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Abstract

The coherent J/ψ photoproduction cross section is measured for the first time at midrapidity in
peripheral to semicentral Pb–Pb collisions at

√
sNN = 5.02 TeV. The centrality differential cross

section dσ/dy is reported for the centrality range 40–90%, together with the doubly-differential cross
section d2σ/dydpT, extracted in two peripheral centrality classes. The J/ψ mesons are reconstructed
in the dielectron channel, in the rapidity interval |y|< 0.9 using the ALICE central barrel detectors.
The J/ψ cross section at midrapidity is statistically compatible to the earlier ALICE measurement at
forward rapidity and at the same centre-of-mass energy, and shows only a mild centrality dependence
over the covered range. Several sets of theoretical calculations taking into account the hadronic
overlap in the collisions but ignoring possible final-state effects from a hot expanding medium are
found to give a fairly good description of the current measurements within uncertainties.

*See Appendix A for the list of collaboration members
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1 Introduction

In ultrarelativistic collisions between heavy ions, the Lorentz-contracted nuclei generate strong electro-
magnetic fields, and either of them can be treated as the source of a quasi-real photon, which interacts
with the other nucleus treated as the target. The photoproduction cross section can be factorised as the
product of the photon flux emanating from one of the colliding nuclei, which is proportional to the square
of the nuclear electric charge, Z2, and the photonuclear cross section. This process can be viewed as a
fluctuation of the photon into a quark-antiquark pair (colour dipole), which then interacts with the gluon
field of the target nucleus, at leading order through the exchange of two gluons in a colour singlet state,
producing a real vector meson [1]. In this approximation, the cross section is proportional to the square
of the target gluon distribution at relevant values of (x, Q2) [2]. The photoproduction can be either co-
herent, with the photon interacting with the target nucleus as a whole, generating a vector meson with
very low transverse momentum (⟨pT⟩ ∼ 60 MeV/c), or incoherent, with the photon interacting with a
single nucleon, producing a meson of higher transverse momentum (⟨pT⟩ ∼ 500 MeV/c) [3]. Photonu-
clear vector meson production is thus a powerful tool for investigating the gluonic structure of the target.
Cross section measurements are sensitive to the gluon density in the nucleus and, due to the relatively
low values of x that are accessible via this process, may constitute a probe for gluon shadowing or sat-
uration. In addition, spatial characteristics of the gluon distribution, such as transverse size, shape, and
fluctuations, can be accessed through measurements of the differential cross section dσ/dt, with the
Mandelstam variable t ∼−p2

T [4].

Photonuclear reactions have been most extensively studied in ultraperipheral collisions (UPC) of heavy
ions, taking place at impact parameters larger than the sum of their radii. With combinatorial and
hadronic backgrounds being negligible, coherent and incoherent cross sections can readily be extracted.
At the LHC energies, ALICE, CMS and LHCb have studied coherent charmonium photoproduction in
ultraperipheral Pb–Pb collisions at

√
sNN = 2.76 TeV [5–7] and 5.02 TeV [4, 8–12], in the rapidity ranges

|y|< 0.9 (ALICE), 1.8 < |y|< 2.3 (CMS, 2.76 TeV), 1.6 < |y|< 2.4 (CMS, 5.02 TeV), 2.5 < y < 4 (AL-
ICE) and 2.0 < y < 4.5 (LHCb).

Coherent photoproduction of J/ψ in heavy-ion interactions with nuclear overlap, manifesting as a promi-
nent excess (for pT < 0.3 GeV/c) relative to the soft tail of the hadronically generated J/ψ spectrum,
was first observed by ALICE in peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV and at forward rapid-

ity (2.5 < y < 4), in the centrality range 30–90% [13]. The phenomenon was confirmed by STAR at
RHIC energies, in Au–Au (20–80%) and U–U (40–80%) collisions at

√
sNN = 200 and 193 GeV, respec-

tively, also presenting the pT and |t| dependence of the coherent cross section [14]. Recently, LHCb [15]
and ALICE [16] reported a similar excess also in Pb–Pb collisions at

√
sNN = 5.02 TeV, in both cases

measured at forward rapidity (2 < y < 4.5 and 2.5 < y < 4, respectively). LHCb, covering a range of pe-
ripheral collisions (approximately 65–90%), measured the differential J/ψ photoproduction yield dN/dy
as a function of the number of participants ⟨Npart⟩ and y, and the doubly-differential yield d2N/dydpT as
a function of pT. ALICE extracted the coherent J/ψ photoproduction centrality differential cross section
dσ/dy over the centrality range 0–90%, setting an upper limit for the most central collisions (0–10%).
A mild centrality dependence is revealed, compatible within uncertainties both with a flat trend and with
a decrease of the cross section towards more central collisions.

