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A B S T R A C T

This work highlights an approach for incorporating realistic uncertainties into scientific com-
puting workflows based on finite elements, focusing on prevalent applications in computational
mechanics and design optimization. We leverage Matérn-type Gaussian random fields (GRFs)
generated using the SPDE method to model aleatoric uncertainties, including environmental
influences, variating material properties, and geometric ambiguities. Our focus lies on de-
livering practical GRF realizations that accurately capture imperfections and variations and
understanding how they impact the predictions of computational models as well as the shape
and topology of optimized designs. We describe a numerical algorithm based on solving a
generalized SPDE to sample GRFs on arbitrary meshed domains. The algorithm leverages
established techniques and integrates seamlessly with the open-source finite element library
MFEM and associated scientific computing workflows, like those found in industrial and national
laboratory settings. Our solver scales efficiently for large-scale problems and supports various
domain types, including surfaces and embedded manifolds. We showcase its versatility through
biomechanics and topology optimization applications, emphasizing the potential to influence
these domains. The flexibility and efficiency of SPDE-based GRF generation empowers us to
run large-scale optimization problems on 2D and 3D domains, including finding optimized
designs on embedded surfaces, and to generate design features and topologies beyond the
reach of conventional techniques. Moreover, these capabilities allow us to model and quantify
geometric uncertainties on reconstructed submanifolds, such as the interpolated surfaces of
cerebral aneurysms provided by postprocessing CT scans. In addition to offering benefits in
these specific domains, the proposed techniques transcend specific applications and generalize
to arbitrary forward and backward problems in uncertainty quantification involving finite
elements.

1. Introduction

This article demonstrates a scalable and expressive approach for generating Gaussian random fields with applications to modeling
uncertainties in computational mechanics and design optimization. The goal is to illustrate the importance and the necessity of
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Fig. 1. Isotropic, homogeneous, Matérn-type Gaussian random fields of different smoothness and correlation length generated with the SPDE method. The
smoothness and correlation-length increase along their respective axis. The examples are generated with homogeneous Neumann boundary conditions on 𝐷 = (0, 1)2

using identical white noise realizations for all samples.

incorporating random fields with widely varying properties, such as correlation length, smoothness, and anisotropy, on arbitrary
computational domains and embedded surfaces. The ability to easily control these properties and generate corresponding samples
significantly reduces epistemic uncertainties in computational models. Therefore, we focus on examples with aleatoric uncertainties,
describing the systems’ intrinsic randomness, assigned to the three categories described below. Environmental and external excitations
describe external influences such as loads or other constraints. Random wind forces [1–4] acting on buildings [5] and wind
turbines [6,7] serve as compelling examples in this category. Material uncertainties are associated with spatially varying material
properties such as Young moduli, diffusion coefficients, or damping coefficients [8,9]. Such variations may be caused by material
heterogeneity, changes occurring during manufacturing, or environmental degradation. Moreover, geometric uncertainties describe
disturbances in the system’s geometry, for instance, the shape or the positioning of specific components. Examples arise in additive
manufacturing processes where smooth surfaces may show artifacts and imperfections from manufacturing (cf. [10]). Computational
models that fail to account for aleatoric uncertainties are prone to inaccurate predictions, poor risk assessment, and suboptimal
designs [11].

The examples considered here leverage spatially correlated noise models. Mathematically, such noise is described by random
fields, a generalization of a stochastic process modeling spatial variability. The fields are defined on a domain 𝐷 ⊂ R𝑑 , 𝑑 = 1, 2, 3,
and possess local notions of length scale, smoothness, and orientation (anisotropy). Practical system analyses and optimizations
embed these fields into the physical model, e.g., as a random coefficient in a partial differential equation (PDE), and different field
realizations appear in the inner loop of stochastic optimization algorithms and uncertainty quantification (UQ) workflows.

Among various types, Gaussian random fields (GRFs) are particularly notable as their mean value and covariance functions
characterize them completely. The mean is a single-variable function 𝑚∶𝐷 → R, and the covariance can be expressed as a two-
variable function  ∶𝐷 × 𝐷 → R. As espoused below, we focus on Matérn-type random fields that can be defined on an arbitrary
Lipschitz domain 𝐷 ⊂ R𝑑 .

