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Abstract: We consider the complete set of planar two-loop five-point Feynman integrals with
two off-shell external legs. These integrals are relevant, for instance, for the calculation of the
second-order QCD corrections to the production of two heavy vector bosons in association with a
jet or a photon at a hadron collider. We construct pure bases for these integrals and reconstruct
their analytic differential equations in canonical form through numerical sampling over finite fields.
The newly identified symbol alphabet, one of the most complex to date, provides valuable data for
bootstrap methods. We then apply our results to initiate the study of double Lagrangian insertions
in a four-cusp Wilson loop in planar maximally supersymmetric Yang-Mills theory, computing it
through two loops. We observe that it is finite, conformally invariant in four dimensions, and of
uniform transcendentality. Furthermore, we provide numerical evidence for its positivity within the
amplituhedron region through two loops.
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1 Introduction

Scattering amplitudes are essential components that bridge the formal aspects of quantum field
theory with the observables that can be measured at particle colliders. Beyond the leading order in
perturbation theory, these amplitudes are computed as sums of Feynman integrals which originate
from the exchange of virtual particles. Indeed, understanding and being able to compute Feynman
integrals is crucial in providing precise theoretical predictions for high-energy particle colliders
such as the Large Hadron Collider (LHC). Besides their phenomenological importance, Feynman
integrals are also interesting objects in their own right as their mathematical structure is very rich,
with physical constraints being blended into complicated multi-valued functions. The calculation of
Feynman integrals is thus central to the advancement of our understanding of quantum field theory,
leading to both practical and theoretical advancements in particle physics.

While the functions which Feynman integrals evaluate to are generally not known (see ref. [1]
for a recent review), many physically relevant Feynman integrals can be expressed as Q-linear com-
binations of Chen’s iterated integrals [2] over logarithmic differential one-forms, known as symbol
letters. These so-called pure integrals [3] satisfy differential equations in canonical form [4] and
possess several properties that make them particularly valuable for representing the transcendental
functions involved in scattering amplitudes [5]. They provide compact and physically insightful rep-
resentations of scattering amplitudes and are often suitable for efficient numerical evaluation. The
intriguing relationship between symbols, leading singularities, and Landau singularities has gained
considerable attention recently, with new methods having being developed to predict sets of symbol
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letters [6–16], known as the alphabet. Additionally, certain constraints on the iterated integrals can
sometimes be derived [17, 18], which can be leveraged into bootstrap approaches to systematically
construct and verify the structure of scattering amplitudes. These provide a powerful method to
explore and understand the underlying physics without relying solely on explicit calculations.

It is a priori not known if a set of Feynman integrals contributing to a given scattering processes
can be represented in this form. While several methods have been devised to facilitate finding
such representations [19–28], in the case of multi-scale Feynman integrals this still remains a very
challenging task. At two loops, among the most complex cases considered are all integrals for five-
point one-mass scattering [29–31], some integrals for six-point massless scattering [32], as well as
selected integral topologies relevant for tt̄j and tt̄H in hadron collisions [33–35] (although in the
latter cases not all integrals were found to be pure). The first five-point integral topology with two
external masses has been considered in ref. [14]. These calculations all follow a similar pattern: one
finds a good basis for the space of Feynman integrals under consideration, and then obtains the
corresponding differential equations. In some cases the solutions in terms of iterated integrals can
be efficiently evaluated numerically [31, 36, 37].

In this work we consider the complete set of planar two-loop five-point integrals with two
off-shell external legs. These integrals are relevant, for instance, for the yet unknown second-order
corrections in the strong-coupling constant for the production of two heavy vector bosons production
in association with a jet or a photon, or for the third-order QCD corrections to the production of two
heavy vector bosons. We find that it is possible to construct sets of so-called master integrals whose
differential equations are in canonical form [4], that is where the dependence on the dimensional
regulator factorises and only logarithmic one-forms with algebraic arguments appear. We employ
finite-field techniques [38–40] to reconstruct the differential equations. The logarithmic forms, or
symbol letters, mostly but not completely match the results predicted by the method of ref. [14].
Even if incomplete, the partial knowledge of the symbol alphabet greatly simplifies the task of
reconstructing the analytic differential equation. We find that the complexity of the alphabet
increases substantially compared to the case where a single external leg is off-shell [29].

The Feynman integrals that we calculate in this work are also interesting for studies of more
formal aspects of QFT. We are motivated by the renowned duality between the vacuum expectation
values of the null polygonal Wilson loops and scattering amplitudes in maximally super-symmetric
Yang-Mills theory (MSYM) [41–43]. This duality suggests the definition of a class of finite gauge-
invariant multi-scale observables in MSYM which are closely related to the scattering amplitudes
and their integrands [44]. We consider the correlations functions of the null Wilson loop and several
Lagrangians, normalised by the vacuum expectation value of the null Wilson loop. This ratio of
correlation functions is finite and is expected to possess a number of intriguing properties, as we
discuss in this paper. We refer to it as Lagrangian insertions in the null Wilson loop.

The case of a single Lagrangian insertion in the four-cusp Wilson loop has been extensively
studied in the literature. It is calculated at strong coupling [45] and at weak coupling up to three-
loop order [46–48]. The single Lagrangian insertion in multi-cusp Wilson loop has been studied
in [49], where hidden symmetries and dualities with pure Yang-Mills amplitudes have been re-
vealed. The single Lagrangian insertion in the five-cusp Wilson loop has been calculated in the
two-loop approximation in [50]. A recent inspiring development in the perturbative study of the
single Lagrangian insertion in the four-cusp Wilson loop originated from its geometric descrip-
tion. The four-dimensional loop integrands of scattering amplitudes are completely specified by the
amplituhedron [51]. However, the implications of the amplituhedron construction are less trans-
parent for integrated amplitudes, which require infrared regularisation. Unlike amplitudes, the
Lagrangian insertion in the Wilson loop is well-defined in four space-time dimensions, and the ge-
ometric constructions for the four-dimensional loop integrands can be promoted to the integrated
loop corrections. A decomposition of the loop corrections into negative geometries has been studied
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in refs. [52, 53], and certain geometries have been solved and resummed to all loop orders. The
negative geometry decomposition has been also extended to the ABJM theory [54–56].

Given the numerous beautiful properties observed for the single Lagrangian insertion, it is
natural to wonder if these also hold for double Lagrangian insertions. In this work we initiate the
study of double Lagrangian insertions. We consider the double Lagrangian insertion in the four-
cusp null Wilson loop, which is the simplest null polygonal contour, and calculate it for the first
time through two loops. As compared to the single Lagrangian insertion, the kinematic space of
the double Lagrangian insertion is multidimensional already for the four-cusp contour considered in
this paper. The perturbative two-loop calculation we perform here supports the expectation that
the double Lagrangian insertion is finite, conformally invariant in four dimensions, and has uniform
transcendentality. The fact that these properties emerge from our calculation give a strong check
of the correctness of the integrals we compute in this paper.

Another remarkable geometric observation focuses on the positivity of the integrated loop cor-
rections of the single Lagrangian insertion. More precisely, relying on the available perturbative
data, it was observed in refs. [49, 52] that the loop corrections of the single Lagrangian insertion
have uniform sign in a certain subregion of the Euclidean kinematic region which is predicted by
the amplituhedron construction. Recently, ref. [57] provided evidence that the positivity of the
loop corrections could be extended to a much stronger statement of complete monotonicity, which
restricts the sign of the derivatives of all orders in kinematic variables. In this work we provide
numerical evidence that the integrated loop corrections of the double Lagrangian insertion have
uniform sign inside the amplituhedron region, at least up to two loops.

The paper is organised as follows. In section 2 we discuss our notation and conventions for
the integrals considered in this paper. In section 3, we discuss the pure bases of master integrals
and the corresponding analytic differential equations, including the determination of the alphabet
relevant for the description at two loops of planar scattering processes involving five particles, out
of which two are off shell. We also provide sample numerical evaluations and discuss the checks
we performed. In section 4 we present the calculation of the double Lagrangian insertion in a
(quadrilateral) Wilson loop at the two-loop order. We summarise our results and discuss some
possible next steps in section 5. We conclude with two appendices. In appendix A we list our
master integrals for all the five-point sectors of the two-loop families. In appendix B we define a
number of kinematic regions relevant in this work. Our ancillary files are available at [58].

2 Kinematics and Definitions

2.1 Kinematics

We compute all two-loop planar integrals required to describe scattering processes involving five
external legs, out of which three are massless and two are massive. All internal propagators are
massless. The momenta of the massless external legs are denoted p1, p2 and p3, and the momenta
of the two massive legs are denoted p4 and p5. We take the momenta to be outgoing, and they
satisfy the momentum-conservation relation

p1 + p2 + p3 + p4 + p5 = 0 . (2.1)

With these kinematics, there are seven independent Mandelstam variables, which we choose to be

X :=
{
s12, s23, s34, s45, s15, s4, s5

}
, (2.2)

with sij := (pi+pj)
2 and si := p2i . We work in dimensional regularisation, with d = 4−2ϵ spacetime

dimensions and four-dimensional external momenta.

– 3 –



The kinematics of these processes are also described by Gram determinants. We define them as

Gram
(
{a1, . . . , am}, {b1, . . . , bm}

)
:= det (2 ai · bj)

∣∣
i,j=1,...,m

,

Gram(a1, . . . , am) := Gram
(
{a1, . . . , am}, {a1, . . . , am}

)
.

(2.3)

In particular, we will need

∆3(pi, pj) := Gram
(
pi, pj

)
= −λ(si, sj , si,j) , (2.4)

∆5 := Gram
(
p1, p2, p3, p4

)
, (2.5)

where λ(x, y, z) is the Källén function,

λ(x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2zx . (2.6)

The Gram determinant ∆5 is related to the five-particle pseudo-scalar invariant via

∆5 = tr(/p1/p2/p3/p4γ5)
2 . (2.7)

We also use Gram determinants to express the (−2ϵ)-dimensional components of the loop
momenta, conventionally denoted µij , in terms of scalar products of external and loop momenta:

µij := k
[−2ϵ]
i · k[−2ϵ]

j ,

=
Gram

(
{ki, p1, p2, p3, p4}, {kj , p1, p2, p3, p4}

)
2∆5

, (2.8)

where ki =: k
[4]
i + k

[−2ϵ]
i , with k

[−2ϵ]
i · pj = 0 = k

[−2ϵ]
i · k[4]j . These objects play an important role in

the construction of compact pure integral bases (see section 3).

2.2 Integral Families

The set of integrals we will compute can be organised into two one-loop families and six two-loop
families, distinguished by the relative position of the two massive legs. They are depicted in figs. 1
and 2, together with our convention for the routing of the loop momenta and the naming of each
family. Each diagram in figs. 1 and 2 is associated with a set of master integrals. For instance, to
the diagram of fig. 1a we associate a vector space corresponding to integrals of the form

IPa(ν⃗) =

∫
d4−2ϵk eϵγE

iπ2−ϵ

1

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5

=

∫
D4−2ϵk

1

(k2)ν1

1

[(k + p1)2]ν2

1

[(k + p1 + p2)2]ν3

1

[(k − p4 − p5)2]ν4

1

[(k − p5)2]ν5

(2.9)

for integer νi. We omit Feynman’s prescription for the propagators. Each element in this vector
space corresponds to a set of exponents ν⃗, and in this paper we compute a basis of this space. In
eq. (2.9), we introduced the integration measure in dimensional regularisation

D4−2ϵk :=
d4−2ϵk eϵγE

iπ2−ϵ
, (2.10)

which also defines the normalisation of our integrals. The inverse propagators ρi can be read off
the diagram in fig. 1a, where we included a (red) index for each propagator. The corresponding
expression for the second one-loop family, denoted IPb(ν⃗), can be easily obtained from fig. 1b.

