removal parameter F+. For each variation of those parameters and other parameters discussed later, the
efficiency and purity are reevaluated and applied to the spectrum. In all those cluster quality selection
variations, nearly no dependence on R is observed.

The uncertainty due to the charged particle veto is estimated by varying the parameters of the track pT-
dependent selection criteria to looser ones: ∆η residual > 0.025 and ∆ϕ residual > 0.03 radians. The resulting
uncertainty on the cross section for central Pb–Pb events is at 2% with a small decrease with pγ

T, and
decreases to 0.5% for peripheral Pb–Pb events.

Unlike in previous ALICE isolated-photon measurements [49, 67], there is no requirement on the dis-
tance to a masked bad or dead channel from the highest energy cell in the cluster since it has a large
impact on cluster acceptance, but it is considered as a systematic uncertainty. The yields considering
dmask > 2 cells or no such requirement give a constant uncertainty of 2% for all colliding systems.

The cluster time selection window is varied between ∆tcluster = 10 and 40 ns to study the effect of pileup
and cells with anomalous depositions that pass the F+ selection. The uncertainty is found to be about
2–3% in central Pb–Pb collisions and decreases below 1% for peripheral Pb–Pb and pp collisions.

The F+ selection value is varied from 95% to 93%: an uncertainty of about 4% is observed for central
Pb–Pb collisions, that decreases to 1% in peripheral collisions, with almost no pγ

T dependence. In pp col-
lisions, approximately 1% uncertainty is estimated above pγ

T = 12 GeV/c, while at lower pγ

T it increases
to 4–6%.

Two sources of systematic uncertainties are considered for the efficiency in Fig. 8. First, the description
of the shower shape in simulations is considered via an uncertainty estimated from the difference between
standard simulations and those including modelling of the cross talk observed in the EMCal readout cards
and is labelled as “No MC tuning”. Second, depending on the shape of the PYTHIA 8 generated prompt
photon pγ

T distribution in the simulation, the efficiency can change due to pγ

T bin-to-bin migrations and
is labelled as “Spectral shape”. This uncertainty is calculated by applying a pγ

T-dependent weight to the
generated signal so as to reproduce the spectra from the JETPHOX NLO calculation presented in the
next Section, which includes prompt and fragmentation photons.

The choice of the σ2
long, 5×5 range for narrow photon-like showers (signal) is important for the efficiency

and purity of the measurement. The uncertainty is estimated by varying the upper limit of the signal
range by −0.03 and +0.05, and is found to lie at 1–3% with no pγ

T dependence. Only in pp collisions
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below pγ

T = 12 GeV/c a large uncertainty is found: of 7% or 15% depending on the R value.

The estimation of the UE density is checked in different areas shown schematically in Fig. 3: a ϕ-band
that covers the same ∆η than the isolation cone but covers ∆ϕ = π , limited to avoid the jet emitted in
the opposite direction to a high-energy particle; perpendicular bands that cover the same area as the ϕ-
band but centred at ϕ = ±π/2 from the photon; cones perpendicular to the isolated-photon candidate
direction; and the FASTJET jet area/median package [88]. The piso, ch

T distributions obtained with the
different estimators can be found in Ref. [79]. The results obtained with the different methods are
consistent with each other and the average of the difference between the default and the alternative areas
is used as uncertainty, excluding the perpendicular cones and bands for Pb–Pb collisions since their
particle density is different due to the anisotropic transverse flow [86].

Another uncertainty assigned to the UE density determination is due to the choice of the gap between the
η-band and the cone. For R = 0.4 and R = 0.2, the UE density is estimated with and without the gap of
∆RUE gap = 0.1 used as default. For R = 0.2, an additional gap of ∆RUE gap = 0.3 (with the same η-band
area as for R = 0.4 and ∆RUE gap = 0.1) is used, the average of the variations with respect the default case
is used as uncertainty.