Classically, Matérn random fields are a special class of homogeneous GRFs with covariance defined over the domain 𝐷 = R𝑑 as

(𝐱, 𝐲) = 𝜎2

2𝜈−1𝛤 (𝜈)
(𝜅𝑟)𝜈𝜈 (𝜅𝑟) , 𝑟 = ‖𝐱 − 𝐲‖2 , 𝜅 =

√

2𝜈
𝑙

, 𝐱, 𝐲 ∈ R𝑑 , (1)

where 𝜎2, 𝜈, 𝑙 > 0 are the variance, smoothness parameter, and correlation length, respectively. Moreover, in this definition, we have
the gamma function 𝛤 and the modified Bessel function of the second kind 𝜈 . The Matérn covariance (1), known for its flexibility
and effectiveness, describes spatial uncertainties arising across diverse fields, including astronomy, health, engineering, imaging,
environmental studies, geostatistics, and econometrics [12, Section 1.2]. Its versatility across numerous applications stems from its
ability to interpolate between the exponential and squared-exponential covariance function. Moreover, it facilitates precise control
over the field’s smoothness and its characteristic length scales via the parameters 𝜈 and 𝑙, respectively. Matérn-type random fields
generalize these attractive features to a larger space of covariance kernels on domains beyond 𝐷 = R𝑑 . Fig. 1 illustrates random
fields of Matérn-type covariance with different length scales and smoothness on the domain 𝐷 = (0, 1)2.

We consider problems requiring samples to be represented on the same discrete mesh utilized for modeling and analyzing the
physics. The most popular techniques for generating such samples of GRFs employ Karhunen–Loève (KL) type series expansions or
2
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filter-based Fourier methods. Both techniques represent the GRF as a linear combination of spatially varying basis functions with
uncorrelated Gaussian random variables as coefficients. The size and type of basis determines the computational complexity of the
random field generator. For correlation lengths that are relatively small compared to the characteristic size of the computational
domain, the number of terms in KL-based expansions becomes large, and the associated computational cost is prohibitively expensive.
On the other hand, Fourier-based methods are very computationally efficient for homogeneous GRFs but non-trivial to apply to the
intricate design domains that are ubiquitous in computational mechanics.

The Stochastic Partial Differential Equation (SPDE) methodology proposed in [13] alleviates these limitations. The idea is to model
a GRF as the solution to a fractional SPDE that smooths spatial Gaussian white noise  , i.e., the inverse of the differential operator
lays the role of a filter for convolving  . In particular, Whittle [14,15] showed that the full-space (𝐷 = R𝑑) solution to

( − 𝜅−2𝛥)𝑘𝑢 = 𝜂 , 𝑘 = 𝜈∕2 + 𝑑∕4 , (2)

is a GRF with covariance (1). Here,  denotes the identity and 𝜂 is a normalization constant depending on 𝜎, 𝜈, and 𝑙; see, e.g., (11)
below. Lindgren et al. [13] understood that one might exploit this link between (1) and (2) to efficiently generate random field
realizations for downstream applications and coined the term SPDE method. The method does not impose any special limitations on
the domain geometry, provides excellent flexibility for controlling the RF regularity, and allows for specifying particular behavior
at the boundaries.

The method recently began to gain popularity in computational mechanics. For instance, Koh et al. [16] used the SPDE method
in the context of Bayesian modeling and Gaussian process regression. Additionally and of significant relevance to this work,
Guilleminot et al. [17] and Ben-Yelun et al. [18] applied the methodology to optimize the topology of cantilevers and lattice
structures, respectively. Here we demonstrate its efficacy in simulating complex uncertainties prevalent in scientific computing
workflows for forward and inverse problems on modern distributed computing platforms. We present a numerical algorithm solving
a generalized form of (2) to sample GRFs of Matérn covariance for computational workflows involving arbitrary meshed domains.
The algorithm combines established techniques introduced in the context of the SPDE method; most notably, it promotes the general
setup of [13], employs a rational approximation [19] to handle the fractional operator [20,21], and uses the efficient white noise
sampling suggested in [22]. We provide a performant algorithm implementation, available as part of the open-source finite element
library MFEM [23,24] (as of version 4.6). Standard domain decomposition techniques ensure perfect parallel scalability for large-
scale optimization problems. The solver can be applied to 1D, 2D, or 3D domains, a surface part of the domain’s boundary, or an
arbitrary manifold embedded in the 3D space. The GRF discretization naturally utilizes the mesh of the physical problem and does
not require additional discretization libraries and tools.