At two loops, the diagrams in fig. 2 are not sufficient to fully specify our conventions, as we must
also define the so-called irreducible scalar products (ISPs). To each diagram in fig. 2 we associate
a vector space corresponding to integrals of the form

IF (ν⃗) =

∫
D4−2ϵk1 D4−2ϵk2

ρ−ν9
9 ρ−ν10

10 ρ−ν11
11

ρν1
1 ρν2

2 ρν3
3 ρν4

4 ρν5
5 ρν6

6 ρν7
7 ρν8

8

, (2.11)
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Figure 1: Independent set of one-loop “pentagon” topologies.
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Figure 2: Independent set of two-loop “pentagon-box” topologies.

with F ∈ {PBmmz, PBmzm, PBmzz, PBzmz, PBzzm, PBzzz} and for integer νi such that νi ≤ 0

for i = 9, 10, 11. The complete set of definitions for all the families considered in this paper can be
found in our ancillary files [58].

The dimension dim(F ) of the vector space associated with each family F in figs. 1 and 2
corresponds to the number of master integrals we must compute for each of them. We collected
these numbers in table 1. We determined them by generating systems of integration-by-parts (IBP)
relations [59, 60] with LiteRed [61, 62] and NeatIBP [63], and solving them with the Laporta
algorithm [64] within the finite-field framework FiniteFlow [40, 65].

We close the discussion of integral families with two comments. First, we do not consider here
two-loop families that are products of one-loop integrals, as they can be trivially obtained from
the integrals computed in this paper. Second, all planar integral topologies for instance “triangle-
hexagon”, are reducible to the integrals from pentagon-box topologies computed here.
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Family dim(F ) dim(AF ) Family dim(F ) dim(AF )

Pa 16 43 PBmzz 105 80
Pb 15 39 PBzmz 104 96
PBmmz 94 85 PBzzm 104 82
PBmzm 87 52 PBzzz 127 104

Table 1: The number of master integrals dim(F ), and the dimension of the alphabet dim(AF ) of
each family F .

3 Pure Bases and Canonical Differential Equations

A pure basis and canonical differential equations for PBzzz were already obtained in ref. [14]. In
this section, we discuss the construction of pure bases [3] of master integrals (MIs) for all families.
Let I⃗F be the list of all MIs for the family F . We say that I⃗F is pure if it satisfies a system of
differential equations (DEs) in the canonical form [4]

dI⃗F (X, ϵ) = ϵdAF (X) · I⃗F (X, ϵ) , (3.1)

where the connection matrix AF (X) is given by a Q-linear combination of logarithms,

AF (X) =
∑
i

a
(F )
i log (Wi(X)) . (3.2)

Here, d is the total differential with respect to the kinematic invariants in X (see eq. (2.2)),

d =
∑
x∈X

dx
∂

∂x
, (3.3)

a
(F )
i is a matrix of rational numbers, and the Wi(X)’s are algebraic functions of X called letters.

The ensemble of all letters, called the alphabet and denoted AF below, encodes the singularity
structure of the MIs. We devote section 3.2 to the identification of the letters and the expression
of the connection matrices in terms of them, and focus here on the problem of constructing a basis
I⃗F such that the dimensional regulator ϵ factorises as in eq. (3.1).

Given a list of candidate MIs I⃗F (X, ϵ), we differentiate it using LiteIBP [40, 65], and rewrite
the derivatives in terms of I⃗F (X, ϵ) by solving IBP relations. We generate the required IBP relations
using LiteRed [61, 62] and NeatIBP [63]. The latter provides optimised systems of IBP relations
by solving syzygy equations [66], allowing for a faster and less memory-consuming solution. We solve
the IBPs via the Laporta algorithm [64] within the finite-field framework FiniteFlow [40, 65]. This
allows us to side-step the intermediate expression swell which plagues multi-variable computations
by replacing the symbolic manipulations with numerical evaluations over finite fields [38, 39]. In
other words, all rational coefficients are evaluated numerically for random integer values of all
variables X and ϵ modulo some (large) prime number.

The complete factorisation of ϵ requires the introduction of several square roots. A number
of approaches have been proposed to include them in the finite-field framework, e.g. by sampling
over phase-space points where the arguments of the roots are perfect squares in the finite field (see
e.g. [29]). These approaches are however inconvenient when there are many distinct square roots.
Following ref. [40], we prefer to reconstruct the DEs for what we call “pre-canonical” bases I⃗ ′F , i.e.,
bases whose MIs are pure up to overall normalisation by square-root factors. In other words, their
DEs take the form

∂I⃗ ′F (X, ϵ)

∂x
=

[
A

(0)
F,x(X) + ϵA

(1)
F,x(X)

]
· I⃗ ′F (X, ϵ) , (3.4)
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for all x ∈ X, where A
(0)
F,x(X) and A

(1)
F,x(X) are matrices of rational functions, and A

(0)
F,x(X) is

diagonal, with non-zero entries only in correspondence with those MIs which require a square-
root normalisation. The finite-field sampling of the matrices A

(k)
F,x(X) can then proceed via the

standard algorithms. We perform the functional reconstruction by following the strategy described
in e.g. refs. [67, 68], based on fitting linear relations among the rational coefficients and matching
factors against an ansatz over univariate phase-space slices. We also set s12 = 1 and restore
its dependence via dimensional analysis. With these techniques and the optimised IBP relations
generated by NeatIBP, the functional reconstruction of the DEs for the pre-canonical bases is
fairly simple.

Finally, we achieve the factorisation of ϵ with a basis transformation

I⃗F (X, ϵ) = NF (X) · I⃗ ′F (X, ϵ) , (3.5)

where the transformation matrix is diagonal and satisfies the DEs

∂NF (X)

∂x
+NF (X) ·A(0)

F,x(X) = 0 (3.6)

for all x ∈ X. We obtain the analytic expression of NF (X) by solving these DEs. Alternatively, one
may determine it by computing the leading singularities [3], but we find this to be unnecessary in
this case as the DEs in eq. (3.6) are fairly simple to solve. We recall that, by construction, NF (X)

contains only the square-root normalisations. In other words, NF (X)2 is a rational function. The
resulting DEs for I⃗F (X, ϵ) take the ϵ-factorised form in eq. (3.1), where the connection matrix
AF (X) satisfies

∂AF (X)

∂x
= NF (X) ·A(1)

F,x(X) ·N−1
F (X) , (3.7)

for all x ∈ X.
In section 3.1 we discuss how we constructed the pre-canonical integral bases. In section 3.2

we describe the alphabet, how we obtained it, and how we express the connection matrices AF (X)

in terms of logarithms of letters, as in eq. (3.2). Section 3.3 is devoted to the initial conditions
necessary to solve the DEs, to the solution of the DEs using DiffExp, and to the validation of our
results. Finally, in section 3.4 we discuss how the canonical DEs and the initial conditions allow
us to straightforwardly obtain the associated symbols [69] and write the integrals in terms of Chen
iterated integrals [2].

3.1 Construction of the Pure Bases

We organise the construction of the integral bases sector by sector, starting from the lowest, i.e.,
the one with the fewest propagators. We first analyse each sector on its maximal cut. This amounts
to focusing on the diagonal block of the connection matrices which couples the MIs of the chosen
sector. We refer to this part of the DEs as the homogeneous part. Once the diagonal block of a
given sector is in pre-canonical form, we extend the analysis to include all its sub-sectors. A basis
which is canonical on the maximal cut may still require sub-sector corrections to be pure. If the
entry ij in the in-homogeneous part of the connection matrix is not ϵ-factorised, we modify the
definition of the ith MI by a term proportional to the jth MI, and fix the coefficient by imposing the
factorisation of ϵ in the entry under consideration. This approach requires the analytic expression
of the relevant entries of the DEs. As mentioned above, obtaining it is not a bottleneck in this
case, provided that the integral basis is already (pre-)canonical on the maximal cut. This in fact
ensures that the analytic expression of the connection matrices is substantially simpler than with
an arbitrary basis. Once a sector is fixed, we proceed to all its super-sectors, until we reach the top
sector.
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We construct candidate pure bases for the sectors with fewer than five external legs by mapping
pure integrals taken from the literature onto our definitions. In particular, we make use of the
results of ref. [28] for the planar two-loop four-point integrals with three external massive legs, and
of ref. [29] for the MIs that overlap with those appearing in planar two-loop five-point integrals
with one external massive leg.

For the genuinely five-point sectors, we build upon the knowledge about two-loop five-point
integral families with other external mass configurations available in the literature. More precisely,
we draw from refs. [29, 34, 35]. We take their choices of MIs, naïvely change the kinematics to
ours, and make manual adjustments to achieve the factorisation of ϵ. This process is particularly
simple for integrals written in terms of the loop-momentum scalar products µij defined in eq. (2.8)
since, unlike the same expressions after expansion in terms of scalar integrals, they have trivial
generalisations to different kinematic configurations. We emphasise that, in order to analyse the
dependence on ϵ of the pure candidates constructed in this way, it suffices to reconstruct the ϵ

dependence of the connection matrices, that is, it suffices to work on a univariate slice where all
kinematic variables X are set to random values, which is computationally inexpensive.

The top sectors of all families but PBzzz have 3 MIs each. Following the pattern known in the
literature [29, 34, 35], we find that the following numerators give rise to pure integrals:

N (1)
F = ϵ4

√
∆5 (pF,i + pF,j)

2 µ12 ,

N (2)
F = ϵ4

√
∆5 (pF,i + pF,j)

2 µ22 ,
(3.8)

where pF,i and pF,j are the external momenta attached to the box sub-graph. For the third MI in
the top sector, the literature suggests to start from a numerator proportional to (k2 − qF )

2, where
qF is the external momentum on the bottom left of the graphs in fig. 2. In addition to an overall
normalisation factor, we find that a simple sub-sector correction is required for some of the families.
Explicitly, we find

N (3)
PBmmz = ϵ4 s12(s4s12 − s34s45) (k2 − p1)

2 ,

N (3)
PBmzm = ϵ4 s12(s4s5 − s4s34 − s5s34 − s12s34 + s234 + s34s45) (k2 − p1)

2 ,

N (3)
PBmzz = ϵ4 s12s15

[
s34 (k2 − p3)

2 − s4 k
2
2

]
,

N (3)
PBzmz = ϵ4 (s4s15 − s4s5 + s12s15 + s5s23 + s5s34 − s15s34 − s15s45)

[
s24 (k2 − p2)

2 − s4 k
2
2

]
,

N (3)
PBzzm = ϵ4 s23(s4 + s5 + s12 − s34 − s45)

[
s14 (k2 − p1)

2 − s4 k
2
2

]
.

(3.9)

Unlike the cases above, the top sector of the family PBzzz has 4 MIs. It was already studied
in ref. [14], but we provide here a new representation of the pure basis in terms of µ-insertions for
a subset of the MIs. Indeed, three of them can be chosen as above:

N (1)
PBzzz = ϵ4

√
∆5 s45 µ12 ,

N (2)
PBzzz = ϵ4

√
∆5 s45 µ22 ,

N (3)
PBzzz = ϵ4 s45

[
s12s23 (k2 − p4)

2 − s12s15 k
2
2 − s23s34 (k2 − p4 − p5)

2
]
.

(3.10)

For the fourth MI we could not find a simple representation, and we adopted the definition from
ref. [14]. The expression is lengthy and we thus omit it here. We limit ourselves to highlighting
that its normalisation involves two square roots (of ∆5 and of λ(s4, s5, s45)), and that a simple
numerator which yields ϵ-factorised DEs on the maximal cut is

N (4)′

PBzzz = ϵ4 s45
√
∆5

√
λ (s4, s5, s45)

2 (k2 − p4)
2 µ12 + (s45 − s4 − s5)(µ12 + µ22)

λ (s4, s5, s45)
+ (sub-sectors) .