The uncertainty on the energy scale of the EMCal is estimated to be 0.5% [73]. The effect of this
uncertainty on the measured cross section amounts to 2.1%. A material budget uncertainty accounting
for the material of the different detectors traversed by photons before they reach the EMCal has been
previously determined in Ref. [68] and amounts to 2.1%.

Due to the different hardware and electronics performances of the calorimeter supermodules, the result
can potentially change depending on the SM where the cluster is measured. The dispersion of the inclu-
sive cluster yields is calculated via double ratios of data over simulation yields in single SM over full SM
and is found to be 3.5%, labelled as the “SM dependence” uncertainty.

The uncertainty on the trigger normalisation has two sources: the use of the trigger efficiency to estimate
the trigger rejection factor and correct the yields, and the fitting used to calculate the trigger rejection
factor. For the first source, the comparison of the yields calculated with or without the trigger efficiency is
considered, and half of the difference is taken as the uncertainty. The trigger rejection factor is calculated
by fitting with a constant above the trigger threshold when it is fully efficient: above pγ

T = 12 GeV/c for
Pb–Pb collisions, with the higher L1-γ threshold, and above pγ

T = 6 GeV/c pp and Pb–Pb collisions
with the lower L1-γ threshold. The fitting range is varied, the calculated standard deviation of all the
variations gives less than 0.2–0.6% uncertainty for central and semi-central Pb–Pb collisions (lower the
lower the centrality). For peripheral collisions, it increases to above 1% in centrality 50–70% to 3–4%
in the 70–90% centrality class: the uncertainty is higher in peripheral events due to the lower number of
MB-triggered events. In pp collisions, the uncertainty is found to be 1.6%. This uncertainty is considered
as a normalisation uncertainty and not added to the pγ

T-differential yield systematic uncertainty.

The other normalisation uncertainties are those associated with σMB and ⟨Ncoll⟩. These uncertainties are
relatively small, of the order of 1.5% for central and semi-central Pb–Pb collisions and of 2% for 50–
70% Pb–Pb and pp collisions, and between 3% and 5% for 70–90% collisions. The total normalisation
uncertainties can be found in Table 2.

Figure 11 includes points labelled as “other systematic” that correspond to the sum in quadrature of the
uncertainty sources with small or no dependence on pγ

T and values lower than 2.5%: material budget,
cluster time, trigger efficiency, energy scale, CPV, and distance to masked channels.

The total systematic uncertainty on the cross section is obtained by adding the contributions of the differ-
ent sources described above in quadrature, as well as the purity uncertainty. The resulting uncertainties
range between 10% and 30%. In pp and Pb–Pb peripheral collisions, as well as in central and semi-
central Pb–Pb collisions at low pγ

T, the dominant uncertainty is the one on the purity. At intermediate
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Figure 11: (colour online) Contributions to the systematic uncertainty of the isolated-photon cross section and
their quadratic sum as a function of pγ

T for R = 0.2 in pp collisions (bottom left frame) and two Pb–Pb collisions
centrality classes: 0–10% (top left frame) and 30–50% (top right frame). Statistical uncertainty is also shown.

pγ

T and central Pb–Pb collisions, the dominant uncertainty is the “No MC tuning” uncertainty, and at
pγ

T > 80 GeV/c the statistical uncertainty.

The systematic uncertainties on the RAA (Eq. (1)) and the ratio of cross sections with different R are
calculated from the effect of the previously described variations on those ratios. For both, the statistical
uncertainty dominates above pγ

T = 40 GeV/c for Pb–Pb central and semi-central collisions and above
pγ

T = 20 GeV/c for the other collision systems. For the RAA, the systematic-uncertainty sources that
are fully correlated between Pb–Pb and pp collisions – the energy scale, distance to masked channels,
material budget, and SM-dependence – cancel out in the ratio. The other sources partially cancel, except
CPV since there is no such selection in pp collisions. The “isolation probability” source dominates
on all centrality classes at low pγ

T, and at intermediate pγ

T for semi-central collisions and R = 0.4. In
central collisions at intermediate pγ

T, the “No MC tuning” uncertainty dominates for R = 0.2, in a similar
proportion as the isolation probability for R = 0.4. The statistical uncertainty dominates at high pγ

T for
central and semi-central Pb–Pb collisions and from intermediate pγ

T for peripheral Pb–Pb collisions.

