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1 Introduction

Probing the electroweak sector of the Standard Model of Particle Physics (SM) can provide us
with a deeper understanding of the underlying mechanism of spontaneous symmetry breaking,
and at the same time offers a window to investigate the presence of new physics beyond the
Standard Model (BSM). In particular, multi vector boson production at the Large Hadron
Collider (LHC) is a class of processes that can be utilised to study the vector boson self
couplings [1]. Triple vector boson production, for instance, can be used to study triple and
quartic vector boson couplings simultaneously. The production of a W boson in association
with two photons (Wγγ production) is one of the multi vector boson processes that can be
employed to study the W -boson couplings to photons (WWγ and WWγγ interactions) [2, 3].
Hints for BSM mechanisms can be searched for by looking for deviations of the measured triple
and quartic vector-boson couplings from the SM prediction. Such deviations can be probed
systematically using the framework of Standard Model Effective Field Theory (SMEFT) [4–6].

Wγγ production has been observed at the LHC, with cross section measurements per-
formed by the ATLAS [7, 8] and CMS [9, 10] experiments. Theoretical predictions for Wγγ

production are known at leading order (LO) [11, 12] and next-to-leading order (NLO) accu-
racy, including both Quantum Chromodynamics (QCD) [13, 14] and electroweak (EW) [15]

– 1 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
1

corrections. Analogously to Wγ production, Wγγ production features a radiation-amplitude
zero (a situation where the amplitude vanishes exactly for a certain phase-space configuration)
at LO, although it is lifted by higher-order corrections [12]. The NLO QCD corrections are
found to be very large, reaching ≈ 250% [14, 16], due to gluon-initiated channels that open
up at this order. The NLO QCD corrections were computed also for pp → Wγγ + j [17], in
order to study the impact of higher-order corrections to the theoretical uncertainty due to
renormalisation-scale variation on the Wγγj contribution to Wγγ and to capture part of the
next-to-next-to leading order (NNLO) QCD corrections to the inclusive Wγγ cross section.
It is therefore important for a full-fledged NNLO QCD calculation of Wγγ production to be
performed in order to assess the perturbative convergence of the theoretical predictions.

One of the main bottlenecks towards obtaining NNLO QCD prediction for Wγγ produc-
tion is the computation of the required two-loop QCD corrections to a five-particle scattering
process with an off-shell leg. Both for the massless and one-external-mass cases, the full set of
two-loop five-point master integrals have been computed [18–26]. They are expressed in terms
of pentagon functions [26–29], which allow for an efficient numerical evaluation by means of a
public library [30]. By now, all the massless two-loop QCD five-point amplitudes relevant for
LHC physics are known analytically in both the leading colour approximation [18, 31–38]
and full colour [39–46]. For the two-loop five-point amplitudes with an external massive leg,
instead, analytic expressions have been obtained only in the leading colour approximation,
more specifically by taking into account only the contributions from the planar diagrams [47–
50]. Although the non-planar master integrals are already available, the subleading colour
amplitudes remain challenging to obtain due to high algebraic complexity of the rational
functions multiplying the master integrals or the pentagon functions. Nevertheless, the
availability of the two-loop scattering amplitudes, even in the leading colour approximation,
have made it possible for several 2 → 3 theoretical predictions to be computed at NNLO
QCD accuracy [43, 51–62]. Efforts to include more massive particles or more external legs
have been recently made as well [63–71].

In this work, we tackle the two-loop scattering amplitude for Wγγ production at the
LHC. We obtain an analytic expression of the two-loop amplitude in the leading colour
approximation, including the contributions from the non-planar Feynman diagrams. We
employ the state-of-the-art methodology based on functional reconstruction from numerical
evaluations over finite fields to overcome the algebraic complexity [72–77]. In addition,
we benefit from compact systems of integration-by-parts (IBP) relations obtained with
NeatIBP [78]. The analytic reconstruction of the subleading colour amplitudes, however,
is extremely expensive in comparison to the leading colour ones. As an alternative to the
analytic computation, we take a numerical approach, still within the finite-field framework:
we reconstruct the values of the rational coefficients of the pentagon-function monomials at
rationalised physical phase-space points from their evaluations over several prime fields. While
this approach is substantially more expensive than the evaluation of an analytic expression
for the amplitude, it may be nonetheless viable in those scenarios where the contribution
from the two-loop amplitudes is small such that the subleading colour amplitudes can be
evaluated at a relatively small set of phase-space points. Furthermore, these results, although
partially numerical, allow us to study at amplitude level the non-trivial analytic properties
of the non-planar Feynman integrals observed in ref. [26].
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This paper is organised as follows. In section 2 we present the general structure of the
Wγγ amplitude up to two loops, including its decomposition into five-, four- and three-particle
W -production amplitudes with their corresponding decay currents. In section 3 we discuss the
finite-field computational framework that we apply to compute helicity amplitudes in both the
analytical and the numerical approaches. We present numerical benchmark results, discuss
the analytic properties of the amplitude and describe the ancillary files containing analytic
expressions of the leading colour amplitude in section 4. We finally draw our conclusions
and outline potential future developments in section 5.

2 Structure of the W γγ amplitude

We consider the production of a W boson in association with two photons at the LHC
(Wγγ), with decay of the W boson to a leptonic pair. Without any loss of generality we
focus on the production of a W +. The amplitude for W−γγ can then be obtained from
the one for W +γγ through appropriate permutations and parity conjugations, as explained
below. There is only one partonic channel, initiated by a quark (d) and an anti-quark (ū).
We assign momenta pi and helicity states hi as

0 → ū(p1, h1) + d(p2, h2) + γ(p3, h3) + γ(p4, h4) + νℓ(p5, h5) + ℓ+(p6, h6) . (2.1)

All the external momenta are taken to be outgoing and satisfy the on-shell massless conditions,
6∑

i=1
pi = 0 , p2

i = 0 ∀ i = 1, . . . , 6 . (2.2)

We work in dimensional regularisation and present our results in the ’t Hooft-Veltman (tHV)
scheme, with d = 4− 2ϵ space-time dimensions and four-dimensional external momenta. The
fact that the external momenta are four-dimensional implies a further constraint on the
kinematics, which can be expressed as the vanishing of the Gram determinant of the five
independent external momenta (see appendix B). This reduces the number of independent
kinematic variables from 9 to 8.

In order to achieve a minimal and rational parametrisation of the kinematics, we employ a
momentum-twistor parametrisation [79, 80]. In particular, we make use of the parametrisation
proposed in ref. [48]. We denote the six-particle momentum-twistor variables by z⃗ =
(z1, . . . , z8), and report their definition in appendix A. We emphasise that, in addition to
providing a minimal parametrisation of the kinematics, momentum-twistor variables also
allow us to express the spinor-helicity variables as rational functions.

2.1 Amplitude decomposition

We construct the partial amplitude A
(L)
6 for W +(→ νℓℓ

+)γγ production by stripping off the
colour and loop factors as well as the coupling constants from the full amplitude M

(L)
6 as

M
(L)
6 (1ū, 2d, 3γ , 4γ , 5ν , 6ℓ̄) = e2g2

W

[
(4π)ϵe−ϵγE

αs

4π

]L

δ ī1
i2

A
(L)
6 (1ū, 2d, 3γ , 4γ , 5ν , 6ℓ̄) . (2.3)

Here, e is the electric charge, gW is the weak coupling constant, ϵ is the dimensional
regularisation parameter (ϵ = (4 − d)/2), and δ ī1

i2
is the colour factor. The final state
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photons can be emitted either by the initial state quarks, by the W boson or by the charged
lepton. We can therefore decompose the partial amplitude according to the source of photon
radiation, as follows:

A
(L)
6 =

[
Q2

uA
(L)
6,uu + QuQdA

(L)
6,ud + Q2

dA
(L)
6,dd +

( nf∑
q=1

Q2
q

)
A

(L)
6,q

]
P (s56)

+
[
QuQℓA

(L)
6,uℓ1 + QdQℓA

(L)
6,dℓ1

]
P (s356) +

[
QuQℓA

(L)
6,uℓ2 + QdQℓA

(L)
6,dℓ2

]
P (s456)

+
[
QuQwA

(L)
6,uw1 + QdQwA

(L)
6,dw1

]
P (s356)P (s56)

+
[
QuQwA

(L)
6,uw2 + QdQwA

(L)
6,dw2

]
P (s456)P (s56)

+ QℓQwA
(L)
6,ℓw1P (s356)P (s3456) + QℓQwA

(L)
6,ℓw2P (s456)P (s3456)

+ Q2
wA

(L)
6,ww1P (s56)P (s356)P (s3456) + Q2

wA
(L)
6,ww2P (s56)P (s456)P (s3456)

+ Q2
ℓA

(L)
6,ℓℓP (s3456) + A

(L)
6,wwγγP (s56)P (s3456) ,

(2.4)

where
P (s) = 1

s − µ2
W

(2.5)

is the denominator factor of W -boson propagator, si...k are the Mandelstam invariants,

si...k = (pi + · · ·+ pk)2 , (2.6)

Qi is the fractional electric charge of the i-th particle, µW is the mass of W boson and nf is
the number of light quarks. In figure 1 we show representative tree-level Feynman diagrams
for each sub-amplitude appearing in eq. (2.4). The sub-amplitude where both photons are
attached to the internal quark loop, A

(L)
6,q , vanishes at tree level and one loop, and starts to

contribute only at the two-loop level. We also note that the A
(2)
6,q amplitude contains two-loop

non-planar Feynman diagrams in the leading colour limit. Furthermore, the sub-amplitudes
A

(L)
6,i in eq. (2.4) are not separately gauge invariant in the electroweak sector except for A

(L)
6,q .

The loop-level sub-amplitudes can be further decomposed according to the number of
colours (Nc) and closed light quark loops (nf ), as

A
(1)
6,i =

(
Nc −

1
Nc

)
A

(1),Nc

6,i , (2.7)

A
(2)
6,i = N2

c A
(2),N2

c
6,i −

(
A

(2),N2
c

6,i + A
(2),1/N2

c
6,i

)
+ 1

N2
c

A
(2),1/N2

c
6,i +

(
Nc −

1
Nc

)
nf A

(2),Ncnf

6,i , (2.8)

A
(2)
6,q =

(
Nc −

1
Nc

)
A

(2),Nc

6,q . (2.9)

Here, A
(L)
6,i are the sub-amplitudes appearing in eq. (2.4) where neither of the photons are

coupled to the closed quark loop. In the leading colour approximation, the one- and two-loop
amplitude decompositions become

A
(1),lc
6,i = NcA

(1),Nc

6,i , (2.10)
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(0)
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(0)
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(0)
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(0)
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A
(0)
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6ℓ̄
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A
(0)
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1ū
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A

(0)
6,ℓw1
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4γ

A
(0)
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1ū
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A
(0)
6,ww1
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1ū
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A
(0)
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1ū
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A
(0)
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A
(0)
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1ū
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A
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(0)
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1ū

2d

3γ 4γ

6ℓ̄

5ν

Figure 1. Representative tree-level Feynman diagrams for the sub-amplitudes appearing in eq. (2.4).
A

(L)
6,q starts to contribute only at the two loop level.

