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Neutral triple gauge couplings (nTGCs) are a manifestation of new physics beyond the Standard Model
(SM), as they are absent in the SM and are first generated by dimension-8 operators in the SM effective
field theory (SMEFT). We study the UV completion of nTGCs in a renormalizable model with vectorlike
heavy fermions. We compute the one-loop heavy fermion contributions to nTGC vertices by matching
them to dimension-8 operators in the low energy limit. Such fermion loops contain either heavy fermions
only or mixture of heavy fermions with light SM fermions. We find that their contributions can induce
dimension-8 nTGC effective operators containing two SM Higgs-doublet fields, which are formulated
with a complete set of 7 dimension-8 operators generating off-shell CP-even nTGCs. We present the
results in terms of SMEFT coefficients and in terms of nTGC vertices (form factors) with two on-shell
gauge bosons. In the heavy-light mixing case there appear terms that cannot be accommodated by
conventional parametrizations of form factors due to extra logarithmic corrections. We further discuss the
implications for probing such UV dynamics via nTGCs at high-energy colliders.
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I. INTRODUCTION

Neutral triple gauge couplings (nTGCs) are sensitive
probes of new physics beyond the Standard Model (SM)
because they are absent in the SM and first show up in the
SM effective field theory (SMEFT) [1–3] as manifesta-
tions of dimension-8 operators. For these reasons,
they have been subject to experimental searches by the
ATLAS [4] and CMS collaborations [5], and have recently
attracted widespread phenomenological interest [6–11].
In most of these studies, the nTGC signals would
appear in the production of two on-shell neutral bosons
Zγ or ZZ via an s-channel virtual neutral vector

boson.1 When the momentum dependence of the vertex
is polynomial, as when it is generated by tree-level
contributions from effective operators, it is a convenient
practice to enumerate the relevant tensor structures and
associated form factors of the vertices with one off-shell
and two on-shell neutral gauge bosons. Up to cubic
dependence on the particle momenta, there are 6 × CP-
conserving tensor structures for all possible combinations
of triple gauge boson vertices [12].
The parametrization of nTGCs in the framework of the

SMEFT operators [6–8,13] has several benefits over the
conventional form factor formulation. Most notably, it
maintains the SM gauge symmetry manifestly, which is
essential to eliminate unphysical energy dependences as
required by the SM with spontaneous electroweak gauge
symmetry breaking [6,7]. It also provides a general frame-
work for studying processes with one or more off-shell
gauge bosons in the nTGC vertex. The effective operators
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1The general formulation of the nTGC vertices and form
factors with two off-shell vector bosons as well as its important
application to analyzing the LHC production of Z�γðνν̄γÞ was
presented in Ref. [6].
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that generate nTGCs first appear at the dimension-8 level of
the SMEFT, and have been the starting point of many recent
phenomenological studies [6–11]. Computationally, the
effective field theory (EFT) approach has the benefit of
separating clearly the UV and IR contributions from the
underlying physics [14], a feature that we use extensively in
this work.
An EFT analysis is general only when all the operators

satisfy the assumed symmetry under consideration. But,
such an analysis could become cumbersome and non-
intuitive if the number of contributing operators is large.
The common compromise such as operator-by-operator
analysis trades generality for simplicity of the analysis.
Because of the freedom in the choice of operator basis, a
simple UV model does not necessarily correspond to a
small number of effective operators in the IR unless the
symmetry of the UV theory restricts it tightly. Moreover, in
a given UV model various operators may be generated at
different loop orders and the coefficients of the operators
may have different magnitudes from the naive dimensional
power counting, so it is important to analyze explicitly
certain UV models as benchmarks and understand their
low-energy contributions to the corresponding SMEFT
operators.
Previous literature on the UV origin of nTGC vertices

conventionally focused on U(1)-invariant form factors
[15,16] rather than SMEFT operators. The main purpose
of this work is to explore how CP-conserving nTGC
operators that generate SM SUð2Þ ⊗ Uð1Þ form factors
can be generated from the underlying renormalizable
and perturbative UV models. We demonstrate that the
dimension-8 nTGC operators induced by fermionic one-
loop contributions must contain two Higgs-doublet fields,
and that the dimension-8 Higgsless (pure gauge) operators
for nTGCs cannot be generated in this way. The fermionic
UV models we study either contain two new heavy-fermion
multiplets that couple to the SM Higgs field through
Yukawa-like couplings (the “all-heavy” case), or contain
a single heavy-fermion multiplet that couples to the SM
chiral fermions via a Higgs doublet (the “heavy-light” case).
In order to match the nTGC vertices in the UV models to
those of the low-enenrgy effective theory, we compute the
loop diagrams using the method of regions [14,17–22] that
separates the contributions from loop momenta in the IR and
UV regions. The former (soft part) matches the light-
fermion-loop diagram of tree-level effective operators,
whereas the latter (hard part) directly matches the heavy-
fermion-loop-induced effective operator in the SMEFT. A
nontrivial technical issue concerns the treatment of the
mixed loop diagrams that contain both the light SM chiral
fermions and the new heavy fermions.
Another technical issue arising in the computation of

the fermion loop diagrams is the ambiguity of the γ5
definition [23] in dimensional regularization (DREG). Here
we adopt the naive dimensional regularization (NDR)

scheme [24–26] that maintains the anticommutativity of
the γ matrices in D dimensions and has been shown to
preserve gauge invariance automatically in the renormal-
ization of loop diagrams. This is more convenient than
nonanticommuting schemes such as the Breitenlohner-
Maison-’t Hooft-Veltman (BMHV) scheme [27–31], where
gauge invariance is imposed manually by adding finite
counter terms. Nevertheless, in the context of EFT match-
ing, the soft and hard parts of the loop diagrams may
contain canceling finite terms that violate the gauge
invariance of each part separately. This is closely related
to the irrelevant anomalies in the EFT calculation discussed
in the recent literature [32–34]. In order to circumvent the
need to introduce finite counter terms, we discuss carefully
the Ward-Takahashi identity associated with the loop
diagrams under consideration and prescribe a rule for
choosing reading points of spinor traces in NDR that
eliminates the appearance of irrelevant anomalies in all
the intermediate steps of matching.
Our calculations yield comparable nTGC vertices for the

all-heavy and heavy-light scenarios. The familiar pertur-
bative loop factors reduce the values of coefficients of the
corresponding dimension-8 SMEFToperators to be smaller
than what might be expected from naive dimensional
analysis. We compare the sensitivities of collider probes
of nTGCs estimated by the recent phenomenological
studies [6–10] with the contributions of the heavy fermion
loops, discussing the prospects for direct confrontations
between direct and indirect searches for such new physics.
Observation of some nTGCs without the corresponding
discovery of new heavy fermion would suggest that the
nTGCs originate from strong dynamics beyond the SM.
The layout of this paper is as follows. In Sec. II we give

the complete set of seven dimension-8 SMEFT operators
that contribute to nTGCs, and their matching with one-loop
perturbative calculations is studied in subsequent sections.
In Sec. III we discuss the general structure of heavy-
fermion one-loop diagrams that contribute to the nTGCs.
Section IV describes our calculational method of momen-
tum integration by regions and the matching to the
coefficients of dimension-8 SMEFT operators that contrib-
ute to nTGCs, where our treatment of γ5 in diagrams
involving heavy-light mixing is discussed in detail. We
present in Sec. Vour results for the contributions to nTGCs
from loops with heavy fermions only and from loops with
heavy-light mixing. Finally, we draw conclusions from this
study in Sec. VI.

II. CP-CONSERVING nTGC OPERATORS
OF DIMENSION-8

In this section we present the complete set of dimension-
8 nTGC operators in the SMEFT, which are needed for
matching with the perturbative one-loop contributions of
the UV completion model. These operators contain terms
with three neutral gauge bosons and a number of Higgs
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fields that acquire expectation values in the symmetry
breaking phase. At this level, the renormalizable fermionic
model that we consider as the UV completion can only
induce nTGC SMEFT operators that contain Higgs-
doublet fields. To make this clear, we render manifest
the SUð2Þ ⊗ Uð1Þ electroweak gauge symmetry of the
SMEFT by working in the symmetric phase, so that all
particles appearing in the loop are gauge multiplets of
SUð2Þ ⊗ Uð1Þ. It is then easy to see that loop diagrams
with only SUð2Þ ⊗ Uð1Þ-invariant pure gauge vertices do
not induce nTGC interaction at one-loop order. This is
because, in the symmetric phase, the SM gauge inter-
actions do not mix chiral fermions with new massive
fermions. Any fermion loop diagram with only fermion-
gauge vertices must either contain massless SM chiral
fermions only or heavy vector fermions only. However,
loop diagrams with only massless SM chiral fermions do
not induce effective operators of the SMEFT, which arise
from integrating out heavy particles in the UV theory. We
note also that such loops with three external gauge bosons
are also constrained by gauge anomaly cancellation con-
ditions and so cannot contribute to nTGC vertices. On the
other hand, in the absence of chiral fermions, the gauge
interactions preserve charge conjugation (C) symmetry
with C-odd vector bosons. In this case, triple gauge boson
couplings violate charge conjugation, and thus nTGCs
cannot be generated by loop diagrams with only gauge
vertices that preserve charge conjugation. Thus, the loop
diagrams should contain other C-violating sources such as
Yukawa couplings to the SM Higgs doublet or Yukawa-
like couplings to certain new heavy scalar fields. Hence,
the SMEFT nTGC operators containing pure gauge fields
alone can only arise from contracting the additional fields
(such as the new heavy scalars) with C-violating vertices in
the loop which should be at least of two-loop order. Such
Higgsless contributions should be suppressed by the two-
loop factors unless the UV theory is strongly coupled and
generates the nTGC operators nonperturbatively [15].
Such a strongly interacting UV theory is an interesting
possibility, but is beyond the scope of this study. For the
present work, we focus on a perturbatively renormalizable
UV theory including vectorlike new heavy fermions,
whose one-loop contributions can induce the dimension-
8 nTGC operators containing Higgs-doublet fields in the
low-energy SMEFT.
There are 7 independent CP-conserving nTGC operators

with two SM-Higgs-doublet fields after accounting for the
equivalence due to integration by parts. We choose the
following operator basis for our nTGC analysis