For the ratio of spectra with R = 0.4 over R = 0.2, the cross-section normalisation uncertainties cancel.
The statistical uncertainty dominates at high pγ

T for all the colliding systems and in all the reported pγ

T
range for 70–90% Pb–Pb collisions. The same systematic uncertainty sources which cancel completely
for the RAA cancel also in these ratios. In addition, also the “cluster time” uncertainty source, being
correlated between the results with different radii, cancels out in the ratio. For the rest of the systematic-
uncertainty sources, there is a stronger partial cancellation than for the RAA. The overall main contri-
butions to the total systematic uncertainty are the “UE area” and the anti-isolation “piso, ch

T background
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range” for all the collision systems and in addition the “MC signal amount” source in central Pb–Pb col-
lisions. In the lower pγ

T intervals, the “isolation probability” in central Pb–Pb and pp collisions dominates
or contributes significantly. The total systematic uncertainty stays at the level of 3–5% for all pγ

T, except
in pp collisions where it rises below 20 GeV/c, reaching up to 15% in the 11–12 GeV/c pγ

T interval.

5 Results

The isolated-photon differential production cross section can be obtained from the following equation
for a given triggered data sample

d2σ γ iso

dpγ

T dη
=

1

L trig
NN

× d2Niso
n

dpγ

T dη
× P

ε iso
trig × ε iso

γ ×Acc
(10)

where all the terms were described in the previous Sections and Acc = ∆η ×∆ϕ/2π is the acceptance
area obtained from the values in Table 1. The luminosities per collision system and centrality class are
listed in Table 2 with the corresponding normalisation uncertainties discussed in Sect. 4. The triggered
data samples are combined depending on the pγ

T range and centrality class as discussed in Sect. 3.6.

Figures 12-left and 13-left show for R = 0.2 and R = 0.4, respectively, the measured isolated-photon
cross section as a function of pγ

T for each of the colliding systems. The measurement is compared to
next-to-leading order pQCD calculations using the JETPHOX 1.3.1 Monte Carlo program [89, 90]. The
fragmentation function (FF) used is BFG II [91]. The PDF and nPDF parameterisations for protons and
Pb nuclei are NNPDF4.0 [92] and nNNPDF3.0 [93], respectively. The JETPHOX+nPDF theoretical
calculations were performed using the nPDF for 0–100% centrality and without including hot-medium
modifications. To compare to Pb–Pb data, the JETPHOX+nPDF theoretical calculations are scaled by
the number of binary collisions ⟨Ncoll⟩, calculated using the Glauber model [10, 14], listed in Sect. 2.
The central values of the predictions were obtained by choosing factorisation, normalisation, and frag-
mentation scales equal to the photon transverse momentum (µ f = µR = µF = pγ

T). Scale uncertainties
were determined varying all scales simultaneously to 0.5 and 2 times their nominal values. Uncertainties
related to the (n)PDFs are given at 90% confidence level and were obtained by performing the calcu-
lations with each of the 101 eigenvector sets of NNPDF4.0 and 201 eigenvector sets of nNNPDF3.0.
The isolation criterion in pQCD calculations corresponds to a restriction of the phase space available to
final-state radiation in a cone of R < 0.2 or 0.4 [89]. The isolation threshold used is piso

T < 2 GeV/c,
where both charged and neutral particles momenta are used in piso

T . This criterion is equivalent to the
piso, ch

T < 1.5 GeV/c criterion used in data with only charged particles, it was determined using the neu-
tral energy fraction in the isolation cone observed in PYTHIA 8 simulations. Theoretical predictions are
computed in the same pγ

T intervals as the data.