A
(2),lc
6,i = N2

c A
(2),N2

c
6,i + Ncnf A

(2),Ncnf

6,i , (2.11)

A
(2),lc
6,q = NcA

(2),Nc

6,q . (2.12)

In our helicity-amplitude computation, the V-A coupling of the W boson to fermions
selects a subset of helicity configurations contributing to the amplitude. They are

A
(L)
6 (1+

ū , 2−d , 3+
γ , 4+

γ , 5−ν , 6+
ℓ̄
) ,

A
(L)
6 (1+

ū , 2−d , 3+
γ , 4−γ , 5−ν , 6+

ℓ̄
) ,

A
(L)
6 (1+

ū , 2−d , 3−γ , 4+
γ , 5−ν , 6+

ℓ̄
) ,

A
(L)
6 (1+

ū , 2−d , 3−γ , 4−γ , 5−ν , 6+
ℓ̄
) .

(2.13)
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We define the complex-conjugated process, W−(→ ν̄ℓℓ
−)γγ production, as

0 → d̄(p1, h1) + u(p2, h2) + γ(p3, h3) + γ(p4, h4) + ℓ−(p5, h5) + ν̄ℓ(p6, h6) . (2.14)

The W−γγ helicity amplitudes can be obtained from the W +γγ ones by exchanging the
momenta of the quark-anti quark pair as well as of the lepton-neutrino pair, followed by
parity conjugation:

A
(L)
6 (1+

d̄
, 2−u , 3h3

γ , 4h4
γ , 5−ℓ , 6+

ν̄ ) = A
(L)
6 (2+

ū , 1−d , 3−h3
γ , 4−h4

γ , 6−ν , 5+
ℓ̄
)
∣∣∣
⟨ij⟩↔[ji]

. (2.15)

2.2 Finite remainder

We construct the finite remainders F
(L)
6,i by subtracting the ultraviolet (UV) and infrared (IR)

singularities from the bare loop sub-amplitudes A
(L)
6,i ,

F
(L)
6,i = lim

ϵ→0

[
A

(L)
6,i − P(L)

6,i

]
. (2.16)

The pole terms P(L)
6,i are built up of the UV counter-terms (where the αs is renormalised in

the MS scheme) and known universal IR poles [81–84],

P(1)
6,i = 2 I1(ϵ)A(0)

6,i , (2.17)

P(2)
6,i = 4 I2(ϵ)A(0)

6,i + 2
(

I1(ϵ) +
β0
ϵ

)
A

(1)
6,i , (2.18)

where I1(ϵ) and I2(ϵ) are the ‘Catani operators’, given by [85]

I1(ϵ) = −N(ϵ)
2

(
Nc

2 − 1
2Nc

)[ 2
ϵ2 + 3

ϵ

](
−s12 + i0+

µ2
R

)−ϵ

, (2.19)

I2(ϵ) = −1
2I1(ϵ)

[
I1(ϵ) +

2β0
ϵ

]
+ N(ϵ)

N(2ϵ)

[
β0
ϵ

+ K

]
I1(2ϵ) + H(2)(ϵ) , (2.20)

where 0+ is a positive infinitesimal, with

H(2)(ϵ) = N(ϵ)
2ϵ

(
N2

c − 1
) [7ζ3

4 + 409
864 − 11π2

96 + 1
N2

c

(3ζ3
2 + 3

32 − π2

8

)
+ nf

Nc

(
π2

48 − 25
216

)]
, (2.21)

K =
(
67
18 − π2

6

)
CA − 10

9 TRnf , (2.22)

N(ϵ) = eϵγE

Γ(1− ϵ) . (2.23)

The coefficient of the required β function is [81, 82]

β0 = 11
6 CA − 2

3TRnf , (2.24)
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where

TR = 1
2 , CA = Nc . (2.25)

We calculated the finite remainders setting the renormalisation scale (µR) to one. We then
derived the µR dependence of the finite remainders directly from eqs. (2.16) – (2.18) by restor-
ing the µR dependence in both the Catani operators (I1(ϵ) and I2(ϵ) in eqs. (2.19) and (2.20))
and the renormalisation counterterms. We obtain

F
(L)
6,i (µ2

R) = F
(L)
6,i (µ2

R = 1) + δF
(L)
6,i (µ2

R) , (2.26)

where

δF
(2),N2

c
6,i (µ2

R) = log(µ2
R)
{(409

216 − 11
24π2 + 7ζ3

)
A

(0)
6,i +

11
3 F

(1),Nc

6,i (1)
}

, (2.27)

δF
(2),1/N2

c
6,i (µ2

R) = log(µ2
R)
{
− 3

8 + π2

2 − 6ζ3

}
A

(0)
6,i , (2.28)

δF
(2),Ncnf

6,i (µ2
R) = log(µ2

R)
{(

− 25
54 + π2

12

)
A

(0)
6,i −

2
3F

(1),Nc

6,i (1)
}

. (2.29)

The above µR-restoring terms have been split up according to the (Nc, nf ) decomposition
as specified in eqs. (2.7) – (2.9). The remaining (Nc, nf )-components which are not listed
in eqs. (2.27) – (2.29) do not depend on µR.1

The hard functions, obtained by squaring the finite remainders and averaging over all
colour and helicity states, are defined by

H(0) = e4g4
W Nc

∑
colour

∑
helicity

F
(0)∗
6 F

(0)
6 , (2.30)

H(1) = e4g4
W Nc

(
αs

4π

) ∑
colour

∑
helicity

2ReF
(0)∗
6 F

(1)
6 , (2.31)

H(2) = e4g4
W Nc

(
αs

4π

)2 ∑
colour

∑
helicity

[
2ReF

(0)∗
6 F

(2)
6 + F

(1)∗
6 F

(1)
6

]
, (2.32)

where the bar over the sum sign indicates the average. The loop-level hard functions depend
on the µR through the finite remainders (cf. eq. (2.26)) and the running strong coupling
constant αs(µR).

3 Helicity-amplitude computation

In this section we describe our strategy to compute the helicity amplitudes for Wγγ production
up to two loops. We begin by identifying the independent building blocks that make up the
six-point amplitude. Next, we present our computational framework, first for the analytic
calculation at leading colour and then for the numerical calculation at subleading colour.
We conclude this section by discussing a number of checks.

1We note that the N0
c n0

f (nf /Nc) colour component can be obtained from the N2
c and 1/N2

c (Ncnf ) ones
as shown in eq. (2.8). Therefore we do not spell out their log(µ2

R) dependence in eqs. (2.27) – (2.29).
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3.1 Independent sub-amplitudes

As we discussed in section 2.1, the final state photons in Wγγ production can be emitted from
different sources. This is reflected in the decomposition of the amplitude given in eq. (2.4).
By exploiting the fact that the QCD corrections only affect the W -production amplitude,
we can remove the W -boson decay current from the six-particle amplitude, and identify the
independent lower-multiplicity building blocks that need to be computed. The full six-particle
amplitude can then be recovered by re-attaching the appropriate W -boson decay current.
We organise these amplitude building blocks in the following classes.

• Five-particle amplitudes
This class is comprised of sub-amplitudes where both photons are coupled to either the
internal or the external quark line. In eq. (2.4) these are:

A
(L)
6,uu , A

(L)
6,ud , A

(L)
6,dd , A

(L)
6,q . (3.1)

In this category, the six-particle sub-amplitude can be written by contracting the
five-particle one with the current for the W → ℓν decay process, Lµ(5ν , 6ℓ̄), as

A
(L)
6,i (1ū, 2d, 3γ , 4γ , 5ν , 6ℓ̄) = A

(L)µ
5,i (1ū, 2d, 3γ , 4γ , p56)Lµ(5ν , 6ℓ̄) , (3.2)

for the sub-amplitudes A
(L)
6,i listed in eq. (3.1).

• Four-particle amplitudes
The four-particle sub-amplitudes are those where one photon is coupled to the quark
line and the other is attached to either the W boson or the charged lepton. The
sub-amplitudes in eq. (2.4) that belong to this category are

A
(L)
6,uℓ1 , A

(L)
6,dℓ1 , A

(L)
6,uw1 , A

(L)
6,dw1 , (3.3)

A
(L)
6,uℓ2 , A

(L)
6,dℓ2 , A

(L)
6,uw2 , A

(L)
6,dw2 . (3.4)

For the sub-amplitudes A
(L)
6,i listed in eq. (3.3), the photon with momentum p3 is coupled

to the external quark line, and the six-particle sub-amplitudes take the form

A
(L)
6,i (1ū, 2d, 3γ , 4γ , 5ν , 6ℓ̄) = A

(L)µ
4,u/d(1ū, 2d, 3γ , p456)Li

µ(4γ , 5ν , 6ℓ̄) , (3.5)

where Li
µ(4γ , 5ν , 6ℓ̄) is the W → ℓνγ radiative decay current. For the sub-amplitudes

A
(L)
6,i listed in eq. (3.4), on the other hand, the photon with momentum p4 is coupled to

the external quark line, and the six-particle sub-amplitudes are given by

A
(L)
6,i (1ū, 2d, 3γ , 4γ , 5ν , 6ℓ̄) = A

(L)µ
4,u/d(1ū, 2d, 4γ , p356)Li

µ(3γ , 5ν , 6ℓ̄) . (3.6)

• Three-particle amplitudes
This category is made up of sub-amplitudes where neither of the photons are attached
to the quark line:

A
(L)
6,ℓw1 , A

(L)
6,ℓw2 , A

(L)
6,ww1 , A

(L)
6,ww2 , A

(L)
6,ℓℓ , A

(L)
6,wwγγ . (3.7)
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From these we can detach the W → ℓνγγ radiative decay current Li
µ(3γ , 4γ , 5ν , 6ℓ̄) to

obtain the three-particle sub-amplitudes:

A
(L)
6,i (1ū, 2d, 3γ , 4γ , 5ν , 6ℓ̄) = A

(L)µ
3 (1ū, 2d, p3456)Li

µ(3γ , 4γ , 5ν , 6ℓ̄) . (3.8)

We therefore identify the independent sub-amplitudes to be A
(L)µ
5,uu/ud, A

(L)µ
4,u and A

(L)µ
3 .