OW̃W ¼ cW̃W ½iH†W̃μνWνρfDρ; DμgH þ H:c:�; ð2:1aÞ

O0
W̃W

¼ c0
W̃W

½iH†W̃μνðDρWνρÞDμH þ H:c:�; ð2:1bÞ

OB̃B ¼ cB̃B½iH†B̃μνBνρfDρ; DμgH þ H:c:�; ð2:1cÞ

O0̃
BB

¼ c0̃
BB
½iH†B̃μνðDρBνρÞDμH þ H:c:�; ð2:1dÞ

and

OB̃W ¼ cB̃W ½iH†B̃μνWνρfDρ; DμgH þ H:c:�; ð2:2aÞ

O0̃
BW

¼ c0̃
BW

½iH†B̃μνðDρWνρÞDμH þ H:c:�; ð2:2bÞ

OW̃B ¼ cW̃B½iH†W̃μνBνρfDρ; DμgH þ H:c:�; ð2:2cÞ

where we use the notations Wμν ¼ WI
μνσ

I=2 and F̃μν ¼
1
2
ϵμνρσFρσ , and denote the SM-Higgs-doublet field by H

with vacuum expectation value (VEV) H0 ¼ hHi. The
coefficient of each nTGC operator above is related to the
UV cutoff scale Λ of the SMEFT as follows:

ci ≡ c̄i
Λ4

; ð2:3Þ

and c̄i is the corresponding dimensionless coupling coef-
ficient. The Jacobi identity implies

1

2
ðDμF̃γδÞF0γδ ¼ 1

2
ðDμFγδÞF̃0γδ ¼ ðDαFβμÞF̃0αβ: ð2:4Þ

Hence, operators of the type iH†F̃μνFμνD2H or

iH†eF0
μνðDρFμνÞDρH can be converted to those in

Eq. (2.2), up to terms that do not contribute to nTGCs.
The seven operators in Eqs. (2.1) and (2.2) are general in
the sense that every dimension-8 SMEFT operator that
contributes to nTGC with two Higgs-doublet fields can be
reduced to linear combinations of these operators plus
terms that are irrelevant for nTGCs, up to integration by
parts or the Schouten identity,

gμνϵαβγδ þ gμαϵβγδν þ gμβϵγδνα þ gμγϵδναβ þ gμδϵναβγ ¼ 0:

ð2:5Þ

The completeness of these operators can be verified by
counting the number of independent tensor structures of the
off-shell vertices that contain three powers of momenta, an
antisymmetric tensor, and three noncontracted indices from
external gauge bosons. After accounting for bosonic
symmetry, the triple gauge boson vertex Wμð−p1 − p2Þ −
Wνðp1Þ −Wρðp2Þ has only two independent Lorentz
structures:

½−p2
2p1σ þ p2

1p2σ − 2ðp1 · p2Þðp2 − p1Þσ − 2p2
2p2σ

þ 2p2
1p1σ�ϵμνρσ; ð2:6aÞ

½ðp1 þ p2Þμϵνραβ þ pν
1ϵ

μραβ − pρ
2ϵ

μναβ�p2αp1β; ð2:6bÞ

which correspond to linear combinations of OW̃W and
O0

W̃W
. For Wμð−p1 − p2Þ − Bνðp1Þ − Bρðp2Þ vertices, the
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Bose symmetry and Schouten identity enforce

0¼ ð−pμ
2ϵ

νραβþpν
2ϵ

μραβ −pρ
2ϵ

μναβÞp2αp1β

þðp2
2p1σ −p1 ·p2p2σÞϵμνρσ þðp1 ↔p2;ν↔ ρÞ: ð2:7Þ

Hence the W − B − B vertex has five independent struc-
tures

ðp2
1p1σ − p2

2p2σÞϵμνρσ; ð2:8aÞ

ðp1 − p2Þμϵνραβp2αp1β; ð2:8bÞ

ðpν
1ϵ

μραβ − pρ
2ϵ

μναβÞp2αp1β; ð2:8cÞ

ðpρ
1ϵ

μναβ − pν
2ϵ

μραβÞp2αp1β; ð2:8dÞ

ðp1 · p2Þϵμνρσðp2σ − p1σÞ; ð2:8eÞ

which do not receive any contributions from OW̃W and
O0

W̃W
, and thus correspond to five more independent

operators. These together account for all the seven inde-
pendent operators in Eqs. (2.1) and (2.2). By inspection, we
find that they also span the 7 different tensor structures of
the B − B − B and B −W −W vertices. Hence, these 7
operators form a complete basis for the tensor structures of
nTGC vertices including two Higgs-doublet fields. These

operators are linear combinations of [Oð9Þ
W2ϕ2D2 , O

ð17Þ
W2ϕ2D2 ,

Oð14Þ
WBϕ2D2 , O

ð15Þ
WBϕ2D2 , O

ð18Þ
WBϕ2D2 , O

ð10Þ
B2ϕ2D2 , O

ð12Þ
B2ϕ2D2] listed in

Table 2 of the dimension-8 SMEFT analysis in [35], up to
non-nTGC terms.2

In general, equations of motions (EOMs) can be used to
convert some of these operators to operators with currents
but no explicit TGC structure, as was done in [13]. Using
this procedure, one could reduce the set of seven operators
to just one remaining operator with explicit nTGC structure.
But, for this study we work with the complete set of seven
nTGC operators in Eqs. (2.1) and (2.2) for the following
reasons. (i) It is more convenient to perform SMEFT
matching with the off-shell nTGC diagrams in such a basis
because we only need to consider diagrams with external
gauge bosons rather than fermions and scalar fields in the
currents. (ii) While it is possible to use EOMs to relate the
two nTGC operators OG1;2 and operators with currents
(denoted by Oi

C), i.e., OG1 ¼ aG2OG2 þ
P

aiCO
i
C þ � � �,

the converted combination of operators
P

aiCO
i
C still

describe part of the UV physics.3 Hence, for the present
study we include both OG1 and OG2 rather than only one of
them in the matching procedure; so the triple gauge boson

vertices induced by the UV theory are described by
the nTGC operators rather than those involving fermion
currents in the EFT. (iii) In a general SMEFT analysis,
one needs to include all the operators of the given order
that satisfy the SM electroweak gauge symmetry
SUð2Þ ⊗ Uð1Þ, without making further assumptions on
the underlying UV physics. We consider in this work the
UV physics that generates the neutral triple gauge boson
couplings. From the IR point of view, the complete
prediction for a process, such as ff → VV induced by
nTGCs should include either the contributions from all the
seven nTGC operators listed above,4 or a single nTGC
operator and all other operators with currents that are
obtained by using the EOMs. Here we choose to work
with all the seven nTGC operators, anticipating that a given
UV theory would contribute to the coefficients of most of
these operators. Restricting to only a few operators in the
SMEFT is not justified before knowing the low-energy
predictions of a given UV theory.
The nTGCs can be formulated through effective vertices

of the types V�Zγ and V�ZZ, where V� denotes a virtual Z�
or γ� gauge boson. Conventionally, the nTGC vertices can
be parametrized as follows [6,7,12,13,37]

Γμνα
V�γZðq; p1; p2Þ ¼

cV�γZ

m2
Z

ðq2 −m2
VÞp1βϵ

μναβ; ð2:9aÞ

Γμνα
V�ZZðq;p1;p2Þ¼

cV�ZZ

m2
Z

ðq2−m2
VÞðp1−p2Þβϵμναβ; ð2:9bÞ

which contribute to the simplest production process
ff̄ → V1V2. The above nTGC form factor coefficients
ðcV�γZ; cV�ZZÞ are connected to the conventional ðhV3 ; fV5 Þ
notation for nTGC form factors [6,7,13] via the relation

ðcV�γZ; cV�ZZÞ ¼ ðehV3 ; efV5 Þ; ð2:10Þ

where e is the electric charge. These expressions are
enforced by bosonic symmetry, the gauge invariance of
the photonic interactions, the on-shell condition of the
external vector bosons γZ and ZZ, and the assumption of
cubic dependence on external momenta. We have also
neglected in (2.9) any terms that are proportional to qμV ,
since in collider processes such as ff̄ → V1V2, they will be
contracted with the on-shell fermion current and thus their
contributions to production amplitudes are suppressed by
the negligible light fermion mass mf. In this approxima-
tion, the vertices with two on-shell photons vanish.