Figures 12-right and 13-right display the data-over-theory ratio as a function of pγ

T for R = 0.2 and
R = 0.4, respectively. These ratios show that the measured isolated-photon cross section and the one
obtained with the 0–100% JETPHOX+nPDF calculation scaled by ⟨Ncoll⟩ are in agreement for the full
transverse momentum range measured in pp and in each of the Pb–Pb centrality classes, for both cone
radii. The additional normalisation uncertainty, coming from the measured minimum bias cross sec-
tion and from the EMCal trigger rejection factors, is not added to the systematic uncertainties on the
data points, but rather shown as a separate grey box on each panel with the theory-to-data ratio. The
L trig

int = L trig
NN × ⟨Ncoll⟩ (Eq. (9)) uncertainty, provided in Table 2, enters into this normalisation uncer-

tainty box.
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Figure 12: (colour online) Left: Isolated-photon differential cross section measured in pp and Pb–Pb collisions
at

√
sNN = 5.02 TeV for five Pb–Pb centrality classes for R = 0.2. Error bars and boxes are the statistical

and systematic uncertainties, respectively. The bands correspond to NLO pQCD calculations with JETPHOX,
for Pb–Pb collisions calculated for the 0–100% centrality class and scaled by ⟨Ncoll⟩. Right: Ratio of data over
JETPHOX NLO pQCD calculations. The bands centred at unity correspond to the JETPHOX pQCD calculations,
their width represents the scale (blue) uncertainty and PDF (orange) uncertainty. The normalisation uncertainties
are not included in the left panel but they are shown in the right panel as a grey box on the left of each of the frames
around unity.

The ratio of the pγ

T-differential cross sections measured with R = 0.4 and R = 0.2, fR( 0.4
0.2 )

, was reported
above 250 GeV/c by the ATLAS Collaboration in pp collisions at

√
s = 13 TeV [45] where an agreement

between data and theory was observed. Figure 14 shows this ratio for the first time in pp collisions
between 11 and 80 GeV/c, and for the first time in Pb–Pb collisions between 10–14 and 40–140 GeV/c
(depending the centrality class). This ratio will further constrain the non-perturbative part of the FF,
since it is sensitive to the fraction of fragmentation photons passing the isolation criterion [44, 45]. The
ratio in data ranges between 0.8 and 1, with no clear trend depending on pγ

T, and the ratio in NLO pQCD
calculations is around 0.9, with a small increase for increasing pγ

T. The NLO pQCD calculations scale
uncertainty cancel out in the ratio. Due to partial uncertainty cancellations, the PDF uncertainty on the
ratio is significantly smaller than that on the spectra, and ranges from 1.5% to 0.5% from low to high
pγ

T in pp collisions, and from 3% to 1.7% in Pb–Pb collisions. The measured ratios of cross sections
with different R are described by the JETPHOX NLO pQCD calculations in all collision systems. The
dependence on isolation-cone size is well captured by NLO pQCD calculations incorporating an isolation
criterion. Also, the ratios measured in pp and Pb–Pb collisions for different centrality classes agree with
each other: no modification of the ratio is observed in central Pb–Pb collisions compared to peripheral
Pb–Pb and pp collisions.
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Figure 13: (colour online) Left: Isolated-photon differential cross section measured in pp and Pb–Pb collisions
at

√
sNN = 5.02 TeV for five Pb–Pb centrality classes for R = 0.4. Error bars and boxes are the statistical

and systematic uncertainties, respectively. The bands correspond to NLO pQCD calculations with JETPHOX,
for Pb–Pb collisions calculated for the 0–100% centrality class and scaled by ⟨Ncoll⟩. Right: Ratio of data over
JETPHOX NLO pQCD calculations. The bands centred at unity correspond to the JETPHOX pQCD calculations,
their width represents the scale (blue) uncertainty and PDF (orange) uncertainty. The normalisation uncertainties
are not included in the left panel but they are shown in the right panel as a grey box on the left of each of the frames
around unity.