The observation of coherent photoproduction in nuclear collisions with overlap inspired new theoretical
developments [17–23], attempting to quantitatively describe the centrality, rapidity, and in the case of
Refs. [19, 20, 23], the pT dependence of the experimentally measured cross sections or yields. In order to
account for the hadronic overlap, these models take the UPC picture as a baseline and impose geometric
constraints implemented as impact parameter ranges, modifying the photon flux and, in some cases, also
the photonuclear cross section.

Several questions remain unresolved regarding coherent photoproduction processes in a hadronic envi-
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ronment, including the roles of spectator and participant nucleons as photon sources and targets (theoreti-
cally explored in [19]), the survival of the coherence condition in the presence of nuclear breakup, and the
time ordering of the hadro- and photoproduction. The coherent J/ψ pT distribution, its impact parameter
dependence, and the possible influence of destructive interference between the two photon sources and of
the strong interactions in the nuclear overlap zone have been investigated in Refs. [19, 20]. The shapes
of the measured |t| spectrum in Ref. [14] and pT spectrum in Ref. [15] are well reproduced by these
calculations within uncertainties. However, no available experimental data allow meaningful assessment
of the evolution of pT distributions with collision centrality.

An issue still sparsely explored by models is the potential influence of the hot and rapidly expanding
partonic medium generated in the hadronic overlap zone on the coherently photoproduced, low-pT char-
monia. The latter are formed during the same narrow time interval as the initial hadronic interactions
occur, presumably distributed over the surface of the target nuclei [22], and remain almost stationary in
the transverse plane. This subset of the observable J/ψ population is uniquely identifiable as primordial
survivors through their characteristic pT distribution, and is, therefore, a particularly interesting QGP
probe. Possible final-state medium effects are expected to be nearly absent in the most peripheral colli-
sions, but may exhibit an onset with increasing nuclear overlap, manifesting as a reduction in measured
cross sections and possibly a modulation in azimuthal distributions beyond that predicted by models con-
sidering only geometric constraints on photoproduction. Taking into account gluon-induced dissociation
of charmonia in the plasma, Ref. [22] predicts a medium-induced suppression of the photoproduced J/ψ

yield of ∼ 20–40% for semicentral collisions with ⟨Npart⟩ ∼ 100–150.

This paper presents for the first time the J/ψ coherent photoproduction cross section, measured at
midrapidity in peripheral to semicentral (40–90%) Pb–Pb collisions at

√
sNN = 5.02 TeV. The doubly-

differential cross section d2N/dydpT extracted by ALICE is reported for the first time for J/ψ photo-
production in collisions with nuclear overlap for two centrality classes, 50–70% and 70–90%. Section
2 gives an overview of the experimental apparatus and the data sample used, while Section 3 details the
analysis and the extraction of systematic uncertainties. Section 4 presents the results and discusses them
in the context of other existing J/ψ photoproduction measurements and relevant model calculations. Fi-
nally, Section 5 summarises the conclusions based on the LHC Run 2 data and points to opportunities
offered by upcoming high-luminosity runs.

2 Experimental setup and data sample

A detailed description of the ALICE detector and its performance is provided in Refs. [24, 25]. In this
work, J/ψ mesons are reconstructed in the dielectron channel at midrapidity (|y|< 0.9), using the central
barrel charged particle tracking detectors ITS (Inner Tracking System) [26] and TPC (Time Projection
Chamber) [27] which provide very good tracking and electron identification in the pseudorapidity range
|η | < 0.9. The ITS comprises six cylindrical detection layers based on different silicon technologies,
surrounding the beam axis at radii ranging from 3.9 to 43 cm. The two innermost layers, requiring the
highest granularity, are Silicon Pixel Detectors (SPD), while the two middle layers are Silicon Drift
Detectors (SDD) and the two outermost ones are Silicon Strip Detectors (SSD). The ITS system is
used for the determination of the event primary interaction point, precision tracking for the location
of secondary vertices from weakly decaying particles, and event selection. The TPC is a cylindrical
gaseous detector, filled with a mixture of argon and carbon dioxide, surrounding the ITS, with an inner
radius of 0.85 m, an outer radius of 2.5 m, and a length of 5 m along the beam direction. It is the main
tracking detector of the central barrel system, also performing particle identification based on the specific
energy loss dE/dx in the gas.