Highlighting the versatility of this methodology, we present its applications in two key areas we anticipate to benefit substantially:
biomechanics and topology optimization. We show applications in modeling micro-structures with post-processed GRFs, illustrate
the effects of uncertainties on complex geometries by considering GRFs on a cerebral aneurysm, and show comprehensive numerical
experiments for topology optimization under uncertainty (thermal compliance and bridge design). In the latter set of examples, we
observe new design features and topologies that are out of reach with established random field discretization methods. The paper
proceeds with Section 2, which is devoted to methods generating GRFs, and presents our argument for adopting the SPDE method.
Next, Section 3 contains an overview of the SPDE method and its numerical implementation. Sections 4 and 5 are devoted to
biomechanics and topology optimization applications, respectively, demonstrating the potential of the method in these fields. The
paper ends in Section 6 with a summary of our findings.

2. Numerical methods for generating Gaussian random fields

Gaussian random fields can be sampled through various techniques, each characterized by distinct theoretical underpinnings
and practical applications. For a zero-mean GRF, a direct approach begins with specifying the covariance matrix 𝐂 between points
at different locations and factorizing it with a Cholesky decomposition. Such matrix decomposition methods have been explored
by numerous authors [25–28]. The so-called spectral method, utilizes the association between the covariance matrix and the
power spectrum to perform this factorization in frequency space [29–35]. The centerpiece of this strategy is the Fourier transform,
which facilitates the transformation to frequency space and the conversion of white noise into spatially-correlated random fields.
Another approach is the Karhunen–Loève (KL) expansion [36–38], which leverages an optimal decomposition into eigenfunctions of
the covariance kernel. Finally, PDE-based sampling techniques [12,13] have been developed, leveraging the connection between
stochastic, fractional PDEs and certain GRFs [14,15]. Additional methods, such as the circulant embedding [39–41], also deserve
recognition, as extensively reviewed in [42].

This section highlights some of the most prominent methodologies for generating GRFs. First, the Expansion Optimal Linear
Estimation (EOLE) method [43], a variant of the KL expansion, is reviewed in Section 2.1. Second, the spectral method, employing
the fast Fourier transform (FFT), is summarized in Section 2.2. Section 2.3 is dedicated to the SPDE method [13–15], the method of
choice in this work. The selection of a particular method is contingent upon the specific objectives and constraints of the problem at
hand, the desired characteristics of the random field (such as its correlation structure), and the computational resources available.
While some methods are more suited to specific applications, others offer more flexibility regarding the attributes of the generated
3
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2.1. The Karhunen–Loève expansion and the EOLE method

The EOLE method [43] is a KL-type series expansion method. In general, the KL expansion provides Gaussian random field
amples by forming a linear combination of normalized eigenfunctions 𝜙𝑖(𝐱) of the covariance kernel (𝐱, 𝐲) with i.i.d. coefficients
rawn from a normal distribution. In particular, for a GRF with mean 𝑚(𝐱), we have the expansion

𝑢(𝐱) = 𝑚(𝐱) +
∞
∑

𝑖=1
𝛼𝑖
√

𝜆𝑖𝜙𝑖(𝐱) , (3)

where ∫𝐷 (𝐱, 𝐲)𝜙𝑖(𝐲) d𝐲 = 𝜆𝑖𝜙𝑖(𝐱), ‖𝜙𝑖‖𝐿2(𝐷) = 1, and 𝛼𝑖 ∼  (0, 1) for each 𝑖 = 1, 2,… [44].
The EOLE method is a popular version of this expansion where the covariance kernel is sampled in a covariance matrix at a

representative set of points {𝐱(𝑖) ∈ 𝐷 ∣ 𝑖 = 1,… ,𝑀} in the domain 𝐷, and the eigenfunctions are approximated by their values at
these points. For the selected set of points, the elements of the covariance matrix are computed as 𝐶𝑖𝑗 = (𝐱(𝑖), 𝐱(𝑗)). The eigenvalues
and the eigenvectors of the resulting matrix 𝐶 ∈ R𝑀×𝑀 are denoted as 𝜆𝑖 and 𝐞(𝑖), respectively. The eigenvalues are ordered in
non-increasing order, i.e., 𝜆𝑖 ≥ 𝜆𝑗 for all 𝑗 > 𝑖. Following [43], the EOLE approximation of a GRF with mean 𝑚(𝐱) and covariance
(𝐱, 𝐲) is given as