2See also [36] for a complete set of the dimension-8 SMEFT
operators in the off-shell Green’s basis.

3Here the Oi
C may not include the full set of operators with

fermionic currents in a specific EFT basis.

4For a given UV model, additional effective operators other
than nTGC operators, such as those involving SM fermions (e.g.,
the contact operators of ff̄VV), may contribute to the f̄f → VV
process in the IR limit.
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The nTGC operators (2.1) and (2.2) correspond to the
hard parts of the loops in the UV theory. Their contributions
to the coefficients are given by

Δcγ�γZ ¼ 1

4
m3

Zv½− sinð2θWÞc0̃BW þ 4cos2θWc0̃BB

þ sin2θWc0W̃W
�; ð2:11aÞ

ΔcZ�γZ ¼ 1

8
m3

Zv½4cB̃W − 4cW̃B − 4cos2θWc0̃BW

− 4 sinð2θWÞc0̃BB þ sinð2θWÞc0W̃W
�; ð2:11bÞ

Δcγ�ZZ ¼ 1

8
m3

Zv½−4cB̃W þ 4cW̃B þ 4sin2θWc0̃BW

− 4 sinð2θWÞc0̃BB þ sinð2θWÞc0W̃W
�; ð2:11cÞ

ΔcZ�ZZ ¼ 1

4
m3

Zv½sinð2θWÞc0̃BW þ 4sin2θWc0̃BB

þ cos2θWc0W̃W
�: ð2:11dÞ

Corresponding to the number of coefficients, only 4
independent operators contribute: O0̃

BW
, O0̃

BB
, O0

W̃W
, and

OB̃W −OW̃B. One notable feature is that the contributions
of OW̃W and OB̃B are negligible in the nTGC on-shell
production of gauge bosons, since they only contribute to
vertex terms that are proportional to qμV , and result in
negligible amplitudes suppressed by the incoming fermion
mass, as discussed in the text below Eq. (2.9). It turns out
that these 4 operators O0̃

BW
, O0̃

BB
, O0

W̃W
, and OB̃W −OW̃B

are also the only operators that contribute to the off-shell
V�V� production at colliders, where each gauge boson V
decays into two fermions subsequently. This is further
discussed in Appendix A.
When the loop diagrams of the UV theory that generate

nTGCs contain only heavy particles with masses of the
order of the cutoff scale Λ, the operators (2.1) and (2.2) and
thus Eq. (2.11) include the complete contributions of order
1=Λ4. However, when a loop diagram contains both heavy
and light particles, it contains soft parts that are not
contained in Eqs. (2.1) and (2.2). The soft parts of the
loop diagrams contain logarithmic dependences on the
external momentum that violate the conditions enforcing
the form of Eq. (2.9). For the SMEFT in the IR region, it
must be accommodated by a loop diagram by contracting
light fermionic fields in effective operators obtained by
tree-level matching. In this case, the full one-loop con-
tribution of the UV theory is captured by two types of
contributions in the SMEFT: (1) the tree-level contribution
from the nTGC operators (2.1) and (2.2) obtained by one-
loop matching, and (2) the one-loop diagram of operators
involving fermionic fields obtained from tree-level match-
ing. This point will be discussed in detail in the following
sections.

III. STRUCTURE OF HEAVY FERMION LOOP
CONTRIBUTIONS TO nTGCS

Since the Lorentz structures of the relevant dimension-8
operators incorporate the Levi-Civita tensor, we restrict
ourselves to extensions of the SM with heavy fermions. We
consider the Yukawa interaction between a fermionic weak
doublet N and a fermionic weak singlet E with hyper-
charges YN and YE ¼ YN − 1=2, respectively. The inter-
action takes the following form:

N̄HðcV þ cAγ5ÞEþ H:c: ð3:1Þ

The mass scales of the fields N and E differs in the two
scenarios that we are going to consider. (i) In the all-heavy
case both N and E are heavy vectorlike particles to be
integrated out at low energies. For simplicity of calcu-
lation, we choose the two fermions to have similar masses
mN ≃mE ≃M, and the mass difference plays a negligible
role. In this way, we need to only deal with an EFT having
a single heavy mass scale M. (ii) In the heavy-light case
only one of N or E is the heavy vectorlike fermion to be
integrated out at a heavy mass scale M, whereas the other
one is a light chiral fermion in the SM. In this scenario, we
set cA ¼ �cV to project out the chiral component. Both
cases can be realized by well motivated new physics
models. For instance, the Higgsino-bino system in the
minimal supersymmetric SM (MSSM) corresponds to the
all-heavy case, whereas the models with a heavy right-
handed neutrino correspond to the heavy-light case. We
leave the details of the model discussions to Sec. V, after
elaborating the methodology for the EFT matching
in Sec. IV.
There are four types of topology for loop diagrams that

contributes to nTGCs, as illustrated in Fig. 1. We denote
Higgs fields by dashed lines, the E field by a thin solid line,
the N field by a thick solid line, and the gauge bosons by
wiggly lines. The momenta of the external Higgs fields will
be set to zero for our purpose of deriving the nTGC
vertices.5 The sum over directions of fermion flow is
implied in each diagram. The results for different models
are obtained by including the associated tensor structures
and couplings in the model. The relevant diagrams for each
type of vertex in the gauge eigenbasis are listed in Fig. 2.
The coefficient of each nTGC operator is then determined
by matching the result from the UV theory with these loop
diagrams and vertices.

5We perform the matching by computing diagrams for
H0H0VVV (with H0 denoting the Higgs VEV and carrying zero
external momentum) because they unambiguously correspond to
nTGC vertices. It is also possible to perform the matching with
HHVV box diagrams where H carries nonzero momentum in the
symmetric phase, following the method of [36]. However, this
approach may contain contributions that are irrelevant to the
dimension-8 nTGC operators and need to be distinguished
carefully. This is worthy of future investigation.
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We showed in Sec. II that Higgsless (pure gauge) nTGC
operators cannot be obtained from the fermionic one-loop
diagrams in a renormalizable model. However, they can be
generated at the two-loop level, e.g., by contracting the two
Higgs fields attached to the fermion loop in the diagrams of
Fig. 1, and these two-loop contributions are allowed by the
known symmetries of the UV model. A sample diagram of
such two-loop contribution is shown in Fig. 3. Although a
full discussion of the two-loop nTGC vertex lies beyond the
scope of this paper, we note that it may be obtained by
contracting the two Higgs fields of the one-loop effective
operators (2.1) and (2.2).

IV. MATCHING TO UV COMPLETION
AND INDUCED nTGCS

Since we are interested in momenta much smaller than
the heavy fermion mass M, the loop integral can be
approximated with the method of regions, which is really
convenient for the matching calculation of EFT coefficients
[14,17–22].6 In the following, we briefly review the
application of this method to the two scenarios that we
will consider.
In the following, we denote the loop diagrams to be

evaluated by Γi. If Γi contains only large mass propagators
as in the all-heavy case, it is sufficient to expand directly
the integrand, treating external momenta as small varia-
bles. Since the loop momentum lmainly contributes when
l ∼M in this case, the expansion is finite at all orders in
the external momenta. However, when the integrand of Γi

contains both massive and massless propagators as in the
heavy-light case, the loop integrals receive contributions
from both the hard region with l ∼M and the soft region
with l ≪ M. In general, the method of regions splits the
integral Γi into a soft part and a hard part

Γi ¼ Γijhard þ Γijsoft: ð4:1Þ

The hard piece is obtained by expanding the integrand in
Γi by taking the external momenta ðk; p; qÞ as small
variables (assuming all other masses are negligibly small),
and by treating the loop momentum l and the mass M as
large quantities. Thus, a propagator in the hard piece may
be expanded as

i
ðlþp0Þ2−M2

����
hard

¼ i
l2−M2

−
ið2l ·p0Þ
ðl2−M2Þ2þ�� � ; ð4:2aÞ

i
ðlþ p0Þ2

����
hard

¼ i
l2

−
ið2l · p0Þ
ðl2Þ2 þ � � � ; ð4:2bÞ

where p0 is a linear combination of external momenta that
enters the propagator. The soft part is obtained by treating
the loop momentum as a small expansion variable like the
external momenta, so a massive propagator expands as
follows for the soft part

i
ðlþ p0Þ2 −M2

����
soft

¼ −
i

M2
−
iðlþ p0Þ2

M4
þ � � � : ð4:3Þ

FIG. 1. Two classes of one-loop fermionic contributions to the nTGCs, including the pure heavy fermion loops as shown in the first
row, or including the mixed heavy-light fermion loops as shown in the second row. In each class there are four types of fermionic loop
diagrams that contribute to the nTGCs. The dashed lines denote Higgs fields, the thin solid lines denote E propagators, the thick solid
lines denote N propagators, and the wiggly lines denote gauge bosons. The sum over directions of fermion flow is implied for each
diagram.

