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Abstract: We study finite temperature effects in string cosmology and their potential
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amplitude of the string signal is significantly larger than predicted by the Standard Model
and its field theoretic extensions. The amplitude and other physical observables (such as
the contribution to ∆Neff) are directly proportional to the string scale Ms; indicating that
a potential signal may also determine the string scale. Our calculations provide one of the
few examples of a signal of stringy origin that dominates over the field theory predictions.
We give a physical explanation of our results and discuss further implications.
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1 Introduction

String theory is above all a fundamental theory of gravity. In the long road towards searching
for potential experimental signatures of string theory, gravitational waves (GW) stand out
as arguably the most relevant prospect for model independent tests of the theory. The
impressive progress on the detection of gravitational waves during the past decade makes
it hopeful that eventually gravitational waves predicted from a fundamental theory could
be discovered in the not-too-distant future.

There are many potential sources of stochastic gravitational wave backgrounds from
physics beyond the standard model (BSM), from cosmic strings to reheating, non-topological
defects, etc (see [2–4] for reviews). Most of them can be incorporated into string theoretical
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frameworks. However it is important to try to study sources of gravitational waves that
are intrinsically stringy in nature.

A general, model independent property of string theory is the existence of the Hagedorn
temperature, which hints at a stringy phase that could be realised at the very early universe.
This is a consequence of the exponentially growing number of massive string states. Depending
on their characteristics, systems approaching the Hagedorn temperature [5–10] may undergo
a phase transition (see e.g. [11–19]) or instead slowly approach a constant limiting, or
ultimate temperature (see e.g. [20–24]), with the entropy injected being used to populate
this exponentially large number of states.1 These two different behaviours are usually called
non-limiting and limiting behaviours, respectively [17]. We refer to [18] for a review in these
and related issues in string thermodynamics.

In the context of string theory, the limiting class of systems feature a Hagedorn phase
with a gas of highly excited string states dominating the energy density. This is continuously
connected to a low energy radiation phase like the supercritical fluid of water above the
critical point is connected to the liquid or gas phases. The study of this Hagedorn phase
in cosmology and some of its potentially observable signatures from gravitational waves is
the subject of this article.

A common concern about string thermodynamics is that, because string theory is a
theory of gravity, gravitational backreaction necessarily prevents the existence of a static,
homogeneous state of thermal equilibrium. Based on the out-of-equilibrium dynamics studied
in [1], we will find conditions for a Hagedorn phase of strings to equilibrate more quickly than
the action of gravitational processes (such as Hubble expansion or the Jeans instability). The
rapid equilibration is driven by splitting and joining interactions of open string endpoints,
and it is consistent with effective field theory when there is a large hierarchy between string
and Planck scales. We believe this to be the first consistent description of equilibrium for
highly-excited strings in cosmology. We assume that the Standard Model (SM) is realized in
a brane construction and that these long open strings are highly-excited degrees of freedom
in the SM sector; that is, the Hagedorn phase is the high-density phase of the SM.

To leave an observable imprint, this Hagedorn phase should occur after inflation, and it
could indeed have been its endpoint [25]. It is reasonable to wonder if inflation in the effective
theory can supply an energy density greater than the string scale after reheating (see [26] for a
recent review in string cosmology with details of inflation in string theory). If the inflationary
Hubble scale is Hinf , energy considerations require Hinf > M2

s /Mp, where the tension of long
strings is ∼ M2

s and set by the local string scale Ms. Meanwhile, remaining in the effective
theory requires Hinf ≪ MKK for Kaluza-Klein scale2 MKK . As a result, a Hagedorn phase
is compatible with inflationary cosmology whenever MKK/Ms ≫ Ms/Mp. Also, the quantiza-
tion of the free string, which underlies the computation of the density of states and so the main
thermodynamic properties of the system, is a good approximation in this background when
these hierarchies are satisfied. We present compactification scenarios where these hierarchies
hold, so we expect a Hagedorn phase whenever the reheating temperature is high enough.

1In string theory, this holds until the energy density is sufficient to nucleate brane-antibrane pairs and the
description breaks down.

2Or the scale of some other tower of states [27].
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It is also important to remark that some alternatives to inflation also feature stringy
ingredients (see [28] for a recent review) and a phase featuring highly excited strings is natural
from this perspective. As we will see, our results for the GW spectrum only depend in the
last steps of the Hagedorn phase and so are robustly independent of what physics sourced it.3

Besides the many BSM sources of gravitational waves, there is a general stochastic
spectrum of GWs that is present even in the SM due to the early universe plasma interacting
with gravity [30–33] (see also [34]). This GW background has been studied recently and,
tracking the cosmic microwave background (CMB), it peaks at a high frequency of order 80
Giga Hertz (GHz), with its peak amplitude depending linearly in the reheating temperature.
A surprising fact is that unless there exists a rare modification of the cosmological history of
the universe, extensions of the SM at a given reheating temperature predict a peak amplitude
which is typically smaller than the SM prediction [32, 33].

It is worth noting in this context that gravitational waves at high frequencies are
attracting the attention of theorists and experimentalists (see [3] for a review of sources and
proposals for experiments). At the moment of writing there are proposals for GW detection
around the GHz band [35], although none yet achieve sensitivities to stochastic backgrounds of
cosmological origin. It is nevertheless important to clearly identify possible sources — the GW
spectrum from the open string Hagedorn phase turns out to be an interesting target. One of the
motivations of the present article is to contrast the (B)SM predictions with the string theoretic
spectrum arising due to the decay of excited string modes into massless states, including
gravitons, and less excited states. The fact that long strings can emit gravitons directly
makes their contribution to the GW spectrum dominate over the SM spectrum which comes
from scattering with additional gauge coupling suppression. GW emission by SM radiation
after the Hagedorn phase is not strong enough to obscure the GW signal of thermal strings.

We organize the presentation as follows. Section 2 deals with “Hagedorn Cosmology,”
an epoch where the energy density of the universe is dominated by highly excited (i.e. long)
strings in thermal equilibrium. We discuss realistic scenarios that could accommodate a
Hagedorn phase of open and closed strings; warped compactifications are natural (but not
unique) settings to realise the scenario. We compare the equilibration rates of thermal strings
Γ, computed in [1], to the Hubble scale H, during this epoch to gain an understanding of
the relevant reactions and how various species remain in equilibrium and decouple during
the cosmological evolution; open string interactions are the key process driving equilibration.
We also discuss the validity of our approximations.

Section 3 concerns the emission of gravitons from the decays of long open strings. We
first provide a quantum mechanical analysis which determines the form of the coupling of long
strings to the graviton in general backgrounds and see that the matrix element for graviton
emission is the same as in a toroidal compactification. Comparing this with various graviton
emission computations available in the literature (in ten dimensional flat space) we arrive
at the general form of the decay rate in the settings of interest.

3It is important to distinguish our findings with that of [29]. We will be considering direct decay of highly
excited open strings to gravitons. This leads to an amplitude which scales as Ms/Mp. It is much larger than
the (Ms/Mp)4 scaled amplitude of the tensor modes fluctuations (akin to the tensor modes in inflationary
scenarios) in [29] obtained from equilibrium fluctuations of closed strings.
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In section 4, we combine the results of sections 2 and 3 to compute the spectral curve of
the stochastic gravitational wave background emitted during an epoch of open string Hagedorn
cosmology. Key features of the spectrum such as the peak and amplitude are discussed. Also,
the corresponding ∆Neff (the effective number of additional neutrino like species at the time
of neutrino decoupling) is computed and compared with observational constraints.

The end of this section discusses various phenomenological aspects of the stochastic
background in detail. We compare the spectrum with the spectrum of gravitational waves
expected from the reheating epoch of the Standard Model/BSM models. We consider the
most important result is that the GWs spectrum produced by string theory peaks at the
same order of magnitude in frequency but it is hierarchically larger than all others. Our
scenario therefore opens up a concrete way to eventually test a key property of string theory.
For D-brane constructions of the SM, a large hierarchy between string and Planck scales, and
sufficiently high-scale inflation, our basic predictions are robust and generic. Furthermore, we
find that the spectrum is proportional to the string scale signaling a way to also determine
the string scale. We provide an explanation of why it is expected that the string spectrum
is dominant. The reader more interested on the phenomenological aspects may prefer to
go directly to this section.

We discuss future directions and conclude in section 5. We dedicate two appendices to
present more details of the scenario we are considering.

2 String thermodynamics in cosmology

In this paper, we consider realistic compactifications with the effect of ingredients that render
moduli stabilization and d = 3 noncompact spatial directions (plus time) which expand due
to the backreaction of a homogeneous and isotropic gas of very long open and closed strings
(the Hagedorn phase). In this section we discuss relevant details about equilibrium and
out-of-equilibrium notions that need to be tackled in order to study a thermal plasma in an
expanding universe. We begin in 2.1 by identifying three possible realistic scenarios which
feature a Hagedorn phase, leaving a more systematic discussion of the notions of limiting and
non-limiting behaviour in string thermodynamics to appendix A. We then review relevant
results of [1] that discuss equilibrium configurations and equilibration rates Γ of our system
of interest in section 2.2. This is important because thermal equilibrium in cosmology is an
approximate notion which only describes a system provided Γ/H ≫ 1, where H is the Hubble
scale induced by the presence of the gas. This is discussed in section 2.3, where we show
that the energy density is dominated by highly excited open string degrees of freedom which
do maintain equilibrium, and discuss entropy conservation (which allows us to adiabatically
track the evolution of the gas). In addition, we study the validity of our approximations
(like neglecting α′ corrections in presence of a large energy density) and identify the relevant
range of parameter space where the scenario is under control.

2.1 The Hagedorn phase in realistic scenarios

In the present paper we wish to discuss a thermal system in which the strings propagate
in three noncompact spatial directions (and time), which are furthermore worldvolumes
of branes. These assumptions are key for the analysis of the thermodynamics (which we
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(a) Small (left) vs large (right) dimensions. (b) Small inter-brane separation.

Figure 1. (a) Long strings in small dimensions overlap themselves but do not in large dimensions.
(b) Two directions transverse to a gas of parallel Dp-branes (blue points). The inter-brane separation
is small. Red lines represent long strings.

discuss at length in appendix A) and it is worth commenting on which realistic scenarios
can accommodate them.

The idea is that in the thermal gas two new scales appear: first, the length L of the
typical string, which grows with the energy of the system and determines the temperature.
Because highly excited strings form random walks, this typical string will spread through
another distance scale4 Lrms ≡

√
L/Ms in each direction. The thermodynamics of these

excited strings depends on how many dimensions of space are large or small compared to Lrms.
If a dimension is noncompact, it is always large comparatively, so the probability for

a string to self-intersect (or to intersect a D-brane) depends on the length of the string.
On the other hand, a compact direction with Kaluza-Klein scale lKK ≪ Lrms is small, and
the string fills the whole compact space. In this case, the self-intersection probability is
∼ 1/(lKKMs), independent of the string length. On the other hand, compact dimensions
with lKK ≫ Lrms are classified as large.

In the case of open strings, consider a homogeneous gas of parallel Dp-branes separated
by a length lb in the transverse directions. If lb is comparatively large, the branes are isolated
from each other; however, if lb ≪ Lrms is small, the long strings can intersect a brane at
essentially any point along their length, as if the branes filled the space. Figure 1 illustrates
the comparison of Lrms to lKK and lb. The key point is that if all large dimensions are
filled by D-branes (or lb is small), the thermodynamics of the string gas is well-described
by the canonical ensemble, and the temperature approaches the Hagedorn temperature TH

only in the limit of infinite energy density. We refer the reader to appendix A for a more
detailed discussion of the role played by large and small directions in the thermodynamics
and how to identify them.

