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Abstract

We use a momentum-space bosonization of a generalized Nambu—Jona-Lasinio (NJL)
model to provide a microscopic foundation for the vector-meson-dominance model. (In our
model the photon interacts with the constituent quarks rather than with the hadrons.) A novel
feature of our model is the introduction of ¢2-dependent meson decay constants, g°(q% and
g“’(qz), as well as qz-dependent meson-meson coupling constants, such as gp"(qz). We
discuss the values of g°(q 2y, £2%@q 2y and 8o "(qz) obtained using our generalized NJL model,
considering different choices for the parameters of the model. We also provide a quark-based
description of rho-omega mixing. The definition of momentum-dependent meson decay
constants allows us to introduce fields for the rho and omega mesons into the analysis in an
unambiguous manner, when we start with an analysis of hadronic current correlators that are

expressed in terms of quark fields.



I. Introduction

Recently there has been a good deal of interest in the calculation of rho-omega mixing
[1-7], since such mixing could be important in understanding charge symmetry breaking (CSB)
in the nucleon-nucleon interaction. One object of interest is the matrix element < w | Hgg | p >
that provides a measure of the importance of p-w mixing. Originally, that matrix element was
obtained in the study of e *+e = 7" +7, where g2 = mj . However, for nuclear physics
applications, one needs to understand rho-omega mixing for q2 < 0. Various authors have
pointed out that the mixing should vanish at ¢ =0 [7]. Therefore, the importance of p-w
mixing for understanding CSB is greatly reduced. However, there are a number of theoretical
issues related to the calculation of rho-omega mixing that need to be addressed.

Recently, O’Connell, Pearce, Thomas and Williams 1] have presented a new discussion
of the extraction of < w|Hgg|p > from the experimental data for e *+e¢” =" +7~. In this
connection, they reviewed two forms of the vector-meson-dominance (VMD) model, with

Lagrangians denoted as £y,,p; and £Ly.p,. The Lagrangian for the VMD1 model is [6,8]

1 1 1 2 e
Lvmpr = = 7Y Fy = 2P0yt S5m0 ok = 8y pen, - A, TP - Zg;F”pw , (1.1

where g” is the rho decay constant, e = | e, and J# is the hadronic current coupled to the rho.
The pion component of that current is J, =i(x 3, 7" -x'd,«7). Further, F*” is the
electromagnetic tensor and p*” is the corresponding quantity for the rho field. As discussed in
Ref. [1], one may replace F Mp”” by -2(12A“p“, when the rho field is divergenceless. Thus,

we see that direct photon-rho coupling vanishes at q2 =0 in the VMD1 model.



An alternate form of the VMD model is given (with e = | e |) by [9]

1 1 1 2
Lvmpz = = ZFuF* = 20"« smy 0%

2

M emp M
—gp‘l"l'pp,‘] - ?pu/‘ (1.2)

+ _
2 g°

In the limit of universality (g,,, =£”), these Lagrangians may be transformed into each other

2
1 e 2
l—-_] mpA“A“

by a change of variables [6].

These two models yield somewhat different expressions for the pion form factor, F,(q 2,
defined for both spacelike and timelike q2. For the VMDI1 model, we have [1]

2
\
Fa)=1-L — ¢, (1.3)
8" q°-m; +im,T (q°)

b

where g, ., is the rho-pion coupling constant, which appears in both Egs. (1.1) and (1.2). Note

that F_(gq 2) of Eq. (1.3) satisfies the condition F,(0) = 1. Alternatively, for the VMD2 model,

we have [1]

1
Loxr - (1.4)

| bSN

Fi(q? = -
2 .

g° q2 -m, +zmpI‘p(q2)

These two forms are equivalent, if the universality relation, g par = g%, is valid. That may be

seen in the region q2 < 4m3, where I‘p(qz) =0. If universality is valid, we also have

F_(0) =1, when using the expression given in Eq. (1.4).



Our work is organized in the following manner. In Section II we present the Lagrangian
of our model and describe a momentum-space bosonization procedure. In Section III we
consider a vector-meson-dominance model for the pion form factor. (That discussion leads
naturally to the definition of momentum-dependent meson decay constants.) In Section IV we
extend our considerations to a discussion of rho-omega mixing and provide an expression of the

pion form factor that includes the effects of that mixing. In Section V we discuss a mixed

uy

hadronic current correlation function, fI(w 2

(@), and show how one can define a similar
correlation function using w and p fields. In Section VI we present various parameter sets for
our extended NJL model and also exhibit the values of various quantities that have been

calculated using the model. Section VII contains some further discussion and summary of our

results.



