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Abstract

The production of (multi-)strange hadrons is measured at midrapidity in proton—proton (pp) colli-
sions at /s = 13 TeV as a function of the local charged-particle multiplicity in the pseudorapidity
interval || < 0.5 and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters
(ZDC). The latter provides information on the effective energy available for particle production in the
collision once subtracted from the centre-of-mass energy. The yields of Kg, A+A andE - +E" per
charged-particle increase with the effective energy. In addition, this work exploits a multi-differential
approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The
results presented in this article provide new insights into the interplay between global properties of
the collision, such as the initial available energy in the event, and the locally produced final hadronic
state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of
strange baryon production with effective energy is observed for fixed charged-particle multiplicity at
midrapidity. These results are discussed within the context of existing phenomenological models of
hadronisation implemented in different tunes of the PYTHIA 8 event generator.
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1 Introduction

One of the main challenges of hadron physics is the understanding of the origin of strangeness en-
hancement in high-energy hadronic collisions. This prominent phenomenon consists in the continuous
increase of the strange to non-strange hadron yield ratios with increasing charged-particle pseudorapidity
density at midrapidity (dN./dn), from low-multiplicity pp collisions, characterised by dN., /dn ~ 3, up
to high-multiplicity p—Pb collisions, with dN,/dn ~ 50 [1H5]. For higher values of charged-particle
multiplicity, the yield ratios stay approximately constant up to the highest multiplicities reached in cen-
tral Pb—Pb collisions (dN,/dn ~ 2000) [3]. The enhanced production of strange hadrons in heavy-ion
collisions compared to minimum-bias pp collisions was historically considered one of the signatures of
quark—gluon plasma (QGP) formation [6], first observed at the SPS experiments in the late 90’s [7]. The
observation of a smooth evolution of the strange to non-strange yield ratios across different collision
systems and centre-of-mass energies suggests a continuous transition of the underlying hadronisation
mechanism that determines the hadron chemistry, i.e. the relative abundances of different hadron species,
in high-energy hadronic collisions.

Important insights into the origin of strangeness production in small collision systems came from the re-
sults of the ALICE Collaboration on strange hadron production associated with hard scattering processes
and to the underlying event (UE) in pp and p—Pb collisions [8, 9]]. In the cited ALICE results, in partic-
ular, different values and pt dependencies of strange baryon-to-meson and baryon-to-baryon ratios are
measured in- and out-of-jets. The baryon-to-meson ratio shows an increasing trend at low pr, reaching
a maximum value at pt ~ 3 GeV/c and then decreasing towards higher pr, giving rise to a broad peak
at intermediate pr. This peak is more pronounced for strange baryons and mesons produced in the UE,
while a lower ratio and a milder evolution with pt are observed within jets. The study of strange hadron
production in hard and soft quantum chromodynamics (QCD) regimes was recently extended using the
two-particle correlation technique as a function of the charged-particle multiplicity [10-12]]. Strange
hadrons are found to be mainly produced in the direction transverse to the leading particle, which is
dominated by the UE, where the yields increase significantly with dN, /dn. Instead, a weaker multiplic-
ity dependence is observed for the production within a rectangular region around the leading particle,
a proxy for the jet axis. Strangeness enhancement with multiplicity, studied through the ratio of multi-
strange baryons to strange mesons, was observed in both the toward and transverse-to-leading regions
with proportional slopes, suggesting it to be a common feature of both particle production regimes. This
effect was further investigated by studying the event as a whole, selecting isotropic collisions, suppos-
edly driven by large underlying events, and events characterised by jetty typologies. An enhancement
of strange hadrons is observed in collisions characterised by an isotropic topology with respect to events
with a jet-like topology [[13]]. Despite a substantial body of high-quality experimental results, a compre-
hensive understanding of the underlying mechanisms of strangeness production in small systems remains
unclear, stressing the need for further investigation.

This work exploits a new approach to study strangeness production in pp collisions. For the first time,
the concept of effective energy (Ee¢r) is introduced in hadronic interactions at the Large Hadron Collider
(LHC). In pp collisions, the emission of leading baryons at very forward rapidity reduces the effective
energy available for particle production with respect to the nominal centre-of-mass energy. This phe-
nomenon, known as the leading-baryon effect, was extensively studied by past experiments at the CERN
ISR by investigating the correlation between the effective energy and collision event properties such
as the charged-particle multiplicity, to shed light on the universal features of the QCD. In particular,
the results from several past experiments show that the value of the charged-particle multiplicity at a
given centre-of-mass energy in the case of pp (pp) collisions is systematically lower than in e e data
at the same energy. However, the outcome of the studies performed at the ISR showed that a universal
dependence can be observed if the appropriate definition of the energy available for particle production
(effective energy) is used [14-22]]. One way of estimating the effective energy is by measuring the energy
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of the leading baryons (Ejeading) produced at forward rapidities in each event hemisphere. The ALICE
experiment is well suited to measure the energy deposited in the very-forward region, which is expected
to be mainly due to baryons with kinematics close to the beam rapidity [23]]. This observable can be
directly connected to the leading-baryon effect, related to the baryon number conservation of incident
hadrons. Assuming the energy deposited at forward rapidity provides an estimation of the energy of
leading baryons, this provides an indirect measurement of the effective energy:

Eefr = \/E - E]eading ~ \/E — Eforward - (1)

Several phenomenological approaches traditionally employed to model hadronic interactions have been
investigated to probe the origin of strangeness enhancement in small collision systems, including a statis-
tical hadronisation description using the canonical suppression approach [24], rope hadronisation models
including colour reconnection (CR) effects [25]], and two-component (core—corona) models [26]. The
general-purpose Monte Carlo generator PYTHIA [27], in particular, implements colour string fragmen-
tation at its core, and features an intrinsic correlation between (multi-)strange hadron production and the
number of multiparton interactions (MPIs) in pp collisions, which are directly connected to the final-state
charged-particle multiplicity at midrapidity. As shown in Ref. [28]], there is an anti-correlation between
the multiplicity of charged-particles measured at midrapidity and the energy deposited in the calorimeters
at forward rapidity. This implies that, within the context of these models, the forward energy is indicative
of the number of MPIs. Indeed, the effective energy available for particle production at midrapidity is
expected to be strongly correlated with the number of parton—parton collisions that occurred in the event.

In this paper, strangeness enhancement is studied by measuring K, A+ A, and =~ + =" in double-
differential classes as a function of the charged-particle pseudorapidity density at midrapidity (dN.,/dn)
and the very-forward energy (as a proxy for the leading energy). The ratio of strange hadron yields per
charged-particle is related to the forward energy deposit for similar average dN.,/dn values and vice
versa. This novel experimental technique is used to test the traditional paradigm in which strangeness
enhancement is found to increase with midrapidity multiplicity. Such an approach allows for ideal de-
coupling of the interplay, for strange hadron production, between global properties of the collision and
the produced final hadronic state, under the assumption that midrapidity multiplicity and leading energy
are independent proxies, given the large 1 separation.

The paper is organised as follows. Section 2] presents the ALICE experimental apparatus, and Sec. [3|and[4]
discuss the data set and the analysis techniques, respectively. Section [5|presents the studies performed
on the phenomenological models, Sec.[6]outlines the techniques used to reconstruct strange hadrons, and
Sec. [7| covers the evaluation of systematic uncertainties. Finally, Sec. [§] presents the results and Sec. [9]
reports the conclusions.

2 Experimental apparatus

ALICE is a general-purpose experiment at the LHC dedicated to the study of ultra-relativistic hadronic
collisions. A detailed description of the ALICE apparatus and its performance can be found in Refs. [29]
and [30]]. In the following, only the sub-detector systems used for the analysis presented in this paper are
described.

Trajectories of charged particles are reconstructed in the ALICE central barrel with the Inner Track-
ing System (ITS) [31] and the Time Projection Chamber (TPC) [32]. These sub-detectors are located
within a large solenoidal magnet, providing a highly homogeneous magnetic field of 0.5 T parallel to the
beam axis. The ITS used during the LHC Run 2 consisted of six cylindrical layers of silicon detectors,
concentric and coaxial to the beam pipe, with a total pseudorapidity coverage |n| < 0.9 with respect to
the nominal interaction point. Three different technologies were used for this detector: the two inner-
most layers consisted of silicon pixel detectors (SPD), the two central layers of silicon drift detectors
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(SDD), and the two outermost layers of double-sided silicon strip detectors (SSD). The ITS is used in
the determination of primary and secondary vertices, and in the track reconstruction.