We then compute these independent five-, four- and three-particle sub-amplitudes by first
decomposing them into form factors, as

A
(L)µ
5,uu/ud =

4∑
i=1

Ω(L)
uu/ud;i uµ

i , (3.9)

A
(L)µ
4,u =

4∑
i=1

Ω(L)
u;i vµ

i , (3.10)

A
(L)µ
3 =

4∑
i=1

Ω(L)
3;i wµ

i , (3.11)

where {ui}, {vi} and {wi} are the spanning bases for the five-, four- and three-particle
amplitudes respectively, given by

uµ
1 = pµ

1 , uµ
2 = pµ

2 , uµ
3 = pµ

3 , uµ
4 = pµ

4 , (3.12)

vµ
1 = pµ

1 , vµ
2 = pµ

2 , vµ
3 = pµ

3 , vµ
4 = ⟨2|3|1]⟨1|γµ|2]− ⟨1|3|2]⟨2|γµ|1]

2s12
,

(3.13)

wµ
1 = pµ

1 , wµ
2 = pµ

2 , wµ
3 = ⟨1|γµ|2]Φ + ⟨2|γµ|1]Φ−1

2 , wµ
4 = ⟨1|γµ|2]Φ− ⟨2|γµ|1]Φ−1

2 ,

(3.14)

where Φ is an arbitrary phase factor which gives the two terms of wµ
3 and wµ

4 the same helicity
scaling. In practice, Φ cancels out in the hard functions and we can thus set it to 1. The five-,
four- and three-particle form factors are then obtained from the contracted sub-amplitudes

Ã
(L)
5,uu/ud;i = uiµ A

(L)µ
5,uu/ud;i , Ã

(L)
4,u;i = viµ A

(L)µ
4,u;i , Ã

(L)
3;i = wiµ A

(L)µ
3;i , (3.15)

and the Gram matrices

(∆5)ij = ui · uj , (∆4)ij = vi · vj , (∆3)ij = wi · wj , (3.16)

as

Ω(L)
uu/ud;i =

∑
j

(
∆−1

5

)
ij

Ã
(L)
5,uu/ud;j , (3.17)

Ω(L)
u;i =

∑
j

(
∆−1

4

)
ij

Ã
(L)
4,u;j , (3.18)

Ω(L)
3;i =

∑
j

(
∆−1

3

)
ij

Ã
(L)
3;j . (3.19)
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# of external particles independent contracted helicity amplitudes

5 Ã
(L)+−++
5,uu;i , Ã

(L)+−+−
5,uu;i , Ã

(L)+−−+
5,uu;i , Ã

(L)+−−−
5,uu;i ,

Ã
(L)+−++
5,ud;i , Ã

(L)+−+−
5,ud;i ,

Ã
(L)+−++
5,q;i , Ã

(L)+−+−
5,q;i

4 Ã
(L)+−+
4,u;i

3 Ã
(L)+−
3;i

Table 1. Independent helicity configurations for the five-, four- and three-particle amplitudes.

A
(2)µ
5,q

1ū

µ

A
(2)µ
5,uu

1ū

2d

4γ

µ

3γ

W
A

(2)µ
5,ud

2d

1ū
3γ

µ

4γ

W

3γ

1ū 2d

A
(2)µ
4,u

µ

W
4γ3γ

2d

W

W
µ

A
(2)µ
3

1ū

2d

Figure 2. Sample two-loop Feynman diagrams contributing to the W +γγ independent sub-amplitude
currents A

(2)µ
5,uu, A

(2)µ
5,ud, A

(2)µ
5,q , A

(2)µ
4,u and A

(2)µ
3 .

We then compute the contracted helicity amplitude, obtained by specifying the helicity
state of the external quarks and photons (if they appear in the W production amplitude) in the
contracted sub-amplitude Ã(L). In table 1 we present the independent helicity configurations
for five-, four- and three-particle contracted sub-amplitudes. Moreover, we show sample
two-loop Feynman diagrams for the independent five-, four- and three-particle contracted
helicity amplitudes in figure 2.
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3.2 Analytic computation framework

We now describe our framework to compute the helicity amplitudes for Wγγ production,
combining Feynman diagrams, IBP reduction, and numerical evaluation over finite fields.
The computation of the contracted helicity amplitudes Ã

(L)
5,uu/ud;i, Ã

(L)
4,u;i and Ã

(L)
3;i defined in

eq. (3.15) starts with the generation of Feynman diagrams, for which we use Qgraf [86].
After identifying the set of distinct denominator structures of the Feynman integrals appearing
in the amplitude, the numerator of the loop amplitude is written in terms of scalar products
of loop and external momenta (ki · kj , ki · pj , pi · pj). Having the loop-momentum dependent
numerator written in this form allows us to express the loop amplitude as a linear combination
of scalar Feynman integrals, that will further be reduced to a set of master integral. To achieve
such a representation, we follow a strategy that has been used in several previous two-loop
five- and four-point amplitude computations [41, 43, 48, 87–89], where we first construct the
helicity-dependent loop numerator. This object is obtained by first specifying the helicity
states of the external quarks and photons, which, in the spinor-helicity formalism, results in
the appearance of spinor strings which contain loop momenta (e.g. ⟨i|k̄1|j] and ⟨i|k̄1k̄2|j⟩),
where k̄i is the four dimensional component of the loop momentum ki. Such objects are
cast into a form where the loop-momentum dependence only enters as a scalar product by
expanding the loop momenta using a four-dimensional spanning basis ηµ

j , k̄µ
i =∑4

j=1 aijηµ
j ,

and solving for the coefficients aij , which are functions of ki · kj , ki · pj and pi · pj . In
addition, the extra dimensional component of the loop momentum (k̃i) can appear only as
k̃i · k̃j , which can also be written in terms of ki · kj , ki · pj and pi · pj . We express all scalar
products and spinor-helicity contractions of the external momenta as rational functions of
the five-particle momentum-twistor variables x⃗ = (x1, . . . , x6) of ref. [48]. We repeat their
definition in appendix A for the convenience of the readers. The processing of loop-momentum
dependent helicity numerators is done using a collection of Mathematica and Form [90]
scripts, also with the help of Spinney package [91].

The computation then proceeds with the IBP reduction of the amplitude onto the master
integrals of refs. [22, 24, 26].2 The IBP reduction is performed using the strategy outlined
in refs. [41, 43, 89], which is optimised to handle the large number of permutations of the
independent integral families that appear in the partial amplitudes. The important element
of this technique is that the system of IBP equations for each independent family is permuted
numerically, which dramatically reduces the memory consumption compared with loading a
system that incorporates all families — including all permutations — together. A consequence
of this is that master integrals are derived for each permutation independently and therefore
mappings between sub-topologies must be applied at a second stage before a global set of
master integrals is obtained. These mappings can be derived using IBP reduction including
symmetries, such as those provided by LiteRed [92]. Even if the global mappings are not
applied, the relations will be included once the master integrals have been expanded into
pentagon functions. The complete computation is stored in a FiniteFlow graph such that
all intermediate stages of the reduction are numerical.

2We move the square-root normalisations from the master integrals to their expression in terms of special
functions.
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family deg. # IBPs # integrals IBP disk size running time
DPmz 5 26673 27432 71.4 MB 7h5m
DPzz 5 61777 63880 375.8 MB 21h54m∗

HBmzz 5 15428 15916 17.0 MB 5h38m
HBzmz 5 10953 11289 13.4 MB 5h45m
HBzzz 5 21126 21766 38.0 MB 9h32m
PBmzz 5 10224 10329 7.8 MB 2h23m
PBzmz 5 11610 11791 6.5 MB 2h50m
PBzzz 5 8592 8752 5.8 MB 2h50m

HTmzzz 4 3120 3176 1.5 MB 1h12m
HTzmzz 4 6594 6650 2.5 MB 1h31m
HTzzzz 4 4680 4631 4.0 MB 2h31m

Table 2. Information about the NeatIBP runs. The first column is the name of the integral
families following the definition in ref. [26] (the families HTmzzz, HTzmzz and HTzzzz only appear
in the amplitude computation and their definition is shown in figure 3). The second column is the
corresponding maximum numerator degrees of the integrals to be reduced. The next two columns
show the number of (denoted by #) IBP relations generated by NeatIBP, and of integrals appearing
in them. All families are performed on a computer with 20 CPU threads and 128 GB RAM, except
for DPzz (hence the superscript ∗). For the latter we used a workstation with 56 CPU threads and
1.5 TB RAM.

We generate optimised, small-sized systems of IBP relations using the NeatIBP pack-
age [78], which uses the syzygy method [93–99]. Table 2 shows the NeatIBP performance
in generating the IBP relations. When generating the IBP relations using NeatIBP, we
found that permuting the propagators affects the performance, since the syzygy-generator
size depends on the so-called module order. For family DPzz, we permuted the propagators
by hand and obtained the performance shown in table 2. With the propagator ordering
of ref. [26], NeatIBP instead generates 71493 IBP relations with 74143 relevant integrals,
taking 417.0 MB disk space. The corresponding running time is 19h5m (on a computer with
56 CPU threads and 1.5 TB RAM). The permutation of the propagators for DPzz decreased
the size of the IBP system by about 14% in terms of the number of IBP relations. The
number of IBP relations and of integrals in the optimised system is much lower as compared
to the traditional Laporta method.3 This improves the evaluation of the solution to the IBP
relations, resulting in both a speed up in the finite-field sampling of the rational coefficients
of the amplitudes and in a reduction of its memory footprint (by around 8 times and 3 times,
respectively, for the leading colour two-loop five-particle amplitudes).

Once the amplitude is written as a linear combination of master integrals, we perform a
Laurent expansion around ϵ = 0 up to the desired order (O(ϵ0) for the two-loop amplitudes,

3We generate the traditional Laporta IBP system with LiteRed by seeding integrals with the maximum
rank of 5 and at most one doubled propagator in all sectors.
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HTmzzz HTzmzz HTzzzz

Figure 3. Pictorial representation of the hexagon-triangle integral families entering the two-loop
five-particle amplitude computation. The single line represents a massless particle while the double
line depicts a massive particle.

O(ϵ2) for the one-loop amplitudes). In doing this, we express the master integrals in terms of
pentagon functions and square roots order by order in ϵ, using the results of refs. [26, 29].
Each bare sub-amplitude A(L) at this stage is expressed as

A(L) =
−2L+4∑
s=−2L

∑
r

ϵs cr,s(x⃗) mr(f), (3.20)

where mr(f) are monomials of pentagon functions f , transcendental constants, and square
roots, while cr,s(x⃗) are rational coefficients. To derive the finite remainders of the contracted
helicity amplitudes, the pole terms in eqs. (2.17) and (2.18) are written in terms of pentagon
functions and then subtracted from the bare contracted helicity amplitudes.

In our framework, we compute the rational coefficients cr,s(x⃗) multiplying the pentagon-
function monomials in the contracted bare amplitude in eq. (3.20) by performing numerical
evaluations over finite fields within the framework FiniteFlow [75, 100]. The starting
point of this finite-field procedure is the helicity-dependent loop numerator. The subsequent
chain of operations are then carried out numerically over finite fields until we arrive at the
ϵ-expanded contracted bare helicity amplitude representation in eq. (3.20). For given input
values x⃗ and prime P, our numerical algorithm returns the values of the rational coefficients
modulus P. Their analytic expression is then obtained from several numerical evaluations
over finite fields through multivariate functional reconstruction [73]. This approach allows us
to obtain analytical results sidestepping the extremely large expressions that would appear
in the intermediate stages of the calculation if done symbolically. We note that, although we
could have derived the finite remainders directly, we observe that within our framework the
decrease in polynomial degrees going from bare amplitude to finite remainder representations
is small and does not affect the total reconstruction time significantly. On that account,
we perform analytic reconstruction of the bare helicity amplitudes and afterwards derive
the finite remainders.