6A short introduction of this method in the context of EFTwas
given in Ref. [38].
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In other words, the massive propagator shrinks to a point in
the soft region, just as in the EFT obtained by tree-level
matching. On the other hand, the massless propagators stay
unchanged in the soft piece.
The hard part and the soft part mostly capture the

contributions from l ∼M and l ∼ p, k, q, respectively.
But, they also modify the behaviors of the integrand in
the IR and in the UV. Compared to the original integral,
the hard piece raises the power of l in the denominator
of the integrand and may render the integral divergent as
l → 0. Similarly, the soft piece may contain a divergence
as l → ∞. The key point of the method of regions and
the EFT calculation with dimensional regularization is
that these modifications cancel each other, so that the
two artificial divergences introduced by the expansion
cancel precisely between the soft and hard pieces [14].

FIG. 2. List of the relevant one-loop contributions to the four types of nTGC vertices, including the vertices of BWW (1st row),WBB
(2nd row), BBB (3rd and 4th rows), andWWW (5th row). The loop structures are those shown in Fig. 1, where for each diagram a sum
over directions of the fermion loop flows is implied. In each diagram, the dashed lines denote Higgs fields, the thin solid lines denote E
propagators, the thick solid lines denote N propagators, and the wiggly lines denote gauge bosons.

FIG. 3. A sample two-loop diagram containing internal fields of
heavy fermions and Higgs doublet that contribute to the nTGCs.
The dashed lines denote Higgs fields, the thin solid lines denote E
propagators, the thick solid lines denote N propagators, and the
wiggly lines denote gauge bosons. Here a sum over directions of
the fermion loop flows is implied.
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Hence, the total result of evaluating the loop diagram is
finite, as expected from power counting.
This method is really useful for the EFT matching.

The soft part of the loop diagram is equivalent to a
loop diagram that closes lines of light fields in the tree-
level EFT obtained by shrinking heavy propagators to
points in the full theory. The hard part then only contrib-
utes to the one-loop effective operator that compensates
the difference between the evaluation in the tree-level EFT
(soft part) and the full one-loop evaluation. For a brief
review of this process, we denote the full UV theory as
LU ¼ LU

0 þ LU
ct and the effective theory after integrating

out the heavy fields as LEFT ¼ L̄ð0Þ þ L̄ð1Þ, where L̄ðiÞ ¼
L̄ðiÞ
0 þ L̄ðiÞ

ct is the EFT terms from ith-loop matching,
including the bare terms and the corresponding counter
terms. Then, the one-loop matching condition for a process
P of light fields is

Γð1Þ
P ðLUÞ ¼ Γð1Þ

P ðL̄ð0ÞÞ þ Γð0Þ
P ðL̄ð1ÞÞ; ð4:4Þ

where ΓðiÞ
P ðLÞ is the sum of 1-light-particle irreducible

diagrams of the (off-shell) process P at the ith-loop order
from the interaction terms of L. The tree-level matching
procedure determines the tree-level EFT Lagrangian L̄ð0Þ

and ensures Γð1Þ
P ðLUÞjsoft ¼ Γð1Þ

P ðL̄ð0ÞÞ. The remaining hard
part matches

Γð1Þ
P ðLUÞjhard ¼ Γð0Þ

P ðL̄ð1ÞÞ: ð4:5Þ

This determines the one-loop terms of the EFT
Lagrangian.
In the case of the nTGC loop diagram of Fig. 1 in a heavy

fermion model LU, the one-loop EFToperators L̄ð1Þ are just
those of Eqs. (2.1) and (2.2) and their corresponding counter
terms, with Wilson coefficients to be determined by the

matching procedure. Although Γð1Þ
nTGCðLUÞ is finite, the

intermediate variables Γð1Þ
nTGCðLUÞjsoft and Γð1Þ

nTGCðLUÞjhard
contain artificial divergences because of the propagator
expansions. In the matching procedure, the divergence in

Γð1Þ
nTGCðLUÞjsoft corresponds to the divergence in the EFT

diagram Γð1Þ
nTGCðL̄ð0ÞÞ, and the divergence in Γð1Þ

P ðLUÞjhard
corresponds to the counterterm vertex Γð0Þ

nTGCðL̄ð1Þ
ct Þ. The

divergences cancel in both the EFT evaluation and the full
theory evaluation.
The artificial divergences introduced by the method of

regions in the intermediate steps require caution in the
treatment of γ5, since it does not have a natural definition
in dimensional regularization with D ≠ 4. This is not an

issue for the all-heavy case, but needs care for the heavy-
light case, since the latter contains intermediate divergen-
ces that cancel between the hard and soft parts. Several
schemes for treating γ5 have been developed. One needs to
sacrifice either the anticommutativity of γ5 with all the
other γ matrices as in the Breitenlohner-Maison-’t Hooft-
Veltman (BMHV) scheme [27–31], or give up the cyclic
property of the trace of a string of γ-matrices with an
odd number of γ5 matrices by treating the trace as a
projection operation, as in naive dimensional regulariza-
tion (NDR) [24–26].7 The BMHV scheme was shown to
be self-consistent to all perturbative orders [28–30].
However, the noncommutativity between γ5 and some
of the γμ gives rise to intermediate gauge symmetry-
violating terms and needs counter terms in the renorm-
alization procedure to restore gauge independence of the
physical result. In the context of EFT, the intermediate
gauge symmetry violation in the BMHV scheme is
manifested in irrelevant anomalies that are removable
by finite counter terms [32–34].
In an attempt to maintain gauge invariance in the

intermediate step and for the convenience of calculation,
we adopt the NDR scheme that defines an anticommuting
γ5 as follows:

fγ5; γμg ¼ 0; ð4:6Þ

for all μ ≤ D. This scheme was shown to maintain gauge
invariance automatically without the need of further
counter terms at least in one-loop order [26]. To be clear,
we explain concisely the practical procedure of NDR [26]
as applied to our calculation. One cannot simply continue
the relation trðγμ1 � � � γμ4γ5Þ ¼ i4ϵμ1���μ4 to D ≠ 4 in DREG,
since the rank-4 antisymmetric tensor is defined in
4-dimensional spacetime only. The NDR scheme treats
the tensor ϵμ1���μ4 in D ≠ 4 as a regular rank-4 tensor rather
than an antisymmetric tensor. The trace containing an odd
number of γ5 for D ≠ 4, trðγμ1 � � � γμ2nγ5Þ, is regarded as a
projection operation that happens to give the same result
as D ¼ 4, and is not a trace of matrices anymore. Hence, it
loses its cyclic property, and requires a consistent choice
of “reading point” to write down the order of the γ
matrices in the chain. Hereafter, the “reading point” refers
to the last matrix that appears in the trace whenever there
is odd number of γ5. In this work, we choose one of the
Higgs vertices as the reading point in all the loop
calculations. The four types of diagrams in Fig. 1 then
become:

7See Ref. [23] for an overview on the γ5 issue in dimensional
regularization.
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ΓðaÞ ¼
Z

d4l
ð2πÞ4 tr½GNðlÞγρGNðl − pÞγνGNðlþ kÞVþ

HGEðlþ kÞγμGEðlÞV−
H� þ ðreverse fermion flowÞ;

ΓðbÞ ¼
Z

d4l
ð2πÞ4 tr½GNðlÞγμGNðl − kÞγρGNðlþ qÞγνGNðlÞVþ

HGEðlÞV−
H� þ ðreverse fermion flowÞ;

ΓðcÞ ¼
Z

d4l
ð2πÞ4 tr½GNðlþ kÞγμGNðlÞVþ

HGEðlÞγρGEðl − pÞγνGEðlþ kÞV−
H� þ ðreverse fermion flowÞ;

ΓðdÞ ¼
Z

d4l
ð2πÞ4 tr½GNðlÞVþ

HGEðlÞγμGEðl − kÞγρGEðlþ qÞγνGEðlÞV−
H� þ ðreverse fermion flowÞ; ð4:7Þ

where V�
H ¼ ðcV � cAγ5Þ are the vertices that connect to

the Higgs fields and GN;EðpÞ are the propagators of the
heavy fermion fields N and E with momentum p,
respectively. In this expression, V−

H is the reading point
of the trace and this choice will persist through all
fermionic loop evaluations, including the ones abbreviated
by “reverse fermion flow.” Once the traces are written by
following the same reading points (V−

H), the projection
operation is performed by first moving γ5 to the end of the
trace using its anticommutative property and then making
the replacement

γ5 → −
i
24

ϵμνρσγ
μγνγργσ: ð4:8Þ

Unlike in 4 dimensions, in NDR this procedure should not
be regarded as a definition of γ5, but rather as a handy way
to compute the result of the projection denoted as trð� � � γ5Þ
after following a strict reading point prescription and
anticommuting γ5 to the end of the trace [26]. The tensor
ϵμνρσ becomes fully antisymmetric only when taking the
limit D → 4.
The noncyclicity of trð� � � γ5Þ is proportional to ϵ ¼