The TPC is the largest detector in the ALICE central barrel, with a pseudorapidity coverage || < 0.9.
It is used for charged-particle track reconstruction, momentum measurement, and particle identification
(PID) via the measurement of the specific energy loss (dE/dx) of particles in the TPC gas. The TPC
provides up to 159 spatial points per track for charged-particle reconstruction. The dE /dx resolution
depends on the event multiplicity and is about 5-6.5% for minimum-ionising particles emerging from the
interaction point and reaching the outer radius of the TPC [30]. For charged-particle tracks reconstructed
from their hits in the TPC and ITS, the transverse-momentum (pr) resolution ranges from about 1%
at pr = 1 GeV/c to about 2% at 10 GeV/c [33]]. The resolution in the measurement of the distance of
closest approach (DCA) of primary tracks to the primary collision vertex, projected on the transverse
plane, ranges from about 200 um at pt = 0.2 GeV/c to about 10 um at 10 GeV/c [30].

The PID is complemented by the Time-Of-Flight (TOF) system [34]. This detector is made of Multi-gap
Resistive Plate Chambers and is located at a radial distance of 3.7 m from the nominal interaction point.
The TOF detector measures the arrival time of particles relative to the event collision time provided by
the TOF detector itself or by the TO detectors, two arrays of Cherenkov counters located at forward and
backward rapidities [35]. The TOF detector is used in combination with the ITS for pile-up rejection,
mostly from collisions which belong to different bunch crossings (out-of-bunch), by requiring that at
least one of the strange hadron decay particles has a reconstructed track with an associated hit in the
TOF detector, as described in Sec. [6}

Collision events are triggered by two plastic scintillator arrays, VOA and VOC [36], located on both
sides of the interaction point, covering the pseudorapidity regions 2.8 <N < 5.1 and —-3.7 < n < —1.7,
respectively. Each array consists of four concentric rings, each ring comprising eight cells with the same
azimuthal coverage. The VOA and VOC scintillators can be used to estimate the collision multiplicity
[37].

The effective energy is estimated by measuring the energy carried by nucleons emitted at forward ra-
pidities using two zero-degree calorimeters (ZDC) [38]]. These identical detectors, placed at £112.5 m
from the ALICE interaction point, on both sides, consist of a neutron (ZDC-N) and a proton (ZDC-P)
calorimeter. The ZDC-N calorimeters cover the pseudorapidity range || > 8.8, while the geometrical
coverage of the ZDC-P calorimeters is 6.5 < || < 7.4.

3 Data sample

The data used for this analysis were collected in 2015, 2017, and 2018 during the LHC pp runs at
/s = 13 TeV, in specific data-taking periods where the ZDC detectors were switched on. A limited half-
crossing angle of the beams in the vertical plane was applied in these runs, corresponding to +45 prad
for 2015 data and +70 prad for 2017 and 2018 data. This configuration guarantees that all the neutrons
emitted at very forward rapidities fall within the ZDC-N geometric acceptance. The acceptance of the
neutron calorimeter is not affected provided that the vertical half-crossing angle is smaller than +60 prad
for a nominal vertex vertical position on the LHC axis (yyx = 0 mm), and smaller than +79 urad for a
position of yyx = —1 mm. The yy was equal to O mm for 2015 data, and equal to —1 mm for 2017 and
2018 data. A minimum bias (MB) event trigger was used, which requires coincident signals in the VO
detectors to be synchronous with the bunch crossing time defined by the LHC clock. In order to ensure
full geometrical acceptance of central barrel detectors and reject background collisions, the coordinate
of the primary vertex along the beam axis is required to be within 10 cm from the nominal interaction
point. The contamination from beam-induced background is removed during the offline analysis using
the timing information from the VO detectors and taking into account the correlation between the num-
ber of tracklets, short track segments reconstructed at midrapidity, and the number of hits in the SPD
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detector [30]. The data periods used in the analysis are characterised by a p value (average number of
proton—proton interactions per bunch crossing) which ranges from ~ 1% to a maximum value of ~ 14%.
Events with more than one reconstructed primary interaction vertex in the same bunch crossing (in-bunch
pile-up) identified from tracklets in the SPD are tagged as pile-up and removed from the analysis [30].
In addition, events with pile-up occurring during the drift time of the TPC are rejected based on the
correlation between the number of SDD and SSD clusters and the total number of clusters in the TPC,
as described in Ref. [39]. To further suppress the pile-up contribution, mostly from out-of-bunch colli-
sions, it is requested that at least one of the tracks from the decay products of the (multi-)strange hadron
under study is matched in either the ITS or the TOF detector. The results are reported for the INEL>0
event class, defined by requiring at least one charged particle within the pseudorapidity interval |n| <1,
corresponding to ~75% of the total inelastic cross section. A total number of 1.29x 10% MB events were
selected after applying these requirements.

4 Event classification

The measurement of strange hadron production presented in this paper is performed as a function of
the charged-particle multiplicity density at midrapidity and of the leading ("zero degree") energy. This
approach is aimed at investigating the connection of strangeness production to global properties of the
pp collision, experimentally measured through the forward energy in the event, and to local effects,
characterised by the charged-particle multiplicity at midrapidity. The dynamical range between measured
global and local event properties spans a pseudorapidity gap of 8 units, equivalent to the separation
between the ALICE ZDC and the central barrel.

Through a two-dimensional analysis in terms of these observables, this approach considers events with
defined global properties, grouping collisions in classes with similar average values and profile distri-
butions of the zero-degree energy, and explores different local conditions in terms of charged-particle
multiplicity at midrapidity: in this case, strangeness production can be studied in relation to jet produc-
tion and local fluctuations in the hadronisation process. In a complementary way, this work considers
events with defined local properties, i.e. similar multiplicity of particles produced at midrapidity, and
explores different forward energy deposits: in this case, the local environment in which strangeness is
produced is fixed in terms of parton density, while global properties of the event may vary, for example,
due to the available energy in the collision or the number of parton—parton interactions that occurred.

The collision events characterised by defined local-multiplicity and forward energy properties are se-
lected using an approach which resembles an event-shape engineering technique [40]. While the final
results will be presented as a function of dN,,/dn and of the zero-degree energy, the sample of pp col-
lisions is divided into classes defined through two independent estimators: one covering the forward
rapidity region (VOM) and one exploiting information at midrapidity (SPDClusters). The VOM estima-
tor is based on the signal amplitude measured by the VO detectors (VOA and VOC), which reflects the
total charge deposited in the forward region. The SPDClusters estimator is based on the number of hits
(clusters) measured at midrapidity by the two SPD layers. The VOM detectors are positioned closer to
midrapidity compared to the ZDC, resulting in a smaller 11 gap between the SPD and VOM than the
8-unit separation between the forward calorimeters and the central barrel. Based on the signals measured
by the VO and SPD detectors, the events are divided into percentile classes, which reflect the fraction
of events in each interval over the total number of events. Figure [1|illustrates the relative position and
pseudorapidity coverage of the detectors used to engineer event classes in this work.

To check if the selections defined in this work introduced any biases which could alter the relative abun-
dances of different hadron species the evolution of charged- and neutral-kaon abundances with multiplic-
ity was checked using a PYTHIA 8 Monte Carlo sample which includes the simulation of the detector
response. The number of reconstructed charged and neutral kaons were found to be very similar, inde-
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pendently of the multiplicity, as expected due to their similar masses.
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Figure 1: Illustration of the relative positions and pseudorapidity coverage of the ZDC-N, SPD, and V0 detectors
used to define event classes in this study. Dimensions are not to scale.

