002909623 001__ 2909623
002909623 005__ 20241111162001.0
002909623 0248_ $$aoai:cds.cern.ch:2909623$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002909623 037__ $$9arXiv$$aarXiv:2408.12309$$cnucl-ex
002909623 035__ $$9arXiv$$aoai:arXiv.org:2408.12309
002909623 035__ $$9Inspire$$aoai:inspirehep.net:2820637$$d2024-09-11T20:07:12Z$$h2024-09-12T02:00:39Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002909623 035__ $$9Inspire$$a2820637
002909623 041__ $$aeng
002909623 100__ $$aPineda, S.V.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 245__ $$9arXiv$$aRadiative Decay of the $^{229m}$Th Nuclear Clock Isomer in Different Host Materials
002909623 269__ $$c2024-08-22
002909623 300__ $$a13 p
002909623 520__ $$9arXiv$$aA comparative vacuum ultraviolet spectroscopy study conducted at ISOLDE-CERN of the radiative decay of the $^{229m}$Th nuclear clock isomer embedded in different host materials is reported. The ratio of the number of radiative decay photons and the number of $^{229m}$Th embedded are determined for single crystalline CaF$_2$, MgF$_2$, LiSrAlF$_6$, AlN, and amorphous SiO$_2$. For the latter two materials, no radiative decay signal was observed and an upper limit of the ratio is reported. The radiative decay wavelength was determined in LiSrAlF$_6$ and CaF$_2$, reducing its uncertainty by a factor of 2.5 relative to our previous measurement. This value is in agreement with the recently reported improved values from laser excitation.
002909623 540__ $$3preprint$$aCC BY-SA 4.0$$uhttp://creativecommons.org/licenses/by-sa/4.0/
002909623 595__ $$cHAL
002909623 65017 $$2arXiv$$anucl-ex
002909623 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002909623 690C_ $$aCERN
002909623 690C_ $$aPREPRINT
002909623 700__ $$aChhetri, P.$$uLeuven U.$$uMainz U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium$$vDepartment Chemie -Standort TRIGA, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
002909623 700__ $$aBara, S.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aElskens, Y.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aCasci, S.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aAlexandrova, A.N.$$uUCLA, Los Angeles (main)$$vDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
002909623 700__ $$aAu, M.$$uCERN$$vCERN SY-STI, Espl. des Particules 1, Geneva, 1211, Switzerland
002909623 700__ $$aAthanasakis-Kaklamanakis, M.$$uLeuven U.$$uCERN$$uImperial Coll., London$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium$$vCERN, Experimental Physics Department, CH-1211 Geneva 23, Switzerland$$vBlackett Laboratory, Centre for Cold Matter, Imperial College London, SW7 2AZ London, United Kingdom
002909623 700__ $$aBartokos, M.$$uVienna, Tech. U., Atominst.$$vVienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
002909623 700__ $$aBeeks, K.$$uEcole Polytechnique, Lausanne$$vLUMES, Institute of Physics, EPFL, Lausanne CH-1015, Switzerland
002909623 700__ $$aBernerd, C.$$uLeuven U.$$uCERN$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium$$vCERN SY-STI, Espl. des Particules 1, Geneva, 1211, Switzerland
002909623 700__ $$aClaessens, A.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aChrysalidis, K.$$uCERN$$vCERN SY-STI, Espl. des Particules 1, Geneva, 1211, Switzerland
002909623 700__ $$aCocolios, T.E.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aCorreia, J.G.$$uLisbon, IST$$vCentro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico,$$vUniversidade de Lisboa, 2695-066 Bobadela LRS, Portugal
002909623 700__ $$aDe Witte, H.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aElwell, R.$$uUCLA, Los Angeles (main)$$vDepartment of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
002909623 700__ $$aFerrer, R.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aHeinke, R.$$uCERN$$vCERN SY-STI, Espl. des Particules 1, Geneva, 1211, Switzerland
002909623 700__ $$aHudson, E.R.$$uUCLA, Los Angeles (main)$$vDepartment of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
002909623 700__ $$aIvandikov, F.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aKudryavtsev, Yu.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aKöster, U.$$uLaue-Langevin Inst.$$vInstitut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
002909623 700__ $$aKraemer, S.$$uLeuven U.$$uLMU Munich (main)$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium$$vLudwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
002909623 700__ $$aLaatiaoui, M.$$uMainz U.$$vDepartment Chemie -Standort TRIGA, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
002909623 700__ $$aLica, R.$$uBucharest, IFIN-HH$$vHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
002909623 700__ $$aMerckling, C.$$uIMEC, Leuven$$vImec, Kapeldreef 75, Leuven B-3001, Belgium
002909623 700__ $$aMorawetz, I.$$uVienna, Tech. U., Atominst.$$vVienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
002909623 700__ $$aMorgan, H.W.T.$$uUCLA, Los Angeles (main)$$vDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
002909623 700__ $$aMoritz, D.$$uLMU Munich (main)$$vLudwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
002909623 700__ $$aPereira, L.M.C.$$uLeuven U.$$vKU Leuven, Quantum Solid State Physics, 3001 Leuven, Belgium
002909623 700__ $$aRaeder, S.$$uDarmstadt, GSI$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
002909623 700__ $$aRothe, S.$$uCERN$$vCERN SY-STI, Espl. des Particules 1, Geneva, 1211, Switzerland
002909623 700__ $$aSchaden, F.$$uVienna, Tech. U., Atominst.$$vVienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
002909623 700__ $$aScharl, K.$$uLMU Munich (main)$$vLudwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
002909623 700__ $$aSchumm, T.$$uVienna, Tech. U., Atominst.$$vVienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
002909623 700__ $$aStegemann, S.$$uCERN$$vCERN SY-STI, Espl. des Particules 1, Geneva, 1211, Switzerland
002909623 700__ $$aTerhune, J.$$uUCLA, Los Angeles (main)$$vDepartment of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
002909623 700__ $$aThirolf, P.G.$$uLMU Munich (main)$$vLudwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
002909623 700__ $$aTunhuma, S.M.$$uLeuven U.$$vKU Leuven, Quantum Solid State Physics, 3001 Leuven, Belgium
002909623 700__ $$aBergh, P. Van Den$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aVan Duppen, P.$$uLeuven U.$$vKU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
002909623 700__ $$aVantomme, A.$$uLeuven U.$$vKU Leuven, Quantum Solid State Physics, 3001 Leuven, Belgium
002909623 700__ $$aWahl, U.$$uLisbon, IST$$vCentro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico,$$vUniversidade de Lisboa, 2695-066 Bobadela LRS, Portugal
002909623 700__ $$aYue, Z.$$uYork U., England$$vSchool of Physics, Engineering and Technology, University of York, York, YO10 5DD, United Kingdom
002909623 8564_ $$82556016$$s88302$$uhttps://cds.cern.ch/record/2909623/files/calibration141-label.png$$y00006 An example spectrum of the nitrogen line at 141\,nm used for the offset determination. The solid line is the fit to the data.