In addition, a suite of detectors for global event characterisation is employed. The V0 detector [28] con-
sists of two scintillating arrays covering the pseudorapidity ranges 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7
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(V0C), both being segmented in pseudorapidity and azimuthal angle. This subsystem is used for trigger-
ing and rejecting beam-induced background events, measuring charged particle multiplicity, and deter-
mining collision centrality and event plane azimuthal angle. The centrality in Pb–Pb collisions is defined
as the percentile of the hadronic cross section corresponding to the charged particle multiplicity mea-
sured in the V0 detector [29]. A fit of a Glauber Monte Carlo model to the V0 amplitude distribution
is used to relate the experimental centrality with geometric quantities like the average impact parameter
(⟨b⟩) and the number of participants (⟨Npart⟩). The Zero Degree Calorimeter [30] comprises two sets of
detector arrays located close to the beam axis on both sides of the nominal interaction point, at a distance
of ± 112.5 m. Their task is detecting nucleons emitted at zero degrees relative to the beam axis, aiding
event characterisation both in hadronic and electromagnetic interactions, and rejection of beam-induced
background.

The analysed data set was collected by ALICE during the 2015 and 2018 LHC Pb–Pb runs at
√

sNN = 5.02 TeV.
At midrapidity, data was acquired using the minimum bias (MB) trigger, defined by the coincidence of
signals in both the V0A and V0C arrays. In the 2018 period, a central and a semicentral trigger were
used in addition. These were defined using the MB trigger in combination with thresholds on the total
online signal amplitude in the V0 detector, corresponding roughly to collision centralities of 0–10% and
30–50%, respectively. In this analysis, only events from the centrality range 40–90% were considered.
Beam-induced background was rejected using timing information from the V0 and the Zero Degree
Calorimeter detectors. All events were required to have a reconstructed primary vertex with a longitudi-
nal position within ±10 cm from the nominal interaction point. Events with pileup occurring during the
TPC readout time were rejected in the offline analysis based on the correlation between the number of
TPC and ITS (SDD+SSD) clusters. After all selections, the number of analysed events is approximately
37 million, 35 million, and 35 million for the 40–50%, 50–70%, and 70–90% centrality ranges, respec-
tively. This corresponds to an integrated luminosity of ∼ 49.6 µb−1 for the 40–50% centrality interval
and ∼ 24 µb−1 for both the 50–70% and 70–90% centrality intervals [31].

3 Data analysis

The J/ψ mesons are reconstructed using the e+e− decay channel. The selected electron candidates are
good quality tracks reconstructed through both the ITS and TPC, with a minimum total momentum (p)
of 1 GeV/c and a pseudorapidity |η |< 0.9. To ensure excellent tracking quality, each track is required to
have a minimum number of 70 associated space points in the TPC and a maximum calculated χ2/Ndof
value of 2 for the fit of the track to the clusters. Secondary particles are suppressed by requiring the
maximum distance-of-closest-approach (DCA) of the track to the interaction vertex to be 1 cm in the
transverse and 3 cm in the longitudinal direction. In addition, daughters of long-lived weakly decaying
particles are removed using topological selections. In order to improve the tracking resolution and to
reduce the number of secondary electrons from photon conversions in the detector material, at least one
hit in either of the two SPD layers is required. Electrons and positrons are identified via their specific
energy loss in the TPC gas by selecting a band of width ±3σe around the electron expectation value
estimated from a parameterisation of the measured average dE/dx as a function of momentum [32], with
σe being the resolution of this measurement. To further reduce the contamination from hadrons, tracks
with a dE/dx compatible with the pion or proton hypothesis within ±3.5σπ/p, are rejected. Finally,
electrons from photon conversions are further suppressed by using a prefiltering method [33] where
candidate tracks forming a pair with invariant mass mee < 50 MeV/c2 when combined with a set of
candidates selected using looser cuts, are excluded from the analysis.

In order to extract the yields of coherently photoproduced J/ψ , a two-dimensional distribution N(mee, pT)
is constructed from all combinations of opposite-sign electron tracks from the same event and passing
all selections described above. An unbinned 2-dimensional log-likelihood fitting procedure is applied
to the measured distribution using a model which includes contributions from photoproduction (Fphot,i),
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hadroproduction (Fhadr), and background (Fbkg):

F(mee, pT) = fbkg ·Fbkg(mee, pT)+ fhadr ·Fhadr(mee, pT)+ fphot ·∑
i

wphot,iFphot,i(mee, pT) , (1)

where fbkg, fhadr, and fphot are the normalisation parameters of the respective components, and wphot,i
are the fractional contributions from the different photoproduction processes, all described in more detail
below.