The charged-particle multiplicity density is measured from SPD tracklets in the pseudorapidity interval
[n| < 0.5 using the technique described in Ref. [41]]. Note that in the following, for simplicity, the av-
erage charged pseudorapidity density (dN.,/dn) is reported as (nqy). The very-forward energy (ZN)
is measured as the amplitude of the signal detected only by neutron calorimeters, to avoid the strong
acceptance limitations related to the beam optics deflection of charged particles, which can lead to un-
derestimating the energy event-by-event in the ZDC-P calorimeter. As a result, the correlation of ZDC-P
energy and the energy of particles emitted in the forward direction would be affected from larger sys-
tematic uncertainties than the ZDC-N case. Considering acceptance limitations, the ZDC signal in pp
collisions is not very effective to classify events in percentile selections on an event-by-event basis. On
the contrary, it works very well on average to characterise global properties of the collisions, when event
classes are built with independent estimators. In Pb—Pb collisions, the energy calibrations of ZDC-N
spectra are performed using the narrow peaks measured from the detection of single neutrons. Instead,
in pp collisions there is no reliable way to calibrate the calorimeter spectra in energy units without in-
troducing model dependencies and large uncertainties. In this paper, self-normalised quantities are used,
namely signals normalised to their average minimum-bias value, which allow one to overcome this prob-
lem and to obtain results which are directly comparable to model predictions.

Five different types of classifications are defined for the analysis, based on different combinations of
selections on the VOM and SPDClusters percentiles, in order to allow the study of strange hadron pro-
duction as a function of particle density at midrapidity and leading energy. The first type of classification
is performed using VOM percentile intervals and results into event classes with increasing average local
multiplicity and by decreasing average very-forward energy deposits. The event classes are labelled I, II,
I, etc., where class I corresponds to the highest multiplicity and lowest ZN energy class. These selec-
tions will be referred to as "standalone". The second and third types of classification are performed by
selecting events with similar average values of energy detected in the ZDC-N calorimeters, but different
(nch). This is achieved using a combination of the VOM and SPDClusters estimators, and, also in this
case, class I corresponds to the highest multiplicity class. In each event class, the distributions of the ZN
energy and of the number of raw tracklets reconstructed at midrapidity were studied. The selections were
engineered to ensure not only a consistent average value of ZN energy in the different classes, but also
similar distributions. Two classifications were built, one consisting of events with high ZN energy and
one of events with low ZN energy. They will be referred to as "high-/low-ZN-energy" selections". The
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distributions of the number of tracklets and ZN energy for these classifications are reported in Fig. 2| For
the fourth and fifth types of classification, the sample is divided into classes characterised by similar av-
erage values of charged-particle pseudorapidity density at midrapidity and different ZN energies, where
class I corresponds to the lowest ZN energy. In this case, the selections are defined by fixing the SPD
clusters in a narrow percentile range and varying the VOM estimator. Also in this case, the selections
are defined so that the different classes have not only a consistent average value of local multiplicity,
but also similar distributions. These classifications will be referred to as "high-/low-local-multiplicity"
selections, and the distributions of the number of tracklets and ZN energy in these classes are reported in
Fig.[3] In this way, a total of five types of event classifications are defined, summarised in Table|T]
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Table 1: Types of classifications defined according to different combinations of VOM and SPDClusters estimators
(see text for details). For each event class, the third and forth columns summarise the fraction of the INEL > 0
cross section corresponding to the VOM and SPDClusters estimators, respectively. The average values of (n.) and

ZN energy calculated for each event class are reported in the fifth and sixth columns, respectively.

0/ OINEL>0 0/ GINEL>0
Classification type Event Class | VOM selection | SPDClusters selection | (nch)ipj<0.5 | (ZN)p|>8.8 (@.u.)
INEL>0 0-100.0% 0-100.0% 6.89+0.11 280+8
Standalone I 0-0.90% 0-100.0% 25.75+0.40 80+2
II 0.90-4.5% 0-100.0% 19.83+0.30 10643
I 4.5-8.9% 0-100.0% 16.12+0.24 136+4
v 8.9-13.4% 0-100.0% 13.76£0.21 16345
\" 13.4-17.9% 0-100.0% 12.06+0.18 18616
VI 17.9-26.8% 0-100.0% 10.11+0.15 21747
VIiI 26.8-35.8% 0-100.0% 8.07+0.12 25448
VI 35.8-44.8% 0-100.0% 6.48+0.09 287+9
IX 44.8-63.5% 0-100.0% 4.641+0.06 32710
X 63.5-100.0% 0-100.0% 2.52+0.03 369+11
High-ZN-energy I 35.8-54.0% 0-17.9% 13.92+0.34 25648
II 26.8-63.5% 8.9-26.8% 11.2940.27 251+8
I 26.8—44.8% 17.9-35.7% 9.05+0.22 25448
v 17.9-44.8% 26.8-44.7% 7.27£0.17 256+8
A% 0-26.8% 44.7-100.0% 4.284+0.10 25548
Low-ZN-energy I 17.9-26.8% 0-8.9% 18.73£0.43 180+5
II 8.9-26.8% 8.9-17.9% 13.6+0.31 179+£5
I 0-17.9% 17.9-26.8% 10.43+0.23 17545
v 0-8.9% 26.8-44.7% 7.74+0.17 173+£5
High-local-multiplicity I 0-4.5% 8.9-17.9% 13.97+0.16 121+4
II 4.5-8.9% 8.9-17.9% 13.79+0.17 141+4
I 8.9-17.9% 8.9-17.9% 13.65+0.17 16745
v 17.9-26.8% 8.9-17.9% 13.48+0.17 197+6
\Y 26.8-35.8% 8.9-17.9% 13.354+0.17 22447
VI 35.8-44.8% 8.9-17.9% 13.244+0.17 25148
VII 44.8-100.0% 8.9-17.9% 13.15+0.16 286+9
Low-local-multiplicity I 0-17.9% 35.7-44.7% 6.1940.07 21046
I 17.9-26.8% 35.7-44.7% 6.154£0.07 23947
00 26.8-35.8% 35.7-44.7% 6.144-0.07 26348
v 35.8-44.8% 35.7-44.7% 6.13+0.08 285+9
\" 44.8-54.0% 35.7-44.7% 6.09+0.08 306+9
VI 54.0-63.5% 35.7-44.7% 6.07+0.09 32549
VII 63.5-100.0% 35.7-44.7% 6.07+0.09 352411
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5 Phenomenological models and comparison to the data

Several phenomenological models have been investigated to understand the underlying mechanisms of
strangeness production in hadronic collisions. Some of these models adapt concepts from heavy-ion
physics, such as statistical hadronisation and hydrodynamic expansion (including core—corona models),
to smaller systems. Alternatively, other models extend proton—proton collision descriptions, based on
hard-partonic interactions, underlying event, and string fragmentation, to higher multiplicity regimes,
introducing new production mechanisms. In this context, PYTHIA [27] is a general purpose Monte
Carlo event generator which implements colour string fragmentation at its core. In the Monash tune
of PYTHIA 8, MPIs have been introduced to describe charged-particle pseudorapidity densities in high
energy hadronic collisions, and colour reconnection [42]] mechanisms have been implemented to account
for pr spectra modifications in events featuring a larger or smaller final state multiplicity. LHC results
triggered several new paths of phenomenological investigation, targeted at reproducing the multiplic-
ity dependence observed for strangeness and baryon production yields. For this purpose, sophisticated
colour reconnection mechanisms allowing for three-leg junctions [43]] were introduced to better describe
baryon production yields. In addition, a modified string tension in dense QCD environments [44] has
been proposed to describe strangeness enhancement in hadronic collisions, allowing for overlapping
strings to interact forming colour ropes. In the following, this upgraded version of PYTHIA 8 will be
referred to as QCD-CR+Ropes. It is worth noting that when switching-on the rope mechanism, improved
CR has to be enabled. Therefore, the features distinguishing the Monash and QCD-CR+Ropes tunes may
come from one of these additional mechanisms, or from their interplay.

The comparison of phenomenological models to data is performed at the generator level, i.e. using only
the kinematic information of the generated particles, without simulating their passage through the ALICE
detector and reconstructing each event as for real collisions. The generated samples consist of 2 x 10°
pp collision events at /s = 13 TeV simulated with the Monash tune of the PYTHIA 8 generator and
2 x 10° simulated with PYTHIA 8 QCD-CR+Ropes. The analysis procedure reproduces the one used
for the data, starting from the generator-level information. The leading energy is simulated considering
the acceptance of the ZDC-N calorimeter, i.e. as the sum of the energy of neutral primary particles in
the pseudorapidity region 1| > 8.8. The VOM signal is simulated by counting primary charged particles
generated in the detector acceptance. The SPDClusters estimator is simulated considering both primary
and secondary particles from weak decays produced in the acceptance of the SPD layers. Using a Monte
Carlo sample which includes the simulation of the detector response, the agreement between simulated
quantities (percentile estimators and ZN energy) and reconstructed ones was then checked. The observed
differences are small, with a standard deviation of at most 15%.