Here we simply point out three possible scenarios that render all internal dimensions as
effectively small (or filled by branes) and the range of validity for which these notions apply.
The following all have limiting behavior for the thermodynamics:

• A Brandenberger-Vafa scenario with open and closed strings. The original work of [36]
considered closed strings in 9 compact and small dimensions. We consider D-branes

4We define length in terms of the mass M of the string as l = M/M2
s to avoid cumbersome factors of 2π,

but note that strictly speaking the length of a string is given by 2πM/M2
s .
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Figure 2. A cartoon version of the Jackson-Jones-Polchinski scenario. Strings are confined to a
small region at the tip of a throat (blue lines) compared to the full throat (dashed black) or bulk
compactification. The right part of the figure is a transverse view. Red lines indicate long strings.

filling 3 noncompact dimensions (and possibly some compact dimensions) with Kaluza-
Klein length lKK small in the directions transverse to the branes, which leads to
similar thermodynamic behavior. For 6 roughly isotropic compact dimensions, we
have Ms/Mp ∼ gs/(MslKK)3 ≪ 1 when lKK is large in string units. For the compact
dimensions to be small (lKK ≪ Lrms), the typical string energy is M2

s L ≳ M3
s l2KK .

While large, we will see that this can still be parametrically less than requirements for
the validity of EFT. This scenario resembles the left image in figure 1(a).

• Dense brane scenario. Another possibility is that there is a roughly homogeneous
distribution of parallel branes along all directions in the compact space. If that is the case,
then the strings only need to be as large as the typical inter-brane separation lb < lKK

and the description would therefore apply at energies lower than the Brandenberger-Vafa
case (at higher densities, this becomes a Brandenberger-Vafa scenario). This scenario
resembles figure 1(b).

• The Jackson-Jones-Polchinski [37] box. This is the most interesting case from the
perspective of a realistic compactification. As discussed in appendix A, branes, fluxes
and other key ingredients for realistic phenomenology (including the Standard Model
and moduli stabilization) will typically backreact on the compact space, rendering
a (strongly or not) warped metric. This effect localises the highly excited strings in
a string-scale region. Importantly, the intersection probability is independent of the
length of the highly excited string. Then, the internal directions are effectively small,
even though the compact dimensions may actually have a large extent. In support of
this argument, [38] recently considered the single string density of states with spacetime
curvature, finding that target space dimensions with worldsheet masses, such as the
warped directions, are effectively small, even if they are physically much larger than Lrms.

This confining effect on strings does not require strong warping and can occur for even
O(1) modulation in the warp factor. Therefore, we will follow the latter scenario, keeping in
mind that it is the one that takes into account the effect of generic ingredients of realistic string
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compactifications. We review the Jackson-Jones-Polchinski argument [37] in appendix A.5
Their conclusion is that highly excited strings get localized in an internal volume of size α′3;
we will call this region the “JJP box.” We illustrate the JJP box in figure 2.

As a result, we approximate the thermodynamics of strings in a warped compactification
by strings in flat spacetime with a compactification of volume ∼ O(1) in string units; the
long strings fill those compact dimensions. We can also approximate the warp factor as
constant across the compact region (since its curvature should be small in string units). Then
the string thermodynamics are those of strings in three flat noncompact dimensions with
spacefilling D-branes; as argued in [1], the effect of the compact dimensions is just to modify
the interaction coefficients. Finally, since the 4D metric gµν appears in the 10D line element
as ds2 = e2A(y)gµνdxµdxν + · · · , the energy scale of the strings is set by the warped string
scale, which we denote Ms.6 Note that Ms is simply the higher-dimensional string scale
α′−1/2 in unwarped scenarios (such as the Brandenberger-Vafa (BV) or dense brane scenarios
above) but can still be much smaller than the Planck mass in large volume compactifications.

2.2 String thermodynamics and equilibration

Here we review string thermodynamics (at and near equilibrium) in flat spacetime, taking
care to restore units. For concreteness, we consider an admixture of open and closed highly
excited strings in three noncompact dimensions with ND spacefilling D-branes. We note
that, as reviewed in appendix A, open (with closed) strings in 3 noncompact dimensions
with spacefilling D-branes have a well defined canonical ensemble for any energy density
with temperature asymptoting to the Hagedorn temperature at infinite density (systems of
this nature are dubbed “limiting” in [17]). The D-branes may also fill some of the compact
dimensions. Because the dense brane scenario described above has somewhat different
thermodynamic properties and cosmological behavior, our focus here is on the BV and JJP
box scenarios; we comment on the dense brane scenario in appendix A.

As explained in [1] (see also [19, 42, 43]), an ensemble of highly excited strings in 3
noncompact and 6 small compact dimensions obeys Boltzmann equations

∂ño(l)
∂t

= a1NDlñc(l)−
b1

2ND

ño(l)
l3/2 +

∫ l−lc

lc
dl′
(

b2
2ND

ño(l′)ño(l − l′)− a2NDño(l)
)

+
∫ ∞

l+lc
dl′
(
2a2NDño(l′)−

b2
ND

ño(l)ño(l′ − l)
)
+ · · ·

∂ñc(l)
∂t

= b1
2ND

ño(l)
l3/2 − a1NDlñc(l) + · · · (2.1)

to leading order in the string coupling. We describe the ensemble through the quantities
ño,c(l), the number of strings with lengths between l and l + dl per noncompact volume.7
These terms describe open-open and open-closed endpoint interactions; closed-closed and

5We also compare the three scenarios in more detail in that appendix.
6As an example of this effect on string thermodynamics, the Hagedorn temperature in Maldacena-Nuñez-

Chamseddine-Volkov backgrounds [39, 40] is set by the string scale at the bottom of the throat [41].
7As opposed to the notation in [1] which are total numbers and not densities.
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other interactions in string interiors are higher order. The coefficients are

a1 ≃ gsM2
s

Ω⊥
, b1 ≃ gs

M
1/2
s Ω∥

, a2 ≃ gsM2
s

Ω⊥
, b2 ≃ gs

M2
s Ω∥

, (2.2)

where gs is the string coupling and we have neglected phase space factors. The cutoff at
short string length is lc ∼ 9/Ms [1, 44]. Note that the string length l includes the extent
of the string in the suppressed compact dimensions and is not the projected length in the
noncompact directions. It therefore represents the total string energy. In a scenario where the
long strings are localized to a small region of the compact dimensions, gs and Ms are the local
string coupling and scale at that location. The factors Ω⊥,Ω∥ in coefficients a1,2 and b1,2 are
respectively the compact volume perpendicular and along the branes that are filled by the long
strings, as measured in string units. Up to factors of order unity, they are powers of lKK/

√
α′;

if the SM is supported on D3-branes, Ω∥ ≡ 1 for zero compact dimensions along the branes.
The equilibrium configuration reads

ñc(l) ≃ M4
s

e−l/L

(Msl)5/2 , ño(l) ≃
N2

DM4
s Ω∥

Ω⊥
e−l/L , (2.3)

where the expressions are valid up to order one factors8 for l ≥ lc, and L−1 = M2
s (β − βH)

determines the temperature. The energy densities are

ρ ≈ ρo = M2
s

∫ ∞

lc
dl′ l′ño(l′) ≃

(NDLMs)2Ω∥
Ω⊥

M4
s , ρc ≃ M7/2

s /l1/2
c ≃ M4

s . (2.4)

where here and in what follows we neglect O(lc/L) corrections such as the ratio Mslc ∼ 9.
Open strings dominate the energy (and entropy) density when NDMsL ≫

√
Ω⊥/Ω∥. In the

JJP scenario, both volumes are Ω⊥ ∼ Ω∥ ∼ 1, so open strings are always dominant. In the
BV scenario with Dp-branes, open strings dominate for NDMsL ≫ (MslKK)6−p; since the
BV scenario assumes L ≫ Msl2KK , open strings always dominate for p ≥ 4, but closed strings
may dominate for a brief period at the end of the Hagedorn phase for D3-branes. In the rest
of the main text, we therefore assume that open strings dominate and leave the cosmology
and gravitational wave signature of dominant closed strings to future work.

Now consider a small perturbation δñc, δño to the equilibrium distributions (2.3). The
rate at which the distributions return to equilibrium (equilibration rates) for strings in flat
spacetime were given in [1]. One important feature of equilibration is that longer strings
return to equilibrium faster; that is, δñc(l), δño(l) vanish faster for larger l. Also, because the
endpoint interactions are lower order in string perturbation theory, open strings equilibrate
among themselves and with closed strings much faster than closed strings equilibrate on their
own (except for the nearly vanishing number of extremely long closed strings). Therefore,
closed strings can equilibrate more efficiently through their interaction with open strings.
Using the notation Γc,c , Γo,o , Γo,c to indicate the equilibration rates for energy transfer in

8These are model dependent and, for open strings, can always be reabsorbed into the parameter ND.
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the closed and open and between the open-closed sectors for string length l, we find

Γo,o(l) ≃ gsNDM2
s

Ω⊥

(
L + l

2

)
≳ gsNDM2

s L/Ω⊥,

Γo,c(l) ≃ gsNDM2
s l

Ω⊥
+ gsMs

2NDΩ∥(Msl)3/2 ≳ gsNDM2
s l/Ω⊥ ∼ gsNDM2

s L/Ω⊥ , (2.5)

Γc,c(l) ≃ g2
s l

Ω∥Ω⊥

(
ρc

M2
s

+ M2
s

2(Mslc)1/2

)
≃ g2

sM2
s l

Ω∥Ω⊥
∼ g2

sM2
s L

Ω∥Ω⊥
.

The last relation on each line is valid for typical strings in the ensemble, which are length
L > 1/Ms. In addition, we neglect O(1) factors.

2.3 Hagedorn cosmology

In an expanding universe, dilution of energy density continually pulls a thermal system away
from equilibrium; this is true for strings as much as for standard particle physics. Using
standard arguments, the equilibrium configurations for strings are only valid in cosmology if
the equilibration rates are much larger than the Hubble scale. To make this more concrete,
let us study the evolution equation for a fluctuation around the equilibrium distribution.
Following [19], the straightforward generalization of the equations of [1] reads generically

∂n

∂t
+ 3Hn + ∂(l̇n)

∂l
= interactions, (2.6)

where l̇ is the growth rate of the string’s length with the expansion of the universe.9 Together,
the left-hand side of (2.6) implies conservation of the total number of strings per comoving
volume in the absence of interactions; the first and third terms make up the continuity equation
in l-space. We expect that strings at or longer than the Hubble scale will stretch with the
expansion of the universe, while shorter strings may not, so l̇ ∼ Hl. Therefore, as in particle
physics, the linearized Boltzmann equations are a competition between expansion terms at
scale H and interaction terms with equilibration rate Γ as described in the previous section.

We will assume that the string interaction rates (and therefore the equilibration rates)
are the same in the cosmological spacetime as in flat spacetime. In particle physics, this
assumption is justified because the interaction occurs over very small length and time scales;
this is also true for splitting/joining or reconnection interactions at fixed points along the
string(s). However, the rates for a string to decay or for an open string to close also depend
on the geometric probability for a random walk to self-intersect, which spacetime curvature
could logically affect. Nonetheless, at fixed proper time, the spatial curvature is extremely
small in realistic cosmologies, so we expect that any effects should be negligible over the
extent

√
L/Ms of a typical string, and we believe our assumption to be reasonable.