II. Momentum-Space Bosonization of an Extended NJL. Model

We begin by recording the Lagrangian of our extended version of the NJL model [10],
_ = 0 GS - 2 - -2
L0) = 768 -mg)q + - (G0 + @irsTaY]
G-  — - -
e (@ 70* + (@vsv, 70)?] 2.1)

G, _
- Tw(q’yuq)z + °(£conf(x)

Here, £_,,¢(x) refers to the confining interaction we have added to the model and mg is the
current quark mass matrix. (It is useful to include factors of 1/2 in the definition of the coupling
constants, since these factors cancel statistical factors of 2 that appear in the evaluation of

various matrix elements.)

We define the tensors [10],

i@ = -8 @i 2.2)

@ = -2 @Iw@ 2.3)

RE@ = -2 @K@ 2.4)
and

REN@) = -2 @K,qD 2.5)

where g**(q) = g* -q*q”/q*. The diagrams giving rise to these tensors are depicted in Figs.
laand Ib. The evaluation of those diagrams yields - iJ{;)(q), - iJ(;(q), etc. The shaded area

in the figures represents a vertex, [, that represents the sum of a ladder of confining
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interactions [11]. (See Figs. lc and 1d.) That vertex removes those cuts in the functions of
Egs. (2.2)-(2.5) that would start at q2 = 4m§ in the absence of a model of confinement. Thus,
the functions of Egs. (2.2)-(2.3) are real. Further, 13(‘;')'((12) and I?(’;';(qz) only have cuts that
arise when two, or three, pions go on-mass-shell. Figure 2 shows f(p)(q 2) for both spacelike
and timelike qz. In the timelike region, J 04 2) is evaluated in Minkowski space using a cutoff
of A;=0.702 GeV for all three-momenta that appear in the integral. (See Table 1.) For
spacelike g2, confinement is not very important. We neglect confinement in that region and
complete the integral in a Euclidean momentum space using a cutoff Ag = 1.0 GeV. (Note that,
if mg = mg, we have f(p)(qz) =f(w)(q2).)

The functions of Eqs. (2.2)-(2.5) may be used to parameterize the quark 7 matrices. We

sum a string of gq loop integrals and obtain

G
T(q% = £ (2.6)

1= G,[J(@) + Ripta®)]

and

2 Gw
T = 2.7)

1= G Jy@® + Rio(@?)]

where we have suppressed reference to isospin and Dirac matrices. It will be useful to write

2
G, _ 854q@°) (2.8)

5 5 2 . ’
1-G,[p@) +Rp@d] ¢ -m] +im,T,(g%

and a similar relation for the omega meson. The origin of Eq. (2.8) may be seen in the

following discussion. In our earlier work we saw that we can use the approximations [12]
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a o) N N r2
J)(@°) *ReKy(@7) = 1| - ) (2.9)

q?-m}
and
;o2 (02 V2
J(w)(q )+ReK(w)(q ) = Vl - 2 3 (2.10)
q--m

Here, r|, 1y, mpz , V1, Vo and n'zfJ (with m;‘ = mj ) are constants that are determined after an
explicit calculations of the relevant functions. (See Table 1.) Inserting these expressions in Eq.

(2.8), and in the corresponding expression for the omega meson, we find

_ 2 2
2 m, -q
gpqq(qz) = —‘i—l__ ) (2'11)
Gp —rl
.2 2
2 m,-q
8uqqd?) = —= , 2.12)
Gw Vi
2 2 r
my o=, - —— (2.13)
Gp -r
\'Z
mg =g - —2— (2.14)
Gw Vi
2 2
C( - 804g @) | Ru@D 2.15)
m

and



2
Load@?)
m

w

In Table 2, we present some values of g, qq(qz) and g, qq(qz) for model B that is described in
Table 1.
We note that T, and T, may be written in terms of g ., and g, .., respectively. In

general, these are qz-dependent functions. Thus,

2 2 2y 372

2 4m
I\p(qZ) = _g__ gﬂ‘l"l'(q ) 1 - L 0((12 _4m3) . (2.17)

m, 48w (12

At q2 =mp2, we have
5 ,132
200 8oxx _4mg (2.18)
Pp(mp ) - 487r mp L m2 ’

where we have defined g, , = §, 1r7r(mz'). If I‘p(mpz) =151.2 MeV and m, =770 MeV, we find

that g, ., = 6.04. We may now make contact with our previous work [10], where we obtained

the expression

3n
Hz(qz)e(qz _4m3) - (2.19)