(3.11)
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We present our pure bases for all the other five-point sectors in appendix A. The complete bases
can be found in the ancillary files [58].

3.2 Analytic Differential Equations and Alphabet

Having determined pure bases for each family, we now turn to obtaining analytic DEs in the form of
eqs. (3.1) and (3.2). The main missing ingredient are the set of letters of the alphabet corresponding
to each family, i.e., the logarithms in eq. (3.2). Despite having analytic DEs, casting them in the
form of eqs. (3.1) and (3.2) still requires to integrate the entries of the DE matrices to identify the
letters. In practice, we find it more convenient to follow the approach of ref. [30, 70], where the
letters are not obtained directly from the DEs, and the analytic differential equations are obtained
by numerically fitting the matrices a

(F )
i in eq. (3.2) once the alphabet is known.

In order to determine the letters for each of the families in fig. 2 we rely on recent developments
in constructing symbol alphabets [9–14, 16], in particular on the implementation of the ideas of
ref. [14] in the Mathematica library Baikovletter. In this section, we discuss which letters could
be determined using ref. [14], and which letters we had to construct ourselves.1

The first question we can ask about the alphabets AF associated with each of the integral
families we consider in this paper is their dimension, that is the number of linearly independent
(combinations of) dlogs that appear in the associated differential equations. Answering this question
does not require knowledge of the analytic form of the dlogs, and we collect the alphabet dimensions
in table 1.

Once the dimension of the alphabet is known, we have a target for the number of letters we
must construct for each family. Based on previous experience [30], we distinguish several types
of letters. First, we have even letters that are polynomials in the Mandelstam variables. Second,
we have odd letters which change their sign together with the sign of the square roots that were
introduced to construct the pure basis. Odd letters can depend on either a single square root

√
Λ

or two square roots
√
Λ1 and

√
Λ2. In the first case we assume they take the form

p(X) + q(X)
√
Λ

p(X)− q(X)
√
Λ
, (3.12)

and in the second case they take the form

p(X) + q(X)
√
Λ1

√
Λ2

p(X)− q(X)
√
Λ1

√
Λ2

, (3.13)

where p(X) and q(X) are polynomials in X. Odd letters have the property that they are singular
at places where the even letters vanish [30, 71, 72]. Given that the square roots are known, this
observation can be used to constrain the polynomials p(X) and q(X) and thus construct candidate
odd letters. Finally, we note that in the alphabet corresponding to five-point one-mass kinematics
at two loops we found that we could always set q(X) = 1, but this is not possible for the two-mass
case.

We used the Mathematica package Baikovletter [14] to identify most of the alphabet for each
of the families in fig. 2 (the alphabet of the one-loop families in fig. 1 is a subset of the two-loop
one). For PBmmz, PBmzz and PBzzz, the letters identified in this way exactly span the space
corresponding to the alphabet we find in the differential equations. For PBmzm, we find that
Baikovletter identifies one odd letter that is in fact not required. For PBzzm, the code does

1Following the completion of this work, a new version of Baikovletter was released, capable of identifying
the missing letters, with the exception of the one in eq. (3.14). The latter requires analyzing a next-to-minimal
Baikov representation, rather than the minimal representation used by Baikovletter. We thank Xuhang Jiang for
correspondence on this matter.
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p2 + p3

p1
p5

p4

(a) r
(1)
1 of eq. (3.16).

p1

p2

p3
p4

p5

(b) r
(1)
2 of eq. (3.17).

p2

p4

p3
p5

p1

(c) r
(1)
3 of eq. (3.18).

Figure 3: Representative diagrams that introduce square roots.

not identify one of the square roots, which appears as the leading singularity of one of our pure
integrals (a permutation of the one given in eq. (3.18) below, see also fig. 3c), and thus also misses
the associated odd letters. We constructed four letters of the type given in eq. (3.12) that involve
only that square root, as well as two letters of the type given in eq. (3.13), one involving the new root
and

√
λ(s4, s23, s15), and one involving the new root and

√
∆5. One of the odd letters identified

by the code is not required. Finally, Baikovletter misses sixteen letters for PBzmz. Fourteen
out of these sixteen letters are related to the letters that are missed for PBzzm. These are two
permutations of the square root given by eq. (3.18) below, and the associated twelve odd letters
(six for each root) described above. The rational letter

s4s12s15 + s5s23s34 − s15s34s45 (3.14)

is also not identified, even though it is a permutation of a rational letter that is identified. The last
missed letter is odd in

√
∆5, and the derivative of its logarithm is singular when the rational letter

in eq. (3.14) vanishes, which presumably explains why it is not identified.
The representative families of fig. 2 correspond to a particular ordering of the external momenta.

When computing a physical process, all permutations of massless and massive legs may appear. In
order to obtain the full alphabet required for planar five-point two-mass processes at two loops, we
must thus consider the closure of the alphabets discussed above under all such permutations.

As already highlighted, square roots play a distinguished role in building the alphabet, allowing
us to classify the letters into even and odd letters depending on their charge under the change of
the square-root sign. In order to organise our alphabet, we start by noticing that all square roots
can be grouped into five permutation orbits.2

The first is the (square-root of) Källén function, and we take as a representative

∆
(1)
3 = λ(s4, s5, s45) . (3.15)

It can appear in 7 permutations ∆
(i)
3 , i = 1, . . . , 7 (note the minus sign difference between the

definition of ∆3 in eq. (2.4) and ∆
(i)
3 ). The second root appears as the leading singularity of the

integral in fig. 3a with unit numerator, and its argument is

r
(1)
1 = s24s

2
23 − 2s4s23(2s5 − s15 + s23)s45 + (s15 − s23)

2s245 , (3.16)

and it can appear in 18 permutations r
(i)
1 , i = 1, . . . , 18. This root is associated with four-point

three-mass kinematics, and was already identified in ref. [28]. The third root appears as the leading
2Note that this requires viewing five-point two-mass kinematics as a seven-point massless process, and then

considering all permutations of the seven-point process that are consistent with five-point two-mass kinematics.
Considering only the permutations of the massless momenta {p1, p2, p3} and the massive momenta {p4, p5} would
miss some relations.
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Root Degree
Orbit
length

∆
(i)
3 2 7

∆5 4 1
r
(i)
1 4 18
r
(i)
2 4 6
r
(i)
3 4 12

(a) Polynomial degrees and permutation orbit
lengths of the square roots appearing in the al-
phabet.

∆
(i)
3 ∆5 r

(i)
1 r

(i)
2 r

(i)
3

∆
(i)
3 38

∆5 8 69

r
(i)
1 36 30 66

r
(i)
2 6 6 0 24

r
(i)
3 12 12 0 0 48

(b) The number of letters that are odd in the
square roots given in each row and column.

Table 2: Summary of the algebraic part of the alphabet, which contains 44 square roots and 355
algebraic letters.

singularity of the integral in fig. 3b with unit numerator, its argument is

r
(1)
2 = s24s

2
12 + 2s4s12(s5s23 + (s15 − s34)s45) + (s5s23 + (s34 − s15)s45)

2 , (3.17)

and it can appear in 6 permutations r
(i)
2 , i = 1, . . . , 6. The fourth root appears as the leading

singularity of the integral in fig. 3c with unit numerator, its argument is

r
(1)
3 = 4s4s12(s5 − s15)s15 + (s5(s23 + s34)− s15(s34 + s45))

2 , (3.18)

and it can appear in 12 permutations r
(i)
3 , i = 1, . . . , 12. This square root can be computed in a

very similar way as the Σ5 square root was computed in [31]. As mentioned previously, it is missed
by the Baikovletter code. It is however captured by the recursive Landau approach of [16]. The
package PLD.jl [9] also detects it when computing Euler discriminants, but fails to detect it when
computing principal Landau discriminants.3 Finally, we also find the square-root of the five-point
Gram determinant ∆5,

∆5 =(s4s12 + s12(s15 − s23) + s5s23 − s23s34 − s15s45 + s34s45)
2 − 4s5s12s23s34

− 4s4s12(s12s15 + (s15 − s34)(s23 − s45))− 4s12s23s34(s23 − s15 − s45) ,
(3.19)

which is invariant under permutations. In total, this means that there are 44 roots for planar
five-point two-mass scattering at two loops.

Let us now return to the closure of the letters in the alphabet under all permutations. We find
that there is a total of 570 letters, out of which 215 are even and 355 are odd. Out of the odd
letters, 236 are of the form in eq. (3.12) and depend on a single square-root and 119 are of the form
in eq. (3.13) and depend on two square-roots (see table 2). The full alphabet can be found in our
ancillary files.

3.3 Initial Conditions and Checks

In order to solve the differential equations we need the evaluation of the master integrals at a point.
The package AMFlow [73, 74] makes this a triviality, and as such the determination of the initial
conditions for the numerical solution of the differential equations is now a simple problem.

3We thank Mathieu Giroux and Sebastian Mizera for assistance in these checks. The failure of the principal
Landau discriminant approach in identifying this singularity is related to the fact that one of the subloops is a
triangle, whose leading singularity corresponds to taking the loop momentum to infinity and is a more subtle case
to handle within this approach.
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For completeness, we include in our ancillary files the numerical evaluation of our bases of
integrals at a point in the Euclidean region (where integrals are either purely real or imaginary)
and a point in what we call the ‘s12-channel’, corresponding to a process where p1 and p2 are in the
initial state and p3, p4 and p5 are in the final state (e.g., the production of two massive vector bosons
together with a jet at a hadron collider). We refer the reader to appendix B for more details on
how these kinematic regions are defined, and here simply quote the point we chose in the Euclidean
region,

Xeu =

(
−3

2
,−3,−57

8
,−23

4
,−5

8
,−11,−1

)
, (3.20)

and the point in the s12-channel,

X0 =
(
7,−1, 2, 5,−2, 1, 1

)
. (3.21)

We note that the point Xeu is randomly chosen, but we verified that it does not correspond to
a singular point of the differential equations. On the other hand, X0 is chosen to be a good
initial condition for the construction of pentagon functions according to the criteria of ref. [37].
In particular, aside from being in the s12-channel kinematic region, it is symmetric under the
external-momenta index swaps 1 ↔ 2 and 4 ↔ 5, which implies that it lies on the surface where
s4 = s5.

The evaluations at these two points were obtained with 80-digit precision using AMFlow. We
verified that, starting from Xeu and evolving the differential equations to X0 with DiffExp [75] we
obtain the same results. Given that X0 is a very constrained kinematic point, we also evaluated
the functions at a generic point X1 in the s12-channel,

X1 =

(
7

2
,−15

53
,
11

8
,
15

17
,− 7

30
,
1

15
,
4

31

)
. (3.22)

Once again, we find complete agreement with the AMFlow evaluations and the DiffExp results
obtained by using either X0 or Xeu as an initial condition.4

Finally, solving the differential equations up to order ϵ is particularly simple (all integrals
are normalised to start at order ϵ0). One must simply require that the solutions to the differential
equations only have logarithmic singularities at the physical thresholds, which amounts to imposing
the so-called first entry condition [76]. In our case, the physical thresholds are at s4 = 0, s5 = 0

and sij = 0 if and only if the indices i and j correspond to external momenta appearing next to
each other in the graph representing each family (see figs. 1 and 2). This fixes the solutions at order
ϵ0, which are just rational numbers. At order ϵ, the solutions are obtained from the differential
equation as linear combinations of log(−s4 − i 0+), log(−s5 − i 0+) and log(−sij − i 0+), where
0+ is a positive infinitesimal, and i and j satisfy the conditions above. We compared the analytic
solutions determined in this way to the numerical evaluations described above and found complete
agreement.