The equilibration rates in (2.5) above are to be compared with the Hubble rate which,
as the expansion of the Universe is sourced by the dominant contribution to the energy
density (open strings), reads

H ≃
√

ρ

Mp
= NDLM2

s

Ms

Mp

√
Ω∥
Ω⊥

, (2.7)

9Assuming that l̇ = 0 at l = lc.
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where Mp is the Planck scale of the effective 4D theory. An important consistency condition
to neglect string theoretic corrections to the expansion of the Universe is that Ms/H ≫ 1,
and thus our setup is only consistent provided

NDLMs
Ms

Mp

√
Ω∥
Ω⊥

≪ 1 . (2.8)

Since we are assuming NDLMs

√
Ω∥/Ω⊥ ≫ 1 to impose open string dominance, we need to

impose a hierarchy between Ms and the 4-dimensional Planck scale. This is possible in JJP
models with large extra dimensions (and weak warping), which have concrete realizations in
string theory [45], or compactifications that feature highly warped regions [46, 47], provided
the relevant physics occurs in such regions. We will assume this in the following, noting
that these setups are the most frequent scenarios for model building, though we also check
below that BV scenarios can satisfy even stricter consistency conditions. Note that (2.8) also
requires that the energy of a typical long string is M2

s L ≪ Mp for strings in the JJP box.
The condition H ≪ Ms for consistency of the effective theory is robust, but it is not the

most stringent. For Kaluza-Klein scale MKK (or the scale of some other tower of states as
discussed in [27]), there is the model-dependent condition H ≪ MKK , or

NDLMs
Ms

Mp

√
Ω∥
Ω⊥

≪ MKK

Ms
. (2.9)

For models of large extra dimensions of linear scale lKK (without a high degree of anisotropy
or inhomogeneity), MKK ∼ 1/lKK and Mp ∼ M4

s l3KK/gs. In BV models with Dp-branes,
we require NDMsL ≪ (MslKK)8−p/gs, which is compatible with the requirement that
Lrms ≫ lKK for p < 6 (and with the open string dominance condition). For large volume
JJP models, the JJP box has effective compact volumes of order 1, which also leads to
a loose bound NDMsL ≪ (MslKK)2/gs. On the other hand, the expectation for strongly
warped compactifications with the long strings in the warped throat is for MKK ≲ Ms,
so (2.8) is only slightly modified.

If the Hagedorn phase follows inflation at scale Hinf , consistency of the effective theory
during inflation also provides a somewhat stronger condition, as described in the introduction
(though note that the string scale Ms may be larger during inflation due to shifted moduli
expectation values [25]).

It follows that the equilibration rates involving highly excited strings have the behaviour

Γo,o

H
≃ gsMp

Ms

√
Ω∥Ω⊥

≡ R ≥ 1 ,
Γo,c

H
≃ l

L(t)
gsMp

Ms

√
Ω∥Ω⊥

= R
l

L(t) ,

Γc,c

H
≃ g2

s l

NDL(t)Ω3/2
∥ Ω1/2

⊥

Mp

Ms
=
(

gsl

NDL(t)Ω∥

)
R . (2.10)

Here, L(t) is the time dependent length scale of the string gas, which we recall de-
termines the temperature. In terms of the parameters of the compactification, R =
e−A0(Vw/α′3)1/2(Ω∥Ω⊥)−1/2, where Vw is the (possibly warped) volume of the entire com-
pactification, and we are allowing for a nonzero warp factor A0, which will be generically
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present in realistic compactifications, albeit not necessarily with an extreme value (recall that
the Jackson-Jones-Polchinski argument holds even for weak warping). In many situations
of phenomenological interest, the ratio R should be large, so the long open strings stay in
equilibrium at all times until the temperature drops sufficiently below the Hagedorn tem-
perature that L(t) ≲ lc (when the strings are no longer highly excited). However, in the BV
scenario, we ignore warping, and the long strings spread through the entire compactification,
so the volume factors cancel and R ∼ 1. The strings are therefore marginally in equilibrium,
so the thermodynamics is sensitive to order 1 phase space factors in the equilibration rates,
and the full cosmological Boltzmann equations are likely necessary. We therefore leave a
more detailed study of the BV scenario to future work.

The ratios of equilibration rates with respect to the Hubble scale therefore reveal a
coherent setup in which open string degrees of freedom always thermalise. Long closed strings
(l > lc ∼ 1/Ms) also equilibrate through their interaction with open strings because we have
also assumed M2

s L(t) ≪ Mp for consistency of the EFT.10 It is worth noting that equilibration
also occurs faster than density perturbations grow; the Jeans instability in flat space occurs
over a parametrically identical time scale as the Hubble expansion, and density perturbations
grow more slowly (as power laws) in cosmology. After sufficient dilution, only massless open
string fields (which we assume to be the SM or an extension thereof, as is common in string
model building) remain in equilibrium, providing a natural window into the hot big bang.

However, in section 3.1 we will see that the above results do not apply for massless closed
strings, which we will argue do not equilibrate. Heuristically, long strings are confined to
a box of size Ω⊥, so dimensional reduction of their interaction coefficients is carried in this
box (cf. eq. (2.2)). Gravitons and other massless closed strings are however not confined
to the JJP box, as we will explain in appendix A. Since the supergravity equations imply
the graviton wavefunction spreads through the whole compact space, dimensional reduction
results in Planckian suppression.

Before concluding this section, let us study conservation of entropy. The exponentially
large number of degrees of freedom that release their entropy into the plasma as the Universe
expands implies that the temperature takes a long time to drop: it is the inverse temperature
difference L that scales with the scale factor (as opposed to the more standard T ∼ a in
weakly coupled particle thermodynamics). To see this, notice [1, 44] that the typical strings
in the ensemble are very nonrelativistic, so that the pressure P ∼ √

ρM2
s is negligible, and

the entropy density of the system is thus s = βρ = ρ
(
βH + 1/(M2

s L)
)
≃ βHρ [17]. Therefore,

conservation of comoving entropy sa3 = const. requires ρ ∼ a−3, as appropriate for the
energy density of a nonrelativistic gas. The Hagedorn phase thus behaves cosmologically
like a period of early matter domination. This will be very important when we compare the
GW spectrum arising in the Hagedorn phase with that of the Standard Model in standard
cosmology. We are therefore able to track the inverse temperature difference

L(t) = L∗

(
a∗

a(t)

)3/2
, (2.11)

where the expression is valid whenever L ≫ 1.
10In absence of branes, whether only closed strings can reach thermal equilibrium is a model dependent

question, but in this scenario the canonical ensemble breaks down at order one energy densities and the
description is less clear.
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3 Gravitational wave emission from long strings

The goal of the present article is to compute the GW spectrum arising from the Hagedorn
phase. To do so, we will study the decay rate of a typical string at a given length by emission
of gravitons (massless closed strings), averaging over the initial states at the given mass level.
A key point is that the effects of realistic compactifications are different for highly excited
strings and gravitons. This affects the overall scaling of the graviton emission amplitude as
compared to the long string interactions of the previous section, such as the splitting of a
long open string into two other long open strings. Heuristically, the probability of a highly
excited string decaying into another highly excited string and a graviton is proportional to
the square of the disk amplitude, which reads

A = ⟨VHESVHESVg⟩, (3.1)

where VHES and Vg are the vertex operators for highly excited strings and gravitons respectively.
In a product compactification (such as the first scenario discussed in A),the vertex operators
are V ∼ g/

√
V eikxO, with O a product of derivatives of X, g the open or closed string

coupling as appropriate, and V the compact volume. After accounting for the path integral
normalization (including zero modes), A ∼ gs/

√
V . However, suppose the long strings are

localized to a string-scale volume VHES. Then the graviton-emission probability is suppressed
by a factor VHES/V in comparison. Furthermore, in warping, the graviton vertex operator
should have a nontrivial profile in the compact dimensions, which we expect to suppress
the amplitude by the warp factor.

In the absence of a worldsheet description for compactifications with moduli stabilization,
we will take another approach to make the above arguments rigorous. We begin in section 3.1,
where we study graviton emission from a nonrelativistic object with tension Tp that is localized
in the compact dimensions of a warped background (hence at zeroth order in a gradient
expansion). For long strings extended in the noncompact dimensions, we find that the
interaction rate is suppressed by a factor Ms/Mp, where Ms is the warped string scale and Mp

is the Planck scale as above. The remainder of the emission amplitude is the matrix element
of the graviton vertex operator in the initial and final states of the highly excited string in
the flat noncompact dimensions (to the extent that we can ignore cosmological expansion).

Having understood the relative strength of the interactions, in section 3.2 we review
the computation of the decay rate of a typical string into gravitons, which has been carried
out in the bosonic [48] and supersymmetric [49] case at leading order in string perturbation
theory in flat backgrounds. Recently, [50], using arguments from the optical theorem, has
raised a technical subtlety regarding the analogous computation for the emission of massless
open strings by open strings and the emission of massless closed strings by closed strings
(which therefore does not include our case of interest). We will not have anything new to
say about this disagreement and will restrict ourselves to parametrising the resulting GW
spectrum in a sufficiently general way that can accommodate the main lessons learned from
both points of view (we leave a detailed resolution of the discrepancy to future works). We
will see that our conclusions are robust enough to accommodate this disagreement and further
corrections. The general result is that the emission spectrum features a greybody spectrum
at the Hagedorn temperature, TH ∼ Ms, suppressed by (Ms/Mp)2. Using the leading order
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factorization of the worldsheet CFT, we find that the dependence of the emission rate on
the details of the compactification is cancelled out by the averaging procedure, rendering our
results robust against model dependence.

In section 3.3 we merge the results from both sections and apply them to our case
of interest: (four-dimensional) graviton emission from highly excited open strings in the
presence (or not) of warping. We will find that the computations carry through by using
the dimensionally reduced coupling and the warped string scale. We also carry out the
computation of the decay rate.

3.1 Quantum mechanical analysis

As argued above, the emission of gravitons by highly excited strings should be suppressed
due to the localization of the long strings. In fact, as expected for a gravitational process,
the emission rate will be Planck suppressed. Since there is not yet a full worldsheet descrip-
tion of compactifications with warping (plus flux and other ingredients needed for moduli
stabilization), we will determine the effects of warping using a quantum mechanical analysis,
treating the initial and final long strings as a excited states of a single nonrelativistic object.

The spirit of the analysis is the same as that used to determine the interaction of light
with matter (see e.g. [51]). The starting point is the action of a single long, nonrelativistic
fundamental string coupled to 10D gravity. We linearise gravity; the Hilbert space of the entire
system is a tensor product of the states of the fundamental string and gravitons. Quantisation
of the gravitational sector can be carried out by canonical methods, and the normalisation
involved in this process sets the strength of gravitational interactions of the fundamental
string. Furthermore, the matrix element that determines the S-matrix for graviton emission
factorises; it is the product of a matrix element in the gravitational sector (which is a free
field theory matrix element) and a matrix element of the quantum fundamental string.

Let us begin by considering the action of an object with p spatial dimensions that
is minimally coupled to gravity (in a gauge where worldvolume time is the same as the
overall time coordinate):

S =
∫

dt

(
M8

10
2

∫
d3x d6y

√
−g

[
R10 + · · ·

]
+ Tp

∫
dpσ

√
−γ

)
, (3.2)

where M10 is the 10-dimensional Planck mass, Tp is the tension of the localized object, and
γab is the pullback of the spacetime metric gMN on the worldvolume of the object. The · · ·
represent the contribution of additional fields to the bulk action, which are responsible for
moduli stabilization and the appearance of a warp factor. Because we assume moduli are
stabilized, the string and Einstein frames are identical for our purposes.

The background spacetime metric of interest takes the form

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mndymdyn (3.3)

Furthermore, any metric with ηµν → gµν(x), where gµν is Ricci flat, continues to satisfy the
equations of motion [46]. Given this, the fluctuations associated with the four dimensional
graviton correspond to taking ηµν → ηµν + hµν(x), with hµν(x) solving the four dimensional
Lichnerowicz equation. Dimensional reduction to four dimensions with a metric ansatz of
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the form (3.3) with ηµν → gµν(x) chosen to capture the degrees of freedom associated with
the 4d graviton yields an effective action

S ⊃
∫

dt

(
M2

p

2

∫
d3x

√
−g(x)R(x) + Tp

∫
dpσ

√
−γ

)
(3.4)

where Mp is the four dimensional Planck mass. This is related to the ten-dimensional Planck
mass by a factor of the warped volume

M2
p = M8

10

∫
d6y

√
g̃e−4A.

We note that the contribution of highly warped regions to the warped volume is typically
negligible, so its value is set by the overall volume of the compactification and is insensitive
to the minimum value of the warp factor (see e.g. [47]).