𝑢(𝐱) ≈ 𝑚(𝐱) +
𝐾
∑

𝑖=1
𝛼𝑖

𝑀
∑

𝑗=1
(𝐱, 𝐱(𝑗))𝑒(𝑖)𝑗 ∕

√

𝜆𝑖 , 𝐾 ≤ 𝑀 , (4)

where 𝛼𝑖 ∼  (0, 1) are again independent Gaussian random variables, and 𝑒(𝑖)𝑗 denotes the 𝑗th component of the 𝑖th eigenvector.
In applications, the sum over the index 𝑖 in (4) is truncated after 𝐾 ≪ 𝑀 terms, i.e., the field is approximated using the 𝐾

largest eigenvalues. For smooth random fields with correlation lengths comparable to the characteristic size of the domain 𝐷, the
ordered sequence of eigenvalues decays fast [45], and the above expression provides a good approximation of the random field with
only a relatively small number of terms 𝐾. Conveniently, this truncation reduces the computational complexity of evaluating 𝑢(𝐱).
However, for rough oscillatory GRFs or computational domains much larger than the correlation lengths of the fields, an accurate
representation requires a considerable number of terms, resulting in significantly increased computational costs.

2.2. Spectral methods

A homogeneous random field in R𝑑 (𝑑 > 1) is the generalization of a stationary stochastic process in 1D. The statistical properties
of such a field are invariant under parallel translations and, therefore, independent of the actual positions in space. In this case, the
covariance simplifies to

(𝐱, 𝐲) = ̂(𝐱 − 𝐲) , 𝐱, 𝐲 ∈ R𝑑 (5)

showing that the covariance between two points 𝐱, 𝐲 may only depend on the length and direction of their connection. Further
demanding invariance of the field’s statistical properties under all isometric transformations yields the important special case of an
isotropic, homogeneous random field, i.e., the covariance function exclusively depends on the distance (𝐱, 𝐲) = ̃(|𝐱 − 𝐲|).

Homogeneous random fields can be constructed by convolving spatial Gaussian white noise  with a function 𝑇 ∈ 𝐿1(R𝑑 ) [29–
31,35,46,47]; namely,

𝑢(𝐱) = (𝑇 ∗ )(𝐱) . (6)

Here, the function 𝑇 is often referred to as a filter and the convolution is often interpreted as 𝑇 smoothing (filtering) the white noise
input. The Fourier transform  is a computationally efficient way to evaluate the convolution in (6) because it becomes a pointwise
multiplication in frequency space. Thus, (6) is computed as

𝑢 = −1( (𝑇 ∗ )) = −1( (𝑇 ) ()) . (7)

The filter 𝑇 determines the covariance structure of the random field 𝑢. According to the Wiener–Khinchin theorem [48,49], the
power spectrum (𝐤), which characterizes the distribution of variance and power across frequencies, is the Fourier transform of the
covariance function ̂(𝐫), where 𝐫 = 𝐱 − 𝐲. Setting  (𝑇 ) =

√

 results in a random field with a desired mean 𝑚 and homogeneous
covariance ̂ (𝐫),

𝑢 = 𝑚 + −1(
√

 ⋅  ()) . (8)

In practice, the FFT is utilized to evaluate (8), which requires accommodating artificial boundary conditions (e.g., periodic boundary
conditions) on a truncated computational domain [50].

2.3. The SPDE method

The above approaches, i.e., the Karhunen–Loève expansion and the spectral method, require an explicit definition of the
covariance function . On the other hand, the SPDE method [13] defines  implicitly via the SPDE in (2). For an infinite
computational domain, the Green’s function of the differential operator determines the covariance of the random field, thus replacing
4
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proposed method is limited to random fields of Matérn-type covariance. Generating GRFs with other types of covariance functions
via a PDE-based methodology involves the derivation of alternative PDEs, which we do not consider here but refer the reader
to [51, Section 1.3] for further details. However, notice that (2) can be solved on arbitrary domains and manifolds by replacing
the Laplace operator with the Laplace–Beltrami operator. This helps generalize random fields of Matérn-type covariance to arbitrary
domains. More details follow in Section 3.4. Additionally, the method allows for easy prescription of different boundary conditions
and handling complicated domains, especially when the discretization process is performed using the Finite Element Method.