The background component, Fbkg, is constructed as the sum of the combinatorial background and a
much smaller background contribution from correlated semileptonic decays of heavy-quark pairs. The
combinatorial background, Fcomb

bkg , is constructed using the mixed-event technique, pairing opposite-sign
electrons from events with similar global characteristics (centrality, vertex position, and event plane
orientation). It is normalised using the like-sign pairs according to the expression

Fcomb
bkg (mee, pT) = NME−OS(mee, pT) ·

∑mi
ee,p

j
T

NSE−LS(mi
ee, pj

T)

∑mi
ee,p

j
T

NME−LS(mi
ee, pj

T)
, (2)

where NME−OS is the distribution of opposite-sign mixed-event pairs, while NSE−LS and NME−LS are
the like-sign pair distributions from the same and mixed events, respectively, summed over the mee and
pT. More details on the mixed-event procedure can be found in Refs. [34]. The two-dimensional corre-
lated background component, Fcorr

bkg , is constructed using a parameterisation of the residual background
obtained from the (mee, pT) dielectron distribution by subtracting the combinatorial background. The
parameterisation is a 2D function which is factorisable into a first-order polynomial over the invariant
mass dimension and a piecewise polynomial function over the pT dimension. The correlated background
component has a relatively small amplitude compared to the combinatorial background and to the J/ψ

signal as well as to statistical fluctuations. The unbinned likelihood fit is therefore performed both with
and without this component, yielding a small difference taken as a systematic uncertainty, as described
later in this section. Due to the fact that Fcomb

bkg is already normalised via Eq. 2, Fcorr
bkg and the total sum

Fbkg will also be normalised by construction, and the corresponding parameter fbkg is therefore fixed in
the fit of Eq. 1.

The two-dimensional hadroproduction component, Fhadr, is estimated via a Monte-Carlo simulation, de-
scribed in more detail in Refs. [35, 36]. This MC used a realistic kinematic distribution of inclusive
unpolarised J/ψ based on existing measurements, including a fit to inclusive yields reported in Ref. [35].
The J/ψ were embedded in an underlying environment of Pb–Pb collisions generated using HIJING
1.0 [37]. The pT shape of the embedded J/ψ signal was further tuned to match the pT differential J/ψ

yields recently measured by ALICE in the relevant centrality classes [36]. The J/ψ decay is forced
into the dielectron channel using the PHOTOS package [38]. The simulated particles were transported
through a model of the ALICE detector using GEANT3 [39], and then reconstructed with the same
algorithms as used for real data.

The photoproduction component, Σiwphot,iFphot,i, is a sum of contributions from several processes, i,
namely: coherent and incoherent J/ψ photoproduction, feed-down from coherently and incoherently
photoproduced ψ(2S), incoherent J/ψ photoproduction with nucleon dissociation, and continuum γγ → e+e−.
The processes were simulated using the STARLight generator [40] with the same relative weights as
those obtained in the UPC analysis reported in Ref. [9], and embedded into Pb–Pb collisions generated
using the HIJING model with a similar setup as the one described for the hadronic component. Integrated
in the range pT < 0.2 GeV/c, the ratio between the incoherent, feed-down and γγ continuum to the coher-
ent J/ψ component is approximately 1%, 2.5% and 11%, respectively. The charmonia generated with
STARLight are transversely polarised, as expected from s-channel helicity conservation and recently
confirmed experimentally for coherently photoproduced J/ψ [41]. For the incoherent J/ψ with nucleon
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Figure 1: Invariant mass distribution for pT < 200 MeV/c (left panel) and pT distribution for 2.92 < mee <

3.16 GeV/c2 (right panel) in the centrality class 70–90% for dielectrons with |y|< 0.9 in Pb–Pb collisions at
√

sNN = 5.02 TeV. Measured distributions for J/ψ candidates are shown as black markers and the fit components
as coloured lines, as explained in the legend.

dissociation component, a process not incorporated in STARLight, the pT shape was constructed using
the H1 parameterisation [42]. The individual two-dimensional template shapes of the various processes,
Fphot,i(mee, pT), were obtained from the reconstructed electron pairs using the same reconstruction algo-
rithm and analysis selections as for the data. The sum of all the reconstructed and weighted templates is
used as a single component in the unbinned fit of Eq. 1 due to the fact that the size of the current data set
does not allow the normalisation factors ( fphot ·wphot,i) of all these templates to vary independently in the
fit.