Figure 15 shows the ratios of the isolated-photon cross section measured by ALICE in pp collisions at√
s = 13 TeV (from Ref. [67], right panel) and at

√
s = 7 TeV (from Ref. [49], left panel) over the

one at
√

s = 5.02 TeV. The measured ratios are compared to JETPHOX NLO calculations. All these
measurements and calculations were done for a cone radius R = 0.4. To account for the fact that the UE
was not subtracted from the isolation cone in the measurements at

√
s = 7 TeV, the same procedure

described in Ref. [67] was used: the published
√

s = 7 TeV measurement data was scaled down by κ iso,
the proportion of prompt photons which are isolated at the generator level, calculated from PYTHIA
γ-jet events (Eq. (7)). The

√
s = 13 TeV published measurement is already corrected by this factor. The

uncertainties on the ratios partially cancel, as discussed in Ref. [79]. For the ratio of the cross sections
at

√
s = 7 TeV and

√
s = 5.02 TeV, the data show a value at the level of 1.5 with a possible slight

rise with pγ

T. The magnitude of the ratio is in agreement with the NLO pQCD predictions. The small√
s difference and the large experimental uncertainties do not allow to draw a firm conclusion on the rise

with pγ

T predicted by the NLO pQCD calculations: from 1.35 at 11–12 GeV/c, up to about 1.5 at 40–
60 GeV/c. For the

√
s = 13 TeV over

√
s = 5.02 TeV ratio, the data agree with NLO pQCD calculations

and follow a clear rise with increasing pγ

T from about 2.2 at 11 GeV/c to close to 3.5 at 80 GeV/c. The
agreement of the cross-section ratio in data and NLO pQCD calculations shown here and in Ref. [67] for
the ratio

√
s = 13 TeV over

√
s = 7 TeV indicates that the underlying mechanisms in the theoretical

approach are valid.
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Figure 14: (colour online) Ratio of isolated-photon cross section measured with R = 0.4 over R = 0.2 for Pb–Pb
and pp collisions at

√
sNN = 5.02 TeV. Each panel for each Pb–Pb collisions centrality class, bottom right panel

for pp collisions. Error bars and boxes are the statistical and systematic uncertainties, respectively. The violet band
corresponds to pQCD calculations with JETPHOX, the width represents the PDF uncertainty, and the blue vertical
bars indicate the statistical uncertainty from the Monte Carlo approach.
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Figure 15: (colour online) Isolated-photon cross section ratio of pp collisions at
√

s = 7 TeV from [49] (left) and√
s = 13 TeV from [67] (right) over

√
s = 5.02 TeV in data and NLO calculation from JETPHOX for R = 0.4.

Error bars and empty boxes are the data statistical and systematic uncertainties, respectively. Filled boxes represent
the theory scale (orange) and PDF (pink) uncertainties.

The pγ

T-differential cross sections can be modified in Pb–Pb collisions compared to pp collisions by
initial state modification or cold or hot nuclear matter effects. To quantify these, the nuclear modification
factor RAA is calculated as the ratio of the cross sections in Pb–Pb and pp collisions normalised by ⟨Ncoll⟩

Rγ iso
AA =

1
⟨Ncoll⟩

d2σ
γ iso
Pb−Pb/(dpT dη)

d2σ
γ iso
pp /(dpT dη)

. (11)
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This is equivalent to Eq. (1), but the isolated photon pγ

T distribution in Pb–Pb is already the pγ

T-differential
cross section calculated using Eq. 10.

Figure 16 shows the isolated-photon RAA for the five Pb–Pb centrality classes measured for the cone
radii R = 0.2 and 0.4. In sharp contrast with the charged-particle [22] and charged-pion [24] RAA also
shown in the figure, the isolated-photon RAA are generally compatible with unity. However, for the most
peripheral class, a tendency to be below unity will be discussed later. The strong suppression observed
for high-pT hadrons in central Pb–Pb collisions with respect to pp collisions, which is due to the jet
quenching in the QGP, is therefore not observed for isolated photons, as expected since they do not
interact with the QGP.