Now suppose that the object has a small spread in the compact dimensions around a
local minimum of the warp factor y = y0. The form of the effective action (3.4) has two
important implications. First, the tension of the object is warped down Tp → e(p+1)A(y0)Tp,
and this warped tension governs the gravitational dynamics of the localised object (at leading
order in a derivative expansion for the warp factor). The case of interest is a localised
fundamental string (p = 1), which therefore has an effective string scale Ms ≡ eA(y0)/

√
α′

as measured with respect to the time coordinate t. This is the same warped string scale
that we have used previously.

One can also obtain the coupling of a localised string to gravitons (generalizing to
higher-dimensional objects is trivial). Taking a perturbed metric gµν(x) = ηµν + hµν(x),
the leading form of the action (3.4) is

S =
∫

dt

(
M2

p

2

∫
d3x (∂h(x))2 + M2

s

2π

∫
dσ
√
−γ̂0 +

M2
s

2π

∫
dσ
√
−γ̂0 hµν(x(σ))xµ

axν
b γ̂ab

0

)
,

(3.5)
where (∂h)2 schematically indicates the kinetic term for the graviton field with indices
appropriately contracted, γ̂0 is the pullback metric obtained from the Minkowski metric (ηµν),
and xµ

a ≡ ∂xµ/∂σa for (σ0, σ1) = (t, σ). The first term on the string worldsheet determines
the states of the long string, while the second is the leading interaction with 4D gravity. Note
that the canonically normalised graviton field ĥµν is obtained by the rescaling ĥµν = hµνMp.
We see that the interaction between fluctuations of the localised object and the 4D graviton
is indeed suppressed by the 4D Planck scale.

Thus the system consists of two sectors (gravitons and the fundamental string) coupled
by a linear interaction. This is exactly the same situation that one encounters while discussing
the interactions of light with matter. We will follow the treatment of [51] to analyse graviton
emission when the fundamental string transitions from state |A⟩ to |B⟩ (for the composite
system, the final state is |B, g(k⃗, eµν)⟩, k⃗, eµν being the momentum and polarisation of the
outgoing graviton). The S-matrix for the process can be computed using the interaction
picture and is given by the matrix element

MA→B,g = M2
s

2πMp

∫
d2σ

〈
B, g(k⃗, eµν)

∣∣∣ĥµν(x(σ))
√
−γ̂(0)x

µ
axν

b γ̂ab
0

∣∣∣A〉 .
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The Hilbert space factorises (|B, g⟩ = |B⟩ ⊗ |g⟩), so the gravity sector matrix element is
easily evaluated by expanding the graviton in terms of creation and annihilation operators.
This leads to

MA→B,g = M2
s

2πMp
eµν

∫
d2σ

〈
B
∣∣∣eik·x(σ)

√
−γ̂(0)x

µ
axν

b γ̂ab
0

∣∣∣A〉 . (3.6)

In terms of the quantum mechanics of the long string, this is the transition amplitude as
given by time-dependent perturbation theory.

However, the attentive reader might notice the similarity between the operator in
the matrix element in (3.6) and the form of the graviton vertex operator. Indeed, up to
normalization, both are the same after expressing γ in conformal gauge and σ in holomorphic
coordinates. Therefore, we can use the (unnormalized11) flat spacetime string perturbation
theory amplitude with appropriate polarizations in (3.6) to determine the emission rate. We
will later argue that corrections due to cosmological expansion can be neglected. In all, we
see that the graviton emission is that of a fundamental string whose tension is given by the
warped string scale, and the rate is suppressed by the Planck scale.

3.2 Graviton emission amplitude in flat backgrounds

We thus conclude that we can use the results of [48, 49] in a warped background (under
the usual assumptions), provided we modify the couplings and the effective string scale
appropriately. Warped backgrounds also generically include NSNS and RR flux, but we
note that the effects of flux in worldsheet computations are suppressed by higher powers
of gs [52], so we can ignore them.

Let us thus review the computations in [48, 49].12 The strategy is to obtain the prob-
ability of a highly excited string at level N to decay into a graviton with frequency ω and
another highly excited string at level N ′. Summing over final states {ΦN ′,i} at level N ′ and
polarizations ξ, and averaging over initial states {ΦN,j} at level N renders the averaged,
semi-inclusive square amplitude F (ω)

F (ω) = 1
G(N)

∑
i,j,ξ

|⟨ΦN ′,i|Vξ(k)∗|ΦN,j⟩|2 = 1
G(N)

∑
i,j,ξ

⟨ΦN ′,i|V ∗
ξ (k)|ΦN,j⟩⟨ΦN,j |Vξ(k)|ΦN ′,i⟩ ,

(3.7)
where states and operators are to be understood as not carrying zero-modes as usual and k

is the wavevector of the graviton with frequency ω. To compute the amplitude, we trade the
sums by a trace over the Fock space of the oscillator modes by inserting projectors at level N :

P̂N ≡
∮

dz

2πiz
zN̂−N ,

∑
j

|ΦN,j⟩ =
∑
Ñ,j

P̂N |ΦÑ ,j⟩ , (3.8)

11In toroidal compactifications at weak coupling and large volume the normalisation of vertex operators
(as described in the beginning of this section) can be obtained explicitly, yielding M ∼ gs/

√
V ∼ Ms/Mp in

agrement with our general argument.
12We note again that a recent complementary calculation using the optical theorem by [50] differs from

these results. We will see in section 4 that the disagreements in the literature do not modify our conclusions
substantially. We leave a detailed resolution of this discrepancy for future works.
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and thus the computation reduces to

F = 1
G(N)

∑
ξ

∮
dz

2πiz
z−N

∮
dz′

2πiz′
z′−N ′Tr[V †

ξ (k, 1) z′N̂ Vξ(k, 1)zN̂ ] . (3.9)

The resulting trace can be computed by textbook methods, provided the graviton vertex
operator is identified appropriately. On that matter, note that we are considering the graviton
production from an open superstring, and thus to perform the computation we write

Vξ(k, eiτ ) =
∫ π

0

dσ

π
: VL,ξ(kL, ei(τ+σ)) :: VR,ξ̄(kR, ei(τ−σ)) : , (3.10)

where we have decomposed the polarization of the graviton into ξξ̄, and a zero mode
substraction should be understood. The full computation can be found in [49]. Here we
simply quote the part of the vertex operator that yields the dominant contribution:

VB,ξ(k, z) = ξiẊi(z)eik·X(z) + others . (3.11)

The computation thus involves (noting z′N̂ V (k, 1)z′−N̂ = V (k, z′)) computing the following
quantity:

F = 1
G(N)

∑
ξ

∮
dw

2πiw
w−N

∮
dv

2πiv
vN−N ′

∫ π

0

dσ

π

∫ ρ

0

dρ

π
Tr[ÔwN̂ ] (3.12)

Ô ≡ eξ̄∗·Ẋ(e−iρ)−ik·X(e−iρ)eξ∗·Ẋ(eiρ)−ik·X(eiρ) eξ·Ẋ(veiσ)+ik·X(veiσ)eξ̄·Ẋ(ve−iσ)+ik·X(ve−iσ) , (3.13)

where w = zz′ and v = z′. Eventually, the result is of the form

1
G(N)

∮
dw

2πiw
w−N ′

f(w, N − N ′)Z(w) , (3.14)

with Z(w) the partition function of the theory, and for the present computation [49]

f(w, N − N ′) ≃ (N − N ′)2(
1− w(N−N ′)/2)2 , (3.15)

where we have neglected terms of order O(ω
√

α′/
√

N) and higher. Let us, however, keep
f(w, N − N ′) general except for the assumption that it does not dramatically affect the
well-known saddle of Z(w) at log(w) → −Ms/(2

√
N ′TH). If so, the remaining integral can

be performed in a similar way to the computation of the number of states at level N (times
the function evaluated at the saddle), yielding

F = G(N ′)
G(N) f(e−Ms/(2

√
N ′TH), N − N ′) . (3.16)

Let us now stop to comment on the generality of this result. If the worldsheet CFT factorises
and the vertex operator of the graviton only acts on the free CFT, we observe that the
trace breaks into

Tr[ÔwN̂ ] = Trfree[ÔwN̂f ]Trint[wN̂c ] = Trfree[ÔwN̂f ]Zint(w) , (3.17)
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where we have divided the number operator N̂ = N̂f + N̂c into the free (noncompact)
and compact part, and analogously for the trace. It follows that the compact part simply
contributes with its partition function and the known factor f(w, N −N ′)Zfree(w) arises from
the free contribution, which we can compute. In addition, because Z(w) = Zfree(w)Zint(w)
grows exponentially, the saddle point approximation can always be performed, and the
details of the compactification only appear in F through G(N). The result in eq. (3.16) is
therefore true in any background allowing for a worldsheet CFT that factorises into compact
and noncompact parts. While we expect that the CFT of a warped compactification does
not factorize, this amplitude will factorize to leading order in a gradient expansion of the
warp factor because the warp factor is constant at the (localized) long string position in
that approximation.

Since the emission rate requires conservation of energy, we may approximate N − N ′ ∼
2
√

Nω/Ms,
√

N −
√

N ′ ≃ ω/Ms. Because in general G(N) = b NaeβHMs

√
N , with a and b

constants, the polynomial parts of G(N) and G(N ′) are equal at leading order in ω/(Ms

√
N),

and so the leading order result is

F ≃ 4(l ω)2 e−ω/TH

(1− e−ω/(2TH))2 , (3.18)

where l = M/M2
s ≃

√
N/Ms. The emission of gravitons is thus predicted to follow a greybody

spectrum peaking close to the Hagedorn temperature.

3.3 Graviton radiation in compactifications

Let us now put together the above results to find the decay rate of long strings by 4D
graviton emission in realistic setups. We argued in section 3.1 that the emission amplitude
in realistic compactifications is the graviton emission amplitude in flat spacetime up to
normalization, including Ms/Mp suppression. We reviewed the computation of this flat space
amplitude in section 3.2 to leading order in string perturbation theory. We are thus in a
position to compute the decay rate.

The square amplitude F gives the decay rate for a long string of level N (and mass
M2 = M2

s (N − 1)) to a string of level N ′ (M ′2 = M2
s (N ′ − 1)) and a 4D graviton with

frequency ω, averaged over the states of level N and summed over all states of level N ′.
Using the normalisation of section 3.1, the emission rate for gravitons with frequency from
ω to ω + dω for fixed N, N ′ is

dΓN→ωN ′ = ω

32π3M

M4
s

M2
p

F
δ(M −

√
M ′2 + ω2 − ω)√

M ′2 + ω2
dω. (3.19)

However, we would like the total emission rate of gravitons within a given frequency bin from
a string of level N , so we should sum over the product state levels N ′. At large N ′, we can
convert the sum to an integral over the mass using dN ′ = 2M ′dM ′/M2

s , so

dΓ
dω

= 1
16π3

(
Ms

Mp

)2
ω

M

∫
dM ′ M ′F√

M ′2 + ω2
δ(M −

√
M ′2 + ω2 −ω) = 1

16π3

(
Ms

Mp

)2
ωF (l, ω)

M
,

(3.20)
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where we now use energy conservation to write F as a function of the initial string mass
and outgoing graviton frequency.

Using the square amplitude (3.18),

dΓo,g

dω
= Ã

(
Ms

Mp

)2

lMs(ω/TH)3 e−ω/TH(
1− e−ω/2TH

)2 , (3.21)

with Ã = (TH/Ms)3/(4π3). It follows that highly excited typical strings radiate massless
strings like greybodies at the Hagedorn temperature, with a strength that depends on the
ratio between the local string scale and the Planck scale. This is the first hint of an exciting
result: measuring the gravitational radiation arising from a Hagedorn phase would provide
information about the local string scale.