5.1 Forward energy as a function of charged-particle production at midrapidity

Figure E] summarises the relation between the self-normalised (ZN) signal and (n¢y,) for the event classes
listed in Table[I} The results obtained with the standalone selections are in agreement with ALICE re-
sults reported in Ref. [28], where the forward energy detected by the ZDC was studied as a function of
the charged-particle multiplicity produced at midrapidity in pp and p—Pb collisions [28]]. This measure-
ment showed that the two quantities are anti-correlated: the higher the activity measured at midrapidity,
the smaller the forward energy. This observation can be interpreted as a positive correlation of charged-
particle production with the effective energy, assuming the deposit in the ZDC calorimeters is propor-
tional to the energy of leading particles. As discussed in Sec. [ in this work multi-differential event
classes are defined in order to disentangle the correlation between midrapidity particle production and
the energy measured at forward rapidity. In the high-local-multiplicity classes, events with large (ncp)
show ZN energy values which cover a range between about 0.4 and 1.0 times the minimum-bias value,
while for the low-local-multiplicity classification, the self-normalised ZN values range between about
0.7 and 1.3. The total forward energy interval covered by the standalone selections ranges between about
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Figure 4: Self-normalised (ZN) signal as a function of the self-normalised charged-particle multiplicity measured
at midrapidity (n.). Statistical errors are negligible, only systematic uncertainties are shown.

0.3 and 1.3 times the minimum-bias value. Therefore, also at fixed multiplicity, this analysis is able to
select events covering a significant portion of the ZN signal interval that is covered by the standalone
selections. Similarly, the self-normalised multiplicity values in the classes selected requiring high ZN
energy cover a range between about 0.5 and 2.0, and between about 1.1 and 2.7 for the low ZN. The
total average multiplicity interval covered by the standalone selection ranges between 0.4 and 3.8 times
the minimum-bias value, therefore, also at fixed ZN energy, a significant range of accessible multiplici-
ties is covered. Data are compared with MC simulations based on the PYTHIA 8 event generator with
the Monash and QCD-CR+Ropes tunes. Both tunes are able to describe the overall decreasing trend
of the standalone selections. In particular, a good agreement between data and MC is observed at low
nen corresponding to high ZN energies, while at low ZN energies the agreement is worse, with both
PYTHIA 8 tunes underestimating the forward energy by up to 40%. It is worth noting that the two tunes
can qualitatively describe the behaviour of the data points in all the multi-differential selections. The
high-/low-local-multiplicity classes select simulated collisions with fixed multiplicity, underestimating
by up to 10% the multiplicity values with respect to the data points and covering a ZN energy range
similar to the measurements. The high-ZN-energy and low-ZN-energy event classes select simulated
collisions with forward energy values within +10% with respect to the measured ones, covering a range
of midrapidity multiplicity similar to the data points. In general, the agreement between data and MC is
found to be slightly better for PYTHIA 8 with Monash tune, however, one can observe that including the
hadronisation mechanisms implemented in the QCD-CR+Ropes tune does not have a big impact on the
description of the correlation between the multiplicity and the leading energy.

5.2 Sensitivity to global and local effects in PYTHIA 8

According to the PYTHIA 8 event generator, pp collision events with high multiplicity at midrapidity
mainly originate either from multiple semi-hard MPIs occurring within the same pp collision or from
multi-jet final states (hard processes). In particular, the presence of jets at midrapidity in the final state
can be studied in the model by considering, as an example, the average transverse momentum of charged
pions ({pT)y|<0.5), proxy for the pr of the hard parton-scattering process. To investigate the sensitivity
of the applied selections to global and local effects, the correlation of the number of MPIs and of the
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average pt of pions with the local charged-particle multiplicity and the leading energy is studied using
the multi-differential approach introduced in this paper. The results presented in this section are obtained
with the PYTHIA 8 event generator with the Monash tune, but qualitatively similar results are produced
with the QCD-CR+Ropes tune. The correlation between the effective energy and the number of MPIs
can provide important insights into the interpretation of the results on strange hadron production dis-
cussed in this paper. In fact, the string hadronisation processes implemented in PYTHIA are strongly
influenced by the number of MPIs occurred in the collision and the average energy produced at very
forward rapidity was found to decrease with an increasing number of MPIs [28]]. Figure [5|shows the av-
erage number of parton—parton interactions as a function of the midrapidity multiplicity (left) and of the
forward energy in the ZDC-N acceptance (right) in the event classes introduced in this work. In the high-
/low-local-multiplicity event classes (orange and red circles), the average number of MPIs increases at
fixed midrapidity multiplicity with decreasing leading energies. On the other hand, once events with de-
fined leading energy are selected (azure and blue squares), the average number of MPIs does not change
significantly with the midrapidity multiplicity, exhibiting a rather flat trend in the left panel of Fig.[5] It
is worth noting that the average number of MPIs shows a universal dependence with the leading energy,
i.e. common for all differential selections, as it can be seen in the right panel of Fig.[5] These results
show that the leading energy is a powerful observable to probe the dependence of particle production on
the number of MPIs in PYTHIA.
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Figure 5: Average number of MPIs from PYTHIA 8 simulations as a function of the self-normalised midrapidity
multiplicity (ne,) (left) and of the self-normalised forward energy (ZN) (right) in the different multi-differential
classes introduced in this work. Statistical uncertainties are shown as vertical bars, but they are hardly visible in
the figures.

Figure [6] shows the average transverse momentum of charged pions as a function of the charged-particle
multiplicity at midrapidity (left) and of the leading energy in the ZDC-N acceptance (right). Once events
with defined leading energy are selected (high-/low-ZN-energy classes), the average pr is found to in-
crease with the midrapidity multiplicity, following a common trend for all event classes. On the other
hand, for similar midrapidity multiplicities, the ({(pT)|y|<0.5) shows only a very mild dependence with the
leading energy. This observation suggests that local phenomena, such as jets at midrapidity, are corre-
lated with local observables, such as the charged-particle multiplicity, and rather independent from global
properties of the event, e.g. the available energy in the collision. In summary, the studies on the output
of the PYTHIA 8 event generator indicate that a two-dimensional analysis as a function of the midrapid-
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ity multiplicity and the very-forward energy can disentangle the connection of a given phenomenon to
global and local properties of the collision.

8 0,8:| TTT I LELELEL I LELELEL I TTTT I TTrT1T I TTrT1T I LELELEL I LELELEL I TT |:: T T | T T T I T T T I T T T I T T T T T T T T T :
S t ALICE Simulation, pp Vs = 13 TeV I ¢ Standalone ]
D 0'75;_ PYTHIA 8 Monash + @ High-local-multiplicity E
O L I Low-local-multiplicity ]
~ 0'7:_ F ® High-ZN-energy E
2 0 65: + ®m Low-ZN-energy .
¥ 0.65- T E
0= o6k . T . E
E + C ! ¢ I L NN u ’ ]
Q r n ¥ T K S n ]
[ 0.55F 4 T oo tompo* ! E
n .:” 4 DRI - ]
0.5F 2 + e 3
r "' I ' '.\\ E
C 4 I 4 ]
0.45F 1" - . e
o ‘” I u N
0.4f ¢ + ¢
0_35:”:||||||||||||||||||||||||||||||||||||||||:||||||||||||||||||||||||||:

0O 05 1 15 2 25 3 35 4 0.2 0.4 0.6 0.8 1 1.2 1.4
EL>0 EL>0
Dnch %|<0.5 / |]nch |<0.5 LZN 97|>8.8 /'UZN [;jr;>8.8

Figure 6: Average transverse momentum of charged pions from PYTHIA 8 simulations as a function of self-
normalised midrapidity multiplicity (nc,) (left) and of the self-normalised forward energy (ZN) (right) in the
different multi-differential classes introduced in this work. Statistical uncertainties are shown as vertical bars, but
they are hardly visible in the figures.