002909623 8564_ $$82556017$$s68144$$uhttps://cds.cern.ch/record/2909623/files/allspectra6.png$$y00003 Typical spectra taken with a 2\,mm (a-g) and 250\,$\mu$m (h,i) entrance slit demonstrating the fitting method for the radiative decay of $^{229m}$Th. Measurements (a-g) were taken with a measurement time of 10 seconds per point and a step size of 100 motor positions between each point. Measurements (h,i) were taken with a 10 second measurement time per point and a step size of 15 motor positions between each point. The dashed curve is a Gaussian peak in (a to e) and a Lorentzian peak in (h and i). The dot-dashed curve is a polynomial representing the Cherenkov background radiation and the dotted curve is the radioluminescence peak possibly due to a color center. The solid black line is the dark count rate from the PMT. The reduced Cherenkov background in case of spectra taken with the thin film crystals (a, d, h) did not allow to distinguish clearly between the Cherenkov background from the dark countrate. (a) CaF$_2$ 350 thin film, (b) MgF$_2$ bulk, (c) CaF$_2$ bulk, (d) CaF$_2$ 850, (e) LiSrAlF$_6$, (f) AlN, and (g) SiO$_2$, (h) CaF$_2$ 350 and (i) LiSrAlF$_6$.
002909623 8564_ $$82556018$$s17374$$uhttps://cds.cern.ch/record/2909623/files/alpha_spectrum3.png$$y00001 The $\alpha$-decay spectrum of the CaF$_2$ 350 sample (see Tab. \ref{tab:crystal-specs} for details of the crystal), the $\alpha$-lines from the $A=229$ (square), $A=228$ (triangle), and $A=227$ (circle) decay chains are indicated.
002909623 8564_ $$82556019$$s278193$$uhttps://cds.cern.ch/record/2909623/files/cherenkov-all-incolor2.png$$y00002 (Color online) Cherenkov spectra from $A=230$ implantations for CaF$_2$ (circles), MgF$_2$ (triangles), LiSrAlF$_6$ (x's), AlN (squares) and SiO$_2$ (diamonds) normalized by the activity deduced from the $\gamma$-data recording during implantation. Broad radioluminescence peaks are present in CaF$_2$ bulk at approximately 142\,nm and 177\,nm. All spectra were taken with a measurement time of 10 seconds per data point and a step size of 100 motor positions between each point.
002909623 8564_ $$82556020$$s7159671$$uhttps://cds.cern.ch/record/2909623/files/2408.12309.pdf$$yFulltext
002909623 8564_ $$82556021$$s90870$$uhttps://cds.cern.ch/record/2909623/files/relative-efficiencies3.png$$y00004 Radiative decay fractions for each crystal relative to CaF$_2$ bulk. An upper limit is reported for AlN and SiO$_2$ due to the absence of a signal, therefore a downward-pointing arrow is shown for both of these crystals.
002909623 8564_ $$82556022$$s2122533$$uhttps://cds.cern.ch/record/2909623/files/2_structures_PDOS_v3.png$$y00005 (a): DFT structure 1 for the Th defect in SiO$_2$. Th is shown in green, Si in blue, and O in red. (b): DFT structure 2 for the Th defect in SiO2. (c) Thorium projected density of states (PDOS) in Th:SiO2 defect structure 1. Energies are relative to the highest occupied band, and the black dashed line at 8.355 eV marks the $^{229}$Th isomer transition energy (note that since the nuclear excited state is not an electronic state, marking it relative to the Fermi energy is an arbitrary choice). (d) Thorium PDOS in structure 2.
002909623 8564_ $$82556023$$s2763805$$uhttps://cds.cern.ch/record/2909623/files/beamspot-mm.png$$y00000 Image of the beam spot captured from the MCP+phosphor screen setup captured by a CCD camera. The dashed ellipse indicates the beam size at the full width at half maximum level. The dimensions of this ellipse are $1.5\,\mathrm{mm}\times 2.7$\,mm. The $x$ and $y$ axes correspond to the horizontal and vertical beam position, respectively. Axis tick labels are rounded to the nearest decimal in mm.
002909623 960__ $$a11
002909623 980__ $$aPREPRINT