In order to extract the signal, the unbinned data N(mee, pT) is fitted with the model from Eq. 1, where the
only free parameters are fhadr and fphot. The fit is performed in the pT range 0 < pT < 7 GeV/c and the
mass range 2 < mee < 4 GeV/c2. This procedure is performed in the centrality classes 40–50%, 50–70%,
and 70–90%, and the raw yield of coherently photoproduced J/ψ , NJ/ψ,coh, is found by integrating
the corresponding fitted template function for pT <0.2 GeV/c and 2.92< me+e− < 3.16 GeV/c2. The
quality of the fitting procedure is illustrated in Fig. 1. The left panel shows a projection on the invariant
mass dimension for candidate pairs with pT < 0.2 GeV/c for Pb–Pb collisions in the 70–90% centrality
range. The right panel shows a projection on the pT dimension for pairs in the invariant mass interval
2.92< me+e− <3.16 GeV/c2 and the same centrality range. The two projections of the candidate pair
distribution are compared to the projection from the fit model and its various components as described
above.

The doubly-differential cross section of the coherent J/ψ photoproduction, d2σ/dydpT, for a rapidity
interval, ∆y, and a pT interval, ∆pT, is computed as:

d2σ

dydpT
=

NJ/ψ,coh

(A× ε)J/ψ,coh ×BR(J/ψ → e+e−)×∆y×∆pT ×L
, (3)

where NJ/ψ,coh is the raw yield of coherently photoproduced J/ψ , (A× ε)J/ψ,coh is the average accep-
tance and efficiency factor for the kinematic window studied, and L is the integrated luminosity for the
analysed data sample as given in Sec. 2, all referring to the centrality class considered. The obtained

6



Coherent J/ψ photoproduction in Pb–Pb collisions at 5.02 TeV ALICE Collaboration

computed cross sections correspond to the luminosity integrated in the given centrality interval. The
BR(J/ψ → e+e−) is the branching ratio of the J/ψ decay into the dielectron channel [43].

The acceptance times efficiency correction is the product of the kinematic acceptance, the tracking and
particle identification (PID) efficiency, and the fraction of the signal contained within the invariant mass
counting window. With the exception of the PID efficiency, all these factors are obtained based on a
MC simulation of coherently photoproduced, transversely polarised J/ψ generated using STARLight
and embedded in Pb–Pb collisions generated using HIJING, as described above. The J/ψ PID efficiency
is estimated using a data-driven method, similar to the one described in Ref. [34, 36], based on a pure
sample of electrons using tagged photon conversions. The total acceptance times efficiency correction
is about 10% on average, with a pT dependence which for the contributing factors listed above is quite
mild in the pT < 0.5 GeV/c range relevant here. However, there is some pT migration between generator
and detector level due to the J/ψ pT resolution being of the same order as the typical pT of the coherent
photoproduced J/ψ , and due to the radiative J/ψ decay. The impact of bin migration was checked by
applying an unfolding procedure to the measured raw spectrum, as described later in this section, and the
differences were found to be negligible.

The systematic uncertainties affecting the measured cross sections originate from uncertainties on the
tracking and particle identification efficiencies, signal extraction, collision centrality, luminosity deter-
mination, and the branching ratio of the J/ψ into dielectrons. A summary of all the uncertainties is
provided in Table 1. The tracking uncertainty consists of two contributions, one from the ITS-TPC
matching and one due to the choice of the track quality criteria, as also detailed in Ref. [34]. The for-
mer is taken as the difference observed between MC simulations and data for the single-track ITS-TPC
matching efficiency, propagated to J/ψ candidate dielectrons, and amounts to about 6.5%. The latter
is estimated by repeating the analysis with variations of the track quality criteria and amounts to ap-
proximately 3.3%. The uncertainty on the PID efficiency is estimated by varying the pion and proton
exclusion cuts, as described in Refs. [34, 36], and resulted in an uncertainty of 2.1% for the 40–50% and
3.8% for the 50–90% centrality ranges. The uncertainty on the signal extraction includes contributions
from the templates used in the fit model described in Eq. 1, fit ranges, and signal counting method. The
Fbkg template was changed by removing the correlated background component and thus keeping only
the combinatorial component estimated with event mixing. Adopting a rather conservative approach, the
Fhadr component is constructed with and without the tuning of the input pT shape on experimental data,
and the associated systematic error is taken as 1/

√
12 of the difference of the resulting cross sections,

corresponding to the ratio of the standard deviation and the full spread of a uniform distribution. The
corresponding uncertainties from the Fbkg and Fhadr variations range between 0.2–4.1% and 0.6–1.1%,
respectively. The Fphot template corresponding to the coherent photoproduction process was varied from
its shape expected for UPC, assuming that the ⟨pT⟩ of the distribution is inversely proportional to the
radius of the target nucleus spectator region, with the radius being determined for each centrality range
as R ∼ A1/3

spec, with Aspec = APb −⟨Npart⟩/2. Hence, the template shapes were modified for each central-
ity interval by shifting each entry in the original STARLight-generated template from pT to rpT, with
r = (APb/Aspec)