2y _
Pp(q ) - m W qu(mr)nc nf 1- hd

2 2
LY N
p q

Here nc2 =90 and nfg =4. Comparing Eqgs. (2.17) and (2.19), we find

2 2 4 2
2y rx@?) = 368,072 MDHNGD) (2.20)

2
or, for q2 =m,,




2, 2 2 2
Zoxr = = 68,0q(M)) 8rag(mp) Hm) (2.21)

We have introduced a minus sign in passing from Eq. (2.20) to Eq. (2.21), since H(qz) is

negative. (The precise definition of H(qz) is given in Egs. (3.2)-(3.4).)
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III. Foundation of the Vector-Meson-Dominance Model

In this section we wish to derive the expressions for electromagnetic processes that arise
in our extended NJL model. In our model, the photon couples to the quarks, rather than to the
hadrons. As an example of current interest, we will consider the process e * +e - 7" +7~ that
proceeds through rho-omega mixing [12]. First, let us study the direct process y—=>p—>7"+7 .
(See Fig. 3.) In Fig. 3a the dashed line is a photon of momentum ¢ and the solid lines are
quarks. We denote the value of the diagram as (-ie/2) [.7 :T(qz)]. Then, in Fig. 3b, we show
a series of quark loops. Using the definitions made in the last section, we may sum the series,

including the process of Fig. 3a, to obtain (for the isovector current)

f@ = [;e] L __ 5. G.1)
1-G,Ju@)

With n,.=3 and ne= -2, and a statistical factor of 2, we have

. 2 2 ¢ dY% e
Fexl@,0) = (<D2ncng grg my) | o T (g, b

(3.2)
X iS(-q/2 + kyysiStk - k)vsiS(g/2 + k)]
= 2M(Q)Fe(g®) | (3.3)
(See Fig. 4.) We may write
Ferl@® = (-npn, g7 mDH@GY (3-4)

thereby defining H(qz) [10]. (Note that F"(qz) and H(qz) are real and negative.) In Egs.
(3.2) and (3.3) we have made use of k*(q) = «* -(x - q)q“/q2 and S(p) =[p - mg+ ie]!. The
factor of (-1) appears in Eq. (3.2) because we have a single closed fermion loop in Fig. 4.
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Further, (g, k) denotes the confinement vertex [11], with the property, q“f“(q, k)=0. In
order to include the coupling to the two-pion continuum, we consider diagrams such as those of

Fig. 3c. These diagrams may be included, if we replace Eq. (3.1) by

R = [;e] —Th@x) (3.5)
1 -G, 1)@ + K,(@9)]
Using Eq. (2.8), we have
; — 02 (2
@ = ['_’e] 1 804q'4") FL@,0 , (3.6)
2 P q2 - mf + impI‘p(qz)

which, upon use of Eq. (3.2), is

2 G

. . 2 2
@ = [""]2“““1’ 09) __[-F, @)1 . X
p q2 -m, +impI‘p(q2)

It is useful to write the least expression as

2 2 2
- F
@ = -2k | Sl [ $og @ ) 'reld ) (3.8)
o | q*-m, +im,T (¢
From this, we see that the pion form factor is
2
m 1
Fi(qh) = - —~ gp"(qz) (3.9)

£°@> q*-m>+im T, (¢?)

where we have defined
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2yer(@D) = = 800d @) Frx(@? (3.10)

and

mf ) g,,qq(qz) . (3.11)
g’qy %6,
We may write Eq. (3.11) as
—”i = lgud 2)[J‘ (m’) + ReR, (m2)] G.12)
@D 5 804g\1 |7 0) "y @)}
since the equation
1-GlJ,m})+ ReRym)] = 0 (3.13)

determines the value of mf in this formalism. Thus, we see that

o2 2m§
g (q") = (3.14)

8@ +Rym)]|

For g2 > 0, 8, qq(qz) increases as q? is reduced in value. (See Table 2.) Therefore, g°(q%)
decreases with decreasing qz.