In peripheral 70–90% Pb–Pb collisions, due to the lower energy density and smaller size of the QGP, the
hadron RAA is closer to unity than in more central collisions, but its value of RAA ≈ 0.7 for 10 < pT <
20 GeV/c is lower than the value expected due to in-medium jet quenching. This behaviour was also
observed at RHIC energies by the PHENIX Collaboration in Au–Au and d–Au [6, 20, 21, 94] collisions
at

√
sNN = 200 GeV. Figure 16 shows that the isolated-photon RAA in the same centrality class tends

to be below unity. Such a behaviour can be explained by biases in the centrality selection and collision
geometry that the Glauber model cannot account for, as discussed in Ref. [41]. In the 70–90% centrality
class, the expected RAA bias calculated with the HG-PYTHIA model [41] is indeed 0.82, i.e. significantly
below unity and in agreement within 1σ with the measured isolated-photon RAA, as Fig. 16 shows.
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Figure 16: (colour online) Nuclear modification factor RAA for isolated photons at
√

sNN = 5.02 TeV for isolation-
cone radii R = 0.2 (black) and R = 0.4 (blue). Error bars and boxes are the statistical and systematic uncertainties,
respectively. The isolated-photon RAA is compared to that of charged particles [22] and charged pions [24] from
ALICE, and to the ratio of the Z0-boson yield in each centrality class to the 0–90% class measured by CMS [35].
The bands correspond to pQCD calculations with JETPHOX for Pb–Pb collisions (nPDF) for 0–100% centrality
over pp collisions (PDF). The width of each band corresponds to the scale and PDF uncertainties. The normali-
sation uncertainties are represented as a red box centred at unity. The solid line in the most peripheral centrality
class 70–90% at RAA = 0.82 corresponds to the HG-PYTHIA model expectation [41].

The Z0-boson yield was measured by CMS in Pb–Pb collisions at
√

sNN = 5.02 TeV [35], and like
the isolated photons, Z0 bosons are not affected by the QGP. Figure 16 also displays one point for each
centrality class with the Z0-boson yield integrated in pT divided by the one in the 0–90% centrality class
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(the systematic uncertainty is taken from the numerator), which is not biased [41]. The Z0-boson points
are placed along the pT axis at the boson mass. The Z0-boson ratios from CMS are in agreement with
unity for centrality classes from 0% to 70%, but also show a deviation in the most peripheral centrality
class 70–90%. The trends of the isolated photon and Z0 boson ratios are compatible. This deviation
agrees with the HG-PYTHIA model [35]. A different visualisation of the Z0 results from CMS and this
isolated-photon RAA can be found in Ref. [79].

Finally, the RAA from the JETPHOX NLO calculations for 0–100% centrality is also shown in Fig. 16 for
R = 0.2. For R = 0.4, it is almost identical and is not shown for clarity. The scale uncertainty cancels, but
the PDF and nPDF uncertainties do not cancel and are fully propagated in the ratio uncertainty, which
decreases from 6% at low pγ

T to 4% at high pγ

T for both R values. Like the data, the NLO pQCD RAA is
close to unity for pγ

T > 50 GeV/c. In contrast, a suppression is expected at lower pγ

T (RAA ≈ 0.8 at pγ

T =
10 GeV/c for 0–100% centrality), which can be attributed to differences in the proton and nucleus PDFs.
The particularly good agreement of the Pb–Pb collisions data with NLO pQCD + nPDF in Figs. 12
and 13 suggests that the data support the RAA calculated with this framework.

Figure 17 shows a comparison of the isolated-photon RAA with the corresponding measurement per-
formed by the CMS Collaboration [38] that starts at pγ

T = 25 GeV/c. Since the CMS most peripheral
class covers the 50–90% range, the same class is reported for ALICE. The cross section, the data-to-
theory ratio, and the ratio of spectra with different R can be found in Ref. [79] for this 50–90% centrality
class, for which the HG-PYTHIA model finds a centrality bias RAA value of 0.91. The CMS and ALICE
measurements are consistent in all the centrality classes, and they agree with the HG-PYTHIA model
in peripheral events. The RAA presented here for the 50–90% class is unexpectedly close to the one
reported for 70–90%. This can be attributed to a small overestimation of the purity in the statistically
limited 70–90% sample. For the 50–90% centrality class, the uncertainties are smaller, and in the range
18 < pγ

T < 30 GeV/c, the deviation of the RAA from unity is about 2σ .