ð4 −DÞ=2 and vanishes under D → 4. Thus, it manifests
itself in the limit D → 4 only by canceling the 1=ϵ pole in

the divergent term. But, all the diagrams in both the all-
heavy and heavy-light cases are finite, so the noncyclicity
will not play a role in the final physical nTGC vertex
function, as long as the reading point is kept consistent
between the soft and hard parts of the same diagram so that
their intermediate divergences cancel precisely. The sit-
uation becomes more subtle when matching the diagrams
to an EFT in the “heavy-light case,” where the one-loop
effective operators and their counter terms match to the
divergent hard part of the diagram as described in
Eq. (4.5). For some choices of reading points, the non-
cyclicity of the trace combines with the divergence and
appears as a finite term in the result. This term may break
the manifest gauge invariance of the hard and soft parts
separately (but not their sum), so that the finite terms of the
hard part do not match to a set of gauge-invariant
operators. This would be the case if we had chosen the
gauge vertices as the reading points, in which case the
matching procedure might require an additional set of
finite gauge-violating counterterms. This would impair the
convenience of choosing NDR over BMHV. Fortunately,
as we show below, choosing the Higgs vertices as reading
points is free of these technical issues. In these cases the
hard part can be matched directly to a set of gauge-
invariant operators and the soft part alone satisfies the

FIG. 4. Sample diagrams that enter the Ward-Takahashi identity (4.9). Plot (a) has 3 external gauge bosons attached to a fermion loop.
Plot (b) has 2 vector bosons attached to the fermion loop and one to the Higgs line. Plot (c) gives the correlation function involving 2
gauge bosons that enter the left-hand side of Eq. (4.9). In each diagram, the dashed lines denote Higgs fields, the solid lines denote
fermion propagators, and the wiggly lines denote gauge bosons.
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Ward-Takahashi identity. This particular choice of reading
point combined with the NDR treatment of γ5 is a
renormalization scheme that preserves manifest gauge
invariance in all the intermediate steps of the EFT match-
ing problem.
In the following, we consider the Ward-Takahashi

identity for Uð1ÞB and Uð1ÞT3
related to the loop diagrams

of Fig. 1 to illustrate the necessity of choosing Higgs
vertices as the reading points. For a loop diagram that
generates the Vμ-Vν

1-V
ρ
2 vertex, gauge invariance enforces

the following identity for the position space correlators

∂

∂xμ
hJμVðxÞJνf1ðyÞJ

ρ
f2
ðzÞϕ0†ðuÞϕ0ðvÞiT

¼ hJνf1ðyÞJ
ρ
f2
ðzÞ½Qϕ0

V δð4Þðx−uÞ�ϕ0†ðuÞϕ0ðvÞiT
þhJνf1ðyÞJ

ρ
f2
ðzÞ½−Qϕ0

V δð4Þðx−vÞ�ϕ0†ðuÞϕ0ðvÞiT: ð4:9Þ

where h� � �iT is the time-ordered vacuum expectation value
and ϕ0 denotes the neutral component of the SM Higgs
doublet field H. In the above, JμV (V ¼ B;W0) denotes the
conserved current ofUð1ÞB andUð1ÞT3

, and Jνfi ¼ f̄iγνfi is
the current coupled to the external gauge boson Vν

i , where
fi denotes the fermions in the loop. The correlator on the
left-hand side of Eq. (4.9) corresponds to diagrams with
three gauge bosons, including the case (a) with all three
gauge bosons attached to the fermion loop, as in Fig. 4(a);
and case (b) with two gauge bosons Vν

1 and Vρ
2 attached to

the loop at vertices described by Jf1ν and Jf2ρ , and the third
gauge boson Vμ attached to a Higgs line via the Higgs
current part of JμV , as in Fig. 4(b). The correlators on the
right-hand side correspond to loops with two gauge vertices
(represented by Jf1 and Jf2) on the fermion loop, as in
Fig. 4(c). Fourier-transforming the identity to momentum
space, subtracting the Fig. 4(b)-type diagrams with the
gauge boson Vμ attaching to ϕ0, and amputating the ϕ0

propagator, we derive the following Ward-Takahashi

identity for the amputated amplitudes

kμA
μνρ
V ðk;p1; p2;pϕ ¼ 0; pϕ† ¼ 0Þ

¼ −Qϕ0

V ½Aνρ
0 ðp1; p2;pϕ ¼ 0; pϕ† ¼ kÞ

−Aνρ
0 ðp1; p2;pϕ ¼ k; pϕ† ¼ 0Þ�; ð4:10Þ

where ðk; p1; p2; pϕ; pϕ†Þ are the momenta obtained by
Fourier-transforming the position variables ðx; y; z; u; vÞ in
Eq. (4.9), all defined with directions going into the loop,
and pϕ and pϕ† are momenta going into the loop via the ϕ0

and ϕ†
0 lines. The left-hand side of Eq. (4.10) includes only

the diagrams of the Fig. 4(a)-type with three gauge vertices
attached to the fermion loop (rather than the Higgs line),
exactly like the diagrams of Fig. 1. The correlators on the
right-hand side of Eq. (4.10) are of the type of Fig. 4(c).
The hard part of a set of nTGC loop diagrams can be

matched to a set of gauge-invariant operators only when
their corresponding Ward-Takahashi identity (4.10) still
holds with the involved amplitudes in the identity restricted
to their hard parts

A → Ahard: ð4:11Þ

If this is the case, the hard-part version of Eq. (4.10) would
correctly connect the coefficients of nTGC couplings to the
2-gauge-boson vertex couplings induced by the same set of
operators (2.1) and (2.2). But, as mentioned above, the
choice of the reading point of a trace that contains an odd
number of γ5 could break the hard-part version of (4.10) if
the identity involves cancellations between cyclic permu-
tations of matrices in the trace together with a divergent
hard-part integral. In the following, we show that choosing
the Higgs vertices as reading points ensures that the identity
(4.10) holds without the need of trace cyclicity.
We can write the left-hand side of the amplitude of

Eq. (4.10) with a Higgs reading point (taken as ϕ0 for
example) as follows:

kμA
μ���
V ðk; fpfigg;pϕ ¼ 0; pϕ† ¼ 0Þ ¼

X
fpa

figg

Z
d4q
ð2πÞ4 tr½Mbðq0; fpb

figgÞVϕ†kμM̄
μ
aðq; k; fpa

figgÞVϕ�

þ
X
fpa

figg

Z
d4q
ð2πÞ4 tr½kμM̄

μ
bðq0; k; fpb

figgÞVϕ†Maðq; fpa
figgÞVϕ�: ð4:12Þ

Here we generalize triple gauge-boson amplitudes to
amplitudes with any number of external gauge bosons,
and suppress all the gauge indices except the one to be
contracted with kμ, and Vϕ and Vϕ† are the two Yukawa
vertices that connect to the external Higgs lines, while
fpfigg represents the set of gauge boson momenta (other

than kμ). We have separated the loop into two blocks
sandwiched by the two Yukawa vertices, denoted by Ma

and Mb, or M̄
μ
a and M̄μ

b [with a VμðkÞ inserted into a
propagator therein]. The sum of fpa

figg runs over all

possible gauge boson momenta except kμ, which enters
Ma or M̄μ

a. The first argument (q or q0) in M or M̄μ
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represents the momentum of the first fermion propagator
in the block that leaves the Higgs vertex and appears
in the block. For the first line of Eq. (4.12) we have q0 ¼
qþP

i p
a
i þ k and for the second line we have q0 ¼

qþP
i p

a
i . Since we are considering U(1) currents and the

fields are in their gauge eigenstates, the fermion species
remains unchanged in each block, and we denote them as
fa and fb in block a and b respectively. Another Ward-
Takahashi identity similar to that of QED gives

kμM̄
μ
aðq; k; fpa

figgÞ ¼ −Qfa
V ½Maðq; fpa

figgÞ
−Maðqþ k; fpa

figgÞ�; ð4:13aÞ

kμM̄
μ
bðq0; k; fpb

figgÞ ¼ −Qfb
V ½Mbðq0; fpb

figgÞ
−Mbðq0 þ k; fpb

figgÞ�: ð4:13bÞ

Substituting these identities into Eq. (4.12) and using

the relation Qfa
V þQϕ0

V ¼ Qfb
V , we deduce the following

identity:

kμA
μ���
V ðk; fpfigg;pϕ ¼ 0; pϕ† ¼ 0Þ

¼ Qϕ0

V ½A���
0 ðfpfigg;pϕ ¼ k; pϕ† ¼ 0Þ

−A���
0 ðfpfigg;pϕ ¼ 0; pϕ† ¼ kÞ�: ð4:14Þ

For the case of three gauge bosons, this reduces to the
identity (4.10). We see that for the identity (4.10) to hold, it
is sufficient to validate the QED-like Ward-Takahashi
identities (4.13) for each block sandwiched between the
Yukawa vertices Vϕ and Vϕ† . When choosing Yukawa
matrices as the reading points, these blocks are not wrapped
around the ends of traces, and thus one does not need
cyclicity to prove Eq. (4.10). It is also apparent why
choosing another vertex as reading point may violate the
hard-part version of Eq. (4.10). The diagrammatic proof of
Eq. (4.13)8 sums over all possible insertions of VμðkÞ into
all propagators involved. For instance, in the right-hand side
of Eq. (4.12), if another vertex within M̄μ

a to the right of the
VμðkÞ insertion was chosen as the reading point, the first
trace on the right-hand side of Eq. (4.12) would take the
following form,

tr½M̄ð2Þ
a VϕMbVϕ†kμM̄

ð1Þμ
a � ¼ tr½MbVϕ†kμM̄

μ
aVϕ�

þ ðterms ∝ ϵÞ; ð4:15Þ

where the block M̄μ
a ¼ M̄ð1Þμ

a M̄ð2Þ
a is now separated into

two parts located at the beginning and end of the trace, and
the extra terms proportional to ϵ arise from the noncyclic
trace of NDR. Since the proof of the Ward-Takahashi

identity (4.13) involves propagators in both M̄ð1Þμ
a and

M̄ð2Þ
a , one needs to move M̄ð2Þ

a to the end of the trace to
complete the block M̄μ

a, which leads to extra terms propor-
tional to ϵ that then combine with the 1=ϵ divergence of the
hard part to produce a finite contribution, violating the
identity (4.10). Hence, only the Yukawa vertices can be
chosen as the reading point. The above argument for a
Yukawa vertex as reading point can be readily generalized
to an arbitrary number of Yukawa vertices at the one-
loop level.
It was also suggested in the literature [26] not to choose

the gauge vertices as reading points in order to maintain
recursive renormalizability of the full result of the diagrams
as well as its gauge invariance. In the above analysis, we
support this rule for a very different reason, namely, the
correspondence of the hard part in the method of region to a
one-loop gauge-invariant EFT operator requires choosing
the Yukawa vertex as the reading point.
This choice of reading point is also convenient when

performing the matching procedure by using the covariant
derivative expansion (CDE) [40].9In this method, the one-
loop effective nTGC operators are obtained by evaluating
the functional trace