The reconstruction of the rational coefficients with the generic algorithm implemented in
FiniteFlow is however made impractical by the large number of required sample points.
We adopt a strategy used already in a number of similar computations [41, 43, 47–50, 57, 89]
to reduce the number of required sample points. We refer to refs. [41, 101] for a more detailed
discussion, and give here just a summary. First of all, we set x1 = 1, and reconstruct only
in x2, . . . , x6. The dependence on x1 is recovered after the reconstruction from dimensional
analysis. The rational coefficients cr,s(x⃗) in eq. (3.20) with x1 = 1 are said to be in the
‘original’ stage. The optimisation of the reconstruction then proceeds in the following stages.

– 13 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
1

stage 1. We fit the Q-linear relations among the cr,s(x⃗), and solve them so as to choose as
independent coefficients the ones with the lowest polynomial degrees. Only this subset
of linearly independent coefficients then needs to be reconstructed.

stage 2. We make an ansatz for the denominators of the coefficients as products of factors
drawn from the symbol alphabet identified in refs. [22, 24, 26] and simple spinor brackets.
The exponents of the factors in the ansätze are fixed by matching the latter to the
coefficients reconstructed on a univariate phase-space slice modulus a prime. As a
result, the denominators are completely determined, and only the numerators remain
to be reconstructed.

stage 3. We use the information gathered in stage 2 to construct an ansatz in the form of a
univariate partial fraction decomposition with respect to x5 for each coefficient, and
reconstruct the coefficients in the ansatz. By construction, the latter do not depend on
x5, so that the reconstruction is now in 4 variables only.4

stage 4. As in stage 2, we determine the denominators of the coefficients of the partial
fraction decomposition through matching on a univariate slice. The partial fractioning
introduces spurious denominator factors. These are not included in the original ansatz
used at stage 2, but can be derived from it as discussed in ref. [41].

Finally, we use FiniteFlow’s built-in functional reconstruction algorithm to reconstruct the
analytic expression of the numerators of the coefficients in the partial fraction decomposition
of the coefficients cr,s(x⃗) in eq. (3.20). The numerator/denominator degrees of the coefficients
at all stages of the reconstruction strategy for some of the most complicated five-particle
partial sub-amplitudes are shown in table 3.

From table 3 we can observe that the degree of the rational coefficients increases signifi-
cantly when we consider the subleading colour amplitudes in comparison to the leading colour
ones, which leads to an increase in the number of sample points required to fully reconstruct
the analytic expressions. In addition, the evaluation time and memory consumption also
become larger. We notice that the evaluation time of the subleading colour amplitudes at
the stage 4 our reconstruction strategy described above is about 10 times slower than the
leading colour ones, due to the more complicated integrands to be sampled as well as the
larger number of integral family permutations that have to be taken into account in the IBP
reduction step. The memory usage was found to be at least 3 times larger, again, due to
the substantial size of the subleading colour integrands while the non-planar IBP reduction
setup does not significantly affect the memory usage since we implement the IBP relations
for only one permutation of each integral family.

The univariate partial fractioning is useful to reduce the complexity of the coefficients
but does not necessarily lead to the most compact representations and in general introduces
spurious poles. To further optimise the evaluation of the analytic expressions we have applied

4Evaluating the coefficients of the partial fraction decomposition at a point (x2, x3, x4, x6) requires evaluating
the original coefficients at as many values of x5 as terms in the ansatz (see refs. [41, 75]). Their evaluation
is therefore slower than that of the coefficients of the pentagon-function monomials in eq. (3.20). Their
reconstruction however requires far fewer points so that this strategy is overall advantageous.
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multivariate partial fraction techniques [102–105]. The application of these algorithms is
particularly challenging due the large number of variables and high polynomial degrees.
In our case, this is further aggravated by the choice of parametrising the kinematics in
terms of momentum twistors. While this parametrisation has the minimal number of
variables and rationalises all spinor products, the irreducible denominators may have a
higher degree compared to representations with Lorentz invariants. Sometimes, this makes
the computational algebraic geometry computation in Leinartas-type algorithms and the
‘MultivariateApart’ algorithm very difficult.

In order to by-pass these issues, we apply the multivariate partial fractioning to each term
in the univariate partial fractioned representation used in the analytic reconstruction. Since
each term has fewer denominators than the complete set, the Gröbner-basis computation
speeds up significantly. While this does not remove the spurious factors introduced by the
univariate partial fraction decomposition, it still serves the purpose of making the expressions
in general more compact. We note however that, for a subset of the coefficients, the univariate
decomposition is actually more compact than the multivariate one; in such cases, we kept
the former. We performed the multivariate partial fraction decompositions by means of the
pfd-parallel package [104]. The computation was carried out with a workstation using
30 cores with 2 TB RAM for 29.6 hours. The peak RAM usage for this partial fraction
computation is 17.4 GB. To further optimise the expressions, we write the separate addends
of the partial-fractioned coefficients in terms of independent irreducible factors, which we
collect across all amplitudes at each loop order. The multivariate partial fractioning strategy
discussed above leads to a reduction of about 50% of the disk size for the rational coefficients.5
Moreover, we observe that the evaluation time in Mathematica of all the rational coefficients
in the complete finite remainder decreases by about 20%.

Despite these simplifications, the rational coefficients remain rather bulky. In particular,
we observe that the solution of the system of linear relations amongst the rational coefficients
(stage 1 of our reconstruction strategy) contains very large integers. This is inconvenient
in view of a fixed-precision numerical implementation, which will be required in order to
use our results for phenomenology. We provide Mathematica notebooks which illustrate
the numerical evaluation of our results in order to facilitate this task (see section 4.3). It
would therefore be useful to develop an algorithm which can rotate the rational coefficients
of an amplitude in a way that simplifies not only the coefficients themselves, but also the
rational numbers within the amplitude’s expression in terms of them. This is object of
ongoing research, and preliminary studies suggest that it may be achieved by studying the
singular behaviour of the coefficients [45].

3.3 Numerical approach for the subleading colour five-particle amplitude

We have derived analytic expressions for the contracted finite remainders contributing to Wγγ

production at the LHC up to two-loop level, except for the subleading colour five-particle
W -production sub-amplitudes. As we have discussed in the previous subsection, the number
of sample points required to reconstruct the latter are considerably higher than for the

5The common factors are collected both before and after the multivariate partial fraction decomposition,
to ensure a fair comparison.

– 15 –



J
H
E
P
1
2
(
2
0
2
4
)
2
2
1

original stage 1 stage 2 stage 3 stage 4 # points
(# primes)

analytic
expression

Ã
(2),N2

c
5,uu;1 159/155 159/155 159/0 33/31 33/0 27728 (2) ✓

Ã
(2),N2

c
5,uu;2 147/143 147/143 147/0 33/31 33/0 37132 (2) ✓

Ã
(2),N2

c
5,uu;3 157/153 157/153 157/0 31/29 31/0 31610 (2) ✓

Ã
(2),N2

c
5,uu;4 143/139 143/139 143/0 35/33 35/0 38710 (2) ✓

Ã
(2),1/N2

c
5,uu;1 223/219 223/219 223/0 50/48 50/0 134551 (?) ✗

Ã
(2),1/N2

c
5,uu;2 208/204 208/204 208/0 41/42 41/0 81973 (?) ✗

Ã
(2),1/N2

c
5,uu;3 219/215 219/215 219/0 49/46 49/0 130146 (?) ✗

Ã
(2),1/N2

c
5,uu;4 202/199 202/199 202/0 48/49 48/0 143320 (?) ✗

Ã
(2),N2

c
5,ud;1 163/160 163/160 163/0 33/32 33/0 30371 (2) ✓

Ã
(2),N2

c
5,ud;2 167/165 167/165 167/0 35/34 34/0 37506 (2) ✓

Ã
(2),N2

c
5,ud;3 150/147 150/147 150/0 33/29 31/0 29698 (2) ✓

Ã
(2),N2

c
5,ud;4 152/150 152/150 152/0 35/32 34/0 36726 (2) ✓

Ã
(2),1/N2

c
5,ud;1 219/217 217/215 217/0 55/53 55/0 173066 (?) ✗

Ã
(2),1/N2

c
5,ud;2 228/225 228/225 228/0 51/49 51/0 172337 (?) ✗

Ã
(2),1/N2

c
5,ud;3 218/213 216/211 216/0 47/45 47/0 118142 (?) ✗

Ã
(2),1/N2

c
5,ud;4 208/205 206/203 206/0 50/51 50/0 153605 (?) ✗

Ã
(2),Nc

5,q;1 136/135 119/118 119/0 34/32 34/0 26059 (2) ✓

Ã
(2),Nc

5,q;2 137/137 122/122 122/0 51/52 51/0 194872 (2) ✓

Ã
(2),Nc

5,q;3 148/147 130/129 130/0 43/44 43/0 108803 (2) ✓

Ã
(2),Nc

5,q;4 136/135 130/129 130/0 47/48 47/0 147167 (3) ✓

Table 3. Data about the functional reconstruction. The first column lists some of the most complicated
independent two-loop five-particle contracted helicity sub-amplitudes. From the second to the sixth
column, we show the maximal numerator/denominator polynomial degree of the rational coefficients at
the various stages of the optimisation discussed in the text. For each contracted helicity sub-amplitude,
we show the highest degree out of the independent helicity configurations listed in table 1. Before
the vertical line, the degrees refer to the coefficients of the pentagon-function monomials (cr,s(x⃗) in
eq. (3.20)) with x1 = 1; they are functions of 5 variables. After the vertical line, they refer to the
coefficients in the partial fraction decomposition with respect to x5, which depend on 4 variables.
The seventh column displays the number of sample points and of prime fields required to complete
the functional reconstruction after stage 4 (available only for the amplitudes that were analytically
reconstructed). The last column indicates whether the analytic form of the corresponding contracted
helicity sub-amplitude is available (✓) or not (✗).
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leading colour ones and the evaluation of the samples is also more expensive in terms of
time per point and of memory usage. In order to complete such analytic reconstructions
in a reasonable amount of time one would either need better reconstruction algorithms,
or to commit a significant amount of computing resources. Therefore, although the latter
would be possible in principle, we believe that committing our computing resources for this
computation is not justified. Several NNLO QCD computations for 2 → 3 processes have
demonstrated that the contribution of the two-loop finite remainders are rather small, in
the range of ≈ 2 – 10% [43, 51–54, 57–62], making the contribution of the subleading colour
two-loop amplitudes almost negligible. In such cases, the leading colour approximation of
the two-loop finite remainders is sufficient for a cross section calculation at NNLO QCD. Of
course, the size of the two-loop finite remainders contributing to the NNLO cross section
varies from one process to another, and care must be taken in estimating the contribution
from the subleading colour terms. In addition, the impact of the two-loop subleading colour
amplitudes has to be thoroughly assessed also for the differential distributions.