It is interesting to note that in both experiments the RAA central value is larger than unity between
30 and 60 GeV/c in the 0–10% centrality class, while still being compatible with unity. More precise
measurements would be needed to confirm and understand this trend.

Reference [79] also contains ratios of the isolated-photon production cross section in different centrality
classes over semi-central (30–50%) or semi-peripheral (50–70%) classes. These ratios also agree with
unity, as expected, with smaller uncertainties than the RAA.

6 Conclusions

The isolated-photon pγ

T-differential cross section in pp and Pb–Pb collisions at
√

sNN = 5.02 TeV was
measured by the ALICE experiment at midrapidity, for different centrality classes in Pb–Pb collisions
and in the transverse momentum range from 10–14 to 40–140 GeV/c. This measurement extends the
lower limit of pγ

T to a smaller value compared to previous measurements by other LHC experiments,
which start at pγ

T = 20 to 25 GeV/c.

The measured cross sections are compared to NLO pQCD calculations and they agree within uncertain-
ties. This agreement with the theory shows that the (n)PDFs used are supported by the data, which was
also observed in previous ALICE isolated-photon measurements in pp collisions. This is further sup-
ported by the agreement with the theory of the production yield ratios in pp collisions at various

√
s.

Furthermore, good agreement is observed in all centrality classes for Pb–Pb collisions, showcasing the
validity of ⟨Ncoll⟩ scaling for this observable.

The ratio of the pγ

T-differential cross sections obtained with different isolation radii is shown for the first
time in Pb–Pb collisions, and is also shown for pp collisions at

√
s = 5.02 TeV and at much lower pγ

T than
previous measurements in pp collisions at the LHC: the measurement made by the ATLAS Collaboration
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Figure 17: (colour online) Nuclear modification factor RAA for isolated photons measured by ALICE for isolation-
cone radii R = 0.2 and R = 0.4 and CMS [38] for isolation-cone radius R = 0.4 at

√
sNN = 5.02 TeV and for four

centrality classes. Error bars and boxes are the statistical and systematic uncertainties, respectively. The solid
line in the peripheral centrality class 50–90% at RAA = 0.91, is the result of the HG-PYTHIA model [41]. The
ALICE normalisation uncertainties are represented as a red box centred at unity. For CMS, the normalisation
uncertainties are displayed as a violet box for the integrated luminosity and a green box for the nuclear overlap
function ⟨TAA⟩= ⟨Ncoll⟩/σ INEL

NN .

at
√

s = 13 TeV begins at pγ

T = 250 GeV/c. In this ratio, an agreement with the NLO pQCD theoretical
calculations is found for all the systems.

The isolated-photon nuclear modification factors compare Pb–Pb and pp cross section measurements and
are consistent with unity as well as with the theoretical predictions from low to high pγ

T. This indicates
first, that isolated photons are not affected by the quark–gluon plasma, and second, that data agree with
predictions incorporating initial state nuclear effects. The RAA in the most peripheral classes 70–90%
and 50–90% tends to be below unity, close to 0.9, in agreement with the HG-PYTHIA model for the
centrality selection bias in the experiment, and with the observation of Z0-boson apparent suppression in
peripheral collisions by CMS. The isolated-photon RAA is in good agreement with the isolated-photon
RAA measured by CMS at high pγ

T (larger than 25 GeV/c).

Future ALICE measurements with the LHC Run 3 and 4 campaigns, where a significantly larger ac-
cumulated number of collisions is expected, in particular for the Pb–Pb peripheral centrality class, will
further improve the measurements and help to further constrain theoretical predictions.
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