3.4 Iterated Integral Solution

While in the previous section we solved the differential equations numerically, their canonical form
also allows us to write the solution analytically in terms of Chen iterated integrals [2]. Order by

4We note that when evolving the solution from Xeu to X1 with DiffExp for Pb, PBmzm and PBzmz we encounter
a logarithmic singularity that cannot be analytically continued through by simply providing a positive imaginary
part to s12, s23, s34, s45, s15, s4 and s5 as one might have expect. The singularity is associated with the letter
s4(s5 − s34) + s34(s34 + s45 − s5 − s12) and occurs outside of the physical s12 channel. To bypass this issue we can
first evolve from Xeu to X0 and then from X0 to X1, finding agreement with the AMFlow result. Within DiffExp,
this result can be reproduced by giving the letter above a small negative imaginary part.
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order in ϵ, we write the expansion of the master integrals as

I⃗F (X, ϵ) =
∑
w≥0

ϵw I⃗
(w)
F (X) . (3.23)

At each order, the solution of the DE is then given by

I⃗
(w)
F (X) =

w∑
w′=0

∑
i1,i2,...,iw′

a
(F )
i1

· a(F )
i2

· · · a(F )
iw′ · I⃗(w−w′)

F (X0)
[
Wiw′ , . . . ,Wi2 ,Wi1

]
X0

(X) , (3.24)

where the sum in i1, i2, ..., iw′ runs over the indices of all letters of the alphabet which are relevant
for family F , I⃗(w−w′)

F (X0) are the initial values, and
[
Wi, . . .

]
X0

(X) are the iterated integrals. The
latter are defined iteratively as[

Wi1 , . . . ,Win

]
X0

(X) :=

∫ 1

0

dt
∂ log [Win(γ(t))]

∂t

[
Wi1 , . . . ,Win−1

]
X0

(γ(t)) , (3.25)

starting from
[]

X0
(X) := 1. Here, γ is an arbitrary path in the space of kinematic variables X

connecting the initial and the target point, i.e., γ(0) = X0 and γ(1) = X. The number of iterated
integrations, n in eq. (3.25), is called transcendental weight. Setting to zero all initial values with
weight greater than 0 in eq. (3.25) (I⃗(w)

F (X0) = 0 for w > 0) removes the dependence on the initial
point X0 and yields the symbol of the solution [69]. This formalism is the starting point in the
construction of a basis of special functions to express the solution [31, 36, 37, 77–79] and enables
the study of its analytic properties. We refer to the review [5] for a thorough discussion, and limit
ourselves to mention two properties which we will make use of in the next section. First, the algebraic
independence of the letters Wi implies that iterated integrals with different sets of letters are Q-
linearly independent. This enables explicit cancellations and simplifications in analytic expressions,
such as the cancellation of the poles at ϵ = 0 in the double Lagrangian insertion computed in the
next section. Second, the right-most entry of an iterated integral encodes the information about its
derivatives. In particular, the definition in eq. (3.25) implies that

d
[
Wi1 , . . . ,Win

]
X0

(X) = d logWin(X)
[
Wi1 , . . . ,Win−1

]
X0

(X) . (3.26)

We can then construct differential equations directly for the (Q-linear combinations of) iterated
integrals appearing in the result — say, for the double Lagrangian insertion computed in the next
section — and solve them numerically, e.g., with DiffExp. This allows us to sidestep the more
expensive evaluation of the master integrals when evaluating a result obtained from them [78].

4 Wilson Loop with Two Lagrangian Insertions

The families of two-loop integrals studied in this paper are indispensable for calculating many
physically relevant quantities, such as QCD corrections to electroweak production processes. Here
we provide a more modest application of one of the two-loop families (namely family PBmzz, see
fig. 2) in the world of maximally super-symmetric Yang-Mills (sYM) theory. As compared to QCD
amplitudes, the analytic structure of amplitudes and correlation functions in the N = 4 sYM theory
is usually restricted, which makes this theory a perfect testing ground for new results, allowing us
to check if the integrals we have computed reproduce the expected properties of the theory.

The finite gauge-invariant quantity we are going to calculate is not an amplitude, and is natu-
rally defined in coordinate space. Let us consider a Wilson loop WF in the fundamental represen-
tation of the colour group SU(Nc), defined as

WF =
1

Nc
tr P exp

 i gYM

∮
C

Aµ(x)dx
µ

 . (4.1)

– 13 –



Here, Aµ(x) = Aa
µ(x) t

a is a gauge field, where ta are the generators of SU(Nc) in the fundamental
representation, and P stands for the path ordering of the colour indices. We take the simplest
non-trivial contour C, that is a quadrilateral formed by four cusps with coordinates x1, x2, x3, x4,
with all edges lying on the light cone, i.e.

x2
12 = x2

23 = x2
34 = x2

14 = 0 , (4.2)

where xµ
ij := (xi − xj)

µ. We refer to eq. (4.1) with the light-like geometry of the contour as a
null Wilson loop. The simplest nontrivial gauge-invariant quantity involving WF one could consider
is its vacuum expectation value, denoted ⟨WF⟩, and throughout this paper we will consider it in
the planar limit where Nc → ∞. Despite the ultra-violet finiteness of the N = 4 sYM theory,
⟨WF⟩ is divergent owing to short-distance integrations in the vicinities of the cusps which require a
regulator [80–82].

The dimensionally-regulated ⟨WF⟩ is well-known to coincide with the four-gluon Maximally
Helicity Violating (MHV) amplitude, both at weak [42] and strong coupling [41], upon identification
of the light-like momenta of the gluons (q2i = 0) with the edges of the Wilson loop,

q1 = x12 , q2 = x23 , q3 = x34 , q4 = x41 . (4.3)

The coordinates xi are then called dual momenta (or region momenta) of the amplitude. The null
Wilson loops are known to capture infrared divergences of amplitudes [83, 84] in a gauge theory. In
the case of N = 4 sYM, the duality not only maps between infrared divergences of the amplitude
and cusp divergences of the null Wilson loop, but also identifies their finite parts.

The equivalence between null Wilson loops and MHV amplitudes also holds at the level of their
four-dimensional integrands [85–87], which do not require a regulator. The Lagrangian-insertion
procedure [88] provides a consistent definition of the four-dimensional Wilson loop integrand. It
relies on the observation that, upon a suitable rescaling of the fields (e.g. Aµ → 1/gYMAµ), differ-
entiation of the correlation function ⟨WF⟩ with respect to the coupling constant results in a new
correlation function involving the Lagrangian of the theory [85]. In other words, the l-loop integrand
of ⟨WF⟩, which we denote by M (l)(y1, . . . , yl), is given by the correlation function of WF and N = 4

sYM Lagrangians L located at y1, . . . , yl, which is to be calculated at the lowest perturbative order,
i.e. (g2YM)l,

M (l)(y1, . . . , yl) := ⟨WF L(y1) . . .L(yl)⟩(g2
YM)l . (4.4)

Strictly speaking, L is the so-called chiral on-shell form of the Lagrangian, whose classical dimension
is protected from quantum corrections by the superconformal symmetry. The expression of L in
terms of fields of the theory and more details can be found in [89]. In fig. 4 we present examples
of Feynman diagrams contributing to eq. (4.4) in the cases of one and two Lagrangian insertions.
We stress that the correlator in the RHS of eq. (4.4) is finite in four space-time dimensions only
at leading order in the coupling. The higher order corrections, which are not relevant for eq. (4.4),
would require a regulator.

Thanks to the duality above, M (l) is a four-dimensional l-loop integrand of both ⟨WF⟩ and the
MHV amplitude.5 From the amplitude point of view, the integrand in eq. (4.4) is written in terms of
dual momenta. The conformal symmetry of the Wilson-loop integrand thus translates into the dual-
conformal symmetry of the amplitude’s integrand. Integrating out the coordinates of one or several
Lagrangian operators on the right-hand side of eq. (4.4) produces cusp divergences. Equivalently,
performing the loop integrations in the corresponding integrand of the MHV amplitude leads to
infrared divergences.

5More precisely, we are talking about colour-ordered MHV amplitudes normalised by their tree-level approxima-
tion, so that the integrand does not carry any colour nor helicity.
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x1 x2

x3x4

q1

q2

q3

q4
y1 y1 y2

Figure 4: Typical Feynman diagrams representing the leading order contributions of the single
(l = 1) and double (l = 2) Lagrangian insertions in the Wilson loop (see eq. (4.4)) are depicted on
the left and right, respectively.

This motivates us to extend eq. (4.4) beyond the leading order of perturbation theory, and to
define the following ratio of correlation functions,

Fl(x1, . . . , x4; y1, . . . , yl) :=
π2l

⟨WF⟩
⟨WF L(y1) . . .L(yl)⟩ . (4.5)

As compared to eq. (4.4), where the perturbative expansion is truncated at the leading order, we
are interested in higher orders in the expansion of eq. (4.5) in the coupling. The correlators in the
numerator and denominator of eq. (4.5) are both divergent. These divergences originate from gluon
exchanges in the vicinities of the Wilson loop cusps, but they cancel out in the ratio. Therefore, Fl

is a finite quantity, well-defined in four space-time dimensions.
Fl has the same kinematics as the l-loop integrand M (l) defined in eq. (4.4), but we do not

aim to integrate over any of the yi in eq. (4.5), since such integrations are not well-defined in four
space-time dimensions. As we motivate below, this gauge-invariant quantity, depending on both
on-shell and off-shell variables, is of interest on its own. The perturbative expansion of Fl at weak
coupling g2 := g2YMNc/(16π

2) starts at order (g2)l,

Fl =
∑
L≥0

(g2)l+LF
(L)
l . (4.6)

The lowest order term is the l-loop integrand of the Wilson loop, F (0)
l = M (l), see eq. (4.4). In

what follows, when talking about L-loop corrections of Fl, we mean that L loop integrations are
carried out.

The kinematic dependence of Fl is restricted by the conformal symmetry acting in the coordi-
nate space. Indeed, the light-like contour of WF is covariant upon conformal transformations, the
scaling dimension of the Lagrangian does not receive quantum corrections, and the beta-function of
the theory vanishes. Given the cancellation of cusp divergences in the ratio on the right-hand side
of eq. (4.5), it follows that Fl is exactly conformal in four dimensions with respect to the cusp coor-
dinates. However, Fl carries conformal weight (+4) at the Lagrangian points. It is thus convenient
to extract a factor which carries the nonzero conformal weights of Fl and multiplies a nontrivial
function of conformal cross-ratios. We choose this prefactor to be (x2

13x
2
24)

l
∏4

i=1

∏l
j=1(xi − yj)

−2.
Up to this normalization, Fl depends on the kinematics non-trivially only through 1+(l−1)(l+6)/2

conformal cross-ratios built from Lagrangian coordinates and cusps of the light-like contour.
In addition to conformal symmetry, Fl exhibits also a discrete symmetry: the dihedral trans-

formations of the Wilson-loop contour. This means that Fl is invariant upon the cyclic shift of
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all coordinates (xi → xi+1 for all i = 1, . . . , 4, with xi+4 ≡ xi) and the inversion of their order
(xi → x5−i for all i = 1, . . . , 4).