We opt to compute numerically the rational coefficients of the pentagon functions
appearing in the five-particle W -production two-loop finite remainders. The subleading
colour four- and three- particle sub-amplitudes, however, are computed analytically, since
they are comparatively simpler. Obtaining results by this numerical approach is considerably
more expensive than evaluating analytic expressions, making the use for on-the-fly Monte
Carlo phase-space integration nonviable. Nonetheless, we expect that it will still be feasible
to include the subleading colour contributions of the two-loop finite remainders by means
of re-weighting [51, 106].

For this numerical evaluation, we employ the analytic framework described in section 3.2,
albeit with a number of modifications. First of all, in our analytic computation of the helicity
amplitudes we parametrise the external kinematics in terms momentum-twistor variables. For
a physical phase-space point, some of the momentum twistor variables (x2, x3, x5) are complex
valued, this way making our setup incompatible with the finite-field approach as is. To
overcome this issue, we employ the four-dimensional projector method [107, 108] to construct
the unreduced amplitude. In this construction, we can work directly with the Mandelstam
invariants, which are by definition real valued. In order to build the unreduced amplitude,
we first consider the tensor decomposition of the contracted amplitudes in eq. (3.15),

Ã
(L)
5,uu/ud,i =

8∑
j=1

χ
(L)
uu/ud,i;j Tj , (3.21)

with
T1 = ū(p1)/p3v(p2) p1 · ε(p3, q3) p1 · ε(p4, q4) ,

T2 = ū(p1)/p3v(p2) p1 · ε(p3, q3) p2 · ε(p4, q4) ,

T3 = ū(p1)/p3v(p2) p2 · ε(p3, q3) p1 · ε(p4, q4) ,

T4 = ū(p1)/p3v(p2) p2 · ε(p3, q3) p2 · ε(p4, q4) ,

T5 = ū(p1)/p4v(p2) p1 · ε(p3, q3) p1 · ε(p4, q4) ,

T6 = ū(p1)/p4v(p2) p1 · ε(p3, q3) p2 · ε(p4, q4) ,

T7 = ū(p1)/p4v(p2) p2 · ε(p3, q3) p1 · ε(p4, q4) ,

T8 = ū(p1)/p4v(p2) p2 · ε(p3, q3) p2 · ε(p4, q4) ,

(3.22)
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original stage 1 stage 2

T †
j · Ã

(2),1/N2
c

5,uu,1 100/97 100/97 100/0

T †
j · Ã

(2),1/N2
c

5,uu,2 99/96 99/96 99/0

T †
j · Ã

(2),1/N2
c

5,uu,3 101/97 101/97 101/0

T †
j · Ã

(2),1/N2
c

5,uu,4 101/97 101/97 101/0

T †
j · Ã

(2),1/N2
c

5,ud,1 97/93 96/92 96/0

T †
j · Ã

(2),1/N2
c

5,ud,2 97/93 97/93 97/0

T †
j · Ã

(2),1/N2
c

5,ud,3 97/93 96/92 96/0

T †
j · Ã

(2),1/N2
c

5,ud,4 97/93 96/92 96/0

Table 4. Maximal numerator/denominator polynomial degree of the rational coefficients of the
pentagon-function monomials appearing in the T †

j ·Ã
(2),1/N2

c

5,uu/ud,i amplitude up to stage 2 of our optimisation

strategy. We note that T †
j · Ã

(2),1/N2
c

5,uu/ud,i are functions of the five-particle Mandelstam invariants s⃗5.

where qi are arbitrary reference momenta. We choose them as q3 = p4 and q4 = p3. We
stress that the same choice of photon’s reference vectors will be used throughout the whole
calculation, i.e. in the computation of the five- and four-particle sub-amplitudes as well as
of the decay currents. The form factors are then obtained by

χ
(L)
uu/ud,k;i =

∑
j

(
Θ−1

)
ij

T †
j · Ã

(L)
5,uu/ud,k , (3.23)

where Θij = T †
i · Tj . We derive the analytic form of the unreduced T †

j · Ã
(L)
5,uu/ud,k amplitude

as a linear combination of scalar Feynman integrals. This is the starting point of our
finite-field computation. The subsequent steps — IBP reduction, ϵ-expansion and map to
pentagon functions — are carried out numerically over finite field as discussed in section 3.2.
Instead of performing a univariate partial fraction decomposition, however, we substitute the
rationalised numerical values of the Mandelstam invariants. For each phase-space point we
need to perform the numerical evaluation on several finite fields — that is, modulo several
different primes — in order to reconstruct the numerical values of the rational coefficients.
A similar approach, where rational kinematics is employed in the IBP reduction, has been
used for example in refs. [66, 109].

We present in table 4 the polynomial degree information on the rational coefficients of
the pentagon functions appearing in T †

j · Ã
(L)
5,uu/ud,k at stage 2 (after imposing linear relations

and denominator guessing) prior to the numerical reconstruction. Finally, we derive the
contracted helicity amplitudes (Ã(L)

5,uu/ud,i) numerically by specifying the helicity states of
the external particles in eq. (3.22) and plugging them into eq. (3.21), to be combined with
the form factors χ

(L)
uu/ud,i;j numerically.
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3.4 Checks

We have performed the following checks to validate our results.

• Gauge invariance
We verified the gauge invariance by checking that the Ward identities are satisfied, i.e.,
that replacing one of the photon polarisation vectors by its momentum yields zero. We
recall that the individual terms in the amplitude decomposition in eq. (2.4) are not
separately gauge invariant, and checking the Ward identities thus requires summing
all the contributions. Furthermore, we use the complex mass scheme to ensure that
the Ward identities are satisfied [12, 110–112]. We evaluated the rational coefficients
of the full colour amplitude numerically at a non-physical rational phase-space point
(where all the momentum-twistor variables are real and positive) and left the pentagon
functions symbolic. This is possible because the pentagon functions are by construction
algebraically independent.

• Cancellation of UV and IR singularities
In deriving the finite remainders, we demonstrate that the UV and IR poles cancel
out as expected. This serves as a strong consistency check of our loop-amplitude
computation. While we demonstrated the pole cancellation analytically for the leading
colour amplitudes, for the subleading colour contributions we checked the cancellation
of the poles numerically at a non-physical rational phase-space point (again leaving the
pentagon functions symbolic).

• Renormalisation-scale dependence
We checked that the numerical evaluation of the finite remainders at µR ̸= 1, obtained
through eqs. (2.27) – (2.29), agrees with the evaluation at µR = 1 and rescaled values
of the momenta as dictated by dimensional analysis,

F
(L)
6 (p⃗, µR = a)

A
(0)
6 (p⃗)

= F
(L)
6 (p⃗/a, µR = 1)

A
(0)
6 (p⃗/a)

, (3.24)

where p⃗ is a shorthand for the list of all external momenta (p1, p2, p3, p4, p5, p6). We
note that the tree-level amplitude does not depend on µR.

• One-loop comparison against OpenLoops
We compared against OpenLoops [113] at the level of the squared bare amplitudes at
tree and one-loop levels, in full colour, for both the W +γγ and W−γγ processes. While
we derived the one-loop amplitude through O(ϵ2), the comparison against OpenLoops
is carried out only up to O(ϵ0).

4 Results

We derived analytic expressions for the leading colour two-loop amplitudes required to
obtain NNLO QCD predictions for pp → Wγγ production at the LHC. For the subleading
colour contributions, we set up a routine which allows us to obtain numerical values, albeit
with a significant computational cost. Both the analytic and numerical results rely on the
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computational framework based on finite-field arithmetic presented in the previous section.
In this section, we first present benchmark numerical results for the bare helicity amplitude
and hard functions at a phase-space point in the physical scattering region. We further
discuss the analytic properties of the two-loop amplitudes and describe the ancillary files
that accompany this paper.

4.1 Numerical results

At parton level, W +γγ production at hadron colliders consists of the following two scattering
channels,

u(−p1) + d̄(−p2) → γ(p3) + γ(p4) + νℓ(p5) + ℓ+(p6) ,

d̄(−p1) + u(−p2) → γ(p3) + γ(p4) + νℓ(p5) + ℓ+(p6) ,
(4.1)

while for W−γγ production we have

d(−p1) + ū(−p2) → γ(p3) + γ(p4) + ℓ−(p5) + ν̄ℓ(p6) ,

ū(−p1) + d(−p2) → γ(p3) + γ(p4) + ℓ−(p5) + ν̄ℓ(p6) .
(4.2)

We present benchmark values at the following phase-space point in the physical scatter-
ing region:

s12 = 106 GeV2 ,
s23
s12

= − 1
78 ,

s34
s12

= 5
56 ,

s45
s12

= 1
87 ,

s56
s12

= 23
90 ,

s16
s12

= −38
79 ,

s123
s12

= 79
96 ,

s234
s12

= −21
64 ,

tr5(1234) = −i
√
300731287031
25159680 GeV2 .

(4.3)

We refer to appendix B for the definition of the parity-odd invariant tr5(1234). The other
input parameters are

MW = 80.419 GeV , ΓW = 2.0476 GeV ,

MZ = 91.188 GeV , ΓZ = 2.441404 GeV ,

αs = 0.118 , α−1 = 137.035999 ,

nf = 5 .

(4.4)

We employ the complex mass scheme to preserve the gauge invariance. In this scheme,
the masses of the electroweak vector bosons (µW and µZ) and the weak coupling (gW )
are complex valued:

µ2
W = M2

W − i ΓW MW , (4.5)
µ2

Z = M2
Z − i ΓZ MZ , (4.6)

gW = e√
1− µ2

W

µ2
Z

. (4.7)

In order to obtain the full set of six-point helicity amplitudes specified in eq. (2.13) for
all contributions appearing in eq. (2.4) from the independent five-, four- and three-particle
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helicity amplitudes tabulated in table 1, we need to apply permutations of the external
momenta and/or parity transformation. The permutation of the momentum-twistor variables
z⃗ and x⃗ is achieved by permuting the external momenta on the r.h.s. of their definition in
eqs. (A.1) and (A.4). This suffices to obtain the values of the rational coefficients upon
momentum permutation.6 Permuting the momenta in the pentagon functions requires instead
some work, as they can only be evaluated in the s12 channel.7 In order to evaluate the
pentagon functions in different channels, we rely on the fact that the pentagon functions
cover the master integrals in all permutations of the external massless legs. This in fact
allows us to express the pentagon functions evaluated in any physical channel as polynomials
in pentagons functions evaluated in the s12 channel. These relations can be obtained by
rewriting the pentagon functions in terms of master-integral components, permuting the
external massless legs in them, and re-expressing the result in terms of pentagon functions.
We provide them in our ancillary files. We refer e.g. to refs. [29, 43, 50] for a more thorough
discussion of how to permute the pentagon functions. We emphasise that, with this approach,
evaluating the pentagon functions at a single phase-space point in the s12 channel suffices
to cover all possible crossings of the integrals/amplitudes.