A possible concern is that the cosmological expansion could modify the emission
rate (3.21), at least for strings longer than the Hubble radius. This is not usually an
issue in particle physics because particle interactions are local processes. However, an inter-
pretation of the single power of l in (3.21) is that the long string has a constant graviton
emission rate per unit length. In other words, each local segment emits gravitons indepen-
dently of the rest of the string. As a result, we can think of graviton emission, like any
standard particle physics process, as occurring locally, so it should be unaffected by the
expansion of the universe. In addition, corrections to the emission rate should be small for
strings well contained within a Hubble radius. This is true for typical strings in the gas
when HLrms ≪ 1, which is equivalent to M2

s L ≪ Mp(Ms/Mp)1/3, a somewhat more stringent
requirement than consistency of the EFT. Note though that it is likely to be satisfied at the
end of the Hagedorn phase, which we will see is the most important era for the gravitational
wave spectrum. Nonetheless, we will later parameterise the emission spectrum in a way that
could account for possible corrections or other dependence on l.

It would be very interesting to study the production of more model-dependent (but still
generic) species in this setup, like gravitini, axions or closed string moduli, which are accessible
by similar calculations. In particular, the geometric moduli (like the volume modulus) are
just polarizations of the 10D graviton in the compact dimensions. In addition, the decay
rates of long strings by emission of other massless strings (not only in the NSNS sector) are
known in flat backgrounds. According to [49], they all behave like greybodies (with different
greybody factors) at the Hagedorn temperature. At this order in perturbation theory, closed
string production from a given string is always proportional to the length of the mother
string, and open string production is length-independent. (For comparison, note that the
decay rates quoted in [49] specify the level N ′ of the product string, as in our (3.19).)

As a last remark, this computation allows us to show that gravitons never equilibrate.
We want to compare the total graviton production rate with the Hubble scale. Integrating
against ω gives an order one number, so that Γ ∼ (Ms/MP )2l. We also need to integrate
over all possible source strings for the gravitons, and this renders (due to the l factor) a total
production rate proportional to the energy density of the bath,

Γg ∼
(

Ms

Mp

)2
ρb

M4
s

Ms . (3.22)
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The Hubble scale is given by H ∼
√

ρb/M4
s M2

s /Mp . In a background with energy density
ρ ∼ (NDMsL)2M4

s , as expected for long open strings, we find

Γg

H
∼ (NDMsL)

(
Ms

Mp

)
. (3.23)

This is the same parametric behaviour as H/Ms, which needs to be much smaller than
one in order for α′ corrections to be negligible. We thus conclude that gravitons never
reach equilibrium in this scenario, and massless closed strings are produced as an out-of-
equilibrium process. In the next section we compute the GW spectrum arising from such
out-of-equilibrium processes, and compare it to the analogous process in field theory.

4 The spectrum of the stochastic gravitational wave background

In this section, we will compute the spectrum of the stochastic gravitational wave background
produced from the decay of long open strings in a Hagedorn phase.13 We will use our
results on the cosmology of the Hagedorn phase (section 2) and the decay rates of long
open strings (section 3) as key inputs.

Let us begin by setting up some basic notation and conventions. Cosmological back-
grounds of gravitational waves are usually expressed in terms of their fractional energy density
per logarithmic frequency intervals, h2ΩGW(f0) [2, 3]:

ρ
(0)
GW ≡

∫ ∞

0
d log f0 ρ(0)

g (f0), h2ΩGW(f0) ≡ h2 ρ
(0)
g (f0)

ρc
= 15

π2 h2Ωγ
ρ

(0)
g (f0)
T 4

0
(4.1)

where ρ
(0)
GW is the total energy density in gravitational waves. In the last equality we have

used the fractional energy density in photons Ωγ = π2T 4
0 /15ρc = 2.47 ·10−5/h2 [53] to express

the critical density (ρc) in terms of the temperature of the CMB, T0. We will use angular
frequencies (ω = 2πf) in section 4.1 for computational simplicity, but will use frequency
today f0 instead when comparing with observations in section 4.2.

4.1 Total gravitational wave spectrum

Next, let us turn to computing the spectrum of gravitational waves. Since gravitons never
reach thermal equilibrium and propagate freely after their production, it is straightforward
to write an evolution equation for the total energy density in gravitational waves (ρGW (t)):

∂ρGW

∂t
+ 4HρGW =

∫ ∞

lc

∫ ∞

0
ω

dΓo,g

dω
ño(l) dω dl . (4.2)

The evolution equation has two elements: firstly, the redshifting of the energy density in
gravitons; secondly, a source term which sums over all source strings and the frequencies of
gravitons produced from them. The integral is weighted by the frequency of the gravitons
to obtain their contribution to the energy density. To obtain the spectrum, we write a

13During the Hagedorn epoch, the energy density in open strings is much larger than that in closed strings,
see eq. (2.4). Hence, the dominant channel for graviton production is the one from decay of open strings.
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spectral decomposition of the graviton energy density at any time t in terms of the graviton
angular frequencies today (ω0):

ρGW (t) ≡
∫ ∞

0
d logω0 ρg(ω0, t) . (4.3)

Note that this is different from a spectral decomposition in terms of ω(t), the graviton
frequencies at time t. Since gravitons free-stream, ω(t) = a0ω0/a(t). The spectral density
then satisfies the integral equation∫ ∞

0
d logω0

(
∂

∂t
+ 4H

)
ρg(ω0, t) =

∫ ∞

lc

∫ ∞

0
ω2 dΓo,g

dω

∣∣∣∣
ω=a0ω0/a(t)

ño(l) d logω0 dl , (4.4)

where we have changed variables in the right-hand side. Equating the integrands in (4.4) yields

∂ρg

∂t
+ 4Hρg =

∫ ∞

lc
ω(t)2 dΓo,g

dω

∣∣
ω(t)ño(l) dl . (4.5)

We now write the graviton emission rate by long open strings (3.21) in the general form

dΓo,g

dω
= A

(
Ms

Mp

)2

Msl(ω/TH)Bσ(ω/TH) e−ω/TH

1− e−ω/TH
, (4.6)

where σ(x) is a greybody factor written with the convention σ(x → 0) → 1, which fixes A.
We work with this general form so that model dependence and various corrections (such as
α′ corrections, effects of fluxes and non-trivial curvature of the Calabi-Yau, or corrections
due to the Hubble expansion) can be incorporated.14 Interestingly, we find that the results
for the spectrum are universal as long as the decay rate falls off exponentially at large ω, i.e.,
σ(x → ∞) → xc, c ∈ R. Recall that we argued in section 3.2 that this exponential fall-off
is expected to hold in general. Finally, note that (4.6) reduces to the decay rate (3.21) for
B = 2 and greybody factor σ(x) = x(1 − e−x)/4(1 − e−x/2)2, A = 4Ã.

An important feature of (4.6) is that the decay rate is proportional to the length of the
source string (in keeping with the expectation that graviton emission from long strings is
a local process). This implies that the l integral15 in the right hand side of (4.5) yields an
answer which is proportional to the total energy density of the background.

ρb(t) = M2
s

∫ ∞

lc
dl′l′ño(l′, t). (4.7)

Thus, the bath continuously emits a fraction of its energy into GWs; (4.5) simplifies to

∂ρg

∂t
+ 4Hρg = A

(
Ms

Mp

)2(
T 2

H

Ms

)(
ω

TH

)B+2
σ(ω/TH) e−ω/TH

1− e−ω/TH
ρb . (4.8)

14We will see later that this form can also incorporate the emission rate given by [50].
15We note here that, had the decay rate had any other l-dependence, this l-integral would result in a different

power of L than ρb ∼ L2. If so, the difference (up to order one factors) from (4.10) leads to a different power
of ω0/TH and a shift of B. The IR properties of the spectrum would change but the position of the peak will
not be drastically altered.
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Furthermore, by making use of the fact that the background energy density evolves as
matter during the Hagedorn phase, i.e., ρb(t) ∝ a(t)−3 we integrate to obtain the spectral
function today

ρ(0)
g =

(
a∗
a0

)3
A

(
Ms

Mp

)2

ρb(t∗)
T 2

H

Ms

ω0
TH

∫ tend

ts

dt′
(

ω0
TH

a0
a(t′)

)B+1
σ

(
ω0
TH

a0
a(t′)

)
e
− a0

a(t′)
ω0
TH

1− e
− a0

a(t′)
ω0
TH

,

(4.9)
where ts is the time corresponding to the start of the Hagedorn epoch, tend its end (approxi-
mated by LMs ∼ 1), and t∗ ∈ (ts, tend) is a fiducial time during the epoch.

It is easiest to understand the spectrum by changing to the dimensionless integration
variable to x ≡ ω0a0/THa(t). We finally have

ρ(0)
g =

(
a∗
a0

)3/2√
3ρb(t∗)A

(
Ms

Mp

)
T 2

H

(
ω0
TH

)5/2 ∫ ω0a0
TH as

ω0a0
TH aend

dx xB−3/2 σ(x) e−x

1− e−x
. (4.10)

We can now see how to modify (4.10) to accommodate the findings of [50]. Assuming
that gravition emission by open strings is similar to that by closed strings, [50] modifies (4.6)
by changing the greybody factor, taking B = 4, and multiplying by an additional factor of
Msl. The effect is to replace ρb in (4.8) with ρ

3/2
b /NDM2

s , which introduces an additional
factor of (a∗/a(t′))3/2 to the time integral. That is equivalent to taking B → B + 3/2 and
multiplying the prefactor of (4.10) by√

ρb(t∗)
a3(t∗)

a3
0

1
NDM2

s

(
TH

ω0

)3/2

4.2 Features of the spectrum

Next, let us analyse the spectrum. To aid the reader, we summarise the results first. The
position of the peak does not depend on the local string scale, but is essentially determined
by the cosmology following the Hagedorn phase — for standard cosmological evolution
after the epoch the peak is at CMB frequencies. On the other hand, the overall strength
of the amplitude is set by the local string scale, depending linearly on the ratio Ms

/
Mp.

To see these features, let us use the conservation of entropy during the Hagedorn epoch
to write as = aend(Lend/Ls)2/3, where Ls = L(ts) and similarly for Lend. Also write
aendTH = a0T0GX, with T0 the temperature of the CMB. Here G ≡ (g∗,0/g∗,end)1/3 measures
the number of thermalized relativistic degrees of freedom at the end of the phase, and X

parameterises the effects of entropy injections, deviations from standard cosmology, and
uncertainties associated with the reheating epoch at the end of the Hagedorn phase. We take
a∗ = aend as our fiducial time, and use ρ(tend) = N2

DL2
endM6

s . For convenience, we also define
λ ≡ (15

√
3A/π2)(Ms/TH)2 and the dimensionless frequency Y ≡ ω0/T0GX = 2πf0/T0GX.

Finally, we obtain

h2ΩGW = λ h2ΩγNDLendMs(GX)4
(

Ms

Mp

)
Y 5/2I

(
Y, B,

Ls

Lend

)
, (4.11)

where
I

(
Y, B,

Ls

Lend

)
=
∫ Y (Ls/Lend)2/3

Y
dx xB−3/2 σ(x) e−x

1− e−x
. (4.12)
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h2ΩGW

T=10-4Mp

T=10-6Mp

T=10-8Mp

Figure 3. The solid curves show GW spectra for the Hagedorn phase followed by standard cosmology
with different values TH = ΥMs

2π
√

2 = T , where heavy open strings radiate gravitons. The reference
values taken are ND = 5, LendMs = 5, G = 0.32, X = 1, A = 2

√
2/(2π)6, Υ = 1, Ls = 100Lend. B is

taken to be 2, and σ is taken to be σBB given in appendix B.1. The dashed curves show GW spectra
for the SM with different reheating temperatures T . The black horizontal line at 10−6 is a rough
bound based on BBN (see footnote 16). The spectra peak at f0 ∼ 60 GHz for the Hagedorn phase
and at f0 ∼ 80 GHz for the SM. Both the axes are taken to be logarithmic.

Plots of the spectrum are presented in figure 3. We note that the results are robust,
the basic features are independent of σ(x), Lend/Ls and B, as detailed in appendix B.2 (see,
figure 5). Note that, assuming standard cosmology following the Hagedorn phase, fiducial
values render an amplitude16 larger than the typical expectation from the reheating epoch
of the Standard Model or Beyond the Standard Model (BSM) theories which were studied
in [30–33]. The remainder of this section illustrates all these points in detail.