Another way to understand the finiteness of Fl is to invoke the logarithm of the Wilson loop,
log(⟨WF⟩), which has improved short-distance behaviour as compared to ⟨WF⟩: the cusp divergences
of ⟨WF⟩ exponentiate, and log(⟨WF⟩) features only a one-loop divergence governed by the cusp Γcusp

and collinear anomalous dimensions. For example, for the leading pole we have that log(⟨WF⟩) ∝
Γcusp/ϵ

2. Differentiating l times log(⟨WF⟩) with respect to the coupling g2 results in the insertion
of l Lagrangians, e.g.

g2∂g2 log(⟨WF⟩) =
∫

ddy

iπ
d
2

Fl=1(y) ,

g4
(
∂g2

)2
log(⟨WF⟩) =

∫
ddy1

iπ
d
2

ddy2

iπ
d
2

[Fl=2(y1, y2)− Fl=1(y1)Fl=1(y2)] ,

(4.7)

et cetera. In other words, we can think of Fl as the integrand of log(⟨WF⟩) (up to products of
Fm with m < l) where all but l loop integrations are carried out. More explicitly, F

(L)
l results

from L loop integrations in an (L+ l)-loop rational four-dimensional integrand. The integrands in
eq. (4.7) are finite, and the divergence in log(⟨WF⟩) arises only upon carrying out the remaining
loop integrations.

The case of a single Lagrangian insertion, l = 1, in the four-cusp Wilson loop has been exten-
sively studied in the literature, both at strong [45] and at weak [46–48] coupling, and using the
negative geometry decomposition [52, 53] of the loop corrections. Here we initiate the study of
double Lagrangian insertion, l = 2, and calculate Fl=2 for the first time in the two-loop approx-
imation F

(2)
l=2. We obtain the functional form of the one-loop result in terms of familiar one-loop

polylogarithmic functions, whereas we provide an iterated integral expression at two loops. Before
we proceed to the case l = 2, we briefly recall the available perturbative results for Fl=1 and some
of its remarkable properties.

4.1 Single Lagrangian Insertion

Let us briefly review the structure of Fl=1 in perturbation theory. In the case of a single Lagrangian
insertion in the four-cusp Wilson loop, the kinematics is especially simple. Due to the conformal
symmetry, it depends non-trivially on the single conformal cross-ratio z that can be built from the
Lagrangian coordinate x0 and cusp coordinates x1, . . . , x4,

Fl=1(x1, . . . , x4;x0) =
x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

∑
L≥0

(g2)1+LJ (L)

(
z :=

x2
24x

2
10x

2
30

x2
13x

2
20x

2
40

)
. (4.8)

Here, J (L)(z) are pure harmonic polylogarithms [90] of weight 2L, and the overall rational prefactor
is the one-loop MHV amplitude integrand. The first two orders [46] are given by

J (0) = −1 , J (1) = log2(z) + π2 . (4.9)

The expressions of J (2) and J (3), of transcendental weights 4 and 6, respectively, can be found in
refs. [47, 48]. The dihedral symmetry implies that

J (L)(z) = J (L)

(
1

z

)
. (4.10)

Without loss of generality, we can choose the conformal frame x0 → ∞ by means of a conformal
transformation. Then, z = x2

24/x
2
13 and, after identifying cusp coordinates with momenta according

to eq. (4.3), we see that z = t/s is the dimensionless ratio of the bi-particle Mandelstam variables,

s = (q1 + q2)
2 ≡ x2

13 , t = (q2 + q3)
2 ≡ x2

24 . (4.11)
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Figure 5: Kinematics of the single (left) and double (right) Lagrangian insertions in the conformal
frame, see eqs. (4.11) and (4.15), where one of the Lagrangians is located at infinity. Momenta and
dual-momentum variables (see eq. (4.3)) correspond to dual graphs shown on the same picture. The
arrows denote the directions of the momenta, the bullets denote the dual-momentum variables.

In other words, the loop corrections J (L) have the same kinematics as four-particle massless ampli-
tudes. This correspondence is represented pictorially in fig. 5. Moreover, according to the conjecture
in ref. [49], J (L) coincides with the part of maximal transcendental weight of the planar (L+1)-loop
all-plus helicity amplitude in pure Yang-Mills theory (up to an overall normalisation factor).

Another remarkable observation about available perturbative data made in [52] is that they do
not change sign in the anti-Euclidean region s, t > 0, namely at z > 0, but their sign alternates
with the loop order,

(−1)L+1J (L)(z) > 0 , at z > 0 . (4.12)

We note that working in the anti-Euclidean region is conventional, and the same result holds in the
Euclidean region s, t < 0.

4.2 Double Lagrangian Insertion

The kinematics of the double Lagrangian insertion in the four-cusp Wilson loop Fl=2 is much richer
as compared to the l = 1 case shown in eq. (4.8). The conformal symmetry implies that Fl=2 is
a nontrivial function of five conformal cross ratios, z := (z1, . . . , z5), built from two Lagrangian
coordinates (x0, x0′) and four cusp coordinates (x1, . . . , x4),

Fl=2(x1, . . . , x4;x0, x0′) =
x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

x2
13x

2
24

x2
10′x

2
20′x

2
30′x

2
40′

∑
L≥0

(g2)2+LG(L)(z) . (4.13)

There is some freedom in choosing the five independent cross-ratios. In the following, we switch
to the conformal frame x0′ → ∞, and use the following set:

z :=

(
x2
10x

2
30′

x2
13x

2
00′

,
x2
20x

2
10′x

2
30′

x2
13x

2
20′x

2
00′

,
x2
30x

2
10′

x2
13x

2
00′

,
x2
40x

2
10′x

2
30′

x2
13x

2
40′x

2
00′

,
x2
24x

2
10′x

2
30′

x2
13x

2
20′x

2
40′

)
x0′→∞−−−−−→

(
x2
10

x2
13

,
x2
20

x2
13

,
x2
30

x2
13

,
x2
40

x2
13

,
x2
24

x2
13

)
.

(4.14)

In order to translate the latter kinematic variables into amplitude language, we identify xµ
0 with an

off-shell momentum Qµ, e.g. we define Qµ := xµ
01 with Q2 ̸= 0. Together with the definition of the

dual momenta in eq. (4.3), this implies that

x2
10 = Q2 , x2

20 = (Q+ q1)
2 , x2

30 = (Q+ q1 + q2)
2 , x2

40 = (Q− q4)
2 . (4.15)
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We represent this identification pictorially in fig. 5. In other words, G(L) in eq. (4.13) has the same
kinematic dependence as the one-loop integrand of a massless four-particle amplitude. However,
contrary to the usual one-loop integrands, G(L) is not rational beyond the leading order, namely
for L ≥ 1.

In this work, we calculate G(L) at L = 0, 1, 2. In order to achieve this goal, we need an efficient
way to construct the loop integrands of F

(L)
l=2 in eq. (4.5). The four-dimensional integrands are

sufficient for our goals since the loop integrations do not introduce divergences. As the integrands
of the Wilson loops are identical to those of the MHV amplitudes, they can be easily obtained
from the literature [91, 92]. Moreover, the L-loop integrand of the Wilson loop with l Lagrangian
insertions is the (l + L)-loop MHV amplitude integrand. Then, calculating the ratio in eq. (4.5),
we find that the loop integrand of F (L)

l=2 is a combination of MHV amplitude loop integrands up to
order 2 + L. Explicitly, we have that6

F
(0)
l=2(x0, x0′) = M (2)(x0, x0′) , (4.16)

F
(1)
l=2(x0, x0′) =

∫
d4y

iπ2

[
M (3)(x0, x0′ , y)−M (1)(y)M (2)(x0, x0′)

]
, (4.17)

F
(2)
l=2(x0, x0′) =

1

2

∫
d4y1
iπ2

d4y2
iπ2

[
M (4)(x0, x0′ , y1, y2)− 2M (1)(y1)M

(3)(x0, x0′ , y2)

−M (2)(x0, x0′)M
(2)(y1, y2) + 2M (1)(y1)M

(1)(y2)M
(2)(x0, x0′)

]
,

(4.18)

where we recall that M (L) denotes the L-loop integrand of the MHV amplitude in eq. (4.4), and
we omit the dependence on the cusp coordinates for the sake of compactness.

At the lowest order, L = 0, we see from eq. (4.16) that F
(0)
l=2 coincides with the two-loop

integrand of the MHV amplitude. With the normalisation and expansion shown in eq. (4.13), in
the frame x0′ → ∞, we obtain

G(0) =
1

x2
13x

2
24

[
x2
13(x

2
20 + x2

40) + x2
24(x

2
10 + x2

30)
]
, (4.19)

which can be rewritten in terms of the cross-ratios defined in eq. (4.14) as

G(0)(z) = z1 + z3 +
z2
z5

+
z4
z5

=: r1(z) . (4.20)

Let us now move on to the loop corrections. First of all, in order to simplify the calculation,
we eliminate one of the Lagrangian coordinates by choosing the conformal frame x0′ → ∞ in the
one-loop integrand in eq. (4.17). The loop integration in eq. (4.17) is well-defined in four space-time
dimensions provided we do not break the integrand into the sum of smaller pieces and integrate
them separately. Nonetheless, we find it convenient to adopt dimensional regularisation, so we can
employ the usual amplitude workflow: we IBP-reduce the appearing scalar Feynman integrals to a
basis of master integrals, and express them in terms of special functions. Then, the cancellation of
the ϵ-poles of the individual master integrals is a strong self-consistency check of the calculation.

The kinematics of these Feynman integrals are however more constrained than in the usual
momentum-space computations. Consider for example the two-mass pentagon Feynman integral
with external momenta p1, . . . , p5, whose kinematics is discussed in section 2.1. The map between
the momenta of the integral (pi) and those of the Lagrangian insertion (qi) is given by

p1 = x12 = q1 , p2 = x23 = q2 , p3 = x34 = q3 , p4 = x40 = q4 −Q , p5 = x01 = Q , (4.21)

as shown in fig. 6. The constraints in eq. (4.2) then imply that p21 = p22 = p23 = 0, as in section 2.1.
While p4 and p5 are off-shell, they are constrained by the fact that their sum must be light-like,

6See ref. [50] for an analogous derivation of the loop integrands in the case of the single Lagrangian insertion.

– 18 –



q1 = p1q2 = p2

q3 = p3

x2

x1x3

x4 x0

y

q4 −Q = p4

Q = p5

q1 = p1

q2 = p2

q3 = p3

x1

x2x3

x4

x0

y1 y2

Q = p5
q4 −Q = p4

Figure 6: Two-mass pentagon and two-mass pentabox topologies contributing to the one- and
two-loop integrand of the double Lagrangian insertion Fl=2. We interpose on the same figure the
Feynman diagrams drawn in momentum and dual momentum variables. The solid lines represent
propagators in momentum space. The dashed lines, connecting bullets, represent propagators in
the dual momentum notation. We also identify the momenta of the integrands qi with the momenta
pi in figs. 1 and 2 (see eq. (4.21)). The kinematics is constrained since (p4 + p5)

2 = 0.

since p4 + p5 = x41 = q4. We then have an additional constraint on the Mandelstam variables X

defined in eq. (2.2),

s45 = (p4 + p5)
2 = 0 . (4.22)

As a result, instead of six dimensionless variables, only five are required (z1, . . . , z5, defined in
eq. (4.14)), and we find that F

(1)
l=2 in eq. (4.17) contains only the following one-loop Feynman

integrals: the two-mass pentagon depicted in fig. 6 (as well as its dihedral permutations), boxes
(with zero and two external masses at adjacent legs), triangles (with one, two, and three external
masses), and bubbles.

By repeating this analysis for the two-loop integrand of F (2)
l=2, we find that the most compli-

cated Feynman integral topology that contributes is the two-mass pentabox PBmzz depicted in
fig. 6, along with its dihedral permutations. As in the case of the two-mass pentagon, the kine-
matic dependence of the pentabox is restricted to five dimensionless variables by the constraint
in eq. (4.22). The other contributing topologies are the double-boxes (with zero and two external
massive legs attached to the same box) [93], and products of one-loop topologies.