In tables 5 and 6, we present numerical results for the bare one- and two-loop six-point
helicity amplitudes normalised to the tree-level amplitude,

Â
(L),i
6 = A

(L),i
6

A
(0),i
6

, (4.8)

for the ud̄ → γγνℓℓ
+ scattering channel evaluated at the phase-space point defined in eq. (4.3)

for all Nc and nf components listed in eqs. (2.7) – (2.9), with µR = 1 GeV. Furthermore,
we show the numerical results of the hard functions defined in eqs. (2.30) – (2.32) for all
scattering channels contributing to W +γγ and W−γγ productions in tables 7 and 8 with
the renormalisation scale µR is set to 1 and 100 GeV, respectively.

To obtain numerical results at full colour for both bare helicity amplitudes and hard
functions, we need to determine the rational coefficients of the pentagon functions for the
subleading colour two-loop five-particle amplitudes numerically using the approach discussed
in section 3.3. To derive numerical results for both the W +γγ and W−γγ productions for
all scattering channels shown in eqs. (4.1) and (4.2), we need to compute the T †

j · Ã
(2),1/N2

c
5,uu,i

and T †
j · Ã

(2),1/N2
c

5,ud,i amplitudes (defined in eq. (3.23) with i = 1, · · · , 32) evaluated for the
five-particle Mandelstam invariants s⃗5 and s⃗ ′

5 where s⃗ ′
5 = s⃗5|p1↔p2 . We in fact recall that the

momentum swap p1 ↔ p2 allows us to obtain d̄u → γγνℓℓ
+ (ūd → γγℓ−ν̄ℓ) from ud̄ → γγνℓℓ

+

(dū → γγℓ−ν̄ℓ) as well as the W−γγ amplitudes from the W +γγ ones. The evaluation time
for the T †

j · Ã
(2),1/N2

c
5,uu,i amplitudes at the stage 2 of our optimisation strategy (described in

section 3.2) per phase-space point and for a single prime field is about 50 seconds, while for

6This operation must be performed on expressions that are free of helicity phases, which can be obtained
by normalising each helicity sub-amplitude by an arbitrary phase factor. See appendix C of ref. [43] for a
detailed discussion of this.

7Note the different labelling of the momenta. Our momenta (pi) are related to the ones used in the
pentagon functions (p′

i) [26, 29] by
(
p′

1, p′
2, p′

3, p′
4, p′

5
)

=
(
p5 + p6, p4, p3, p2, p1

)
.
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W +γγ helicity ϵ−2 ϵ−1 ϵ0 ϵ1 ϵ2

Â
(1),Nc

6 +−++−+ −1 12.3155−
3.14159i

−70.4776 +
36.4764i

248.909−
210.537i

−594.200 +
804.874i

+−+−−+ −1 12.3155−
3.14159i

−73.4410 +
37.2798i

280.391−
220.225i

−763.959 +
864.563i

+−−+−+ −1 12.3155−
3.14159i

−71.0908 +
35.1241i

255.807−
197.895i

−633.056 +
745.050i

+−−−−+ −1 12.3155−
3.14159i

−73.1768 +
37.0202i

278.485−
217.118i

−758.473 +
848.321i

Table 5. Bare one-loop six-point helicity amplitudes normalised to the tree-level amplitudes for
W +γγ production in the ud̄ → γγνℓℓ

+ scattering channel evaluated at the phase-space point given in
eq. (4.3) with µR = 1 GeV.

T †
j · Ã

(2),1/N2
c

5,ud,i amplitudes it is about 85 seconds.8 At least 33 prime fields are needed to fully
reconstruct the values of rational coefficient of the pentagon functions at the phase-space
point specified in eq. (4.3).

To demonstrate the feasibility of our approach to compute the full-colour amplitude for
a relatively large set of phase-space points, we evaluated both the W +γγ and W−γγ hard
functions on a univariate phase-space slice, parametrised as

pµ
1 =

√
s

2 (−1, 0, 0,−1) ,

pµ
2 =

√
s

2 (−1, 0, 0, 1) ,

pµ
3 = u1

√
s

2

(
1, t,

t

1000 ,
t

1000

)
,

pµ
4 = u2

√
s

2 (1, cos θ,− sinϕ sin θ,− cosϕ sin θ) ,

pµ
5 = u3

√
s

2 (1, cos θll,− sinϕll sin θll,− cosϕll sin θll) ,

(4.9)

while p6 follows from momentum conservation. The values of t, cos θ and u3 are fixed by
the constraints p2

3 = 0, (p5 + p6) = M2
ll and p2

6 = 0, respectively. We chose the following
numerical values

s = 104 GeV2 , Mll = 60GeV , ϕ = 1
10 , u1 = 1

7 , θll =
π

2 , ϕll =
π

3 ,

(4.10)

and generated 199 points by varying the remaining variable u2 in the interval of (87/175, 29/50).
In order to evaluate the hard functions we rationalise the phase-space points as described

8In our setup, the T †
j · Ã

(2),1/N2
c

5,uu/ud,i
amplitudes are processed simultaneously for all the tensor structures

(j = 1, · · · , 8) and for each i = 1, · · · , 4. The evaluation times quoted in this work are measured on an Intel(R)
Xeon(R) Gold 6432 2.80 GHz CPU.
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W +γγ helicity ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

Â
(2),N2

c
6 +−++−+ 0.5 −13.2322 +

3.14159i
162.918−
80.9263i

−1234.49 +
1008.40i

6330.53−
8136.93i

+−+−−+ 0.5 −13.2322 +
3.14159i

165.882−
81.7297i

−1310.81 +
1040.23i

7274.97−
8660.09i

+−−+−+ 0.5 −13.2322 +
3.14159i

163.532−
79.5740i

−1255.43 +
976.066i

6636.25−
7775.07i

+−−−−+ 0.5 −13.2322 +
3.14159i

165.618−
81.4701i

−1305.49 +
1032.15i

7230.30−
8550.74i

Â
(2),1/N2

c
6 +−++−+ 0.5 −12.3155 +

3.14159i
141.379−
75.1667i

−1003.61 +
881.175i

4845.29−
6798.85i

+−+−−+ 0.5 −12.3155 +
3.14159i

144.342−
75.9701i

−1069.06 +
910.066i

5551.74−
7191.47i

+−−+−+ 0.5 −12.3155 +
3.14159i

141.992−
73.8144i

−1022.31 +
853.804i

5082.41−
6537.13i

+−−−−+ 0.5 −12.3155 +
3.14159i

144.078−
75.7105i

−1064.72 +
902.932i

5526.61−
7100.16i

Â
(2),Ncnf

6 +−++−+ 0 0.166667 −3.82739 +
1.04720i

40.7341−
22.5723i

−267.947 +
244.573i

+−+−−+ 0 0.166667 −3.82739 +
1.04720i

42.7097−
23.1079i

−307.262 +
256.430i

+−−+−+ 0 0.166667 −3.82739 +
1.04720i

41.1429−
21.6707i

−276.275 +
228.505i

+−−−−+ 0 0.166667 −3.82739 +
1.04720i

42.5336−
22.9348i

−304.621 +
252.861i

Â
(2),Nc

6,q +−++−+ 0 0 0 0 −18.4450−
44.8624i

+−+−−+ 0 0 0 0 15.8310 +
23.0822i

+−−+−+ 0 0 0 0 16.5070−
8.58631i

+−−−−+ 0 0 0 0 0.0820702+
1.03421i

Table 6. Bare two-loop six-point helicity amplitudes normalised to the tree-level amplitudes for
W +γγ production in the ud̄ → γγνℓℓ

+ scattering channel evaluated at the phase-space point given
in eq. (4.3) with µR = 1 GeV. We show all Nc and nf components appearing in eqs. (2.8) and (2.9).
Here the A

(2)
6,q has been separated out from the other sub-amplitudes contributing to the six-point

amplitude as given in eq. (2.4).
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W +γγ H(0) [GeV−4] H(1)/H(0) H(2)/H(0) H(2)
lc /H(0)

ud̄ → γγνℓℓ
+ 5.111840 · 10−14 -0.2048115 0.09738631 0.1171781

d̄u → γγνℓℓ
+ 0.7177927 · 10−14 -0.3402089 0.2266332 0.2639021

W−γγ H(0) [GeV−4] H(1)/H(0) H(2)/H(0) H(2)
lc /H(0)

dū → γγν̄ℓℓ
− 3.906753 · 10−12 -0.1711305 0.05641518 0.07114385

ūd → γγν̄ℓℓ
− 0.367502 · 10−12 -0.1508495 0.03488613 0.04697647

Table 7. Benchmark numerical results for the tree-level, one- and two-loop hard functions (defined in
eqs. (2.30) – (2.32)) for all scattering channels contributing to W +γγ and W−γγ productions at the
phase-space point given in eq. (4.3) with µR = 1 GeV. For the two-loop hard functions we also provide
the results in the leading-colour approximation. The one- and two-loop amplitude decompositions in
the leading colour approximation are given in eqs. (2.10) – (2.12).

W +γγ H(0) [GeV−4] H(1)/H(0) H(2)/H(0) H(2)
lc /H(0)

ud̄ → γγνℓℓ
+ 5.111840 · 10−14 -0.2048115 0.04836010 0.05771527

d̄u → γγνℓℓ
+ 0.7177927 · 10−14 -0.3402089 0.08783011 0.1034402

W−γγ H(0) [GeV−4] H(1)/H(0) H(2)/H(0) H(2)
lc /H(0)

dū → γγν̄ℓℓ
− 3.906753 · 10−12 -0.1711305 0.02972155 0.03680515

ūd → γγν̄ℓℓ
− 0.367502 · 10−12 -0.1508495 0.02164006 0.02776627

Table 8. Same as table 8 but with µR = 100 GeV.

in appendix B. In figure 4, we plot the tree-level, one- and two-loop hard functions for all
scattering channels in the W +γγ and W−γγ productions on the univariate phase-space slice
defined above. In these figures we show both the full and the leading colour two-loop hard
functions. We additionally analyse the impact of the subleading colour contributions to the
full colour hard functions. In figure 5 we show the relative difference between the full colour
and the leading colour hard functions, for the same set of phase-space points. We observe
that for all scattering channels in the W +γγ and W−γγ productions, the subleading colour
corrections are negative. Furthermore, we found that for the ud̄ → γγνℓℓ

+, d̄u → γγνℓℓ
+ and

dū → γγℓ−ν̄ℓ channels, the distributions of subleading colour corrections are sharply peaked
at around −10%, while for the ūd → γγℓ−ν̄ℓ channel they are spread between −35% and
−10%. We however stress that the full picture of the subleading colour corrections to the hard
functions can only be drawn by using the phase-space points corresponding to a NNLO cross
section computation, with the correct kinematical cuts and renormalisation scale applied and
with the infrared subtraction scheme matching the one used in the said NNLO calculation.
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Figure 4. Tree level, one- and two-loop hard functions evaluated on the univariate phase-space slice
defined by eqs. (4.9) and (4.10) for all scattering channels of W +γγ (upper panel) and W−γγ (lower
panel) production, with µR = 100GeV.
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Figure 5. Distribution of subleading colour corrections to the two-loop hard functions for the set of
phase-space point defined in eqs. (4.9) and (4.10), for W +γγ (left) and W−γγ (right) production.