−
i
2
STr

�
1

Ki
Uij

H†
1

Kj
Uji

H þ � � �
�
; ð4:16Þ

where, following the notation of [43], we split the block-
diagonal interaction matrix U into UH and UH† corre-
sponding to the type of Yukawa interaction, and K−1 is the
propagator matrix. Following the previous argument for
explicit loop calculation, we have moved UH to the end of
the trace, since it is the reading point.10 The γ5 matrices are
then moved to the right end of the trace by commutation
relations, followed by the replacement (4.8) according to
the NDR manipulation. Using the public code STrEAM [45],
we have checked that, after eliminating redundant oper-
ators, the CDE gives the same results for the one-loop
effective operator matching to the hard part. To obtain the
full vertex for the heavy-light case, we need further to
compute the soft part by evaluating the loop contribution of
the tree-level effective operators using the same Higgs
vertices as reading points and adding it to the contribution
of the one-loop effective operators. In this way, irrelevant
anomalies that usually appear in the EFT loop calculations
would never appear in any intermediate step of computing
the full nTGC vertex.

8See for example a textbook derivation of this in Chapter 7 of
Ref. [39].

9Universal one-loop effective actions induced by heavy fer-
mion loops were studied in the literature using the covariant
derivative expansion up to Dim-6 operators [41–43].

10The application of NDR and the subtlety of the choice of
reading point when using the CDE were discussed by [44] in the
context of evanescent operators.
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V. RESULTS FOR INDUCED nTGCS

In this section, we present the results of loop calculations
derived using the method of Sec. IV. These results are then
combined with various nTGC vertices and matched to the
one-loop effective nTGC operators as given in Eqs. (2.1)
and (2.2). In our convention, the Higgs expectation value is
given by hϕ0i ¼ v=

ffiffiffi
2

p
, where ϕ0 denotes the neutral

component of the SM Higgs doublet field H.

A. Heavy fermion loop
contributions to nTGCs

We start with the simpler case, in which the nTGC
vertices are generated by one-loop contributions of the
heavy fermions, including an SU(2) doublet N and a
fermionic singlet E with hypercharges YN and YE ¼ YN −
1=2 that play the role of the fields N and E in Eq. (3.1),
respectively. We assume that these heavy fermions have
nearly degenerate masses MN ≈ME ≈M, so there is only
one heavy mass scale for EFT matching. The relevant
Lagrangian terms take the following form:

L ⊃ N̄ ði=D −MN ÞN þ Ēði=D −MEÞE
þ N̄HðcV þ cAγ5ÞE þ H:c: ð5:1Þ

In the cases of ðYN ; YEÞ ¼ ð−1=2;−1Þ, ð1=2; 0Þ, and
ð3=2; 1Þ, at least one of the heavy fermions can mix with
SM leptons through Yukawa couplings to the Higgs
doublet. In this subsection, we set these heavy-light mixing
couplings be negligibly small as compared to the couplings
between the heavy particles, and leave their treatment to the
next subsection. The absence of the heavy-light couplings
can be ensured by imposing a Z2 symmetry. The result for
vertices and Wilson coefficients in this and next subsec-
tions are additive when a model generates both “all heavy”
and heavy-light loop diagrams.
For the four types of basic one-loop diagrams of triple

neutral gauge bosons in Fig. 1, we compute the off-shell
expressions from Eq. (4.7), with the substitutions N → N
and E → E. Thus, we derive the following:

Γ1 ¼
icVA

240π2M4
½ð4q2 þ 3p2 þ 4p · qÞqσϵμνρσ

þ ðq ↔ p; ν ↔ ρÞ�; ð5:2aÞ

Γ2 ¼
icVA

240π2M4
½2ðkρ − kμ þ qμÞkαqβϵνραβ

þ ð3k2 þ q2 þ 4k · qÞkσϵμνρσ þ ðq ↔ k; ν ↔ μÞ�;
ð5:2bÞ

Γ3 ¼ Γ1jcV→c�V ;cA→−c�A
; Γ4 ¼ Γ2jcV→c�V ;cA→−c�A

; ð5:2cÞ

with the coupling coefficient c2VA ¼ cVc�A þ cAc�V .
Including the charges and gauge couplings corresponding
to the different sets of the external gauge bosons in Fig. 2
and using the Schouten identity (2.7), we can match these
results directly to the sets of operators in Eqs. (2.1) and
(2.2), since the loop integrals have no soft parts. The
effective Lagrangian takes the following form:

L ⊃
X
I

cIOI þ H:c:; ð5:3Þ

where the label I runs over the labels of the nTGC operators
OI . We compute the one-loop Wlison coefficients cI as
follows:

cW̃W ¼ −
g2c2VA

240π2M4
; ð5:4aÞ

c0
W̃W

¼ g2c2VA
160π2M4

; ð5:4bÞ

cB̃B ¼ −
g02ð1 − 5YN þ 10Y2

N Þc2VA
960π2M4

; ð5:4cÞ

c0̃
BB

¼ g02ð3 − 20YN þ 40Y2
N Þc2VA

1920π2M4
; ð5:4dÞ

and

cB̃W ¼ −
gg0c2VA

1920π2M4
; ð5:5aÞ

c0̃
BW

¼ −
gg0ð1 − 5YN Þc2VA

240π2M4
; ð5:5bÞ

cW̃B ¼ gg0ð3 − 20YN Þc2VA
1920π2M4

; ð5:5cÞ

where the coupling coefficients c2VA ¼ cVc�A þ cAc�V . Using
Eq. (2.11), we translate these results into the following on-
shell coefficients:

cγ�ZZ ¼ m5
ZcVA

192π2vM4
sinð2θWÞð2YN − 1Þ

× ½ð2YN − 1Þ cosð2θWÞ − 2YN �; ð5:6aÞ

cZ�ZZ ¼ m5
ZcVA

1920π2vM4
½5ð2YN − 1Þ2 cosð4θWÞ

− 40ð2YN − 1Þ cosð2θWÞ þ 60Y2
N − 20YN þ 7�;

ð5:6bÞ

cγ�γZ ¼ m5
ZcVA

192π2vM4
sin2ð2θWÞð2YN − 1Þ2; ð5:6cÞ
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cZ�γZ ¼ m5
ZcVA

192π2vM4
sinð2θWÞð2YN − 1Þ

× ½ð2YN − 1Þ cosð2θWÞ − 2YN �; ð5:6dÞ

where the nTGC coupling coefficients ðcV�γZ; cV�ZZÞ are
connected to the conventional notations [6,7,13] via
ðcV�γZ; cV�ZZÞ ¼ ðehV3 ; efV5 Þ, as shown in Eq. (2.10).
In passing, for an estimate, we consider the future eþe−

colliders CEPC (250 GeV) and CLIC (3 TeV) and a future
pp collider (100 TeV), with an integrated luminosity
ð20; 5; 30Þ ab−1 respectively. According to the collider
analyses [6–10], they can probe the form factors ðhZ3 ; hγ3Þ
down to hZ3 < ð1.4 × 10−4; 6.2 × 10−5; 3.0 × 10−7Þ, and
hγ3 < ð4.9 × 10−4; 1.0 × 10−4; 3.5 × 10−7Þ, respectively,
and we take just one nTGC contribution at a time. For
YN ¼ − 1

2
, these bounds correspond to M=jcVAj1=4 <

ð80; 240; 368Þ GeV with the hZ3 constraints alone, and
become M=jcVAj1=4 < ð150; 480; 770Þ GeV with the hγ3
constraints alone. These sensitivities are quite weak because

such fermionic UV contributions are suppressed by both the
heavy mass factor ∝ M−4 and the one-loop factor. A more
careful phenomenological analysis is needed to extract the
actual sensitivity, including contributions of the interference
between the Z�-exchange and γ�-exchange channels. This
will improve the sensitivity reaches on M=jcVAj1=4. These
analyses are useful for the phenomenology of strongly
coupled UV models of new physics. In particular, discovery
at the LHC or a future collider of an nTGC coupling in the
absence of a new particle would be an indicator of a strongly
interacting sector beyond the SM.