In the previous sections we have derived the canonical differential equations and identified the
symbol alphabet for the PBmzz family. We need to impose on them the additional constraint s45 = 0

required in the current calculation. This can be done straightforwardly through the differential
equations. We write down the asymptotic solution of the canonical differential equations for PBmzz
family in the s45 → 0 limit by following the method of ref. [94] (see ref. [95] for an application to
Feynman integrals). In doing this, one must take care that only the so-called ‘hard region’ of the
asymptotic expansion is kept, which amounts to setting s45 = 0 at the integrand level (see ref. [96]
for a thorough discussion of the method of regions). In order to remove from the asymptotic
expansion all the other regions, we drop all terms which go as s−aϵ+b

45 , where a is a positive rational
number and b is a non-negative integer, and then set s45 = 0. The resulting iterated integral
representation of the PBmzz Feynman integrals at s45 = 0 involves a smaller alphabet.

The symbol of the two-mass pentabox PBmzz integrals (with the orientation of the external legs
shown in fig. 2) in the full 7-variable kinematics of section 2.1 involves 80 letters of the 570-letter
alphabet discussed in section 3.2. By taking the limit s45 → 0, rewriting the resulting letters in the
variables z defined in eq. (4.14) and including all dihedral permutations, we obtain an alphabet of
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86 letters. Among them, there are 43 even and 43 odd (algebraic) letters which involve 11 square
roots. We emphasise that this is not a sub-alphabet of the 570-letter alphabet from section 3.2.

We treat similarly the other contributing families. We use the canonical bases for the double-
box families from [93] and re-derive their differential equations in terms of our 86-letter alphabet
with the setup discussed in section 3. The identified 86-letter alphabet therefore captures the
analytic structure of Fl=2 up to two loops. The one-loop approximation F

(1)
l=2 requires a 14-letter

subalphabet involving only two square roots.
Finally, we find that the one- and two-loop coefficients of the double Lagrangian insertion in

eq. (4.13) have the form

G(1)(z) =

7∑
i=1

ri(z) f
(1)
i (z) , G(2)(z) =

64∑
i=1

ri(z) f
(2)
i (z) , (4.23)

where the ri(z) are algebraic functions, while f
(1)
i (z) and f

(2)
i (z) are pure special functions of

uniform transcendental weight two and four, respectively. Therefore, we observe that the double
Lagrangian insertion Fl=2 satisfies the principle of maximal transcendentality [97] as one might have
expected (we note that the same is true for the single Lagrangian insertion Fl=1). While we are
only interested in the four-dimensional result here, we have also verified that the one- and two-loop
corrections to the double Lagrangian insertion have uniform transcendental weight to all orders in
ϵ by writing them as linear combinations of pure integrals multiplied by ϵ-independent coefficients

Among the 86 letters appearing in the two-loop Feynman integrals, there is one dihedral-
invariant square-root letter which originates from ∆5 in eq. (2.7) by setting s45 = 0,

∆̄5 := Gram(x12, x23, x34, x10) . (4.24)

We observe that letter ∆̄5 drops out of the finite quantity G(2)(z). This is in line with previous
observations about the cancellation of the analogous square-root letter ∆5 from the finite remainders
of five-particle massless and one-mass amplitudes. In the massless case, this phenomenon was linked
to cluster algebras [98] and Gröbner fans [99].

As compared to the single Lagrangian insertion Fl=1, which requires just one rational prefactor
(see eq. (4.8)), the double Lagrangian insertion has a more complicated structure. It involves
64 coefficients (ri(z) in eq. (4.23)), of which 28 are rational, and 36 are algebraic. The algebraic
coefficients are normalised by one of the 11 square roots in the alphabet, and are otherwise rational.
The double Lagrangian insertion is however independent of the choice of the branches of the square
roots. Indeed, each algebraic coefficient is accompanied in eq. (4.23) by a pure function which is odd
with respect to the sign of the corresponding square root, so that their product is even. Furthermore,
some coefficients contain spurious singularities, i.e., loci where some coefficients ri(z) diverge while
G(1)(z) and G(2)(z) should stay finite. The spurious singularities come from polynomials in the
denominators of ri(z) as well as from the square roots discussed above. We checked at symbol level
that the spurious poles of ri(z) are suppressed by zeros of the accompanying pure functions f (L)

i (z),
and expect this to hold at function level.

Despite this higher complexity, the analogy with the single Lagrangian insertion extends also to
certain properties of the rational coefficients. As for the rational coefficient of the single Lagrangian
insertion in eq. (4.8), in fact, we find that all the coefficients of the one- and two-loop double
Lagrangian insertion in eq. (4.23) have unit leading singularities [3]. The leading singularities of
an integrand are the residues at the singularities of the highest codimension in the integration
variables. Denoting by LS

v
[f ] the leading singularities of an integrand f with integration variables

v, for the rational coefficient of the single Lagrangian insertion (see eq. (4.8)) we have that

LS
x0

[
x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

]
= 1 . (4.25)
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This is nothing but the translation into dual momenta of the well-known fact that the leading
singularity of the massless one-loop box is 1/(st). We have verified by means of the package
DlogBasis [24] that the same holds for the coefficients of the double Lagrangian insertion,7

LS
x0,x0′

[
ri(z)

x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

x2
13x

2
24

x2
10′x

2
20′x

2
30′x

2
40′

]
= LS

x0

[
ri(z|x0′→∞)

x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

]
= 1 . (4.26)

We stress that, for this property to hold, the overall rational normalisation factor carrying the
conformal weights of the double Lagrangian insertion in eq. (4.13) needs to be kept into account as
well. Conformal symmetry then allows us to simplify the computation by a transformation x′

0 → ∞
to the conformal frame. This property can be explained heuristically as follows. The coefficients
ri(z) in eq. (4.23) can be obtained from G(1)(z) and G(2)(z) by taking discontinuities iteratively
until all pure functions f

(L)
i are replaced by powers of iπ. These discontinuities correspond to

suitable residues of the integrands of F (1)
l=2 and F

(2)
l=2. The latter are built from loop integrands of

MHV amplitudes M (L) (see eqs. (4.16) – (4.18)), which are known to admit a d log representation
and have unit leading singularities [44, 100]. Since all residues of a d log form with unit leading
singularities are themselves d log forms with unit leading singularities, we can expect that this
property should hold for the coefficients ri(z).

Finally, we organised G(1) and G(2) in such a way that they are manifestly invariant under
dihedral transformations of the kinematic variables. The latter in fact act by permuting the addends
ri(z)f

(L)
i (z) in the expressions of G(1) and G(2) given in eq. (4.23), thus leaving the sums invariant.

We provide analytic expressions for G(1) and G(2) in the ancillary files, together with the
definition of the corresponding alphabet letters and of the algebraic coefficients ri(z). In the one-
loop case we provide an explicit polylogarithmic representation for {f (1)

i }7i=1. They are given by
the zero-mass-box, two-mass-hard-box, and three-mass-triangle functions. In the two-loop case, we
provide an iterated integral expression for {f (2)

i }64i=1 with iterated integrals defined with respect to
the base point

z0 :
(
x2
10 = 1, x2

20 = 1, x2
30 = 3, x2

40 = 3, x2
13 = 1, x2

24 = 1
)
. (4.27)

In order to evaluate them numerically, we follow the approach of ref. [78]: we derive the system
of differential equations they satisfy, and solve them with the method of generalised power series
expansions [101]. In other words, we construct the canonical system of differential equations

dF⃗ (z) = dA(z) · F⃗ (z) , d =

5∑
i=1

dzi
∂

∂zi
, (4.28)

for 187 uniform-weight iterated integrals {Fi}187i=1. The first 64 are the weight-four iterated integrals
appearing in G(2), i.e., Fi = f

(2)
i for i = 1, . . . , 64. The remaining ones (Fi for i = 65, . . . , 187)

are lower-weight iterated integrals which result from the iterative differentiation of {f (2)
i }64i=1. The

absence of the letter ∆̄5 (4.24) is manifest in the connection matrix dA(z), which is written in terms
of the other 85 letters. Finally, we obtained numerical boundary values F⃗ (z0) at the base point z0
with (at least) 55-digit precision by means of AMFlow [73, 74]. The canonical differential equations
in eq. (4.28), supplemented by the boundary values, can then be integrated numerically. We make
use of DiffExp [75] to evaluate numerically the two-loop double Lagrangian insertion, allowing us
to investigate its positivity properties.

7Strictly speaking, these leading singularities are non-zero rational constants. The normalisation of the coefficients
is however arbitrary, as these constants can be absorbed into the definition of the pure functions they multiply.
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4.3 Uniform Sign of the Loop Corrections

The remarkable positivity property of the loop corrections to the single Lagrangian insertion (see
eq. (4.12)) begs for a generalisation to the double Lagrangian insertion. We conjecture that the
loop corrections to Fl=2 also have a uniform sign which alternates with the loop order, as

(−1)LG(L)(z) > 0 , z ∈ A , (4.29)

in a special kinematic region A which is defined by the amplituhedron [51].
The double Lagrangian insertion suggests that we consider the two-loop four-particle MHV

amplituhedron. This geometry is carved out by inequalities on the four-brackets of momentum
twistors [102], which are translated to our space-time variables in the frame x0′ → ∞ as follows:

A :

x
2
10 > 0 , x2

20 > 0 , x2
30 > 0 , x2

40 > 0 , x2
13 > 0 , x2

24 > 0 ,

x2
13(x

2
20 + x2

40) + x2
24(x

2
10 + x2

30)− x2
13x

2
24 > 0 , ∆̄5 > 0 .

(4.30)

(4.31)

The region A is thus a subregion of the anti-Euclidean region (see the comment below eq. (4.12)),
which is defined by the inequalities in eq. (4.30), restricted by the constraints in eq. (4.31). We
provide more details on this region in appendix B.

One can easily see that the lowest order correction in eq. (4.20) is positive, G(0)(z) > 0, in
the whole Euclidean region. The amplituhedron constraints become relevant starting from one
loop. In other words, while G(1)(z) does change sign within the Euclidean region, we observe that
G(1)(z) < 0 inside the subregion A. This is based on the evaluation of the polylogarithmic function
G(1)(z) in O(107) random points in A. The negativity of G(1)(z) in A, namely that a 5-variable
polylogarithmic function does not change sign inside a curvy region A, appears to be very nontrivial.
Let us note that seven terms {rifi}7i=1 in the expression for G(1)(z) given by eq. (4.23) do not have
fixed sign inside A, yet they conspire to guarantee that G(1)(z) < 0. In our numerical study, we
detected 45 < 27 − 1 different sign patterns {sign(rifi)}7i=1. Of course, this counting holds for our
particular representation of the answer, and a rearrangement of terms in eq. (4.23) could potentially
decrease the number of sign patterns.