4.2 Analytic properties

The results derived in this paper are the first to make use of the non-planar (one-mass)
pentagon functions [26]. Although for the subleading colour amplitudes we know the rational
coefficients only numerically, this suffices to study certain analytic properties of the amplitudes
related to the non-planar pentagon functions. These properties may be conveniently exposed
in terms of the letters [114, 115], algebraic functions of the kinematic invariants which dictate
the singularity structure of the amplitudes. In other words, the amplitudes may be singular
only where one or more letters either vanish or go to infinity. The pentagon functions can be
written as iterated integrals with integration kernels given by logarithms of the letters [116],
and this representation makes their analytic structure manifest. The most interesting analytic
properties are related to the degree-4 polynomials in the Mandelstam invariants which appear
under a square root: ∆5, which is the Gram determinant of the external momenta, and
Σ(i)

5 with i = 1, . . . , 6, which are mass-deformations of ∆5 related by permutations [24].
In particular, some non-planar Feynman integrals are non-smooth inside the physical s12
scattering channel7 where one of the Σ(i)

5 vanishes, i.e., they are finite but their derivatives are
singular. Furthermore, some non-planar Feynman integrals are divergent inside the physical
s12 scattering channel where Σ(3)

5 = 0.
First of all, we observe that the letter

√
∆5 is absent in the one- and two-loop finite

remainders. This has by now become a well established phenomenon, as it has already been
observed in a multitude of massless and one-mass two-loop five-point amplitudes, and linked

— in the massless case — to cluster algebras [117] and Gröbner fans [118].
We further note that the set of pentagon functions denoted by FΣ5 in ref. [26], that

is, those involving the letters
√
Σ(i)

5 (for all i = 1, . . . , 6), are absent from the two-loop

amplitudes. We emphasise that the letters
√
Σ(i)

5 only appear starting from two-loop order,
and are therefore absent already at the level of the bare amplitudes. This is in contrast with√
∆5, which instead cancels out in the subtraction of the IR and UV singularities and is

therefore absent only at the level of the finite remainders. The absence of these letters has two
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important consequences. First, it implies that the amplitudes are finite inside the physical
channel. The pentagon functions which are singular at Σ(3)

5 = 0 inside the s12 channel in fact
all contain the letter

√
Σ(3)

5 . Second, evaluating numerically the set of pentagon functions
FΣ5 demands higher intermediate precision due to the presence of integrable singularities,
at the cost of performance. Excluding these functions from the numerical evaluation of the
amplitudes therefore leads to a useful speed up.

Finally, a number of (non-planar) pentagon functions are non-smooth when crossing the
Σ(i)

5 = 0 hyper-surfaces inside the s12 channel, i.e., they are finite but their derivatives are
singular. All the weight-2 pentagon functions with this property (F (2)

i for i = 30, . . . , 35, one
for each Σ(i)

5 ) are present in the finite remainders. As for the weight-3 and 4 pentagon functions,
we observe that only those which are non-smooth at Σ(3)

5 = 0 are present. This observation
holds also for the hard functions, as all the contributing permutations leave Σ(3)

5 invariant.
The simplification of the analytic structure of the scattering amplitudes and finite

remainders with respect to the Feynman integrals highlights the importance of classifying the
required special functions according to their analytic properties. With an arbitrary choice of
special functions in the representation of the master integrals, in fact, the cancellations above
would only occur at the numerical level. In refs. [26, 29], instead, the non-trivial analytic
properties of the integrals were isolated into the minimal number of independent pentagon
functions. This guarantees that the cancellation of, say, the divergence at Σ(3)

5 = 0 implies
the absence of the corresponding pentagon functions. In this way the analytic structure of the
amplitudes and finite remainders is more transparent, and the number of special functions
which need to be evaluated is minimised.

4.3 Description of the ancillary files

We provide analytic expressions for the one-loop amplitudes through O(ϵ2) and for the
two-loop leading colour amplitudes through O(ϵ0) in the ancillary files [119]. Numerical
results for the subleading colour contributions are available upon request. The analytic
expressions are given separately for the finite remainders and the corresponding pole terms.
The L-loop finite remainders F (L) truncated at order ϵ0 are presented in the form

F (L) =
∑
ij

ri(y⃗)Sij mj(f) , (4.11)

where ri are rational coefficients, S is a sparse matrix of rational numbers, and mj(f) are
monomials of pentagon functions, transcendental constants and square roots. The rational
coefficients ri are written in terms of independent polynomials yi, functions of the five-particle
momentum-twistor variables x⃗, collected globally across all finite remainders at each loop
order. In the case of the one-loop finite remainders F (1) expanded up to order ϵ2, the sparse
matrices have an additional index for the order in ϵ, as

F (1) =
2∑

k=0
ϵk
∑
ij

ri(y⃗)Skij mj(f) . (4.12)

Analytic expressions for both the poles and finite remainders are derived with x1 set to 1;
the rational coefficients’ dependence on x1 is restored in the numerical evaluation files.
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All our ancillary files are in text format and contain expressions in Wolfram Mathematica
language. The sub-amplitudes are given in the notation of the article as follows

uu = A
(L)
5,uu , ud = A

(L)
5,ud , Qk = A

(L)
5,q ,

uw45 = A
(L)
4,u , wwaa = A

(L)
3 ,

(4.13)

while for the helicity configurations we have

pmpp1 = Ã
(L),+−++
5,uu/ud/q;1 , pmpp2 = Ã

(L),+−++
5,uu/ud/q;2 , pmpp3 = Ã

(L),+−++
5,uu/ud/q;3 , pmpp4 = Ã

(L),+−++
5,uu/ud/q;4 ,

pmp1 = Ã
(L),+−+
4,u;1 , pmp2 = Ã

(L),+−+
4,u;2 , pmp3 = Ã

(L),+−+
4,u;3 , pmpX = Ã

(L),+−+
4,u;4 ,

pm1 = Ã
(L),+−
3;1 , pm2 = Ã

(L),+−
3;2 , pmA = Ã

(L),+−
3;3 , pmB = Ã

(L),+−
3;4 .

(4.14)

The five- and six-particle momentum-twistor variables are denoted by ex[i]= xi (i =
1, . . . , 6) and z[i]= zi (i = 1, . . . , 8), respectively, and the Mandelstam invariants by
s[i,\ldots ,j]= (pi + . . . + pj)2, as well as s12= s12, s123= s123, et cetera. The di-
mensional regulator, ϵ, is denoted by eps. We list and describe below all our ancillary files.

• finite_remainders/tree_waa_<X>_<helicity>.m: tree-level amplitudes organised
according to the type of sub-amplitude <X> (see eq. (4.13)) and the helicity configuration
<helicity> (see eq. (4.14)).

• finite_remainders/FiniteRemainder_waa_coeffs_y_<k>L_<X>_Nfp<a>_Ncp<b>_
<helicity>.m: rational coefficients (ri in eq. (4.11)). The files are organised according
to the loop-order <k>, the sub-amplitude type <X> (see eq. (4.13)), the powers of nf

(<a>) and Nc (<b>) and the helicity configuration <helicity> (see eq. (4.14)). In order
to enable the evaluation of the one-loop amplitudes up to O(ϵ2) we have also provided
the one-loop finite remainders up to O(ϵ2). The corresponding file names are marked
by the _eps2.m ending.

• finite_remainders/FiniteRemainder_waa_sm_*.m: sparse matrices of rational num-
bers (S in eqs. (4.11) and (4.11)) connecting the rational coefficients and the pentagon-
function monomial basis. They are written in Mathematica’s SparseArray format.
The sparse matrix files are organised as discussed in the previous item.

• finite_remainders/ys_<k>L_simp.m: replacement rules defining the common poly-
nomial factors y⃗ (y[i]) as functions of the five-particle momentum-twistor variables x⃗

(ex[i]), collected across all finite remainders separately at each loop order <k>.

• finite_remainders/FunctionBasis_<k>L.m: monomial basis for the <k>-loop finite
remainders. They contain pentagon functions F[w,i], the transcendental constants
im[1, 1] (iπ) and re[3, 1] (ζ3), powers of x1 (ex[1]), and square roots (sqrtDelta5,
sqrtG3[i], sqrtSigma5[i]). See refs. [26, 29] for more details.

• poles/poles_waa_<k>L_<X>_Nfp<a>_Ncp<b>_<helicity>.m: UV and IR poles de-
fined in eqs. (2.17) and (2.18), organised as the finite remainders. In contrast to the
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latter, the pole terms are represented as in eq. (3.20). Each files contains a list with
the following format,

{coefficientrules,{coefficients,monomials}} ,

where coefficientrules is a list of replacement rules defining the independent ra-
tional coefficients f[i] as functions of the five-particle momentum-twistor variables x⃗

(ex[i]), monomials are pentagon-function monomials (including also square roots and
transcendental constants, as discussed in the fifth item of this list), and coefficients
are the rational coefficients of the monomials, written in terms of ϵ (eps) and of the
independent coefficients f[i].

• decay_currents/InvDelta_*.m: inverse of the Gram matrices defined in eq. (3.16).
They are contained in the following files:

InvDeltaM_5pt.m : ∆−1
5 ,

InvDeltaM_4pt.m : ∆−1
4 ,

InvDeltaM_4pt_x34.m : ∆−1
4 |p3↔p4 ,

InvDeltaM_3pt.m : ∆−1
3 .

(4.15)

• decay_currents/decay_*.m: decay currents for W → ℓν, W → ℓνγ and W → ℓνγγ

needed to build the full six-point amplitude from the five-, four- and three-particle
amplitudes. The decay currents are written in terms of six-particle momentum-twistor
variables z⃗ (z[i]). The following files are associated with the decay currents specified
in eqs. (3.2), (3.5), (3.6) and (3.8):

decay_5pt.m : Lµ(5ν , 6ℓ̄) ,

decay_4pt_W4.m : Li
µ(4γ , 5ν , 6ℓ̄) ,

decay_4pt_W3.m : Li
µ(3γ , 5ν , 6ℓ̄) ,

decay_3pt.m : Li
µ(3γ , 4γ , 5ν , 6ℓ̄) .

(4.16)

We use the following short-hards:

InvCMWsq = 1
M2

W − i ΓW MW
,

Wprop[s] = 1
s − M2

W + iΓW MW
.

(4.17)

• pentagon_functions_permutations/: permutation rules for the one-mass pentagon
functions.

• Evaluate_BareAmplitudes_WplusAA_RationalisedPS.wl: Mathematica notebook
which illustrates how to obtain the values of the leading colour bare helicity amplitudes
for the ud̄ → γγνℓℓ

+ scattering channel.
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• Evaluate_HardFunctions_w2photon_RationalisedPS.wl: Mathematica notebook to
evaluate the leading colour hard functions for all scattering channels in the W +γγ and
W−γγ productions. Here we rationalise the six-point phase-space points as described
in appendix B.