B. nTGCs from fermion loops with heavy-light mixing

In this subsection, we extend our analysis to include one-
loop contributions where the heavy and light fermions mix
through a Yukawa-type coupling to the SM Higgs doublet.
We begin by presenting general off-shell expressions for
the one-loop diagrams of triple neutral gauge bosons in
Fig. 1, setting MN ¼ M, ME ¼ 0 and V�

H ¼ ð1� γ5Þ=2 in
the propagators of Eq. (4.7), identifying the fields N and E

with heavy and light fields respectively11

Γh
1 ¼

i
12π2M4

��
−Δ −

11

6

�
ðp · qÞqσϵμνρσ þ

�
1

2
Δþ 5

6

�
q2pσϵ

μνρσ þ
�
Δþ 25

12

�
qμpαqβϵνραβ

þ 1

12
qνpαqβϵμραβ −

1

2
qρpαqβϵμναβ þ ðq ↔ p; ν ↔ ρÞ

�
; ð5:7aÞ

Γ1 ¼
i

12π2M4

�
1

4
ðp · qÞqσϵμνρσ þ

�
1

2
log

M2

−k2
−

5

12

�
q2pσϵ

μνρσ

þ
�
1

2
− log

M2

−k2

�
qνpαqβϵμραβ þ

�
−
11

12
þ log

M2

−k2

�
qρpαqβϵμναβ þ ðq ↔ p; ν ↔ ρÞ

�
; ð5:7bÞ

Γh
3 ¼

i
12π2M4

�
19

12
ðp · qÞqσϵμνρσ þ

�
Δ −

1

3

�
q2pσϵ

μνρσ −
7

12
qμpαqβϵνραβ

þ
�
11

12
− Δ

�
qνpαqβϵμραβ −

9

4
qρpαqβϵμναβ þ ðq ↔ p; ν ↔ ρÞ

�
; ð5:7cÞ

Γ3 ¼
i

12π2M4

�
19

12
ðp · qÞqσϵμνρσ −

�
2þ log

M2

−q2

�
q2pσϵ

μνρσ −
7

12
qμpαqβϵνραβ

þ
�
31

12
þ log

M2

−q2

�
qνpαqβϵμραβ −

9

4
qρpαqβϵμναβ þ ðq ↔ p; ν ↔ ρÞ

�
; ð5:7dÞ

and

11The results differ only by a minus sign for the opposite assignment of V�
H → ð1 ∓ γ5Þ=2.
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Γh
2 ¼

i
96π2M4

�
−
5

3
ðk · qÞqσϵμνρσ þ

1

3
q2kσϵμνρσ þ qμkαqβϵνραβ

þ qνkαqβϵμραβ −
5

3
qρkαqβϵμναβ þ ðq ↔ k; ν ↔ μÞ

�
; ð5:8aÞ

Γ2 ¼ Γh
2; ð5:8bÞ

Γh
4 ¼

i
24π2M4

��
2Δþ 8

3

�
ðk · qÞqσϵμνρσ −

�
Δþ 11

6

�
q2kσϵμνρσ þ qμkαqβϵνραβ

þ qνkαqβϵμραβ −
�
2Δþ 8

3

�
qρkαqβϵμναβ þ ðq ↔ k; ν ↔ μÞ

�
; ð5:8cÞ

Γ4 ¼
i

12π2M4

��
1

6
− log

M2

−p2

�
ðk · qÞqσϵμνρσ −

�
7

12
−
1

2
log

M2

−p2

�
q2kσϵμνρσ

þ qνkαqβϵμραβ −
�
1

6
þ log

M2

−p2

�
qρkαqβϵμναβ þ ðq ↔ k; ν ↔ μÞ

�
; ð5:8dÞ

where Γh
i (Γi) is the hard part and the full result

(softþ hard) for each type of diagram in Fig. 1, and
Δ ¼ 1=ϵ − γE þ logð4πÞ þ logðμ2=M2Þ. We see that the
divergence and the logarithmic renormalization scale
dependence cancels correctly between the soft and hard
parts. The remaining logarithmic factors take the form of
log M2

−Q2, whereQð¼ k; p; qÞ is one of the external momenta,

and describes the IR divergence of the loop diagram
as Q → 0.
The results for specific models with heavy-light mixing

loops can be obtained by inserting the corresponding gauge
couplings into Eqs. (5.7) and (5.8). As a concrete example,
we consider an extension of the SM with a weak SU(2)
fermion doublet F ¼ ðf0; f−ÞT with hypercharge YF ¼ − 1

2
.

Thus, the relevant new physics Lagrangian reads,

L ⊃ F̄ði=D −MÞF þ ðyF̄HeR þ H:c:Þ: ð5:9Þ

The mixing mass term μFLL̄F þ H:c: between the heavy
fermion and the SM left-handed lepton doublet L can be
eliminated by a field redefinition, so Eq. (5.9) presents the
Lagrangian terms after this redefinition. With these, we
derive the one-loop effective coefficients of the nTGC
operators (2.1) and (2.2) as follows:

cW̃W ¼ −
g2y2

192π2M4
; c0

W̃W
¼ g2y2

144π2M4
; ð5:10aÞ

cB̃B ¼ 11g02y2

768π2M4
; c0̃

BB
¼ g02y2

576π2M4

�
1þ 6 log

μ2

M2

�
;

ð5:10bÞ

and

cB̃W ¼ g0gy2

1152π2M4

�
35þ 12 log

μ2

M2

�
; ð5:11aÞ

c0̃
BW

¼ g0gy2

144π2M4

�
4þ 3 log

μ2

M2

�
; ð5:11bÞ

cW̃B ¼ −
g0gy2

1152π2M4

�
17þ 12 log

μ2

M2

�
: ð5:11cÞ

These coefficients correspond to the hard parts of one-loop
diagrams and have no physical significance by themselves
alone, since one needs to also include the soft parts of the
loops as obtained by tree-level matching. The full loop-
contributions to the on-shell vertices can be summarized in
the following form:

Γμνα
V�γZðq; p1; p2Þ ¼

c0V�γZ

m2
Z

ðq2 −m2
VÞp1βϵ

μναβ; ð5:12aÞ

Γμνα
V�ZZðq; p1; p2Þ ¼

1

m2
Z
½c0V�ZZðq2Þq2

− c0V�ZZðm2
VÞm2

V �ðp1 − p2Þβϵμναβ;
ð5:12bÞ

with the effective coupling coefficients given by

ELLIS, HE, XIAO, ZENG, and ZHENG PHYS. REV. D 111, 015007 (2025)

015007-14



c0γ�ZZðqγ�Þ ¼
m5

Zy
2

288π2vM4
sinð2θWÞ

×

"
−3 cosð2θWÞ þ 1þ 6 log

M2

−q2γ�

#
; ð5:13aÞ

c0Z�ZZðqZ� Þ ¼ −
m5

Zy
2

576π2vM4

"
3 cosð4θWÞ − 20 cosð2θWÞ

þ 13þ 24sin2θW log
M2

−q2Z�

#
; ð5:13bÞ

c0γ�γZ ¼ −
m5

Zy
2

96π2vM4
sin2ð2θWÞ; ð5:13cÞ

c0Z�γZ ¼ m5
Zy

2

96π2vM4
sinð2θWÞ½− cosð2θWÞ þ 3�: ð5:13dÞ

We note that Eq. (5.12) is an extension of Eq. (2.9) to
accommodate the logarithmic momentum dependence
from the soft part. The nTGC coupling coefficients
ðc0V�γZ; c

0
V�ZZÞ are connected to the conventional notations

via ðc0V�γZ; c
0
V�ZZÞ ¼ ðehV3 ; efV5 Þ, as shown in Eq. (2.10).

For an estimate we consider the recent collider
analyses [6–10] on probing nTGCs at the future eþe−
colliders CEPC (250 GeV) and CLIC (3 TeV) and a future
pp collider (100 TeV), with integrated luminosityies
ð20; 5; 30Þ ab−1 respectively. We find that the sensi-
tivity reaches are M=jyj1=2 < ð190; 570; 880Þ GeV for
Z�-exchange and M=jyj1=2 < ð125; 396; 647Þ GeV for
γ�-exchange. Since the fermionic UV contributions to
nTGCs are suppressed by both the heavy mass factor ∝
M−4 and the one-loop factor, the estimated collider bounds
above and in Sec. VA are quite weak. The bounds on the
all-heavy and heavy-light cases are quite comparable to
each other.
During the finalization of this paper we compared our

results with those of a recent paper [46] that also studied the
derivation of nTGCs from certain fermionic UV models.
This paper considered only 4CP-even dimension-8 oper-
ators in its Eqs. (2.4)–(2.7) that contribute to nTGC vertices
with two on-shell gauge bosons, whereas our study con-
siders a complete set of 7CP-conserving, Higgs-dependent
dimension-8 operators (2.1) and (2.2) that generate nTGCs
and studies their matching to the one-loop contributions of
UV models. These operators all contribute to the off-shell
nTGC vertices and their consideration eliminates the
possible ambiguity that may arise from the choice of
nTGC operator basis. Also, our method of matching differs
from that of [46]. Besides the coefficients of one-loop
effective operators, we have provided a systematic treatment
of the (off-shell) full nTGC vertices as obtained from the
one-loop fermionic UV contributions, including both their
hard parts and soft parts. The soft parts are induced by the

heavy-light mixing case and were not considered in [46].
Our work provides an independent full treatment on the
fermionic UV completion of the low energy nTGCs.