6 Cascade and V' selection

The pr spectra of K%, A(A), and E‘(§+) are measured reconstructing the (multi-)strange hadrons at
midrapidity (|y| < 0.5) using their weak-decay channels:

e K — 7" +x~ Branching Ratio = (69.20 +0.05)%,
e A—p+7n Branching Ratio = (63.9£0.5)%,
e &~ — A+m~ Branching Ratio = (99.887 £0.035)%.

along with their charge conjugates [435]]. The A(A) and Kg candidates are reconstructed using the standard
ALICE weak-decay finder. This algorithm searches for neutral weak-decay topologies, called VO, by
reconstructing oppositely-charged particle tracks originating from a displaced vertex, as described in
Refs. [[1,12]. In the case of the Z* baryons, the cascade finder is used, which searches for a pair composed
of one reconstructed V° and one additional charged particle (bachelor), pointing inward to the same
displaced vertex. In the case of a V¥ decay vertex located inside the ITS volume, at least one hit in any
of the ITS layers is requested in the reconstruction of the charged tracks originating from the V° decay.
The reconstructed tracks, selected in the pseudorapidity region |n| < 0.8, are required to fulfil a set of
quality criteria, such as to produce signal in at least 70 TPC readout pads out of a maximum of 159.
Moreover, the fraction of TPC pad rows with a signal over the number of clusters expected based on the
reconstructed trajectory is required to be at least 80%. This condition ensures that tracks do not have
large gaps in the associated hits in the radial direction.

To reduce the combinatorial background, a set of topological selections is applied to the reconstructed
hadrons. The analysis relies on the same set of standard cuts used in Ref. [46]. For the measurement of
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Vs, the distance of closest approach between the V© daughter tracks is required to be less than 1 standard
deviation, the DCA between each V? daughter and the primary collision vertex larger than 0.06 cm and
the radial distance between primary and secondary vertices larger than 0.5 cm. The cosine of the pointing
angle, defined as the angle between the vector connecting the primary and secondary vertices and the total
VY reconstructed momentum, is required to be larger than 0.995. A proper-lifetime selection is applied
to the reconstructed A (Kg) candidates by requiring mL/p to be lower than 20 (30) cm, where m is the
candidate mass, L is the linear distance between the candidate decay point and the primary vertex, p
the total momentum. Candidates compatible with the alternative V® hypothesis are rejected if they lie
within +5 MeV/c? (£10 MeV/c?) of the nominal A (Kg) mass. For cascades, the DCA between the
bachelor track and the primary vertex is required to be larger than 0.04 cm, the DCA between the V°
and the primary vertex larger than 0.06 cm, while the DCA between the bachelor track and V? lower
than 1.3 cm. The DCA between the V? daughter meson (baryon) and the primary collision vertex is
required to be larger than 0.04 (0.03) cm, while the DCA between the VO daughter tracks is required
to be less than 1.5 standard deviations. In addition, a minimum radial distance of 0.6 (1.2) cm between
the primary and cascade (V°) weak-decay vertex is required. The cosine of the pointing angles of both
cascade and V? is required to be larger than 0.97. The V° produced in cascade decays are required to
match an invariant mass window of + 8 MeV/c? with respect to the nominal A mass, and a proper-
lifetime selection is applied, requiring mL/ p lower than 3¢7, where 7 is the mean lifetime of the particle.
In addition, in order to reject the residual out-of-bunch pile-up background on the measured yields, it is
requested that at least one of the tracks from the decay products of the (multi-)strange hadron under study
is matched in either the ITS or the TOF detector. The selection criteria applied for this measurement are
optimised based on detailed studies done on Monte Carlo simulations and are similar to those already
used in previous measurements [[1H5} 8} [9].

The particle identification is based on the energy loss per unit of track length (dE /dx) measured by the
TPC. Protons and pions are identified by requiring that their measured dE/dx is within 564 /4, from the
expected average calculated using the Bethe—Bloch formula, where 0y /4, is the dE /dx resolution.

6.1 Signal extraction

The Kg, A, and EF raw yields are extracted in different intervals of strange-hadron prt from fits to
the invariant mass distributions of their decay products. The mass distributions were first fitted with a
Gaussian function, for modelling the signal, and a linear function to model the background. The peak
region is defined within + 66 for Vs and + 40 for cascades with respect to the Gaussian mean extracted
in each pr interval, being o the standard deviation of the Gaussian function. Adjacent background bands,
covering a mass interval as wide as the peak region, are defined on both sides. The symmetric background
bands are well reproduced through a linear function, allowing signal extraction through a bin counting
procedure that subtracts background counts from the signal region. The purity of the strange hadron
candidate samples, defined as the ratio between the signal and the total number of candidates in the peak
region, is larger than 0.9 for K, A and A, and larger than 0.8 for £~ and = Examples of invariant
mass distributions and fit functions used for the signal extraction are shown in Fig. [7|for K, A, and =~
in different pr intervals.

6.2 Efficiency and secondary A corrections

The raw pr spectra of K%, A(A), and B (§+) are corrected for the reconstruction efficiency and the
feed-down contribution from higher-mass states. Only the A(A) are found to be affected by a significant
contamination from feed-down due to the decay of charged =~ (§+) and neutral Z°. The contamination
from secondary K%, A(A), and 2~ (§+) originating from interactions of primary particles and the detector
materials is found to be negligible. All corrections are calculated using Monte Carlo (MC) simulations
based on the PYTHIA 8 event generator. The interactions of the generated particles with the experimental
apparatus are modelled by GEANT4 [47]. To reduce the statistical uncertainties on the reconstruction
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Figure 7: Invariant mass distributions for Kg (a), A (b), and E~ (c) in different pr intervals for the inclusive
INEL > 0 class. The candidates are reconstructed in the rapidity interval |y| < 0.5. The red and grey areas
delimited by the short-dashed lines are used for signal extraction in the bin counting procedure. The red dashed
lines represent the fit to the invariant mass distributions used to define signal and background regions.

efficiency of cascades without the need to simulate too many events, dedicated MC productions enriched
by an injected sample of cascades were used, where one charged = and one charged Q are added into each
PYTHIA 8 event. The reconstruction efficiencies of K, A(A), and Z~ (§+) vary from approximately
2% at low pt to about 30% at high pt. They are found to be independent of the selection class within
2%. For this reason, the MB efficiency is applied for all classes and a 2% systematic uncertainty is
assigned. In order to estimate the contamination from secondary A(A) the measured =~ (§+) spectra
are used. The fraction of secondary A(A) particles in the measured spectrum varies between 10% and
20%, depending on pt and multiplicity. The input pr distributions of the injected particles are corrected
using multiplicity and pr-dependent weights calculated as the ratios of measured and injected pt spectra
in the simulation. A Lévy-Tsallis parametrisation [48]] is used to describe the measured pt shape. The
parameters of the Lévy—Tsallis functions are obtained in the first iteration using the efficiency calculated
based on the default pr distributions. The obtained parametrisations in different multiplicity intervals
are then used to re-weight the input shape in MC and these updated efficiencies are used to correct the
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reconstructed spectra. This iterative procedure converges already after two iterations. Finally, in order to
achieve a proper normalisation of the spectra, corrections for event loss and signal loss due to the applied
event selection criteria are applied to the measured spectra.

The pr-integrated yields of strange hadrons are then extracted from the transverse momentum spectra,
using extrapolations for the unmeasured regions. For this purpouse, the pr-distributions are fitted using
a Lévy-Tsallis parametrisation, which best describes the individual spectra for all particles over the full
Pt range.

7 Systematic uncertainties

Several sources of systematic uncertainties affecting the measured strange-hadron pr-differential yields
are considered. The different contributions for three representative pr values are summarised in Table 2]
for the INEL >0 sample.