• Evaluate_HardFunctions_w2photon.wl: Mathematica notebook to evaluate the lead-
ing colour hard functions for all scattering channels in the W +γγ and W−γγ productions
without phase-space rationalisation.

• utilities.m: definition of auxiliary functions required for the numerical evaluation
notebooks.

The numerical evaluation scripts require the installation of the library PentagonFun-
ctions++ [30] and its availability in Mathematica’s search path.

5 Conclusion

In this article we have presented the two-loop helicity amplitudes for the production of
a W boson in association with two photons at the LHC. We derived analytic expressions
for the two-loop amplitudes in the leading colour limit, including the contributions from
the non-planar diagrams, whereas we provide numerical results for the subleading colour
contributions. This is therefore the first result for a two-loop 2 → 3 amplitude with an
external off-shell leg involving non-planar Feynman integrals.

The results were obtained in terms of pentagon functions [26, 29] using a finite field
framework incorporating integrand and integral reduction techniques. Optimised integration-
by-parts identities generated using NeatIBP [78] led to a substantial improvement in the
reduction to master integrals. We employed the package pfd-parallel [104] to simplify the
expressions of the rational coefficients by means of multivariate partial fraction decomposition.

The basis of pentagon functions permits efficient numerical evaluation but the algebraic
complexity of the coefficients is considerable in the subleading colour partial amplitudes. In
this case it is also relevant to consider the size of the subleading colour contributions and
whether it is beneficial to reconstruct full analytic expressions through an extremely large
number of finite field evaluations. We therefore considered an alternative approach in which
the subleading colour partial amplitudes are computed numerically. Numerical computations
modulo a prime number cannot be used directly for evaluations of physical phase-space points
and so we introduced an alternative strategy in which four-dimensional projectors were used
to ensure the input could be given in terms of real valued, rationalised, invariants.

Using these techniques, we evaluated numerically the full colour hard functions for a
univariate phase-space slice as a test case, and investigated the size of subleading colour
corrections. We found that, while in most cases they are of the order of −10%, for a certain
channel or phase-space configuration they can be larger, reaching almost −40%. While some
of those corrections are perhaps not negligible, the numerical evaluation strategy would be
sufficient to provide complete results using a re-weighting method. It should be noted however
that such statements depend on the subtraction scheme used to define the finite remainder
and the kinematic cuts applied to define the observables.
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Our results also allowed us to study at amplitude level certain non-trivial analytic
properties of the non-planar Feynman integrals discussed in ref. [26]. We observe striking
cancellations and simplifications in the amplitudes with respect to the Feynman integrals.
This will enable a more efficient numerical evaluation of the amplitudes, and give useful
constraints in a bootstrap context. It would therefore be of great interest to prove that these
simplifications occur for the amplitudes with these kinematics in general.

Now that all amplitude-level ingredients are available, the path is open for combination
with real radiation contributions and we look forward to phenomenological studies of this
process at the NNLO in QCD.
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A Momentum-twistor parametrisations

We define here the momentum-twistor variables which we used to obtain a rational and
minimal parametrisation of the external kinematics. For the six-particle kinematics we adopt
the parametrisation of ref. [87],

z1 = s12 , z2 = −tr+(1234)
s12s34

, z3 = −tr+(1345)
s45s13

,

z4 = −tr+(1456)
s14s56

, z5 = s23
s12

, z6 = −tr+[15(3 + 4)2]
s12s15

,

z7 = tr+[51(2 + 3)(2 + 3 + 4)]
s15s23

, z8 = s123
s12

,

(A.1)

where

tr±(ij · · · kl) = 1
2 tr

[
(1± γ5)/pi/pj

· · · /pk/pl

]
, (A.2)

tr±[· · · (i + j) · · · ] = tr±(· · · i · · · ) + tr±(· · · j · · · ) . (A.3)
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The five-, four- and three-particle W -production amplitudes can instead be described through
a five-particle parametrisation. We use that of ref. [48],

x1 = s12 , x2 = −tr+(1234)
s12s34

,

x3 = tr+[1341(5 + 6)2]
s13 tr+ [14(5 + 6)2] , x4 = s23

s12
,

x5 = −tr−[1(2 + 3)(1 + 5 + 6)(5 + 6)23]
s23 tr−[1(5 + 6)23] , x6 = s123

s12
.

(A.4)

Note that the spinor-phase information is lost when using momentum-twistor variables. Care
should therefore be taken to restore it in order to perform operations such as permutations
and parity conjugation, e.g. by introducing suitable helicity-dependent spinor-phase factors.
We refer to appendix C of ref. [43] for a discussion of this topic.

B Rationalising the six-particle phase-space points

The evaluation of the rational coefficients of the pentagon-function monomials in the two-loop
five-particle subleading colour amplitudes is done numerically over finite field as detailed
in section 3.3. For this approach, we need the Mandelstam invariants that parametrise
the five-particle amplitude to be rational numbers as we are computing the unreduced
contracted amplitudes T †

j · Ã
(L)
5,uu/ud,k (cf. eq. (3.23)). In addition, rationalising the six-particle

momentum-twistor variables zi does not guarantee that the resulting Mandelstam invariants
are real valued, and this is required for the evaluation of the pentagon functions. Here we
describe our procedure to obtain rationalised Mandelstam invariants.

We start with a set of six-particle momenta, defined as all outgoing, following eqs. (2.1)
and (2.2). We then compute 8 independent six-particle Mandelstam invariants, which we
choose as

s⃗6 = {s12, s23, s34, s45, s56, s16, s123, s234} , (B.1)

and rationalise them to the target accuracy. Increasing the accuracy in the rationalisation
results in larger rational numbers, which means that more prime fields are needed for the
rational reconstruction. The evaluation time of the rational coefficients in this approach scales
linearly with the number of required primes,9 which should therefore be minimised. Only six
of the six-particle Mandelstam invariants contribute to the five-particle sub-amplitudes:

s⃗5 = {s12, s23, s34, s56, s123, s234} . (B.2)

In order to fully specify the six-particle kinematics, we also need a pseudo-scalar quantity,
which captures the parity degree of freedom. We choose it to be tr5(1234), with

tr5(ijkl) = 4 i εµνρσ pµ
i pν

j pρ
kpσ

l , (B.3)

9This process is sequential and stops when including a new prime does not change the reconstructed
number.
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where εµνρσ is the anti-symmetric Levi-Civita pseudo-tensor. Since we have rationalised the
Mandelstam invariants s⃗6, we compute tr5(1234) directly from them. To this end, note that
the square of tr5(1234) equals the Gram determinant of the momenta in its argument,

G5 = det(2pi · pj)
∣∣
i,j=1,...,4 ,

= s2
12(s23 − s234)2 + (s123(s234 − s34) + s23(s34 − s56))2

+ 2s12
[
s123(s23 − s234)s234 + s123(s23 + s234)s34

+ s23(−2s34s56 − s23(s34 + s56) + s234(s34 + s56))
]
,

(B.4)

which is a function of the s⃗6. For real momenta, tr5(1234) is purely imaginary and G5 is
negative. We can therefore express tr5(1234) in terms of s⃗ up to its sign, which we fix from
the four vectors in eq. (B.3). Explicitly, we have that

tr5(1234) = sign
[
εµνρσ pµ

i pν
j pρ

kpσ
l

]
i
√
−G5 . (B.5)

The values of all other pseudo-scalar invariants tr5(ijkl) can be obtained from tr5(1234)
and s⃗6, as the product tr5(1234) tr5(ijkl) can be expressed in terms of s⃗6 through Gram
determinants. We provide in the ancillary files the expression of tr5(1234) tr5(ijkl) in terms
of s⃗6 for all the required tr5(ijkl).

Once we have the rationalised six- and five-particle invariants, we compute the six- and
five-particle momentum-twistor variables, zi and xi respectively, from them. To this end,
we first rewrite the momentum-twistor variables defined in appendix A in terms of s⃗6 and
pseudo-scalar invariants tr5(ijkl). For the six-particle momentum-twistor variables we have

z1 = s12 ,

z2 = s12s23 − s12s234 + s123s234 − s123s34 + s23s34 − s23s56 − tr5(1234)
2s12s34

,

z3 = −(s16 − s23)s34 + s123(s34 − s345) + (s23 − s234)s345 + (s12 + s234)s45 + (s345 − s45)s56
2(s12 − s123 + s23)s45

+ tr5(1345)
2(s12 − s123 + s23)s45

,

z4 = s123(s234 − s16)− s234s45 + (s16 − s23 + s45)s56 − tr5(1456)
2s56(s23 − s234 + s56 − s123)

,

z5 = s23
s12

,

z6 = s12s16 − s12s234 + s16s34 − s234s345 − s16s56 + s345s56 − tr5(1256)
2s12(s16 − s234 + s56)

,

z7 = 2s16s23 − 2s23s234 + s123(s234 − s16) + s234s45 + (s16 + s23 − s45)s56 − tr5(1456)
2s23(s16 − s234 + s56)

,

z8 = s123
s12

,

(B.6)
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while for the five-particle ones we have

x1 = s12 ,

x2 = s12(s23 − s234) + s123s234 + (s23 − s123)s34 − s23s56 − tr5(1234)
2s12s34

,

x3 = (s12 + s234 − s34) [s12(s234 − s23) + s23s34 − s123(s234 + s34)]
2(s12 − s123 + s23) [s123(s12 + s234 − s34)− (s12 + s23)s56]

+ s56 [(s123 + s23)s234 − s12s234 − s123s34 + 2s12(s23 + s34)− s23s56]
2(s12 − s123 + s23) [s123(s12 + s234 − s34)− (s12 + s23)s56]

+ (s34 + s56 − s12 − s234) tr5(1234)
2(s12 − s123 + s23) [s123(s12 + s234 − s34)− (s12 + s23)s56]

,

x4 = s23
s12

,

x5 = [s12(s23 + s234) + s123(s234 − s34) + s23s34] s56
2s23 [s12s234 + (s234 − s34)(s234 − s56)]

+ 2(s123 − s23)s234(s12 + s234 − s34) + s23s2
56

2s23 [(s234 − s34)s56 − s234(s12 + s234 − s34)]

− s56 tr5(1234)
2s23 [s12s234 + (s234 − s34)(s234 − s56)]

,

x6 = s123
s12

.

(B.7)

We note that the expression of the six-particle momentum-twistor variables zi in eq. (B.6)
contains a Mandelstam invariant, s345, that is not contained in s⃗6. It can be written in terms
of s⃗6 through the vanishing of the six-particle Gram determinant,

G6 = det(2pi · pj)
∣∣
i,j=1,...,5= 0 , (B.8)

which holds for four-dimensional momenta pi. This constraint has two solutions for s345. We
choose the one which matches the value of s345 obtained directly from the floating-point
momenta. Furthermore, due to the pseudo-scalar invariants tr5(ijkl) that appear in the
definition of the momentum-twistor variables in eqs. (B.6) and (B.7), zi and xi are no longer
rational in general. However, we only need s⃗5 to be rational, so at this stage we evaluate
the momentum-twistor variables as floating-point numbers.
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