While the statistics literature typically uses the isotropic parameterization of the SPDE in (2), this work and the associated C++
implementation parametrize the SPDE following [52]. Recalling the smoothness parameter 𝜈 > 0 used to specify the random field’s
regularity and introducing the matrix Θ defining its correlation lengths in different directions, the SPDE reads

(

 − 1
2𝜈

∇ ⋅ (Θ∇)
)

2𝜈+𝑑
4 𝑢 = 𝜂 , Θ = 𝐑𝑇

⎛

⎜

⎜

⎝

𝑙21
⋱

𝑙2𝑑

⎞

⎟

⎟

⎠

𝐑 , (9)

with 𝜂 being a normalization constant. Here, the rotation matrix and the identity operator are denoted by 𝐑 ∈ SO(𝑑) and ,
respectively. Examples of such Matérn-type random fields with Θ = 𝑙2 𝐈 and homogeneous Neumann boundary conditions on the
domain 𝐷 = (0, 1)2 are depicted in Fig. 1, giving intuition for interpreting the regularity parameter 𝜈 and correlation length 𝑙.

As demonstrated below, this parameterization also allows for a natural definition of anisotropy in engineering applications.
Taking 𝐷 = R𝑑 , the generalized Matérn covariance resulting from (9) is given as

𝐶(𝐱, 𝐲) = 𝜎2𝑀𝜈

(
√

2𝜈 𝑑(𝐱, 𝐲)
)

, 𝑀𝜈 (𝑧) =
21−𝜈
𝛤 (𝜈)

𝑧𝜈𝐾𝜈 (𝑧) , (10)

with the anisotropic distance defined as 𝑑(𝐱, 𝐲) =
√

(𝐱 − 𝐲)Θ−1(𝐱 − 𝐲). Moreover, the normalization constant 𝜂 leads to unit variance
(𝐱, 𝐱) = 1) and is defined

𝜂 =
⎛

⎜

⎜

⎝

(2𝜋)
𝑑
2
√

det(Θ)𝛤 (𝜈 + 𝑑
2 )

𝜈
𝑑
2 𝛤 (𝜈)

⎞

⎟

⎟

⎠

1
2

, (11)

with 𝛤 denoting the gamma function. The corresponding GRF is homogeneous since (10) only depends on the anisotropic distance.
However, taking 𝐷 to be any Lipschitz domain in R𝑑 , (9) easily generalizes to a more general class of inhomogeneous Matérn-type
GRFs upon replacing the matrix Θ with the diffusion tensor Θ(𝐱).

.4. Selection criteria and arguments for the SPDE method

Each of the random field generation methods summarized above has strengths and weaknesses that must be evaluated for the
pecific problem scenario. In this work, we are concerned with finite elementworkflows for computational mechanics and PDE-
onstrained optimization under uncertainty. The target problems are often defined on complex domains and can impose a wide
ange of requirements on the random field model. Typical workflows involve sampling multiple forward simulations of the physical
odel, with every sample corresponding to a different realization of the GRF and corresponding quantity of interest (QoI). The

ampled QoIs may be used to estimate a posterior probability distribution (cf. Section 4) or an associated risk measure (cf. Section 5).
or an optimization workflow (cf. Section 5), the gradients of the objective function and constraint functions can be estimated by
olving an adjoint problem in additional to every forward problem.