We note in passing that the effect of using the emission rate of [50] is to shift B as discussed
above and multiply the prefactor by MsLendY −3/2 (as well as modifying the greybody factor).

Peak amplitude. We will take TH = ΥMs
/
2π

√
2 (Υ = 1 corresponds to the value the

Hagedorn temperature in [49]). Expressing the result in terms of fiducial values one finds:17

h2ΩGW = 6 · 10−11
(

ND

5

)(
LendMs

5

)(
A

5 · 10−5Υ3

) Υ
1

(
G

0.32
X

1

)4 ( Ms

1015 GeV

)
×
(

Y

3

)5/2 I (Y, B, Ls/Lend)
I (3, 2, 100) . (4.13)

The fiducial value for the dimensionless frequency is taken at Y = 3, which is a frequency
of around 60 GHz (the actual peak frequency is somewhat larger and so is the associated

16Recall that Big Bang Nucleosynthesis (BBN) roughly puts h2Ω ≤ 10−6. This is based on the fact that a
GW spectrum of this amplitude and width of the order of the peak would contribute to ∆Neff at the order
one level and BBN sets bounds on ∆Neff . We will discuss ∆Neff in the context of our spectrum in detail in
section 4.3.

17In principle g∗,end can be written in terms of ND and Lend in a model-dependent fashion, but we will
treat them as separate parameters.
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amplitude - we are quoting the approximate value for B = 2). To be more concrete about the
position of this peak, note that for Y ≫ 1 the amplitude is exponentially suppressed while
for Y ≪ 1 it grows polynomially. It must, therefore, admit a peak when Y ≃ 1 (quantitative
statements depend on B and σ(x) but the qualitative behaviour is the same under our
assumptions), which, assuming standard cosmology, correlates the peak frequency with the
CMB temperature. We will study deviations from standard cosmology below.

Behaviour far from the peak. Gravitational wave astronomy is being developed for a
wide range of frequencies, and it is interesting to obtain as many features as possible from
a given source. Even though the signal will be faint away from the peak, it is noteworthy
that the spectral index is not too large, and so the amplitude is meaningful for a range
of frequencies. Let us examine its behaviour at low frequencies. The starting point is the
Y -dependent part of eq. (4.11). We observe the following regimes:

• Ultra-low frequencies: Y ≪ (Lend/Ls)2/3.
In this case the integral can be well approximated by (recalling by definition σ(x →
0) → 1):

ΩGW ∼ Y 5/2I

(
Y ≪

(
Lend

Ls

)2/3
, B,

Ls

Lend

)
≃ Y B+1

B − 3/2

((
Ls

Lend

)2B/3−1
− 1

)
(4.14)

The amplitude grows like fB+1
0 .

• Intermediate frequencies 1 > Y > (Lend/Ls)2/3.
In this case the behaviour is qualitatively different depending on B. To make progress,
let us fix σ(x) = 1 noting that the qualitative changes encoded in σ(x) will not
significantly alter our conclusions. The idea is then that for B ≥ 5/2 the integrand has
a saddle and the integral is well approximated by a constant. Otherwise the behaviour
is as above. Thus:

ΩGW ∼

Y 5/2 , (B > 5/2) ,

Y B+1 , (B < 5/2)
(4.15)

The fB+1
0 behaviour is reproduced if B is small enough. Otherwise we observe an

universal f
5/2
0 behaviour. This is to be interpreted as a superposition of the peak signals

from early times.

• High frequencies Y ≫ 1.
The amplitude is exponentially suppressed.

Dependence of the spectrum on the posterior cosmology. We can study effects of the
posterior cosmology in the shape of the gravitational wave background following the discussion
in [33]. These effects are encoded in the parameter X. It is easy to see that variations
in X (X → X ′) can be incorporated by considering ω0 → ω0X ′/X and Ω → Ω(X ′/X)4.
Typical epochs that contribute non-trivially to X are those that lead to injection of entropy
due to degrees of freedom becoming massive, and those involving deviations from radiation
domination (such as epochs of modulus domination). See [33] for details.
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We can also use the help of the parameter X to be as conservative as we may want
with regard to how much we can trust the last moments of the Hagedorn phase. Instead of
setting LendMs = 1, we could set LendMs = 10 (for which the large N limit in eq. (3.16) holds
appropriately [1]; this arises from the exponential behaviour of the density of states being
a good approximation). If so, noting that conservation of entropy requires L ∼ a−3/2, this
would reduce X by a factor 102/3 ∼ 5. The peak frequency is thus redshifted to around half
its value, and the peak amplitude (taking into account the overall Lend pre-factor) diminishes
by a factor 105/3 ∼ 50.

In general, the peak frequency behaves like f ∼ L
−2/3
end and the peak amplitude satisfies

Ω ∼ L
−5/3
end . We thus conclude that the general features of the spectrum are very robust: a

growing spectrum that peaks at the GHz band which is largely independent of the inherent
compactification, the duration and details of the Hagedorn phase, and even of its ending.
The largest uncertainties arise from the details of the cosmology after the phase.

4.3 Bounds on dark radiation

There are bounds on the total energy density in any form of dark radiation from the
observations of the cosmic microwave background and big bang nucleosynthesis [53, 54].
These apply to stochastic gravitational wave backgrounds. In our setting, the energy density
in gravitational waves can be obtained by integrating ρ

(0)
g /ω0 in (4.9) over ω0. The required

integrations can be performed by carrying out variable change

ω′ = ω0a0
THa(t) and t′ = t;

and performing the ω′ integration first. This yields

ρ
(0)
GW = IAT 2

H

Ms

(
Ms

Mp

)2 (
a(t∗)
a(t0)

)3
ρb(t∗)

∫ tend

ts

dt

(
a(t)
a(t0)

)
(4.16)

where I =
∫∞

0
xB+1σ(x)e−x

1−e−x dx.18 Finally, changing the integration variable in (4.16) to the
scale factor one obtains:

ρ
(0)
GW =

√
3IAT 2

H

(
Ms

Mp

)[(
a∗
a0

)4
ρb(t∗)

]
1√

ρ(t∗)
1

a
5/2
∗

∫ aend

as

daa3/2 (4.17)

It is simplest to take t∗ = tend, the integral in (4.17) is then dominated by its upper limit
and one has

ρ
(0)
GW ≈ 2

√
3

5 I AT 2
H√

ρ(tend)

(
Ms

Mp

)[(
aend
a0

)4
ρb(tend)

]
(4.18)

Note that our answer is independent of L i.e how close the universe was to the Hagedorn
temperature at the onset of the epoch.

18Note that for B = 2, when σ = 1 (i.e., in absence of greybody factor), or when σ = σBB or σF F as given
in App B.1, I takes the following values, respectively: π4

15 , 32
15

(
π4 − 90ζ(5)

)
, 16

3

(
9ζ(3) − π2) ≈ 6.49, 8.72, 5.06.

These values increase monotonically as we increase B. For example, for B = 3, the respective values are
I ≈ 24.87, 37.60, 17.47.
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The above allows us to carry out an important consistency check on our calculations. We
have worked assuming that during the Hagedorn epoch, the energy density in the gravitons
is much less than that of the background (this was implicit in our calculations, we took
the background to be evolving like matter during the epoch). Note that the above formula
for the energy density in gravitational waves applies for any time t0 which is greater than
or equal to tend (t0 need not correspond to today). Taking it to be tend the consistency
condition translates to

2
√
3

5 I AT 2
H√

ρ(tend)

(
Ms

Mp

)
≪ 1 i.e. IA

√
3

20π2
Υ2

LendMsND

(
Ms

Mp

)
≪ 1 (4.19)

Recall that ρ(tend) = N2
DL2

endM6
s , its the square root is greater that T 2

H . Thus the condi-
tion (4.19) is milder than the requirement that effective field theory is valid at the onset of
the Hagedorn phase (NDLMs

Ms
Mp

≪ 1, eq. (2.8)) and is automatically satisfied if the effective
field theory is valid.

The abundance in dark radiation is typically reported in terms of ∆Neff (the effective
number of additional neutrino like species at the time of neutrino decoupling). This can be
related to energy densities at the time of reheating by the formula [55]:

∆Neff = 43
7

ρdark
ρvis

(
g(Tν)
g(Trh)

)1/3
(4.20)

Thus, if one takes the entire energy density in the background to decay to the visible sector,
making use of (4.20) and (4.19) one has

∆Neff ≈ 43
√
3

140π2 AI
(

g(Tν)
g(Trh)

)1/3 Υ2

LendMsND

(
Ms

Mp

)
≲ O

(
Ms

Mp

)
(4.21)

The careful reader might have noticed the difference in the parametric dependence on ND

between (4.11) and (4.21). The reason for this as follows: in (4.11) the energy is the visible
sector was taken to be as given by observations (as per equation (4.1)); on the other hand,
in (4.21) the energy density in the visible sector at the end of the Hagedorn epoch is set to
be equal the entire energy density in the background. Of course, for a model to be successful
the visible sector energy density at the end of the epoch should evolve to what is observed.
In such a setting, ND would not be a free parameter but determined by that the consistency
condition set by this evolution (in addition to the requirement that all the Standard Model
degrees of freedom are realised). Since we do not carry out any model building related to the
visible sector in this paper, we do not include any factors of ND in the bound set in (4.21).

Present observational bounds put ∆Neff < 0.2 (see e.g. [53, 54]) which cannot be reached
in our setup if computational control is preserved (which we recall required a hierarchy
Ms ≪ Mp). However, noting that future experiments (see e.g. [56, 57]) will probe ∆Neff at
much smaller values, our considerations could be used to bound the string scale in these
scenarios. Furthermore, the condition for the validity of effective field theory (2.8) can be
used to put an upper bound on ∆Neff :

∆Neff < O
(

1
N2

DLstart

)
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4.4 Comparison with the Standard Model

Next, let us turn to a comparison of our results with a stochastic gravitational wave background
that is produced from a reheating epoch in field theory. It is well understood [30–33] that
a thermal bath sources out of equilibrium gravitons (as in our case), and that the GW
spectrum today is dominated by emission at the earliest times. This is opposite to our case
because the gas of strings behaves nonrelativistically and so the energy density in GWs
sourced earlier is redshifted away.

It is true in both cases, however, that the energy density in gravitons is proportional to
the characteristic scale with Planckian suppression: T/Mp in field theory, Ms/Mp in string
theory. That is, the amplitude grows linearly with the reheating temperature. It is also true
in both cases (assuming standard cosmology after emission) that the peak frequencies lie
around 50− 100 GHz and an amplitude linear in the reheating temperature, as illustrated
in figure 3. Indeed, one may think of both spectra as having the same origin: the GWs
arising from a thermal phase in the early Universe.

Our computation thus fixes the high-energy, stringy part of the spectrum and its amplitude
turns out to be larger. The reason is that the leading-order string process occurs at 3-points
(is a decay), which -when allowed- is typically subdominant in field theory.19 The leading
contribution in field theory involves four external legs instead [30, 31] and is therefore
suppressed by higher powers of couplings. It is worth remarking [32, 33] that in absence
of exotic physics after reheating, the amplitude at a given reheating temperature is not
expected to be parametrically larger than the Standard Model prediction. The Hagedorn
phase overcomes this conclusion due to the stringy feature of an exponentially growing density
of states (which allows for states with masses larger than the temperature to be excited).

It is worth remarking that we trust our computations whenever this exponential is a
good approximation of the density of states, that is, L ≳ lc. There is an intermediate
regime before standard reheating in which some massive degrees of freedom are excited and
source GWs. We expect that an intermediate spectrum is sourced in this regime which
interpolates between the high-energy string behaviour described here and the low-energy
field theoretical computations in [30, 31].