Note that

(3.15)

so that we should require g,,,(0)/ £°(0) =1 in a consistent formalism.
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The new feature in the above equation is the g2 dependence of gp"(qz) and g"(qz).

Near the rho pole, we find the formula of the VMD1 model,

F (g = (3.16)

2
_m 1
, 2

2 . 2 Eorr
8 q —mp+1mp1‘p(mp)

where we have put g” = g“’(mp2 ) and g, = gp"(m“?' ). We remark that g,..(0)/g°(0) could
be equal to 1, even if gp"(mj')/g"(mj) =8,xr/8° # 1. (For example, one has the
phenomenological values g,,, = 6.04 and g = 5.07, so that g /g = 1.2.)

From Eq. (3.9) we see that, for qz > 4mi,

3
m’T (g% 8oxe(@?

ImF,(¢%) =
[qz —msr + [mpI‘p(qz)]2 2°@?

(3.17)

Let us assume that our model provides a satisfactory result for both I‘p(qz), and
gp"(qz)/ g”(qz) , when q2 = mf. Then we may obtain Fw(qz), for all values of qz, from the

dispersion relation

2 ImF_(s)
F@)=1+L [ ds d

_— (3.18)
4m3 s(s-qz—ie)

This dispersion relation ensures that F,(0) =1 and its use is, therefore, not as restrictive as

imposing the condition 8oxx(0)/ gy =1.
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IV. The Pion Form Factor: Rho-Omega Mixing
Equation (3.9) describes a vector-meson-dominance model of the pion form factor in the

absence of p-w mixing. To study the contribution of p-w mixing we need to define the tensor

Jbr@ = - 8@ J,04? “.1)
which is shown in Fig. 5a as a (cross-hatched) quark loop. (Values of J ww)ld 2) may be found

in Ref. [12].) In Fig. Sb we show the diagrams that are summed in our model. Using the

various relations given in Section II, we have (for the isoscalar amplitude),

_i Joon@® iG
fi@) = [%] S S [ (e )] S RS AN
1 -G,V (%) + K(y(9)] ! 1 - GlJ @) + K()(q9)]
4.2)
] 2 2 2 2
w g°-m, +ime‘w(qz) q2 -m, +imprp(q )
4.3)

This expression may be reorganized to yield

m ,
= (_ le) . wz - 22;(“(0) - [e(wp)(qZ)] - 5 1 - ngT(QZ) ,
8°@q°) | ¢*-m_ +im,T (q°) q*-m; +im,T (q%)

4.4)

where we have put F%. (g, «) = 2iM(q)F, (g% and used

2
My Bugg@?) ’ 4.5)
g¥qd 60
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so that

2
6
80Y T 4.6)
80ad @[T mD) + Re K (m )]

We have used

1 s 2 5 2
= - [Fm3) +Re Riym)] 4.7)

w

in passing from Eq. (4.5) to (4.6) and have defined

0w @) = = 2ugq@ 6@ 8agq@® - (4.8)

We can see that G(W,)(mf,) = <w|Hggl|p>, with

2, % 2 2
<w l HSB I p> == gwqq(mw)J(wp)(mw)gpqq(mw) 3 (49)
since the matrix element is defined at q2 = mz .

Putting these results together, we have the pion form factor

2 2

m m 1 2
F@gy=4-—2_-__¢ 0@
" 2@ £°@) |2 -mieim T gD |

@.11)

1 2
X5 | 8orx(0)
q°-m, +im,T (q7)

The second term in Eq. (4.11) requires that we perform subtraction so that the term vanishes
at q2 =0. Therefore, the condition that g . .(0)/ £2°(0) =1 remains the same as before.

However, we may again use the subtracted dispersion relation of Eq. (3.18) to ensure F_(0) = 1.
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b)

The calculation of the mixed correlation functionﬁz: p)(q) = 12fIz: @D
is shown. Each diagram contains a single factor of f(pw)(qz) and a
varying number of factors of f(p)(qz) and j(w)(qz), with the
j(p)(qz) factors to the left of j(pw)(qz) and the j(w)(qz) factors to the
right of f(pw)(qz) in the diagram. The open circles represent either
iG, or iG,, depending upon their position in the diagram. Upon

bosonization one obtains Eq. (5.5). (Recall that fI(wp)(qz) was defined in

Eq. (5.4).)
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Fig. 4.

Fig. 5.