We now match requirements of the random field generation method to the general workflows described above. Our underlying
ssumption is that the GRF model (9), with appropriate boundary conditions, is sufficiently general to capture the underlying
ncertainty. First, the method must be able to generate random fields of Matérn-type covariance and handle all choices for
ts parameters 𝜈 and Θ = Θ(𝐱). We emphasize the possible spatial dependence of Θ because of the practical relevance of
nhomogeneous GRFs [3]. Second, the method must be able to handle complicated domains 𝐷 ⊂ R3 and allow for defining
eneral boundary conditions. Third, since the underlying physical processes will be simulated with finite elements, the random
ield discretizations should conveniently map to such data structures. Fourth, we demand (relative) scalability of the method. In
articular, denoting the times to solve the physical problem and sample the random field as 𝑇𝑝 and 𝑇𝑟, respectively, we demand

that 𝑇𝑟 ≤ 𝑐𝑇𝑝 with 𝑐 = (1). Here, we pause to note that demanding a great difference between 𝑇𝑟 and 𝑇𝑝 (i.e., 𝑐 ≪ 1) is usually
ot necessary because there is typically no more than one random field generation step per physics solve. Thus, the dominant cost
ill always be determined by 𝑇𝑝. Lastly, we require the method to be memory efficient relative to the physics. In this case, letting
𝑟 and 𝑀𝑝 denote the memory footprint of the random field and the physical problem, respectively, we demand 𝑀𝑟 ≤ 𝑐𝑀𝑝 with

𝑐 = (1). In practice, limited computing resources may sometimes impose tighter upper bounds for 𝑐 and 𝑐 than (1).
Karhunen–Loève-type expansions such as EOLE are algorithmically simple and effective for generating random fields and have

een used successfully in engineering workflows, e.g., in topology optimization [53–55]. However, as mentioned in Section 2.1,
ethods in this class scale unfavorably as the correlation length diminishes. In (4), the number of points 𝑀 sampling the space must

e increased, yielding a large covariance matrix 𝐂 ∈ R𝑀×𝑀 whose decomposition becomes expensive. Additionally, its eigenvalues
ecay slowly, making evaluating the expansion increasingly challenging because the memory footprint grows linearly with the
umber of eigenvectors 𝐾 and the overall computational cost scales roughly like (𝐾𝑀). Decomposing the computational domain,
valuating the decomposition on each subdomain, and requiring continuity of the samples between the partitions reduces the size
5
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of the covariance matrix and helps the method to scale [56]. However, such an approach can introduce errors on the interface
between the subdomains and requires the utilization of regular geometries or advanced data structures not supported by general
FEM libraries. Therefore, we rule out EOLE and similar approaches.

Spectral methods are excellent alternatives. FFT’s (𝑛 log 𝑛)-scaling enables fast generation of random fields with limited
esources. Modern FFT libraries such as heFFTe [57] have proven that the algorithm scales on top-tier computing systems and
omplicated domains can be addressed with windowing techniques [50]. However, FFT-based methods become difficult, or
nfeasible, when approaching problems on two-dimensional manifolds embedded in R3. Moreover, the FFT is restricted to regular
rids, and enforcing boundary conditions on anything but trivial domains requires expertise. Projecting the regular grid solution
nto the finite element discretization of the physical problem is non-trivial, particularly in the context of distributed computing
or which the data distribution of a graph-partitioned finite element problem does not coincide with the one used by the FFT
ibraries and extensive MPI-communication may be necessary for the mapping process. Finally, generating inhomogeneous fields
equires space-dependent filter functions 𝑇 . While such filters may be defined, the convolution theorem no longer holds, making
he filtering of the white noise considerably more complex and resource intensive.

Here, we advocate for using the SPDE method. While we mainly restrict ourselves to examples from biomechanics and topology
ptimization under uncertainty, our arguments for employing the SPDE method extend to general application areas whose problems
re encoded in PDEs and may be solved with the finite element method, provided that the Matérn-type covariance class accurately
escribes the uncertainties. FFT-based methods are arguably faster; however, even significantly shorter sampling times barely
nfluence a PDE-constrained optimization workflow’s overall runtime, and the SPDE method’s convenience outweighs the FFT’s
omputational advantages. The SPDE method allows arbitrary choices of regularity, orientation, and correlation lengths and samples
andom fields on arbitrary meshed domains. As the SPDE solution method here is based on finite elements, the random field can
e computed on the same (distributed) mesh as the physical problem, and matching the random fields with the physical problem
ecomes a trivial task, even in setups involving thousands of CPU cores. We further note that the numerical solution of (9) is efficient
nd scalable (see Section 3) and, thus, our relative scalability demands, 𝑇𝑟 ≤ 𝑐𝑇𝑝 and 𝑀𝑟 ≤ 𝑐𝑀𝑝, are satisfied. The SPDE method

enables us to easily define boundary conditions for the GRF on complicated domains, and the method extends to a general class of
inhomogeneous fields with Θ = Θ(𝐱). Hence, the SPDE method satisfies all requirements and carries the potential to become the

ethod of choice in finite-element-driven application areas.