The iterated integral expression for the two-loop correction allows us to evaluate G(2) numeri-
cally as well. Here we provide the benchmark values

G(0)(z1) ≈ 24.261630456 , G(1)(z1) ≈ −988.27502992 , G(2)(z1) ≈ 27222.154196 , (4.32)

at the random point

z1 ∈ A :

(
x2
10 =

271

13
, x2

20 =
463

29
, x2

30 =
499

79
, x2

40 =
299

83
, x2

13 =
73

53
, x2

24 =
367

89

)
. (4.33)

We evaluated G(2)(z1) in two different ways. On the one hand, we evaluated numerically all
Feynman integrals contributing to G(2) at z = z1 using AMFlow, and once again observed the
cancellation of the ϵ-poles coming from individual integrals. On the other hand, using DiffExp, we
integrated numerically the canonical differential equation in eq. (4.28) satisfied by {f (2)

i }64i=1, this
way transporting their values from the base point z = z0 ∈ A given in eq. (4.27) to z = z1. We
find agreement between the two evaluations within the expected numerical accuracy, which is an
additional cross-check of our calculation. The second approach is advantageous, since it requires
fewer computational resources. Indeed, it does not require dimensional regularisation, and directly
provides the values of the transcendental functions {f (2)

i }64i=1.
We would like to stress that all the amplituhedron constraints defining the region A in eqs. (4.30)

and (4.31) are essential for the uniform sign conjecture to hold. Indeed, the sign is not uniform in
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the whole anti-Euclidean region defined by eq. (4.30) alone. To see this, let us consider the following
ray parametrised by t > 0,

zE(t) :

(
x2
10 =

31

4046
, x2

20 =
86

663
, x2

30 =
3824

2329
, x2

40 =
2858

4159
, x2

13 = t
4741

85
, x2

24 = t
4262

79

)
,

which belongs to the anti-Euclidean region. This ray punctures the amplituhedron region A defined
in eq. (4.31), as zE(t) /∈ A at t ⪆ 0.02817 and zE(t) ∈ A otherwise. We verify that the uniform sign
conjecture of eq. (4.29) holds on the segment of the ray which is inside A. However, the one-loop
correction evaluated on the ray, G(1) (zE(t)), changes sign at t ≈ 1.34435, while the change of sign
for the two-loop correction G(2)(zE(t)) happens at t ≈ 0.45154. In other words, the sign of the loop
corrections is not uniform outside of the amplituhedron region A.

We evaluated G(2)(z) at a number of points z ∈ A with DiffExp, and found agreement with our
positivity conjecture (see eq. (4.29)). More explicitly, we evaluated it along O(10) one-dimensional
slices of the kinematics emanating from z0. Still, the current approach to the numerical evaluation
of G(2) is not efficient enough to test the conjecture on a sample of the same size as we used in
the one-loop case. It would be extremely interesting to undertake a more detailed study of the
positivity of G(2)(z). Given that the analytic structure of G(2)(z) is much more complicated than
that of G(1)(z), the expected positivity of G(2)(z) seems to be even more miraculous.

The four-dimensional amplitude integrands are differential forms with positive coefficients inside
the amplituhedron geometry [103], which belong to an anti-Euclidean region. At the same, the
alternating sign property of the loop corrections arises after integration over a Minkowski contour.
Thus, it is not clear whether the positivity of the integrands can explain the uniform sign of the loop
corrections. Our conjecture for the double Lagrangian insertion adds to a list of similar observations
about positivity properties of the integrated loop corrections in the amplituhedron geometry, e.g.
the finite ratio function of the six-particle amplitude [104], and the single Lagrangian insertion in
the four-cusp [52] and five-cusp [50] null Wilson loops.

5 Conclusions

In this paper we constructed analytic differential equations for a complete set of planar two-loop five-
point Feynman integrals with two off-shell external legs. There are six different two-loop integral
families that do not factorise into products of one-loop integrals, and for each of them we have
determined a pure basis, satisfying a differential equation in canonical form. The corresponding
logarithmic forms were mostly obtained from newly developed tools that allow one to construct
symbol letters. The analytic differential equations were then obtained from finite-field samples with
techniques that are by now standard. We observed that, despite the large number of scales involved
in these integrals, modern IBP-reduction tools were able to handle these calculations. The derived
analytic differential equations can be readily solved through generalised power series expansions.
This allowed us to perform consistency checks by transporting numerical solutions between the
Euclidean region and a physical region, finding agreement with an independent evaluation through
the auxiliary mass flow method.

The families we considered need to be closed under permutations to cover all integrals that
appear in physical quantities such as amplitudes. With that observation in mind, we completed the
alphabet with these transformations, finding a total of 570 letters. This is substantially larger than
the alphabet for planar five-point scattering with a single off-shell external leg at two-loops (which
has 58 letters). In particular, we observe a large increase in the number of square roots appearing
in these differential equations compared to the one-mass case. Nevertheless, the analytic structure
of the letters is similar to that observed in other five-point integrals involving several roots. This
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observation gives us great confidence that the strategy to build pentagon functions established in
ref. [31] will be directly applicable for this set of integrals. This is however left for future work.

In the second part of this paper, we used our integrals to initiate the study of the double
Lagrangian insertion in the null Wilson loop in N = 4 super-symmetric Yang-Mills. Our motiva-
tion was twofold. First, the analytic properties of quantities in N = 4 sYM are very constrained,
so recovering those expected properties with our integrals is a non-trivial check of their correct-
ness. Second, we would like to understand which of the beautiful properties observed for the single
Lagrangian insertions extend to the double Lagrangian insertions. Compared to the former, the
kinematic space of the latter is multidimensional already for the simplest null-polygonal contour,
the quadrilateral, which we considered in this paper. We confirmed the expectations that the double
Lagrangian insertion is finite, conformally invariant in four dimensions, and has uniform transcen-
dentality. The analytic structure is described by a 85-letter alphabet involving 11 square roots.
The rational coefficients accompanying the pure functions are rather special as well, as they have
unit leading singularities. We took the necessary steps required to numerically evaluate the double
Lagrangian insertions up to two-loops, which allowed us to formulate and test a new conjecture on
the positivity of these quantities inside a kinematic region defined by the amplituhedron.

There are however many open questions that remain to be answered about double Lagrangian
insertions in a Wilson loop. For instance, with a view to a three-loop bootstrap, it would be
interesting to understand whether the alphabet stabilises at two loops, and whether new rational
coefficients can appear at higher loop orders. Another question we have not investigated is whether
the hidden momentum-space conformal symmetry of the single Lagrangian insertion [49] has a
counterpart for the double Lagrangian insertion. Also, we would like to understand whether the
double Lagrangian insertion can be identified with any amplitude in non-supersymmetric theories, as
is the case for the single Lagrangian insertion and the all-plus helicity amplitude in pure Yang-Mills
theory [49]. The perturbative data we provide are a good starting point for these investigations,
which we leave to future work.

Acknowledgments

The authors thank Antonela Matijašić and Julian Miczajka for useful discussions about the con-
struction of algebraic letters, and Xuhang Jiang for helpful correspondence about the package
Baikovletter. D.C. is grateful to the Max-Planck Institute for Physics, where part of the work has
been done. This project has received funding from the European Union’s Horizon Europe research
and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101105486. V.S.
has received funding from the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant
TOPUP). D.C. is supported by ANR-24-CE31-7996.

A Pure Master Integrals for the Five-Point Sectors

In this appendix, we present our pure bases for all independent five-point sub sectors (modulo
permutations of the external massless legs, and exchanges p4 ↔ p5). We omit those sectors whose
integrals are products of one-loop integrals. Explicit, machine-readable expressions for all master
integrals can be found in our ancillary files [58].
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PBmmz, {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p1

p2

p3

p4

p5

k1 k2

N (1)
PBmmz = ϵ4

√
∆5 (p1 + p2)

2 µ12 ,

N (2)
PBmmz = ϵ4

√
∆5 (p1 + p2)

2 µ22 ,

N (3)
PBmmz = ϵ4 s12(s4s12 − s34s45) (k2 − p1)

2 .

(A.1)

PBmzm, {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p1

p2

p4

p3

p5

k1 k2

N (1)
PBmzm = ϵ4

√
∆5 (p1 + p2)

2 µ12 ,

N (2)
PBmzm = ϵ4

√
∆5 (p1 + p2)

2 µ22 ,

N (3)
PBmzm = ϵ4 s12(s4s5 − s4s34 − s5s34 − s12s34 + s234 + s34s45)

× (k2 − p1)
2 .

(A.2)

PBmzz, {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p3

p4

p5

p1

p2

k1 k2

N (1)
PBmzz = ϵ4

√
∆5 (p3 + p4)

2 µ12 ,

N (2)
PBmzz = ϵ4

√
∆5 (p3 + p4)

2 µ22 ,

N (3)
PBmzz = ϵ4 s12s15

[
s34 (k2 − p3)

2 − s4 k
2
2

]
.

(A.3)

PBzmz, {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p2

p4

p3

p5

p1

k1 k2

N (1)
PBzmz = ϵ4

√
∆5 (p2 + p4)

2 µ12 ,

N (2)
PBzmz = ϵ4

√
∆5 (p2 + p4)

2 µ22 ,

N (3)
PBzmz = ϵ4 (s4s15 − s4s5 + s12s15 + s5s23 + s5s34

− s15s34 − s15s45)
[
s24 (k2 − p2)

2 − s4 k
2
2

]
(A.4)
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PBzzm, {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p1

p4

p2

p3

p5

k1 k2

N (1)
PBzzm = ϵ4

√
∆5 (p1 + p4)

2 µ12 ,

N (2)
PBzzm = ϵ4

√
∆5 (p1 + p4)

2 µ22 ,

N (3)
PBzzm = ϵ4 s23(s4 + s5 + s12 − s34 − s45)

×
[
s14 (k2 − p1)

2 − s4 k
2
2

]
.

(A.5)

PBzzz, {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 4 MIs

p4

p5

p1

p2

p3

k1 k2

N (1)
PBzzz = ϵ4

√
∆5 (p4 + p5)

2 µ12 ,

N (2)
PBzzz = ϵ4

√
∆5 (p4 + p5)

2 µ22 ,

N (3)
PBzzz = ϵ4 s45

[
s12s23 (k2 − p4)

2 − s12s15 k
2
2

− s23s34 (k2 − p4 − p5)
2
]
.

(A.6)

We took the definition of the forth MI from ref. [14]. Its normalisation involves the product of two
square roots (of ∆5 and λ(s4, s5, s45)). The expression is however lengthy and we thus omit it here.

PBmmz, {1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}, 4 MIs

p4

p1

p2

p5

p3

k2 k1

N (4)
PBmmz = ϵ4

√
∆5 µ12 ,

N (5)
PBmmz = ϵ4

√
λ(s4, s5, s45) s12 (k2 − p1)

2 ,

N (6)
PBmmz = ϵ4 s12(s23s5 − s15s45) ,

N (7)
PBmmz = ϵ4 N

(7)
PBmmz(X)

[
(k1 − p5)

2 +R
(7,a)
PBmmz(X)µ12

+R
(7,b)
PBmmz(X)

]
+ (sub-sectors) ,

(A.7)

where N
(7)
PBmmz(X), R

(7,a)
PBmmz(X) and R

(7,b)
PBmmz(X) are rational functions of X. To construct the

fourth numerator, we started from ϵ4 (k1 − p5)
2, which leads to DEs linear in ϵ, and added terms

to achieve the factorisation of ϵ as described in section 3.1.

PBmmz, {1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p1

p3

p4

p2

p5

k1 k2 + p5

N (13)
PBmmz = ϵ4

√
∆5 µ12 ,

N (14)
PBmmz = ϵ4 s12

[
s34 (k1 − p4 − p5)

2 − s4 (k1 + p1 + p2)
2
]
,

N (15)
PBmmz = ϵ4 s12s23s34 .

(A.8)
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PBmzm, {1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}, 3 MIs

p2

p5

p3

p1

p4

k1 k2

N (4)
PBmzm = ϵ4

√
∆5 µ12 ,

N (5)
PBmzm = ϵ4 s12(s34 + s45 − s4 − s12) (k2 − p1)

2 ,

N (6)
PBmzm = ϵ4 s12(s4s5 − s4s15 − s12s15 − s5s23

− s5s34 + s15s34 + s15s45) .