To evaluate the systematic uncertainty associated with a given selection, the analysis is repeated by vary-
ing the selection criteria on that specific variable within defined ranges. The results are then compared to
the ones obtained with the standard set of cuts. The systematic uncertainty due to possible imperfections
in the Monte Carlo simulations used to determine the acceptance and efficiency correction factors was
estimated by repeating the analysis varying all track and topological selections. The selection criteria
were varied within ranges that led to a maximum variation of £10% in the raw signal yield, similar to
the approach used in Refs. [[1, 2]]. The corrected yields were calculated for each variation and compared
with those obtained with the default selections. Only variations giving results differing from the default
ones by more the 10 of the statistical uncertainty were considered to define the systematic uncertainty,
following the prescription in Ref. [49]. The uncertainty was found to range from about 1% to about 4%
depending on the hadron species and pr.

The uncertainty related to the PID selections was evaluated by varying the dE /dx requirement between
40 and 70. This selection is particularly important to reduce the combinatorial background in the strange
baryon invariant mass distribution. The uncertainty was found to be at most 1% for all particle species.

Table 2: Main sources of systematic uncertainties (expressed in %) of the pr differential yields, reported for low,
intermediate, and high pt. These values are calculated for the INEL>0 data sample. Results in other classes are
further affected by an uncertainty originating from the class selection dependence of the efficiency (2%) and, in
the case of the A and A, of the feed-down contributions (2%).

Hadron K9 ‘ A+A E 4=
pt (GeV/c) ~05 =48 =9.0 ‘ ~10 =35 =70 | =13 =28 =47
Topological and track 1.7 2.4 2.3 3.0 3.0 4.3 3.3 1.1 2.0
TPC dE /dx 0.1 0.1 negl. 0.3 0.1 0.6 0.3 0.1 negl.
Competing V° 0.1 0.4 negl. 1.1 0.3 negl. n.a. n.a. n.a.
Proper lifetime 0.1 negl.  negl 2.9 2.6 negl. 0.7 0.2 0.6
Signal extraction 0.5 0.5 2.2 0.3 0.7 1.2 negl. 0.6 0.6
Feed-down n.a. n.a. n.a. 1.0 1.0 1.0 n.a. n.a. n.a.
P abs. cross sect. n.a. n.a. n.a. 0.2 0.2 0.2 0.3 0.4 0.4
In-bunch (IB) pileup 1.6 2.5 2.5 2.0 2.9 29 2.0 2.0 2.9
OOB pileup 0.2 0.8 2.6 0.6 2.1 29 04 1.0 2.5
Material budget 1.1 0.5 0.5 1.4 0.8 0.8 29 1.5 0.6
Total 2.7 3.6 5.0 5.1 5.5 59 4.9 2.9 4.4

The contribution from the competing V° decay rejection was studied by removing entirely this condition
for A and A and by varying the mass window down to 3 MeV/c? and up to 5.5 MeV/c? for Kg. It
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resulted in a deviation on the corrected yields of at most 3% for A+ A and 1% for Kg.

The systematic contribution related to the selection on the proper lifetime of the candidate was computed
by varying the requirements between 2.5 and 5 ¢7 for strange baryons and between 5 and 15 ¢ for Kg.
The statistically significant deviations were found to be at most 3% for A + A and negligible (< 1%) for
Kg and 2~ 4+E .

The stability of the signal extraction method was checked by varying the widths used to define the signal
and background regions in the invariant mass distributions in terms of the number of sigmas of the signal
peak. Moreover, the raw counts are extracted using a fitting procedure for the background contribution
and compared to the standard ones computed using a bin counting technique. An uncertainty ranging up
to 2% depending on pr is found for Vs and cascades.

A 2% uncertainty is added to account for possible variations of the reconstruction efficiency with the
class selections (Sec.[6.2).

The A and A pr spectra are also affected by an uncertainty coming from the feed-down correction, which
accounts for the description of the £+ /=0 ratio in the MC. The latter was considered by calculating the
feed-down fraction assuming Z* /=% = 1 or using the ratio provided by the Monte Carlo. The feed-down
contribution to the systematic uncertainties was at most 1%. An additional 2% uncertainty, related to the
systematic uncertainty on the efficiency discussed above, is added to account for possible variations of

the feed-down contribution with the class selections.

The systematic uncertainty on the A (A) and Z* yield due to the (anti-)proton absorption in the detec-
tor material is estimated by varying the default inelastic cross section of (anti-)protons implemented in
GEANT#4 by the corresponding experimental uncertainties [S0]. This contribution is found to be less
than 1% for strange baryons.

Pile-up collisions occurring within the same bunch crossing are removed by rejecting events with multi-
ple vertices reconstructed with SPD tracklets. The effect of residual contamination from in-bunch pile-up
events was estimated in Ref. [2]] by varying the pile-up rejection criteria. In this analysis, the same sys-
tematic uncertainties are used.

The contribution from the out-of-bunch pile-up rejection was evaluated by changing the matching scheme
of V¥ and cascade daughters using the ITS and TOF detectors. For this purpose, the following configura-
tions were considered: matching of at least one decay track of the reconstructed (multi-)strange hadron
with the ITS (TOF) detector below (above) 2 GeV /c, ITS matching of at least one decay track in the full
pr range. Half of the maximum variation between these configurations and the standard selection was
taken as a systematic contribution, which was found to increase with transverse momentum up to 3% for
all particle species.

The systematic uncertainty due to the limited knowledge of the ALICE material budget is estimated
using two MC productions: one with a value of the material density obtained from the geometrical
model of the ALICE experiment implemented in the simulation, and another where the material density
was modified locally to match the measurement obtained using photon conversions [S1]. The material
budget uncertainty is calculated as the relative difference between the efficiencies obtained with these
two MC productions.

Most of the sources of systematic uncertainties considered are fully correlated across the classes of events
defined using the VOM and SPDClusters estimators since they determine a yield variation that does not
depend on the specific event class. In this analysis, to illustrate the evolution of the production of strange
hadrons in the multi-differential classes and reduce the systematics on the final results, the yield ratios to
the average value, measured in the inclusive INEL>0 pp sample, are considered:

(h)/{h)INEL>0
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where & is the pr integrated yield (dN/dy) of strange hadrons. In order to determine the fraction of
uncorrelated uncertainty, the full analysis chain, up to the extraction of integrated yields, is repeated
for each event class by varying the V® and cascade selection criteria and comparing the results with
the ones obtained with the default set of cuts. The relative deviation of yields is then compared to the
corresponding one obtained using the INEL > 0 sample. A fully correlated uncertainty is characterised
by a ratio of relative deviations between the event class and the inclusive INEL > O sample that is
consistent with unity. Deviations from unity are considered uncorrelated components of the uncertainty.
The fraction of uncorrelated systematic uncertainties due to the analysis selections ranges between 0.1%
and 1% for K9, between 0.1% and 1.5% for A+ A, and between 1% and 3% for £~ +Z . A similar
approach is applied to estimate the fraction of the systematic uncertainty uncorrelated across selected
event classes due to the choice of the fit function for the extrapolation procedure. The yields obtained
using the extrapolation from an alternative function are compared to the default one, Lévy-Tsallis, in a
given selection class. Then, these are compared to the same results obtained in the inclusive INEL > 0
class. The fit of the spectra is repeated using five alternative functions (Blast-Wave, Boltzmann, Bose—
Einstein, mr-exponential, Fermi—Dirac). Since these alternative functions do not describe the full pt-
distribution, in this case, the fit range was reduced to obtain a good description of the fitted part of the
spectrum. The fraction of uncorrelated systematic uncertainties due to the choice of the fit function
ranges between 0.5% and 4% for A + A, and between 1% and 9% for &~ —|—§+. No uncertainty on the
extrapolation is considered for the Kg meson since the spectra are measured down to pt = 0.

The systematic uncertainty associated with the average ZN value was studied by comparing the energy
measured in the three data-taking periods (2015, 2017, and 2018). The measurement was repeated in dif-
ferent double-differential classes defined using SPDClusters and VOM estimators. The error associated
with the (ZN) value was defined as the largest difference of each period with respect to the mean value,
which is found to be at the level of ~ 3%.