Fig. 6.

b)

a)

b)

Additional diagrams that contribute to the amplitude f#(q). Summation
of these processes yields f{(q) of Eq. (3.1). The open circles represent
factors of iG, and the wavy lines are pions.

Some additional diagrams that are included in the summation that yields
fu(@) of Eq. (3.4). These diagrams introduce Ie(p)(qz) in the expression
for f4(q). (See Fig. 1b.)

The calculation of the diagram shown yields the function .9";1(q) of
Eq. (3.2). (The isospin trace yields n,=-2 and the color factor is
n.=3. There is also a factor of (-1) since the figure exhibits a single
closed fermion loop. (Recall that .9”;1(q) =2k"(q)F,,.(q 2) and that
2852507 = = 8,440 Fr2(q%), where F,,(g") <0.)

The figure represents the tensor —LAI(‘:;)(q). This tensor is nonzero if
m® = m®.

Some diagrams that are summed to yield f5(q) of Eq. (4.2). The dashed
lines represent photons of momentum q. The photon-quark vertex yields
a factor of (-ie/6). The open circles represent either factors of iG or
iG,. [See Eq. (4.2).] Only diagrams with a single factor of J (wp)(qz) are
considered since j(wp)(qz) is quite small [12].

The diagrammatic element that serves to deﬁnef(’;z)(q) = —g“”f(p w)(qz)
is shown. The shaded triangular area represents the confining vertex of

Fig. lc.
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Fig. 1. a)
b)
©)
d)

Fig. 2.

Fig. 3. a)

Figure Captions

The diagram represents the quark-loop integral that yields -if (‘;')'(q), or
—zlf(‘;';(q) [10]. The shaded area represents the vertex for the confining
interaction, '™ [11].

Calculation of this diagram yields —ile(‘;;(q) [10]. The wavy lines
represent pions.

The inhomogeneous equation that is solved to obtain the confining vertex,
[ [11]. Here the dashed line is the confinement potential, Ve,

The figure shows the interation of the equation shown in c).

The function J (p)(qz) is shown for g2 > 0. The calculation is made with
the parameters of model B. (See Table 1.) For q2 > 0 the calculation is
made in Minkowski space with a cutoff A; =0.702 GeV. For ¢2<0,
we show J(p)(qz); there, confinement is neglected and the calculation is
made in a Euclidean momentum space with cutoff Ag = 1.0 GeV [12].
The dotted line serves to interpolate between the results of the two
calculations. The difference between the dotted line and the solid line forq2 <0
provides a measure of the importance of confinement for calculations
made for spacelike ¢°.

The diagram represents the function (—ie/2).?:1(q). The dashed line
denotes a photon of momentum ¢ and the shaded area represents the
confinement vertex, ™. (The factor (-ie/2) originates in the photon-

quark vertex.)
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Table 2.

Values of g, qq(qz) and gwqq(qz) are presented for model B.

- - =2 -
Here g% = () -q»/(G,' -r) and g2,(a) =07 -/ (G, - vy,

with G,=7.12GeV?, G,=7.86GeV?2, rm)=m.=1476 GeV?,

r, =0.0304 GeV2, and v, =0.0284 GeV2. Note that g, (my) =2.80,

2
8ugg™My) =2.95, and g, (m>) =2.83.

GV | g | and
0.0 3.66 3.86
0.1 3.54 3.73
0.2 3.41 3.59
0.3 3.27 3.45
0.4 3.13 3.30
0.5 2.98 3.14
0.6 2.82 2.98
0.7 2.66 2.80
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Table 1.

q

Parameters and derived quantities in the extended NJL model [10,12]. Here
0. 0 0 0
m, 1s the average current quark mass, m q- (my+m,)/2.