(A.9)

PBmzz, {1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p3

p5

p1

p4

p2

k1 k2 + p2

N (12)
PBmzz = ϵ4

√
∆5 µ12 ,

N (13)
PBmzz = ϵ4 (s12s4s15 + s5s23s34 − s15s34s45) ,

N (14)
PBmzz = ϵ4 N

(14)
PBmzz(X)

[
(k1 − p2)

2 +R
(14,a)
PBmzz(X)µ12

+R
(14,b)
PBmzz(X)

]
+ (sub-sectors) ,

(A.10)

where N
(14)
PBmzz(X), R(14,a)

PBmzz(X) and R
(14,b)
PBmzz(X) are rational functions of X.

PBzmz, {1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}, 3 MIs

p5

p2

p4

p1

p3

k2 k1

N (4)
PBzmz = ϵ4

√
∆5 µ12 ,

N (5)
PBzmz = ϵ4 (s23 + s34 − s15)

[
s15 (k1 + p1)

2 + (s5 − 2s15) k
2
1

]
,

N (6)
PBzmz = ϵ4 s12s15(s23 + s34 − s4 − s15) .

(A.11)

PBzmz, {1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0}, 3 MIs

p2

p3

p5

p4

p1

k1 k2 + p1

N (11)
PBzmz = ϵ4

√
∆5 µ12 ,

N (12)
PBzmz = ϵ4 (s15 − s23 − s34)

[
s5 (k1 + p2 + p4)

2

− (s4 + s5 + s12 − s34 − s45)(k1 − p1 − p5)
2
]
,

N (13)
PBzmz = ϵ4 (s4s15 − s4s34 − s15s34 + s23s34 + s234)

× (s4 + s5 + s12 − s34 − s45) .

(A.12)
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PBmmz, {1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0}, 6 MIs

p5

p4

p3
p2

p1

k1k2 + p5

N (18)
PBmmz = ϵ3

√
∆5

µ12

(k1 + k2)2
,

N (19)
PBmmz = ϵ3

√
∆5

µ11

(k1 + k2)2
,

N (20)
PBmmz = ϵ4 s12

√
λ(s23, s4, s15) ,

N (21)
PBmmz = ϵ4 s12

[
s15s4

ϵ (k2 + p5)2
− (s4 + s15 − s23)

]
,

N (22)
PBmmz = ϵ4 s12

[
s23s4

ϵ (k2 + p4 + p5)2
− (s4 − s15 + s23)

]
,

N (23)
PBmmz = ϵ4 s12

[
s4(k1 − p5)

2

ϵ (k2 + p5)
− (s4 + s15 − s23)

]
.

(A.13)

PBmmz, {1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

p5

p1

p2
p3

p4

k2 + p5k1

N (25)
PBmmz = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (26)
PBmmz = ϵ4 (s12s4 + s23s34 − s34s45) .

(A.14)

PBmmz, 30, {0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}, 2 MIs

p1

p2

p3
p4

p5

k2k1 + p1

N (30)
PBmmz = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (31)
PBmmz = ϵ4

√
r
(1)
2 ,

(A.15)

where r
(1)
2 is defined in eq. (3.17).

PBmzm, {1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0}, 2 MIs

p5

p3

p4
p2

p1

k1k2 + p5

N (18)
PBmzm = ϵ3

√
∆5

µ11

(k1 + k2)2
,

N (19)
PBmzm = ϵ4 s12(s23 + s34 − s4) .

(A.16)
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PBmzm, {1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

p5

p1

p2
p4

p3

k2 + p5k1

N (22)
PBmzm = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (23)
PBmzm = ϵ4 [s4(s5 − s15)− s34(s5 + s12 − s15 + s23 − s45)] .

(A.17)

PBmzz, {1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0}, 2 MIs

p2

p1

p5
p4

p3

k1k2 + p2

N (17)
PBmzz = ϵ3

√
∆5

µ11

(k1 + k2)2
,

N (18)
PBmzz = ϵ4 (s4s12 + s23s34 − s34s45) .

(A.18)

PBzmz, {1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0}, 6 MIs

p1

p5

p3
p4

p2

k1k2 + p1

N (16)
PBzmz = ϵ3

√
∆5

µ12

(k1 + k2)2
,

N (17)
PBzmz = ϵ3

√
∆5

µ11

(k1 + k2)2
,

N (18)
PBzmz = ϵ4

√
r
(3)
3 ,

N (19)
PBzmz = ϵ4

[
s5s12(s23 + s34 − s4 − s15)

ϵ (k2 + p1)2

+ s4(s12 + s15 − s34) + (s12 − s34 + s5)(s15 − s23 − s34)

]
,

N (20)
PBzmz = ϵ4

[
s5
(
s4(s15 − s34) + s34(s23 + s34 − s15)

)
ϵ (k2 + p1 + p5)2

− s4(s12 + s15 − s34)− (s12 − s34 − s5)(s15 − s23 − s34)

]
,

N (21)
PBzmz = ϵ4

[
s5(s23 + s34 − s15) (k1 − p1)

2

ϵ (k2 + p1)2

+ s4(s12 + s15 − s34) + (s12 − s34 + s5)(s15 − s23 − s34)

]
,

(A.19)
where r

(3)
3 is obtained by swapping p4 ↔ p5 and p1 ↔ p2 in r

(1)
3 , defined in eq. (3.18).
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PBmzz, {0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 1 MI

p3

p4

p5

p2

p1

k1 + p3
k2

N (15)
PBmzz = ϵ4

√
∆5 µ22 . (A.20)

PBzmz, {0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 1 MI

p2

p4

p3

p1

p5

k1 + p2
k2

N (14)
PBzmz = ϵ4

√
∆5 µ22 . (A.21)

PBzzm, {0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, 1 MI

p1

p4

p2

p5

p3

k1 + p1
k2

N (15)
PBzzm = ϵ4

√
∆5 µ22 . (A.22)

PBzzz, {1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 1 MI

p5

p4

p3

p1

p2
k1 k2

N (20)
PBzzz = ϵ4

√
∆5

s12s23(s4s12s15 + s5s23s34 − s15s34s45)

∆5

+ (sub-sectors) .
(A.23)
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PBmmz, {0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

k2
k1 + p1

p3

p2

p1

p4

p5 N (32)
PBmmz = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (33)
PBmmz = ϵ3(1− 2ϵ)(s34s45 − s4s12) .

(A.24)

PBmzm, {0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

k2
k1 + p1

p4

p2

p1

p3

p5
N (29)

PBmzm = ϵ3
√
∆5

µ22

(k1 + k2)2
,

N (30)
PBmzm = ϵ3(1− 2ϵ)(s4s5 − s4s34 − s5s34 − s12s34

+ s234 + s34s45) .

(A.25)

PBmzz, {0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

k2
k1 + p3

p5

p4

p3

p1

p2 N (36)
PBmzz = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (37)
PBmzz = ϵ3(1− 2ϵ) s12 s15 .

(A.26)
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PBzmz, {0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

p3

p4

p2

p5

p1

k2
k1 + p2

N (38)
PBzmz = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (39)
PBzmz = ϵ3(1− 2ϵ)(s4s15 − s4s5 + s12s15

+ s5s23 + s5s34 − s15s34 − s15s45) .

(A.27)

PBzzm, {0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

k2
k1 + p1

p2

p4

p1

p3

p5 N (36)
PBzzm = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (37)
PBzzm = ϵ3(1− 2ϵ) s23(s4 + s5 + s12 − s34 − s45) .

(A.28)

PBzzz, {0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}, 2 MIs

k2
k1 + p4

p1

p5

p4

p2

p3 N (49)
PBzzz = ϵ3

√
∆5

µ22

(k1 + k2)2
,

N (50)
PBzzz = ϵ3(1− 2ϵ) s12 s23 .

(A.29)

B Kinematic Regions

In section 3.3 we introduced two regions of phase space where we obtained numerical evaluations
of our integrals, namely the Euclidean region and the s12-channel. In section section 4.3 we further
introduced the amplituhedron region A. In this appendix we define these regions explicitly.

Let us first discuss the Euclidean region. Given the non-cyclic indexing of the external legs in
the integral families in figs. 1 and 2, the Euclidean region associated with each one of those families
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is not necessarily the same. We define our Euclidean region as the intersection of the Euclidean
regions associated with any permutation of the representative families given in figs. 1 and 2, i.e.,

sij < 0 , s4 < 0 , s5 < 0 , (B.1)

for i ̸= j = 1, . . . , 5. Note that this region is not guaranteed to be non-empty, but it is in our case
and the point in eq. (3.20) lies within it.

The second kinematic region we consider is what we call the ‘s12-channel’, corresponding to the
process where legs p1 and p2 are in the initial state, and legs p3, p4 and p5 are in the final state,
that is −p1 − p2 → p3 + p4 + p5. For instance, such a process could describe the production of two
vector bosons in association with a jet at an hadron collider, and as such is of phenomenological
interest. This channel is defined by the following set of constraints:

p1 · p2 > 0 , p3 · p4 > 0 , p4 · p5 > 0 , p3 · p5 > 0 ,

p1 · p3 < 0 , p1 · p4 < 0 , p1 · p5 < 0 , p2 · p3 < 0 , p2 · p4 < 0 , p2 · p5 < 0 ,

G(p4) = 2 s4 > 0 , G(p5) = 2 s5 > 0 ,

G(pi, pj) < 0 , G(pi, pj , pk) > 0 , G(p1, p2, p3, p4) < 0 ,

(B.2)

where i, j and k take distinct values in {1, 2, 3, 4, 5}. The point X1 in eq. (3.22) lies within the
kinematic region defined by these constraints, and is furthermore ‘generic’, in the sense that none
of the letters of the alphabet for integrals for five-point two-loop integrals with two external masses
vanish or diverge there. Having in mind the construction of pentagon functions for this set of
integrals, we choose another point within the s12-channel that also has the symmetries of the
region. In this case, this means that it is invariant under the exchanges 1 ↔ 2 and 4 ↔ 5. The
point X0 in eq. (3.21) satisfies these conditions.

Finally, let us explain the origin of the inequalities in eqs. (4.30) and (4.31) which specify the
amplituhedron region. We represent the Lagrangian coordinates x0, x0′ by bi-twistors ZAZB and
ZCZD, and choose x0′ → ∞ by taking ZCZD to be the infinity bi-twistor. The momentum twistors
Z1, . . . , Z4 represent the quadrilateral light-like contour. The two-loop four-particle MHV ampli-
tuhedron is specified by the following inequalities for the four-brackets of momentum twistors [102],

⟨AB12⟩, ⟨AB23⟩, ⟨AB34⟩, ⟨AB14⟩, ⟨CD12⟩, ⟨CD23⟩, ⟨CD34⟩, ⟨CD14⟩, ⟨ABCD⟩ > 0, (B.3)

⟨CD13⟩, ⟨CD24⟩ < 0 , (B.4)

⟨AB13⟩, ⟨AB24⟩ < 0 . (B.5)

The inequalities (B.3) and (B.4) are equivalent to those in eq. (4.30) when written in dual momenta
variables, and as such they impose the condition of being in the anti-Euclidean region. As already
noted below eq. (4.12), working in the anti-Euclidean region instead of the Euclidean region is
purely conventional, and the same non-trivial positivity conclusions hold in the Euclidean region.
The inequalities (B.5) imply that

x2
13(x

2
20 + x2

40) + x2
24(x

2
10 + x2

30)− x2
13x

2
24 ± ϵ5 > 0 (B.6)

where the pseudo-scalar invariant ϵ5 := tr(/x12/x23/x34/x10γ5) is related to the ∆̄5 defined in eq. (4.24)
through (ϵ5)

2 = ∆̄5. Thus, the space-time coordinates are complex valued in such a way that the
Mandelstam invariants and ϵ5 are real-valued. The constraints in eq. (4.31) then follow.
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