5 Conclusions and future directions

In this paper, we have considered the early universe at high temperatures with long open and
closed strings in thermal equilibrium (at temperatures close to the Hagedorn temperature).
The equilibrium energy density is dominated by open strings, the strings are non-relativistic
and the Universe evolves as a matter-dominated era. The universe evolves adiabatically —
the temperature falls and the average length of the string decreases. The epoch ends with
the strings decaying primarily to massless open string degrees of freedom (which correspond
to the Standard Model degrees of freedom). We have studied the stochastic gravitational

19To see this, notice that the decay should be suppressed by m/Mp for a particle of mass m decaying through
gravity-mediation. If m ≤ T , the effect is negligible compared to T/Mp, and otherwise the number of particles
decaying is exponentially suppressed.
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wave background produced as a result of graviton emission by long open strings during such
an epoch.20 The two main features of the spectrum are:

• The location of the peak is essentially determined by post-inflationary history. For
standard cosmological evolution after the epoch, the peak is close to the peak of the
CMB.

• The amplitude does not depend strongly on the details of the epoch. The magnitude
is stronger than what is expected from the reheating epoch of the Standard Model or
BSM models for string-scale reheating.

The present work opens up several interesting avenues. Here, we have focused on
the production of gravitons during the Hagedorn phase. It is important to examine other
cosmological consequences of such an epoch, e.g., the production of KK gravitons and their
connection with dark matter (following [58, 59]), emission of bulk axions21 which leads to
the production of dark radiation (and implications for entropic arguments for suppression in
the abundance of dark radiation resulting from Hagedorn phase [60]) and connections with
non-standard cosmological histories (recent string cosmology reviews — [26, 28] and references
therein provide detailed descriptions of such possibilities). Also, highly excited strings have
many properties of quantum black holes (see e.g. [48, 61, 62]). The phenomenology of the
universe whose constituents are produced from the decay of primordial black holes (via
Hawking radiation) has been explored in [63] and related works. A comparative study
will be interesting.

The exponentially growing string density of states is a key input for our calculations
and is one of the factors that distinguishes the setting from a field-theoretic setting. Epochs
of cosmological stasis [64–66] also feature a tower of states. It will be interesting to study
the stochastic gravitational wave background produced during such cosmological epochs
and compare it with our results.

This paper has not touched upon the question, “What conditions in the early universe
lead to an epoch of Hagedorn cosmology?” (only the associated energetics). The end of
brane-antibrane inflation at the bottom of a warped throat is natural setting [25, 59]. Another
possibility is at the end of modulus-mediated kination (see [67–70] for a recent discussion
of kination in string cosmology). It is important to develop a better understanding of this
question. Also, as noted, the open string Hagedorn phase acts like a matter dominated stage
of cosmic evolution. Consequences of early matter domination, including effects on dark
matter abundance and evolution of cosmological perturbations, have been studied extensively
in the context of cosmological moduli; see [71] for a review. Understanding if any of these
effects differ or whether the small pressure (∝ √

ρM2
s ) has significant effects are important.

20As discussed in section 2, the conditions needed for validity of our analysis are compatible with inflation —
i.e. it is consistent to have such an epoch after inflation leading to observable consequences (if inflation did
take place and there were such epochs before it, there would be no observable consequences due to dilution).

21A possible concern is whether the production of light, long wavelength modes (e.g. Kahler moduli) could
destabilize the compactification. We do not expect this to occur because the energy deposited on these modes
is a very small fraction of the energy of the plasma (as is the case for gravitons). In addition, their production
is incoherent so we do not expect them to contribute to the semiclassical background configuration. Further
analysis is left for future work.
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Further, it may be interesting to revisit our calculation if there are other contributions to
the energy density beyond the long strings.

On the more formal side, it will be interesting to revisit graviton emission from long strings
using the methods of [50] and compare with the results of [48]. It will also be interesting to
study the decay rate in realistic compactifications by making use of the string field theoretic
methods developed in [52] (see [72] for a recent review), and compare our results with more
general considerations [73]. Many of these directions are already under study.

We would like to end by emphasising an important point tied to the fact that the
amplitude of the gravitational wave produced depends linearly on Ms

/
Mp i.e. the signal

grows with increased Ms. On the other hand, signals associated with the supersymmetry
breaking scale/ KK modes probed in particle colliders diminish with increased Ms (this is
because mass scales such as soft masses and the mass of KK modes, scale as a positive power
of Ms

/
Mp, and the signal decreases as these scales increase). Thus, the gravitational wave

background potentially provides a new probe of the string scale precisely in regimes where
it would be difficult to access using more traditional probes.

Furthermore, in contrast to these low-energy processes that, if observed, may be explained
by non-stringy EFT models, our calculations show that the spectrum we found is string
theoretical in nature and cannot be reproduced by the usual field theoretic extensions of the
Standard Model in thermal equilibrium.22 This illustrates the UV sensitivity of gravitational
wave backgrounds and gives additional motivation towards future efforts on gravitational
wave astronomy [3].
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A String thermodynamics in realistic setups

A.1 Limiting and non-limiting string thermodynamics

We begin the discussion by pointing out that the canonical ensemble can only describe string
thermodynamics in certain situations, and we would like to understand whether realistic

22It remains to be seen whether any other physics may be able to reproduce the features of the spectrum we
found, including the IR spectral index.
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scenarios with string-size energy densities admit this description. The point is that the
density of states d(l)23 generically reads [14–17, 36, 74, 75]

d(l) ∼ l−AeβH l . (A.1)

Whenever the canonical ensemble describes the thermodynamics, n(l) ∼ d(l)e−βl, so, de-
pending on the value of A, the total energy density

ρ ∝
∫ ∞

lc
dl l−A+1e−l/L (A.2)

may diverge or not as the Hagedorn temperature (L → ∞) is approached. Note that all
compact dimensions are small in this limit because long strings fill a linear scale Lrms =√

L → ∞.
The case where ρ is finite in this limit can be understood as leading to a phase transition

at this critical energy density (which is order one in string units). This behaviour was called
non-limiting in [17], in the sense that the Hagedorn temperature can be achieved with finite
energy. In the case of closed strings only in three or more compact dimensions, most of
the energy of the high-energy phase is in a very few long strings [14–19] (if in fact there
is not gravitational collapse to black holes).

For A ≤ 2, ρ diverges as L → ∞, which is known as the limiting case. The canonical
ensemble is valid for large energy densities.24 In this case, there is a continuous change from
a radiation (massless string) gas to a gas of highly excited strings as the energy density and
temperature increase. This occurs for open (and closed) strings whenever no more than four
of the dimensions transverse to the D-branes are noncompact.

In cosmology, we expect the initial string gas to have a large but finite energy density
(for example in reheating after inflation), so we are most interested in the thermodynamics
with finite L ≤ Ls. As described at length in [1, 17], the number A depends on the ratio
of the typical string extent Lrms =

√
L with respect to a set of characteristic lengths in the

compactification. The idea (which is well understood in a Boltzmann equation approach) is
that the equilibrium distributions are determined by the decay rates, and these are themselves
weighted by the probability that a string self-intersects (or can be chopped by a brane).

Let us begin by describing the case of closed strings. A typical highly excited string in
flat space will form a random walk, with typical spread l1/2. In D spatial dimensions, the
string will therefore fill a D-dimensional cube of volume lD/2, and so the probability25 that
two points of the string separated by l will self-intersect is 1/lD/2. If instead the string is
placed in a D − d-dimensional cube of side a ≪ l1/2, the string will fill up the whole box
and , so the probability will be 1/(ld/2aD−d) instead. This is illustrated in figure 1(a). We
would say, in the latter case, that the string perceives d large directions and D − d small
directions. To make this more concrete, for typical string length L,26 when

√
L ≫ a, the

gas of strings would perceives d large directions, and D otherwise.
23We use string units Ms = 1 in this subsection, so l is a measure of the energy of the string.
24Until the energy density is large enough ρ ∼ 1/gs to nucleate brane-antibrane pairs.
25Strictly speaking this is the probability that an open random walk self-intersects, but the qualitative

argument applies equally well for closed random walks.
26This is not generally the average string length but is the same up to an order one factor.
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Condition Closed (d) Open (d⊥) Limiting Without open
lb ≫ Lrms ≫ ls 9 9− p p ≥ 5 No

lKK ≫ Lrms ≫ lb 9 9− p − q p + q ≥ 5 No
lU ≫ Lrms ≫ lKK 3 0 Yes No

Lrms ≫ lU 0 0 Yes Yes

Table 1. Limiting vs non-limiting behaviour for open and closed strings in 3+6 dimensions. The 6
(3) dimensions are assumed isotropic and span a length lKK (lU ). We also allow for the presence of a
gas of space-filling parallel Dp-branes in q directions.

The case of open strings is qualitatively different but can be understood in similar terms.
The difference is that an open string need not self-intersect in order to decay — it just needs
to get in contact with a brane. Consider a Dp-brane. An open string with its endpoints in
this brane can decay if it is touching the brane. That is, the point of the string needs to come
back in the directions orthogonal to the brane. In this case we should therefore only look at
the D − p directions orthogonal to the brane. Again, letting these orthogonal directions be
a (D − p)-dimensional box of length a, a string of size l with l1/2 ≫ a will perceive d⊥ = 0
large orthogonal directions, and d⊥ = D − p if l1/2 ≪ a instead.

The case is again different if we include a homogeneous gas of parallel Dp-branes along q

of the orthogonal directions. This introduces a new scale: the inter-brane separation, lb. If the
size of the string satisfies l1/2 ≫ lb, the string does not need to come back to its original brane
in order to decay: for semiclassical matters, the branes are perceived by the highly excited
string as effectively overlapping and (again, for decay matters), the gas of branes in these
directions behaves like an extension of the worldvolume. This is illustrated in figure 1(b).

Having understood the definitions of d and d⊥, we can now write the equilibrium
distributions in general [1, 17]. These read, for open and closed strings respectively,

no(l) ∼ l−d⊥/2e−l/L , nc(l) ∼ l−1−d/2e−l/L . (A.3)

Thus, canonical ensemble methods apply whenever d⊥ ≤ 4 or27 d ≤ 2. The possibilities
are summarized in table 1.

A.2 Three possible scenarios

The discussion above allows us to identify three possible scenarios that would render d⊥ = 0,
which is the setup that we will consider in this paper. This allows for a Hagedorn phase
with highly excited open and closed strings for a large range of energy densities. Noting
that, as we will see, the dominant contribution to the GW spectrum arises from the later
times, the cases that can accommodate the lowest energy densities are the most interesting
ones. Reviewing from section 2.1, the three possibilities are

• Open String Brandenberger-Vafa scenario [36]. It is a possibility that the typical
strings were much longer than the Kaluza-Klein scale lKK , in a way similar in spirit to

27If several systems are put in contact, the overall system will feature limiting behaviour if one of its parts
does [17].
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the endpoint of the Brandenberger-Vafa scenario, where the 3 large spatial directions
have decompactified. In this case, Ω⊥ (and Ω∥ if the branes extend in the compact
dimensions) are large, which can suppress equilibration rates in a model-dependent
manner. As the temperature decreases, this is followed by a stage of long strings with
d⊥ > 0, which we do not consider in this manuscript (it is at lower density and therefore
should contribute less to gravitational waves).

• Dense brane scenario. If there is a homogeneous distribution of branes along all
directions in the compact space, then the strings only need to be as large as the
typical inter-brane separation which would therefore work at energies lower than the
Brandenberger-Vafa case. In this case, potentially all of the dimensions are large, so the
b1 terms in the Boltzmann equations (2.1) are modified to (b1/2Nd)(ño(l)/l(3+d)/2, where
d is the number of large compact dimensions. The coefficent b1 ≃ gsΩl

⊥/M
(1+d)/2
s Ωs

∥,
where s and l indicate the size of small and large dimensions respectively. We consider
the cosmology and gravitational wave emission of the corresponding thermodynamics
in future work. As the universe cools, the system becomes a gas of long strings on
isolated branes (with large transverse dimensions); again, we do not consider this stage
of evolution.