. Implementing the SPDE method

The purpose of this section is to present an implementation-based overview of the SPDE approach to generating Mátern-type
RFs. For ease of presentation, we first choose to focus on the simplified PDE model (2) in the case where 𝑘 is a positive integer. As

shown in Section 3.1, the approach reduces to a Galerkin finite element method. Sections 3.2 and 3.3 discuss an efficient sampling of
the spatial white noise vector and the handling of the fractional operator for real-valued 𝑘 > 𝑑∕4. From this point, the generalization
o (9) is straightforward. Lastly, Section 3.4 explains how the SPDE generalizes to Matérn-type random fields on manifolds. We refer
he reader to Appendix A for a small note on our MFEM implementation and its scalability.

.1. FEM discretization

Our description mainly follows [22, Sections 3.1]. Solving (2) with integer exponent 𝑘 ≥ 1 on a domain 𝐷 ⊂ R𝑑 reduces to a
sequence of second-order PDEs:

{

𝑢1 − 𝜅−2𝛥𝑢1 = 𝜂 in 𝐷 ,

𝑢𝑖+1 − 𝜅−2𝛥𝑢𝑖+1 = 𝑢𝑖 in 𝐷 , for 𝑖 = 1,… , 𝑘 − 1,
(12)

with 𝑢 ∶= 𝑢𝑘 and appropriate boundary conditions (e.g., Dirichlet or Neumann) on each 𝑢𝑖, 𝑖 = 1,… , 𝑘; cf. [13].
The equations in (12) for 𝑢𝑖, 𝑖 = 2,… , 𝑘, lead to weak formulations that can be treated using standard finite element techniques;

the interested reader is referred to [58] for further details. We focus on the case 𝑘 = 𝜂 = 1 and, for simplicity, assume homogeneous
Dirichlet boundary conditions. In this case, (12) reduces to

− 𝜅−2𝛥𝑢 + 𝑢 =  in 𝐷 , 𝑢 = 0 on 𝜕𝐷 . (13)

To solve (13) with finite elements, we proceed as follows. Let 𝑉ℎ = span(𝜙1, 𝜙2,… , 𝜙𝑚) ⊂ 𝐻1
0 (𝐷) be a finite element subspace

spanned by the basis functions 𝜙𝑖, 𝑖 = 1,… , 𝑚. The Galerkin approximation 𝑢ℎ ≈ 𝑢 is then written

Find 𝑢ℎ ∈ 𝑉ℎ such that 𝜅−2(∇𝑢ℎ,∇𝑣) + (𝑢ℎ, 𝑣) = ⟨ , 𝑣⟩ , for all 𝑣 ∈ 𝑉ℎ , (14)

where the notation (⋅, ⋅) denotes the 𝐿2(𝐷)-inner product and ⟨ , 𝜙⟩ = (𝜙) denotes the action of the generalized stochastic field
 onto the function 𝜙 ∈ 𝐿2(𝐷).

Our task is to rewrite (14) as a linear equation

𝐀𝐱 = 𝐛 , (15)

with a normally-distributed random right-hand side vector 𝐛. We begin by referring to [59, Example 1.2 and Lemma 1.10], where
it is shown that for the spatial white noise  and any collection of functions {𝜙𝑖} in 𝐿2(𝐷), the actions

𝑏 = ⟨ , 𝜙 ⟩ (16a)
6
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are joint Gaussian random variables with zero mean and covariance given by

E[𝑏𝑖𝑏𝑗 ] = (𝜙𝑖, 𝜙𝑗 ) . (16b)

In turn, we find that expressing 𝑢ℎ =
∑𝑚

𝑖=1 𝑥𝑖𝜙𝑖(𝐱) leads to the identities

𝐴𝑖𝑗 = 𝜅−2(∇𝜙𝑖,∇𝜙𝑗 ) + (𝜙𝑖, 𝜙𝑗 ) and 𝑏𝑖 = ⟨ , 𝜙𝑖⟩ . (17)