- 26 -

Model A [10] B [12] C
m, 6.50 MeV 5.50 Mev 6.50 MeV
A, 0.560 GeV 0.702 GeV 0.550 GeV
Ag 0.790 GeV 1.00 GeV 0.780 GeV
G, 9.20 GeV 7.12 GeV~ 9.48 GeV2
G, | - 7.86 GeV-2 10.92 Gev~
Gg 15.8 Gev? 7.91 Gev? 14.53 Gev-2
m_ 0.140 GeV 0.138 GeV 0.138 MeV
m, 0.350 GeV 0.260 GeV 0.260 GeV
fa 0.089 GeV 0.093 GeV 0.078 GeV
<uu>13 -0.230 GeV -0.252 GeV -0.261 GeV
m, 0.770 GeV 0.770 GeV 0.770 GeV
m, | - 0.783 GeV 0.783 GeV
T, 0.160 Gev 0.144 Gev 0.146 GeV
I 4.95 3.66 3.87
8pgg™) 2.40 2.83 2.56
8ugd® | 3.86 3.90
8oggmD) | - 2.95 2.69
8r gD 3.99 2.68 3.27
£,m) 0.160 GeV 0.256 GeV 0.175 GeV
g,,(m;) 4.81 2.98 4.39
§ ¢ N R— 0.078 0.0523
gmd | - 9.80 14.7
AN O) 0.049 GeV? 0.0860 GeV? 0.0510 GeV?
my-md | 2.73 MeV 2.81 MeV
<p|Hgglw> | - 4520.00 MeV? 4520.00 MeV?
K 0.070 GeV? 0.220 GeV? 0.150 GeV?
8y rx(M2) 6.22 5.90 5.95
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VII. Discussion

In this work we have used our extended version of the NJL model to provide a
microscopic understanding of the vector-meson-dominance model. We have discussed the
calculation of the pion form factor, Fr(qz), and have included a description of omega-rho
mixing.

In a previous work [12], we have shown that j(wp)(qz) is proportional toAm = mg - m,?
and that reasonable values of Am are found when we fit the value of < w|Hgg|p > extracted
from experimental data. (See Table 1.) Our work shows how to make an unambiguous
specification of the correlator of the rho and omega fields. We also show how qz-dependent

meson decay constants, g“(q%) and g°(q?), and g 2-dependent meson-meson coupling constants,

such as gp"(qz) , emerge naturally in this formalism.
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In one of our other works, that we here designate as model B, we have used

m, =260 MeV, a value that leads to a satisfactory value for the mass of an effective sigma

meson, m, =540 MeV. The parameters of model B are given in Table 1. Good values are
obtained for m._, f,, <uu>1"3, m,, m, and I'). However, the values of g, =m,/f and
8, =m,/f, are only about 60% of the empirical values: 8, =53 and g, =15.2. Since
J, and f,; are related to the value of the square of the quark wave function at the origin, it is
seen that a reduction of the confining field (by making « smaller) will decrease both f, and f,.
That is accomplished in model A. Alternatively, working with a smaller value of m, should
reduce j;,. Also, we may see that f, J,» and f,, are sensitive to the cutoff, Ay or Ag. For
example, if the cutoff is reduced, the wave function has fewer high-momentum components.
Therefore, it tends to fill a larger volume, reducing the value at the origin. That is, reducing Ag
(or A;) yields a reduction of the decay constants f,, f,, and f, .

In Table 1 we also present the parameters of model C, along with the predictions for
various physical quantities. There we see improved values for g# and g“ relative to model B.
However, that improvement is at the expense of a less good value for f,. (We find
S5 =0.078 GeV for model C.) Therefore, we see that a more extensive parameter search may
be called for. There is also the possibility that the highly simplified potential of the extended

NJL model is not capable of producing very good values for f,, g” and g“, simultaneously.
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VI. Choice of Parameters for the Extended NJL. Model

If we inspect thé Lagrangian of Eq. (2.1), we see the parameters mg, Gg, G,,and G,.
The confining potential depends upon a parameter x. (That potential is VS(r) = kre ™ in
coordinate space. The parameter u is introduced to regulate the singularity of the Fourier
transform of Vc(r). Since u is introduced to facilitate the numerical calculation, we do not
count 4 among the parameters that we vary.) In addition, we have to specify the cutoff. For
Euclidean momentum-space calculations, the cutoff is Ag. The corresponding cutoff in
Minkowski space is A;. We found that A; =0.702 GeV, if Az =1.0 GeV, for example.
Thus, the parameters are mg, Gg, G,, G,, x and Ag.