8 Results and discussion

In the following, the sum of particles and anti-particles, A +A,E+ §+, will be referred to as A and
&, respectively. The fully-corrected pr-differential yields for all particle species are displayed in Fig. [§]
for the five multiplicity classes defined with the high-ZN-energy classification and in Fig. [0|for the seven
event classes with the high-local-multiplicity classification. Qualitatively similar results are obtained
for the complementary selections: low-ZN-energy and low-local-multiplicity. In events with defined
ZN energy, the Kg, A, and E spectra become harder and the yields increase as the local multiplicity
increases. This is clearly visible when looking at the ratio of the distributions with respect to the central
class spectrum, shown in the bottom panel of Fig. On the other hand, as displayed in Fig. [0 for
similar values of midrapidity multiplicity, the pr spectra of strange hadrons are found to be similar in
the different classes of events selected on the basis of different forward energy deposits. The dynamics
in terms of the transverse momentum observed with our two-dimensional approach suggests that the
average pr of (multi-)strange hadrons is strongly correlated with the local multiplicity production. This
indicates that, once the activity at forward rapidity is fixed, the increase of strangeness production with
multiplicity at midrapidity is driven by harder processes, in line with Fig.[6] To illustrate the evolution
of strange hadron production in the different event classes, the pr-integrated yield ratios to the charged-
particle multiplicity divided by the value measured in the inclusive INEL > O pp sample are considered:

<h>/<h>INEL>O

’ (2)
{en)ni<0.5/ (neh) i 2os.

where / represents the particle yield per rapidity unit (AN /dy). The uncertainties on the ratios are prop-
agated assuming the two variables to be uncorrelated. In the following, the quantity in Eq. [2| will be
referred to as “self-normalised yield ratios”. The yield per charged particle (i/nc) is a good proxy for
the ratio of strange-to-charged-pion yields (h/ 7).
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8.1 Standalone analysis results

The self-normalised yield ratios of K, A, and Z measured in the event classes defined with the standalone
selections are shown in Fig.|[10|as a function of the average charged-particle multiplicity (n¢,) and of the
average energy measured in the neutron calorimeter (ZN), self-normalised to their INEL > 0 value.
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The left panel shows that the strange hadron yields per charged particle increase as a function of the
charged-particle multiplicity at midrapidity. The enhancement is larger for = multi-strange baryons
than for A and Kg strange hadrons, showing a hierarchy with the particle strangeness content. The
A baryon and Kg meson ratios are compatible within uncertainties, except for the lowest multiplicity
interval. These observations are consistent with what was observed in previous ALICE publications [1}
2. To explore the correlation of strangeness production at midrapidity with the very-forward energy,
the ratios are also displayed as a function of the self-normalised ZN signal in the right panel of Fig. [0
Strange hadron production per charged particle is found to increase with decreasing forward energy
detected in the ZN. This observation demonstrates a positive correlation of strangeness production with
the effective energy. The results are compared with MC simulations based on the PYTHIA 8 event
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Figure 10: Self-normalised yield ratios of K¢, A, and Z in pp collisions at /s = 13 TeV in the standalone selection
(VOM classes). The ratios are shown as a function of the average charged-particle multiplicity (n,) (left) and the
forward energy (ZN) (right) self-normalised to the minimum bias (INEL > 0) value. Statistical and total systematic
uncertainties are shown by error bars and boxes, respectively.

generator. The Monash tune does not reproduce the strangeness enhancement observed in the data,
showing a flat trend as a function of multiplicity and leading energy for all particle species, as already
discussed in previous publications [2}146]. The QCD-CR+Ropes tune strongly improves the agreement
of the model with the data points for the = baryon. However, it overestimates the production of A
baryons per charged particle at high multiplicity. In this model, the enhancement observed for the =
and A baryons is found to be similar while no enhancement is foreseen for the Kg meson, missing
the increasing trend observed in the data. The hadronisation mechanisms implemented in the QCD-
CR+Ropes tune result in an enhanced production of strange baryons with respect to strange mesons,
failing to reproduce the hierarchy with the strangeness content observed in the data. This observation is
further confirmed when looking at the predictions of the QCD-CR+Ropes tune for protons, which show
a rising trend with increasing multiplicity not observed in the data [46]]. It is important to note that, even
if this tune reproduces the Z/n., enhancement in the standalone event class, it is known that PYTHIA
does not perfectly reproduce the transverse momentum spectral shapes of strange hadrons [52].

8.2 Strangeness production in events with defined leading energy and multiplicity

The dependence of strange hadron production on the charged-particle multiplicity can be further in-
vestigated in events with similar average forward energy measured in the ZN. For this purpose, the
multiplicity classes defined for the high-/low-ZN-energy categories are considered. Similarly, the depen-
dence on the leading energy can be studied in events with similar average charged-particle multiplicity
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produced at midrapidity using the high-/low-local-multiplicity event classes. The self-normalised yield
ratios obtained in these selections for all particle species are displayed in Fig. [IT] as a function of the
charged-particle multiplicity (left) and ZN energy (right), self-normalised to their INEL > 0 value. The
standalone selection is also shown for comparison. Once events with defined leading energy are consid-
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Figure 11: Self-normalised yield ratios of Kg A, and Z in pp collisions at /s = 13 TeV in the high/low multi-
plicity and high/low ZN selections (VOM+SPDClusters classes). The ratios are shown as a function of the average
charged-particle multiplicity (ny) (left) and the forward energy (ZN) (right), self-normalised to the minimum bias
(INEL > 0) value. Statistical and total systematic uncertainties are shown by error bars and boxes, respectively.

ered (azure and blue squares), the strange baryon enhancement with multiplicity is no longer observed.
Instead, the A and E yield ratios show a mild anti-correlation with particle production at midrapidity. For
the Kg meson a mild-to-no increase with the midrapidity multiplicity is observed for events with simi-
lar ZN energy. In particular, the trend for Kg is compatible with the results of the standalone analysis.
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The decreasing trend with multiplicity observed for strange baryons could be explained by introducing
a simple energy conservation argument: at fixed effective energy, as the charged-particle multiplicity
increases, the remaining energy available for the production of heavier strange hadrons decreases. In
this case, the production yield of strange baryons at midrapidity may be more strongly correlated to the
effective energy than the production of light mesons. Alternatively, the observed anti-correlation could
be interpreted considering that events with similar effective energy may be characterised by different
topologies in terms of hard scattering processes, associated with the production of jets, in line with the
hardening of the spectra observed in Fig. (8| In particular, the presence of one or more jets at midrapidity
may result in a large local production of charged particles.

For similar midrapidity multiplicities (orange and red circles), the self-normalised yield ratios of A and &
increase with decreasing energy deposited in the neutron calorimeters. For E baryons, the scaling with the
ZN energy is observed to be compatible, within uncertainties, with the one observed for the standalone
classification for both the low- and high-local-multiplicity selections. In contrast, for A baryons, the
dependence on the forward energy is not common among the different types of classifications. The A
ratios in the high-local-multiplicity classes are found to be systematically lower than those in the low-
local-multiplicity classes at similar values of ZN energy. This observation implies that, in events with
similar leading energy, a smaller production of A baryons per charged particle is observed in events
with larger values of multiplicity at midrapidity. This is in agreement with the decrease of A yield with
increasing midrapidity multiplicity observed in the fixed leading energy classes, discussed above. It
is worth noting that in terms of charged-particle multiplicity the high-ZN-energy classification (azure
squares) spans a ng range that encompasses the values of the low- and high-local-multiplicity classes,
and that while E production is almost constant within the class, showing no dynamic once ZN is fixed,
the A self-normalised yields vary by about 20% from the lowest to the highest n., values reached by
the high-ZN-energy classification. Notably, the A production per charged particle in the high-/low-local-
multiplicity classes reaches overall higher values with respect to the highest values obtained with the
standalone selections. The K(S) meson, on the other hand, shows very mild-to-no dependence on the ZN
energy once the midrapidity activity is fixed. Comparing the results for the different particle species
provides interesting inputs on the correlation of strange hadron production with the leading energy once
the charged particle multiplicity is defined. The larger effect observed for A with respect to K(S) indicates
a stronger correlation of strange baryon production with the leading energy with respect to mesons, given
the two hadrons have the same strangeness content. This observation is further supported by comparing
the results of A to E yields, which show a compatible relative increase at fixed multiplicity. However, it
is worth noting that the dependence of A to E yield ratios to the ZN energy differs in these event classes,
suggesting that the hadron strangeness content plays a role in the observed behaviour.