VI. CONCLUSIONS

Neutral triple gauge couplings (nTGCs) open up a unique
window for probing the new physics beyond the Standard
Model (SM), because they are absent both in the SM and in
the SMEFT at the level of dimension-6 operators, and first
appear in the SMEFT at the level of dimension-8 operators.
In recent years there has been increasing experimental and
phenomenological interest in studying probes of neutral
triple gauge couplings (nTGCs) at present and future
collider experiments [4–11]. It is thus highly desirable to
study how the underlying UV dynamics of new physics can
naturally generate such nTGCs at low energy in the SMEFT
formulation.
In this work, we have shown how nTGCs may be

generated by loop diagrams involving vectorlike heavy
fermions, considering both loops of heavy fermions alone
and also loops containing a mixture of the heavy fermions
and the SM light fermions. We presented a complete set of 7
dimension-8 SMEFT operators (2.1) and (2.2) that generate
CP-conserving off-shell nTGCs, where only 4 of them
contribute to the nTGC form factors with two on-shell
gauge bosons. Then, we demonstrated that at the one-loop
order such a fermionic UV completion only induces the
dimension-8 nTGC operators containing two Higgs-doublet
fields.
We have described the treatment of γ5 in our fermionic

one-loop analysis. Then, we analyzed in detail the sepa-
ration between the soft and hard parts of the one-loop
integrals that appear in the heavy-light fermion mixing case
and the associated Ward-Takahashi identity. We further
gave a prescription for the treatment of spinor traces that
eliminates irrelevant anomalies in all the intermediate steps
of matching.
We have evaluated the fermion loops with off-shell

external gauge bosons and matched their hard parts to
the 7 dimension-8CP-even nTGCs operators (2.1) and
(2.2). Then, we required two external gauge bosons of
the nTGC vertices to be on-shell and derived the 4 form
factors induced by the fermion loops. We have found that
the contributions of the all-heavy and heavy-light fermion
loops yield results of comparable magnitude, as can be seen
by comparing Eqs. (5.4) and (5.5) with Eqs. (5.10) and
(5.11). An essential difference is the appearance of loga-
rithmic contributions in the heavy-light case that are absent
in the all-heavy case. For the heavy-light case, we presented
a generalized nTGC form factor formulation in Eq. (5.12)
and derived the corresponding form factor coefficients in
Eq. (5.13), which explicitly contain extra terms with
logarithmic momentum dependence. This explains why
the conventional nTGC form factor formulation (2.9)
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should be extended to the new Eq. (5.12) in the heavy-
light case.
The perturbative one-loop fermionic UV contributions to

the low-energy effective nTGC operators are suppressed by
both the fourth power of the heavy fermion mass M and a
loop factor, making it quite challenging to probe such
perturbative scenarios of new physics via their UV con-
tributions to nTGCs at the LHC and future high energy
colliders. On the other hand, the nTGCs may receive more
sizeable contributions from certain strongly interacting
nonperturbative UV models. Thus, the possible collider
discovery of a nTGC without an accompanying new
particle could provide evidence for a strongly interacting
sector beyond the SM.
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APPENDIX: OFF-SHELL NTGC VERTICES
FROM DIMENSION-8 OPERATORS

In this appendix, we show that among the nTGC
operators in Eqs. (2.1) and (2.2), only four operators

(combinations), O0̃
BW

, O0̃
BB
, O0

W̃W
, and OB̃W −OW̃B, con-

tribute to the off-shell nTGC vertices that are phenomeno-
logically relevant to fermion production processes at
colliders.
For instance, we may consider the following production

process:

ff̄ → V�
1 → V�

2V
�
3;

V�
2 → f2f̄2; V�

3 → f3f̄3; ðA1Þ

where the Vi denotes neutral gauge bosons and the fj the
SM fermions. For a nTGC vertex Γα1α2α3

V1V2V3
ðp1; p2; p3Þ with

momentum conservation p1 þ p2 þ p3 ¼ 0, we can ignore
the terms that are proportional to pαi

i , because in the tree-
level amplitude of the above production process, each
momentum pαi

i will be contracted with an external fermion
current and this contraction vanishes due to the equation of
motion of the external on-shell fermions.
Then, we derive the off-shell nTGC vertices from the

operators (2.1) and (2.2). For this, we will use the Schouten
identity Eq. (2.5) to rearrange the expressions such that
only one momentum contracts with the antisymmetric
tensor ϵμναβ. Ignoring the terms that contain pαi

i , the off-
shell nTGC vertices are evaluated as follows, where Γ and
Γ0 vertices are generated by operators O and O0 in
Eqs. (2.1) and (2.2), respectively.

(i) nTGC Vertex Aμ�ðp1ÞAν�ðp2ÞZρ�ðp3Þ

Γ0μνρ
B̃W

ðp1; p2; p3Þ ¼
1

4
ev2ðp2

2p1σϵ
μνρσ − p2

1p2σϵ
μνρσÞ; ðA2aÞ

Γ0μνρ
B̃B

ðp1; p2; p3Þ ¼
1

2
ev2 cot θWðp2

1p2σϵ
μνρσ − p2

2p1σϵ
μνρσÞ; ðA2bÞ

Γ0μνρ
W̃W

ðp1; p2; p3Þ ¼
1

8
ev2 tan θWðp2

1p2σϵ
μνρσ − p2

2p1σϵ
μνρσÞ; ðA2cÞ

which correspond to the contributions of O0̃
BW

, O0̃
BB
, and O0

W̃W
respectively, while the contributions by other

operators vanish.
(ii) nTGC Vertex Aμ�ðp1ÞZν�ðp2ÞZρ�ðp3Þ:

Γμνρ
B̃W

ðp1; p2; p3Þ ¼ −
1

2
ev2 csc 2θW ½ðp2

2 − p2
3Þp1σϵ

μνρσ þ p2
1ðp2σ − p3σÞϵμνρσ�; ðA3aÞ

Γμνρ
W̃B

ðp1; p2; p3Þ ¼
1

2
ev2 csc 2θW ½ðp2

2 − p2
3Þp1σϵ

μνρσ þ p2
1ðp2σ − p3σÞϵμνρσ�; ðA3bÞ

Γ0μνρ
B̃W

ðp1; p2; p3Þ ¼
1

4
ev2 tan θW ½cot2θWðp2

2 − p2
3Þp1σϵ

μνρσ þ p2
1ðp2σ − p3σÞϵμνρσ�; ðA3cÞ

Γ0μνρ
B̃B

ðp1; p2; p3Þ ¼ −
1

2
ev2½ð−p2

2 þ p2
3Þp1σϵ

μνρσ þ p2
1ðp2σ − p3σÞϵμνρσ�; ðA3dÞ
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Γ0μνρ
W̃W

ðp1; p2; p3Þ ¼
1

8
ev2½ð−p2

2 þ p2
3Þp1σϵ

μνρσ þ p2
1ðp2σ − p3σÞϵμνρσ�; ðA3eÞ

which correspond to the contributions of OB̃W , OW̃B, O
0̃
BW

, O0̃
BB
, and O0

W̃W
, respectively. The contributions to

A�Z�Z� vertex from other operators vanish. Since Γμνρ
B̃W

þ Γμνρ
W̃B

¼ 0, this means that the combination OB̃W þOW̃B

does not contribute to the nTGC vertex A�Z�Z�.
(iii) nTGC Vertex Zμ�ðp1ÞZν�ðp2ÞZρ�ðp3Þ:

Γ0μνρ
B̃W

ðp1; p2; p3Þ ¼
1

4
ev2½ðp2

1 − 2p2
2 þ p2

3Þp1σϵ
μνρσ þ ð2p2

1 − p2
2 − p2

3Þp2σϵ
μνρσ�; ðA4aÞ

Γ0μνρ
B̃B

ðp1; p2; p3Þ ¼
1

2
ev2 tan θW ½ðp2

1 − 2p2
2 þ p2

3Þp1σϵ
μνρσ þ ð2p2

1 − p2
2 − p2

3Þp2σϵ
μνρσ�; ðA4bÞ

Γ0μνρ
W̃W

ðp1; p2; p3Þ ¼
1

8
ev2 cot θW ½ðp2

1 − 2p2
2 þ p2

3Þp1σϵ
μνρσ þ ð2p2

1 − p2
2 − p2

3Þp2σϵ
μνρσ�; ðA4cÞ

which correspond to the contributions ofO0̃
BW

,O0̃
BB
, andO0

W̃W
respectively. The contributions to Z�Z�Z� vertex from

other operators vanish. We find that all the nTGC operators do not contribute to the vertices A�A�A�.
In summary, for the dimension-8 operators (2.1) and (2.2) only four operators, O0̃

BW
, O0̃

BB
, O0

W̃W
, and OB̃W −OW̃B,

contribute to the off-shell nTGC vertices.
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