We may require that the analysis yield a specific value for the constituent quark mass,
m,, and the experimental value for the pion decay constant f, (fy = 93 MeV). These
requirements can be used to fix Gg and Ag. Then, mg may be chosen to give the correct value
for m_. Now, if we fix «, we can determine G‘o and G, so that m, and m, are given
correctly. A “"good choice” for « will also yield a satisfactory value for T' = I‘p(mg). This
entire procedure does not necessarily lead to satisfactory values for g# and g“. For example,
Table 1 contains the parameters for three specific examples, which we call models A, B and C.
Model A is the model considered in Ref. [10]. [We note that x is quite small (x = 0.070 GeVZ)
for model A.] In model A, it may be seen that reasonable values are obtained for
m., fr, m,, I‘p and the quark condensate. The value of fp =0.160 GeV is a bit larger than
the empirical value of f, = 0.152 GeV. This might seem to be a generally satisfactory result,

except that the value of m q= 350 MeV appears to be somewhat too large.
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o) = £ b

My

(5.10)

to the case where the p and w fields are off-mass-shell. The generalized form that appears in

Eq. (5.5), for example, appears naturally in the momentum-space bosonization procedure.

In a similar fashion, we may define

G, = i [ d'xe™* <OITLH@HONI0> (5.11)
= - (I, ed . (5.12)

and
[l = i [ d*xe™™* <O TUFOI5O110> (5.13)

-2 eD (5.14)

Again, using the equations developed in the previous sections, we have

2 2
\ m 1 m
I \(q? = 4 ° ] (5.15)
“ [gp(qz):l q° —mf +im.T (g% I:gp(qz)

where the result has been organized in analogy to the expression obtained for H(wp)(qz) given

in Eq. (5.5). We also have the relation

2 2
A m 1 m
(g% = © w , (5.16)
© Iigw(qz)} q? —mj +im,T' (g2 l:gw(qz)}
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(@ = i [ d%e > <0| T(wtmp’(©)|0>

(5.6)

- §*(T,,)(q?)

This definition is subject to some ambiguity, since the interpolating fields, w*(x) and p*(x), may
undergo various transformations without changing the S matrices of the theory [13,14].

However, we may proceed to define Ha','p)(q) in an unambiguous fashion. Let us define

1

g2 -{m, - iT,(qH12
1

g2 - (m,, - il q%/2)

I (@) = - 8" - 6(¢%)

5.7)
X

Here, 0(q2) is the quantity defined by Maltman [13]. As we will see, 0(m02) < 0. We may

now go on to exhibit the relation between II (9) and II*” (q). We see that we may write
(0w),,,\ (ou)\? y

2 2
m

N m
Hn@) = —2 —2 M@ ©-8)
YU @ @d

with 0(g%) =©,,(¢?). We may recall that 6, (m))= <w|Hgglp>. The factors

mj /g“q? and mj/ 2°(g? in Eq. (5.5) serve to generalize the usual VMD relations,

) = & jkey (5.9

m,

and

-19 -




V. Hadronic Current Correlation Functions

It is useful to define the isoscalar and isovector hadronic currents,
Js@) = é&(x)v“q(x) , (5.1)
and
) = 2qenr e 5.2

which are combined when forming the electromagnetic current. Using these currents, we may

define a mixed correlation function

A #V
II(a»o)

@ = i[ d'% e’ <O|TLiS@yOI0> (5.3)
= - 2@, ¢% (5.4)

where we recall that g**(q) = g** - g#q"/q>. Using the same procedures as those used in the

preceding sections, we find

2
N mw 1 2
1,.(q> = -8,,(@)
(@) L“’(qz)] q2-m3+imw1‘w(q2) [ o) ]
(5.5)

2
X 1 e
g2 - m: + impl‘p(qz) 2°@d
[See Fig. 6.] This result has a simple diagrammatic representation. (Recall that
0u0) @) = =804 @ (1) @98 04@D) )
Some authors have found it useful to define a correlation function for rho and omega

fields [13],
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We prefer to use the latter procedure since it is difficult to achieve the relation
8,xx(0)/8°(0) =1 in the NJL model.

Finally, we remark that the results of this and the previous section for f#(q) or
fg(q) may be obtained by inserting at the photon-meson vertex —iempz/ g°(@% or
—iemf / g“’(qz). At the meson-quark vertex one introduces -ig, qq(qz) or -ig, qq(qz). The rho
and omega propagators are -ig*’/[q? - mf +im, I‘p(qz)] and -ig"*/[q? - mi +im,, I‘w(qz)].
The diagrammatic element shown in Fig. 4 yields a factor of Qﬁt(q, k) = 2x*(q) F"(qz) and

the diagrammatic element in Fig. 5a introduces a factor of J (‘;';) @li=-g* (q)j(wp)(qz)/ i.

- 17 -