8.3 Comparison to PYTHIA 8

The results reported in Fig. are compared with MC simulations based on PYTHIA 8 in Figs. [12]
and [14| for K9, A, and E, respectively. In particular, Fig. |12| shows the self-normalised yield ratios
for the K meson, compared to simulations with PYTHIA 8 with the Monash tune (dashed line) and
the QCD-CR+Ropes tune (full line). The two tunes predict a very similar behaviour for K2, suggesting
that including improved colour reconnection and ropes in the hadronisation process does not have a big
impact on the production of strange mesons. For events with defined average midrapidity multiplicity
(top left and right panels), the two tunes predict a mild and yet significant dependence on the leading
energy, in moderate tension with the measured trend. For similar leading energies (bottom left and right
panels), both PYTHIA 8 tunes predict a very mild decrease of the Kg yield per charged particle with the
charged-particle multiplicity, not matching the data at low multiplicity.

Figure [I3] shows the model comparison to the self-normalised yield ratios for the A baryon in the event
classes with high-/low-local-multiplicity and high-/low-ZN-energy. For similar midrapidity multiplic-
ity values, the two tunes predict an increase of A production per charged particle with decreasing ZN
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Figure 12: Self-normalised yield ratios of K(S) in pp collisions at /s = 13 TeV in the high-/low-local-multiplicity,
high-/low-ZN-energy selections compared to PYTHIA 8 Monash and QCD-CR+Ropes predictions. The classes at
fixed multiplicity are displayed in the top panels, and the classes at fixed leading energy are displayed in the bottom
panels. The results from PYTHIA 8 with Monash and QCD-CR+Ropes tunes are shown with dashed and full lines,
respectively. Statistical and total systematic uncertainties are shown by error bars and boxes, respectively.

energy. It is worth noting that the PYTHIA 8 Monash tune predicts no strange hadron enhancement
in the standalone event selection, however, once the multiplicity is fixed, an increase is observed with
decreasing leading energy. For similar leading energy values, the Monash tune predicts a decrease of
the A yield per charged particle with increasing local multiplicity, similarly to what is observed in the
data points, but struggling to reproduce the measured values quantitatively. The QCD-CR+Ropes tune
predicts small-to-no dynamics with multiplicity once the leading energy is fixed.

Finally, Fig. [14] shows the model comparison to the self-normalised yield ratios for the = baryon for the
different event classes. In this case, the PYTHIA 8 event generator including improved colour recon-
nection and ropes does an excellent job in reproducing the data points in the standalone selection, as
discussed above. For similar midrapidity multiplicities, the QCD-CR+Ropes tune qualitatively describes
the increase of E production per charged particle with decreasing leading energy, also reproducing the
universal trend observed in the data points with the ZN energy. However, the model struggles to re-
produce the measured data points quantitatively. The Monash tune fails to reproduce the strangeness
enhancement in the standalone event selection (see Fig.[I0), however, once the multiplicity is defined, an
increase is observed with decreasing leading energy qualitatively similar to the measured trend, although
it predicts a difference between the high and low-local-multiplicity classes for the same ZN energy, which
is not observed in the data.

Given the anti-correlation between the forward energy and the number of MPIs, the PYTHIA 8§ pre-
dictions for the A and = baryons may indicate that also at fixed midrapidity multiplicity an increase in
strange baryon production is expected at increasing number of MPIs, regardless of the hadronisation
mechanism at play. On the other hand, this is not foreseen for strange K(S) mesons. The largely different
predictions for A and Kg hadrons obtained including the rope formation mechanism in the model suggest
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Figure 13: Self-normalised yield ratios of A in pp collisions at y/s = 13 TeV in the high-/low-local-multiplicity,
high-/low-ZN-energy selections compared to PYTHIA 8 Monash and QCD-CR+Ropes predictions. The classes at
fixed multiplicity are displayed in the top panels, and the classes at fixed leading energy are displayed in the bottom
panels. The results from PYTHIA 8 with Monash and QCD-CR+Ropes tunes are shown with dashed and full lines,
respectively. Statistical and total systematic uncertainties are shown by error bars and boxes, respectively.

that the interplay between MPIs and colour rope hadronisation may have a stronger impact on the en-
hancement of (strange) baryons, rather than on the enhancement of strangeness itself. This interpretation
is further supported by comparing the results of A and E baryons, for which similar trends are predicted
by the tune with QC-CR+Ropes, despite the different strangeness content.

In conclusion, to produce an enhancement of strange baryon yields in PYTHIA 8 the interplay between
the MPIs and the hadronisation mechanism appears to be essential, with MPIs increasing the string
density and rope formation mechanism effectively enhancing the string tension. While the interaction
between MPIs and rope hadronisation mechanisms provides valuable insights on strange baryon pro-
duction, discrepancies are observed in the data between baryons with different strangeness content, for
instance A and E.

9 Conclusions

This article presented a comprehensive multi-differential study of the production of Kg strange mesons, A
strange baryons, and E multi-strange baryons in pp collisions at /s = 13 TeV measured with the ALICE
detector at the LHC. Using a novel approach, for the first time the production of strange hadrons at
midrapidity is characterised not only as a function of the local particle multiplicity, but also as a function
of the energy detected in ALICE Zero-Degree Calorimeters. Assuming the deposit in the calorimeters is
proportional to the energy of collision remnants, the ZDCs provide an estimation of the effective energy
available for particle production in the early stages of the collision.

Transverse momentum spectra of Kg, A, and E are significantly affected by local multiplicity at fixed
leading energy, whereas leading energy itself has a very limited effect on the pr distribution once sim-
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fixed multiplicity are displayed in the top panels, and the classes at fixed leading energy are displayed in the bottom
panels. The results from PYTHIA 8 with Monash and QCD-CR+Ropes tunes are shown with dashed and full lines,
respectively. Statistical and total systematic uncertainties are shown by error bars and boxes, respectively.

ilar midrapidity multiplicities are selected. Strangeness enhancement is observed with decreasing ZDC
deposits, which implies a positive correlation of strange hadron production with the effective energy.
This work complements previous studies on strange hadron production at midrapidity, by disentangling
the correlation between the local charged-particle multiplicity and the ZDC energy through a multi-
differential technique. Once the energy measured at forward rapidity is fixed, the A and E enhance-
ment with multiplicity is no longer observed. Instead, the strange baryon yield ratios show a mild anti-
correlation with particle production at midrapidity. For similar midrapidity multiplicities, the production
of A and E strange baryons per charged particle is enhanced with increasing effective energy (anti-
correlated with the ZDC energy). These effects are not observed for K(S) mesons, which display a very
weak correlation with the effective energy. The largely different trends observed in this multi-differential
analysis for A and Kg hadrons suggest that the production of strange baryons and mesons in pp collisions
may be driven by different mechanisms. The enhancement of strange baryons appears to be strongly cor-
related with the effective energy; on the other hand, the hadronisation of strange quarks into K(S) mesons
does not seem to be strongly influenced by the energy available in the early stages of the collision. It is
worth noting that the dependence of the yield ratios to the ZN energy differs between A and X baryons,
suggesting that the strangeness content plays a role in the observed behaviour.

The higher integrated luminosity collected by ALICE in Run 3 will allow us to extend this novel approach
to baryons with larger strangeness content, such as the Q, for which the statistical precision obtained with
the Run 2 samples did not allow for a double-differential analysis.

The results are compared to Monte Carlo simulations based on two tunes of the PYTHIA 8 event gener-
ator: the Monash tune and the one including the improved colour reconnection and rope hadronisation
mechanisms (QCD-CR+Ropes). In general, the effective energy is observed to be strongly correlated
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with the number of MPI in PYTHIA. The data-model comparison of the predicted strange-particle pro-
duction yields with the measured ones suggests that the interplay between the MPI and the CR+Ropes
hadronisation mechanism is required to reproduce the observed enhancement of strange baryons A and
Z. However, when selecting events with similar effective energy these mechanisms fail to reproduce
the measured multiplicity dependence of A and E production. No dynamics in terms of multiplicity
and effective energy is predicted by both tunes for the production of K(S) mesons, suggesting that the
CR+Ropes hadronisation mechanism results in an enhanced production of (strange) baryons, rather than
of strangeness itself.
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