1/3, plus a Gaussian smearing term, centred at zero, to avoid binning effects. The J/ψ

yields extracted with these modified templates deviated from the default between 0.15 and 3.1%, depend-
ing on centrality, with the deviation growing towards more central collisions as expected. Variations of
the fit ranges in invariant mass and transverse momentum led to systematic uncertainties between 0.35
and 2.2%, depending on centrality. The default signal counting method, integrating the J/ψ coherent
photoproduction template, was changed to counting the entries left after subtracting all the other fit com-
ponents. The extracted yields changed by 18.5%, 3.5%, and 1.3% for the centrality ranges 40–50%,
50–70%, and 70–90%, respectively. The uncertainty on the integrated luminosity is 2.5% and is deter-
mined in the analysis of the van der Meer scan runs as described in Ref. [44]. The uncertainty on the
centrality selection is determined by running the analysis with centrality ranges shifted by 1% in either
direction to account for uncertainties on the anchor point used in the centrality definition [45]. The varia-
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tions of the extracted yields are compatible with statistical fluctuations, but we conservatively assigned a
systematic uncertainty of 1% for the most peripheral centrality range and 2% for the rest. For the (y, pT)
doubly-differential cross sections, the systematic uncertainties are considered to a large extent correlated
over pT and uniform (global) in the pT range relevant for coherent J/ψ photoproduction. An exception
is the uncertainty due to the fit procedure, which is also strongly correlated over pT; however, the size of
the uncertainties have point-to-point variations and thus are not considered as global. The uncertainty on
the J/ψ → e+e− branching ratio is quoted as 0.5% [43].

Two methodical cross checks were performed for the analysis. For the first one, the fixed weights wphot,i
adopted from Ref. [9] for the photoproduced components Fphot,i, were grouped according to their origin:
the weights for the coherent and incoherent charmonium production plus the γγ → e+e− continuum were
left free in the fit, while keeping the same ratio as in Ref. [9] between feed-down and direct production for
the coherent and incoherent components. This approach gave very similar results to the default method,
and no associated systematic error was assigned. The second cross check involved using an unfolding
procedure instead of the acceptance times efficiency correction to obtain the doubly-differential cross
sections, in order to quantify possible effects due to the J/ψ kinematic variation between the genera-
tor and detector level. The response matrix was constructed using the MC simulations for coherently
photoproduced J/ψ , and the unfolding was performed using both the Bayes [46] and Single Value De-
composition [47] methods with different values for the regularisation parameter. The difference relative
to the default method was found to be negligible in this case as well, and no systematic uncertainty was
assigned.

Table 1: Systematic uncertainties on the coherent J/ψ cross section for different centrality intervals. The sys-
tematic sources marked with a (∗) are considered to be correlated over centrality. All the systematic uncertainty
sources are considered fully correlated over pT.

Centrality 40–50% 50–70% 70–90%
Tracking (cut variations)∗ 3.3% 3.3% 3.3%
Tracking (ITS-TPC matching)∗ 6.5% 6.5% 6.5%
Electron identification∗ 2.1% 3.8% 3.8%
Fit (correlated bkg) 4.1% 0.4% 0.2%
Fit (hadronic J/ψ) 0.6% 1.3% 1.1%
Fit (coherent J/ψ) 3.1% 0.7% 0.15%
Fit range 2.2% 1.0% 0.4%
Signal extraction method 18.5% 3.5% 1.3%
Luminosity∗ 2.5% 2.5% 2.5%
Centrality definition∗ 2% 2% 1%
Branching ratio∗ 0.5% 0.5% 0.5%
Total 21.1% 9.7% 8.9%

4 Results

The left panel of Fig. 2 shows the coherent J/ψ photoproduction cross section dσ/dy, extracted at
midrapidity (|y|< 0.9), as a function of ⟨Npart⟩, for the centrality classes 70–90%, 50–70%, and 40–50%.
Systematic uncertainties (excluding the global contribution from the beam luminosity) are depicted as
open boxes, while the global centrality-independent systematic uncertainty of 2.5% is quoted in the
legend. The measured cross sections show a mild centrality dependence, within uncertainties compatible
with no variation within the studied centrality range. It should be noted that, as pointed out in the Sec. 3,
the cross sections are integrated in their respective centrality intervals and that the three data points
cover different fractions of the total Pb–Pb cross section. Namely, the semicentral data point (40–50%)
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Figure 2: Left: Coherent J/ψ cross section as a function of ⟨Npart⟩ in Pb–Pb collisions at
√