• Jackson-Jones-Polchinski [37] box scenario. As argued originally in [37], backreaction
of fluxes and other ingredients needed for moduli stabilization generates a potential
that localises highly excited strings (and branes) in a volume of order 1 in string units.
Because the strings are localised at the minimum of the warp factor, the 4D EFT
includes long strings at the warped string scale Ms.28 In this case the thermodynamic
description works down to typical lengths of order L ∼ 1/Ms, and the gas continuously
changes to standard radiation with SM fields. This is the most interesting case from
the perspective of a realistic compactification.

In this article we will assume the last case, which is the most conceivable because it takes
into account the effect of ingredients present generically in realistic setups.

A.3 Review of the JJP box

Let us thus review [37], which considered warping (while neglecting possible effects due to
flux). Note that strong warping such as a long throat is not necessary; order 1 fluctuations
of the warp factor suffice to localize the strings.

The idea is to show that the wavefunction of a long string in a warped background is
localized in a (fundamental) string-sized box. To do so, we wish to find the probability of
fundamental strings to intersect in a warped background. In a warped region, long strings
are attracted to the bottom of a warped throat due to a worldsheet potential.29 To see
this more clearly, write the worldsheet action

S = − 1
2πα′

∫
d2σ (−det(hab))1/2 , (A.4)

28In general the warped string scale may be replaced by the so-called moduli dependent species scale,
assuming the light tower of states is an effective string [27, 76].

29(p, q) strings likewise feel a potential due to variations of the dilaton.
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in a warped background

hab = e2A(Y )ηµν∂aXµ∂bX
ν + e−2A(Y )gij(Y )∂aY i∂bY

j . (A.5)

In a static gauge with σ identified with the string’s extent in Xµ, we find a potential

V (Y ) = e2A(Y )

2πα′ , (A.6)

so the action to second order in Y (choosing coordinates so that the minimum of the potential
lies at Y = 0 and e−2A(0)gij(0) = δij) is

S ≃ −
∫

d2σ

(
V (0) + 1

2∂i∂jV (0)Y iY j + 1
4πα′∂aY i∂aY i

)
, (A.7)

ie, the fluctuations around the minimum are massive worldsheet scalars. At zero temperature,
the two-point correlator for each worldsheet scalar Y i (at a single specified worldsheet position)
is an integral and sum (with cut off) over wavenumbers (k0, k1 = 2πn/l′)30

⟨Y iY i⟩ = α′

l′

∑
n

∫
dk0

(k0)2 + (2πn/l′)2 + V,ii(0)
→ α′

2π

∫ Λ d2k

k2 + V,ii(0)
, (A.8)

in the long string limit, where ⟨Y 2⟩ independent of the string length. Here, l′ is the length of
the string projected in the Xµ directions, which is an order 1 factor times the total length l of
the string for typical configurations. The initial prefactor of 1/l′ follows from normalization
of the modes of Y i on the finite spatial extent of the string.

The natural cut-off of the worldsheet theory with X0 as the time coordinate is the
warped string scale, so we find a logarithmic correlator

⟨Y iY i⟩ = α′

2 log
(
1 + 1

2πα′e−2A(0)V,ii(0)

)
≡ α′

2 ωi (A.9)

Near the Hagedorn temperature (measured in warped units), the k0 integral becomes a
sum over Matsubara frequencies (with cutoff) with the effect that ωi → 2π/βH

√
V,ii [25],

which is parametrically similar in the limit of slowly varying warp factor. The key point is
that two-point function is independent of the length of the string in the long string limit
both at βH and zero temperature.

The intersection probability, or overlap of the string positions, is therefore where the
worldsheets of coordinate fluctuations Y and Y ′ coincide:

⟨δ6(Y − Y ′)⟩ =
∫

d6k

(2π)6 ⟨eik·(Y −Y ′)⟩ =
∫

d6k

(2π)6 e−kikj⟨(Y −Y ′)i(Y −Y ′)j⟩/2 ≃ 1
α′3Π6

i=1ω
1/2
i

,

(A.10)
assuming that all the strings are confined in the same place. Since we can treat the spacetime
positions of different points on the worldsheet of a long string, this also applies to the
self-intersection probability of a single long string.

30Assuming closed strings for simplicity; the open string case is similar.
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Since ωi is typically order unity in a warped throat, we find that the string interaction
rates behave as if the strings fill a compact space that is a bit larger than string scale.31

Critically, this intersection probability is independent of the length of each string. A classical
interpretation is that it is proportional to the geometric probability of one point on each
string occupying the same point in a 6D compact space of volume α′3Π6

i=1ω
1/2
i .

One may similarly compute the interaction between a string and a D-brane at location
YD (assumed fixed) to be

⟨δ6(Y − YD)⟩ ≃ 1
α′3Π6

i=1ω
1/2
i

e
−
∑6

i=1
Y i

D
Y i

D
α′ωi . (A.11)

If the strings and brane are localised at different points in the extra dimensions, the overlap
of their wavefunctions is significantly small, reducing the interaction probability. Henceforth,
we will assume that the gas of long strings is attracted to the position in the compactification
of the D-branes.

We are now in position to argue that string thermodynamics in a warped compactification
is described similarly to that in 3 noncompact and 6 small compact dimensions without
warping. Comparing with the discussion at the beginning of the section, we see that the
interaction rates have the same scaling as those for long strings with effectively compact
dimensions (ie, dimensions filled by the random walk of a typical length string); namely,
they are inversely proportional to a constant compact volume — in this case α′3(∏ωi)1/2.
For example, consider the rate for a closed string of length l to split on a stack of ND

D3-branes also localized at the tip of a warped throat. From (A.11), this rate should be
Γ ∝ gsNDl/(∏ωi)1/2, where the factor of l accounts for the number of points on the string
that can intersect the brane ((A.11) is the probability for a specified point on the string
to intersect the brane).

As a result, we approximate the thermodynamics of strings in a warped compactification
by strings in flat spacetime with a compactification of volume ∼ (∏ωi)1/2 in string units;
the long strings fill those compact dimensions. We can also approximate the warp factor
as constant across the compact region (its curvature should be small in string units, and
ωi ∼ 1). Then the string thermodynamics are those of strings in three flat noncompact
dimensions with spacefilling D-branes; as argued in [1], the effect of the compact dimensions
is just to modify the interaction coefficients. Also, since the 4D metric gµν appears in the
10D line element as ds2 = e2A(y)gµνdxµdxν + · · · , the energy scale of the strings is set by
the warped string scale, which we denote Ms.

Finally, we note that these arguments do not apply to massless string states, including
gravitons. Since these strings are not long, we take the sum from (A.8). The n = 0 term
is proportional to 1/l′, which indicates that light strings can probe beyond the quadratic
term in the Taylor expansion of V (Y ). As a result, construction of massless vertex operators
requires considering the entire CFT. We use the 10D supergravity description to determine
the profile of the massless string zero modes.

31Strictly speaking, the bottom of a prototypical Klebanov-Strassler warped throat [77] is R3 × S3 with the
warp factor independent of the S3 directions; we assume that the thermal fluctuations are large enough to fill
the somewhat-larger than string scale S3.
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B Aspects of the gravitational wave spectrum

In this appendix, we will study various aspects of the gravitational wave spectrum in detail.
As in the rest of the paper, we will set up the analysis relying on a characterisation of the
decay rates based on σ(x) and B (as introduced in eq. (4.6)) and specialise to particular
forms to extract specific features.

B.1 The shape of the spectral density

In this section we will compare the shape of the spectrum of gravitational waves in our
scenario to that of a black body. From (4.11), one sees that the general form of the spectrum
of gravitational waves (per unit frequency interval as opposed to unit logarithmic frequency
interval) is:

f(ω0) = α(ω0T̂ )3/2
∫ Rω0/T̂

ω0/T̂
dx

σ(x)xB−3/2

ex − 1 , (B.1)

where α, R, T̂ are determined in terms of the details of the compactification, the temperature at
the onset of the Hagedorn phase and details of the reheating phase. σ(x) is the greybody factor
of the microscopic decay rate. In this subsection, we will treat α, R, T̂ as phenomenological
parameters. Note that α, R are dimensionless, while T̂ has dimensions of temperature. Also,
R sets the duration of the Hagedorn phase, our interest lies in R ≫ 1.

In order to compare the shape of the spectrum to the blackbody shape, we will choose
the parameters such that the total energy density and peak of the spectrum match with
a blackbody (at temperature T ) and then plot both the spectra in the same graph. We
will take B = 2.

Let us consider the cases:

σ(x) = 1 , σBB(x) =
x (ex − 1)

4
(
ex/2 − 1

)2 , σF F (x) =
4 (ex − 1)

x
(
ex/2 + 1

)2 , (B.2)

normalised such that σ(x) → 1 as x → 0. The last two are the greybody factors respectively
for emission of an NS-NS massless boson and an R-R massless boson from a typical open
superstring [49]. BB denotes an emitted closed string state with bosonic oscillators on both
left and right moving parts, while FF denotes that with fermionic oscillators. The respective
total energy densities associated with the spectrum (B.1) in limit R ≫ 1 are32

ρ̂ = α
2
5

π4

15 T̂ 4 , ρ̂BB = 64
75α

(
π4 − 90ζ(5)

)
T̂ 4 , ρ̂F F = 32

15α
(
9ζ(3)− π2

)
T̂ 4 . (B.3)

The peaks of respective spectra can be determined numerically as:

ω0 ≃ 1.66T̂ , ωBB
0 ≃ 1.87T̂ , ωF F

0 ≃ 1.52T̂ . (B.4)

Recall that for the black body spectrum at temperature T (for degeneracy factor g=1)

fblackbody(w0) =
1

2π2
w3

0
ew0/T − 1

, (B.5)

32These are obtained by first changing the integration variable in (B.1) to y ≡ x T̂
ω0

, then carrying out the
integral over ω0 and finally carrying out the integral of y.
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Figure 4. A comparative plot which contrasts our spectra (B.1) with that of the blackbody spectrum.
Here, the parameters of our spectra are chosen so that the peak and total energy density are same
as those of a blackbody spectrum at temperature T . Note that our spectra have a smaller value at
maximum and are much broader than the blackbody spectrum.

the total energy density and the location of the peak are respectively

ρblackbody = 1
2π2

π4

15T 4 , wblackbody
0 ≃ 2.82T . (B.6)

Thus, in each of the three cases above requiring that a spectrum of the form in (B.1) has
the same peak and total energy density as those of a blackbody at temperature T yields
α and relates T̂ linearly to T :

σ = 1 : T̂ = 1.69T , α = 0.015 ;
σ = σBB : T̂ = 1.51T , α = 0.018 ; (B.7)
σ = σF F : T̂ = 1.86T , α = 0.014 .

(B.8)

We plot the spectrum (B.1) with these parameters alongside a blackbody spectrum at
temperature T in figure 4.

B.2 Robustness under σ, B, Ls/Lend

The gravitational wave spectrum (4.11) is robust under σ, B, Ls/Lend. For example, the
dependence on Ls/Lend comes through a factor I

(
Y, B, Ls

Lend

)
. For large Ls/Lend, I can

be well approximated by
∫∞

Y dx xB−3/2 σ(x) 1
ex−1 which is clearly independent of Ls/Lend.

Assuming σ ∼ xC for large x, the correction term goes as e
−Y ( Ls

Lend
)2/3

( Ls
Lend

) 2
3 (B+C)−1 which

is exponentially suppressed. The spectrum has been plotted against different σ(x) and B

values in figure 5.

Data Availability Statement. This article has no associated data or the data will not
be deposited.
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Figure 5. GW spectra for the Hagedorn phase with TH = ΥMs

2π
√

2 = 10−4Mp. In the left panel,
different σ given in appendix B.1 have been considered with B = 2 that corresponds to 4D flat space
background. In the right panel, different B values have been considered for σ = σBB. Reference
values for other parameters are taken as: ND = 5, LendMs = 5, G = 0.32, X = 1, A = 2

√
2/(2π)6,

Υ = 1, Ls = 100Lend. All axes are taken to be logarithmic.
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