sNN = 5.02 TeV
at midrapidity. The statistical uncertainties are shown as bars, while the systematic uncertainties (excluding the
global contribution from the beam luminosity) are shown as boxes. It should be noted that the interval 40–50%
is half as wide as the two more peripheral ones, 50–70%, and 70–90%. Data are compared to calculations from
W. Zha et al. [19, 20], Gay-Ducati et al. (GBW S2/S3 and IIM S2/S3) [17] and Cepila et al. (GG-hs) [18]. For
the interval 70–90%, the calculations from W. Zha et al. and IIM S2 are shifted on the x-axis for visibility.
Right: Coherent J/ψ cross section as a function of ⟨Npart⟩ measured at midrapidity (black markers) and forward
rapidity (red markers) [16] normalised to the corresponding cross sections measured in the same rapidity ranges in
UPC [8, 9] and corrected for the centrality interval width ∆C.

covers 10% while the two most peripheral data points each cover 20% of the total cross section. The
experimental results are compared with a set of theoretical models, as indicated in the legend.

The calculations are based on the UPC description of vector meson photoproduction in terms of a con-
volution of the photon flux and the photonuclear cross section, but integrating only over the impact
parameter range corresponding to the centrality class of interest. The overlapping region in the colli-
sion, with hadronic interactions, is considered in some of the calculations by introducing modifications
of the photon flux and/or the photonuclear cross section, depending on the model. The GG-hs model by
Cepila et al. [18] includes no modifications relative to the UPC picture except the specification of the
impact parameter interval. Attempting to describe both coherent and incoherent photoproduction, this
model employs an energy-dependent representation of subnucleonic degrees of freedom. This is mod-
elled in terms of hot spots and a colour-dipole proton cross section taking low-x saturation effects into
account [48], and using the Glauber-Gribov formalism to extrapolate the calculation from nucleonic to
nuclear targets. In the set of predictions by Gay-Ducati et al. [17] labelled GBW and IIM, an effective
photon flux is defined by integrating over photons reaching the nuclear target and disregarding those
hitting the overlap region. These calculations consider two scenarios, denoted in Fig. 2 as S2 and S3,
with S2 modifying the photon flux only while S3 in addition restricts the photonuclear cross section,
excluding contributions from the hadronically interacting overlap zone. The GBW [48] and the IIM [49]
descriptions employ different treatments of saturation effects in the colour-dipole proton cross section,
based on parameterisations of DIS data. The approach by Zha et al. [19, 20] takes into account the
potential effect on photon and gluon emission by the hadronically interacting overlapping zone, explor-
ing different scenarios regarding the roles of participants and spectators. In addition, these calculations
consider the implications of the destructive interference between the photon amplitudes from the two
nuclear sources moving in opposite directions. The estimates from Ref. [20] shown in Fig. 2 include
nuclear shadowing effects and assume an unaltered photon emission from the overlapping region except
for interference effects, combined with the disruption of photoproduction in the participant region.

The experimental results are qualitatively well described by the model calculations, although for the two
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Figure 3: Coherent J/ψ cross section as a function of pT in Pb–Pb collisions at
√

sNN = 5.02 TeV measured in
the 50–70% and 70–90% centrality classes. The error bars indicate statistical uncertainties, while the systematic
uncertainties, excluding those considered as global (see text for details), are shown as boxes. Data are compared
to calculations from W. Zha et al. [19, 20].

most peripheral intervals, the absolute values of the cross sections are overestimated by all models. In
particular, the calculations by Gay-Ducati et al. [17] for scenario S3, which take into account suppres-
sion of photoproduction in the overlap zone, are the most compatible with the data with a statistical
significance of the differences averaged over the three centrality intervals of less than 2σ . However, the
S2 scenario from Ref. [17] overestimates the measured cross section for all studied centrality intervals
and the statistical compatibility with the data is around 3σ . It is worth noting that a modification of
the photonuclear cross section might not be the only mechanism that explains the data. ALICE mea-
surements at forward rapidity [16], which are qualitatively similar in trend and model comparisons to
the results at midrapidity, are well described by the calculations by Klusek-Gawenda [21], which only
assume inhibition of the photon flux in the overlap region.

The comparison with data at forward rapidity might also provide information on any final-state QGP
influence on photoproduced charmonia. Such effects are naively expected to be more pronounced at
midrapidity, where a higher medium temperature and energy density is expected [50]. The J/ψ photo-
production at mid- and forward rapidity are compared after normalising the measurements to the coherent
J/ψ photoproduction cross section measured in UPC in the same rapidity interval in order to compen-
sate for the rapidity dependence. Uncertainties which are correlated between the results in collisions with
overlap and those in UPC are cancelled in the ratio. There are also two small differences in the kinematic
coverage of the UPC results compared to those from peripheral or semicentral collisions. Namely, the
midrapidity UPC coherent J/ψ yield is measured at |y| < 0.8 and the pT range for the forward-rapidity
one is pT < 0.25 GeV/c. This ratio (σPC/σUPC), corrected for the different centrality interval widths ∆C,
is shown in the right panel of Fig. 2 as a function of ⟨Npart⟩, for forward (2.5 < y < 4) and midrapidity
(|y|< 0.9). The measurements at forward rapidity in peripheral collisions are taken from Ref. [16], while
the UPC results for the two rapidity intervals are from Refs. [8, 9]. Within uncertainties, the ratios at
the two rapidities are statistically compatible over the common centrality range, and show a nearly flat
evolution with ⟨Npart⟩. Notably, the measurements for the most peripheral collisions, 70–90%, which are
also the most precise, are in very good agreement. The measured cross sections in this analysis show no
hints of QGP effects, but the centrality range studied is rather limited, extending only up to ⟨Npart⟩< 100,
which, combined with the large experimental uncertainties, may be insufficient to reveal any medium-
induced suppression. The large increase in luminosity to be collected during the LHC Run 3 and 4 is
expected to extend the range of the J/ψ measurement up to the most central collisions and also give
access to the centrality dependent photoproduction of the less bound ψ(2S), important for shedding light
on these phenomenological aspects.
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Figure 3 shows the doubly-differential cross section d2σ/dydpT for the rapidity interval |y| < 0.9 and
in the centrality classes 50–70% (left) and 70–90% (right), which was obtained by subtracting from the
measured distribution N(mee, pT) all of the fitted templates with the exception of the one corresponding
to the coherently photoproduced J/ψ . The pT-independent systematic uncertainties are quoted in the
legend for the two centralities as global uncertainties, while the point-to-point systematic uncertainties
related to the fit of the two-dimensional (mee, pT) pair distributions are shown as boxes around the data
points and are very small compared to the global ones and the statistical uncertainties. The theoretical
calculations by Zha et al., described above [19, 20], in which the nucleons in the overlapping zone do
not participate in the photoproduction, are in good agreement with ALICE measurements within the
large experimental uncertainties. This model was also found to reproduce the shape of the LHCb pT
differential measurements, but appears to underpredict the reported yield [15]. In the model, the rapid
decline of the cross section towards pT = 0 is ascribed to the destructive interference between photon
amplitudes from the two collision partners, while the bulk of the distribution and the tail towards higher
pT carry information about the target size and spatial distribution. In particular, a variation of the pT
differential cross section is expected with centrality. The observed shapes of the pT spectra in the 50–
70% and 70–90% centrality classes are compatible with the current experimental uncertainties, however,
only a very weak centrality dependence is predicted in this centrality range, as seen from the theory
calculation shown in Fig. 3.

5 Conclusions

In summary, this paper reports on the measurement of coherent J/ψ photoproduction cross section as a
function of pT and collision centrality, for peripheral and semicentral Pb–Pb collisions at

√
sNN = 5.02 TeV,

for the first time at midrapidity (|y|< 0.9) at LHC energies. The reported observations extend and com-
plement earlier measurements published by ALICE and LHCb at forward rapidity, and STAR at midra-
pidity at a lower collision energy. The pT-integrated cross section exhibits a mild centrality dependence
compatible with no variation over the centrality interval studied and is qualitatively similar to the cor-
responding observations at forward rapidity. Within the large uncertainties, the centrality-dependent
measurements are fairly well described by several sets of theoretical calculations, based on the UPC de-
scription of vector meson photoproduction and modified to take into account the nuclear overlap in the
collisions, but not incorporating effects from a hot expanding QGP. The combined ALICE measurements
at mid- and forward rapidity favour models with inhibition of photon flux only, or inhibition of the photon
flux together with a suppression of charmonium generation in the hadronic overlap region. Within un-
certainties, the measured cross sections show no suppression beyond the present model predictions. The
pT-integrated cross sections measured at mid- and forward rapidity by ALICE, normalised to the cross
sections measured in the same rapidity ranges in UPC [8, 9], are in good agreement within uncertainties.
The pT-differential cross sections are well described by calculations taking into account the interference
between the two photon emitters as well as the effect of strong interactions in the overlap zone. Future
data-taking campaigns during the LHC Run 3 and Run 4 [51], with a foreseen increase in statistics of a
factor of about 100 at midrapidity, are expected to facilitate photoproduction measurements for central
collisions (0–10%) and precision measurements of pT-differential cross sections for non-central colli-
sions (above 10%). This will help elucidate the influence of the nuclear overlap region on the coherent
J/ψ photoproduction, including possible final-state effects from the expanding QGP.
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