Moreover, by (16), we find that 𝐛 is a zero-mean Gaussian vector,

𝐛 ∼  (0,𝐌) , (18)

with covariance matrix equal to the standard finite element mass matrix 𝑀𝑖𝑗 = (𝜙𝑖, 𝜙𝑗 ).
Efficient procedures to assemble the finite element stiffness matrix 𝐀 are well-documented in the literature. It remains to state a

technique to efficiently generate samples of the spatial white noise vector 𝐛. This is done in Section 3.2 below. Once 𝐛 is sampled,
the linear system (15) can be solved efficiently with standard FE system techniques, e.g., via various preconditioned linear equation
solvers. The average cost can be further reduced if multiple samples of 𝑢ℎ are required simultaneously. Indeed, the matrix equation

𝐀𝐗 = 𝐁 , 𝐗 =
⎡

⎢

⎢

⎣

| |

𝐱1 ⋯ 𝐱𝓁
| |

⎤

⎥

⎥

⎦

, 𝐁 =
⎡

⎢

⎢

⎣

| |

𝐛1 ⋯ 𝐛𝓁
| |

⎤

⎥

⎥

⎦

, (19)

is easily formed by first drawing 𝓁 > 0 samples of 𝐛 ∼  (0,𝐌) and then solved with the same preconditioner as if 𝓁 = 1. Likewise,
no new finite element solver is required if 𝑘 > 1 since the same elliptic operator appears in each of the equations in (12).

3.2. Sampling the spatial white noise vector

We understand from (18) that spatial white noise realizations 𝐛 ∈ R𝑚 can be generated by sampling a Gaussian vector whose
covariance 𝐂 is given by the mass matrix 𝐌 ∈ R𝑚×𝑚. Sampling such a vector can be thought of as executing a linear transformation
that converts an 𝑛-dimensional Gaussian random vector 𝐳 = (𝑧1,… , 𝑧𝑛)⊤ ∼  (0, 𝐈) with zero mean E[𝐳] = 𝟎 and identity covariance
E[𝑧𝑖𝑧𝑗 ] = 𝛿𝑖𝑗 , to a new random vector

𝐛 = 𝐇𝐳 , (20)

where 𝐇 ∈ R𝑚×𝑛 decomposes the mass matrix 𝐌 = 𝐇𝐇⊤. Indeed, observe that for any such matrix 𝐇, it holds that E[𝐛] = 𝐇E[𝐳] = 𝟎
and, furthermore,

E[𝐛𝐛⊤] = E[𝐇𝐳(𝐇𝐳)⊤] = 𝐇E[𝐳𝐳⊤]𝐇⊤ = 𝐇𝐈𝐇⊤ = 𝐌 . (21)

Generating samples of 𝐳 is easy; pseudorandom number generators are available in all scientific software languages and may
be used to independently sample each component 𝑧𝑖 ∼  (0, 1), 𝑖 = 1,… , 𝑛. The main task is to construct 𝐇 efficiently. A tempting
choice 𝐇 = 𝐋 ∈ R𝑚×𝑚 follows from the Cholesky factorization 𝐋𝐋⊤ = 𝐌. However, this choice may be prohibitively expensive if 𝑚 is
large since it involves an (𝑚3) factoring cost (from factoring 𝐋𝐋⊤ = 𝐌) and (𝑚2) sampling cost (from matrix–vector multiplication
𝐛 = 𝐋𝐳). Instead, we promote the construction suggested in [22, Section 4.1] whose factoring and sampling costs both scale like
(𝑚).

The idea is to leverage the assembly procedure that is used to construct global matrices in any typical finite element code
(cf. Fig. 2) and perform the Cholesky decomposition in parallel at the element level. For the mass matrix, we have the factorization

𝐌 = 𝐏⊤𝐆⊤𝐁⊤𝐃𝐁𝐆𝐏 . (22)

In this expression, 𝐏 ∈ R𝑚local×𝑚 projects the (true) global degrees of freedom (DOFs) onto a space of local DOFs with redundancies
at the intersections of local subdomains (usually restricted to separate processors) and 𝐆 ∈ R𝑚elem×𝑚local further distributes these
local DOFs to individual elements. Meanwhile, the matrix 𝐁 ∈ R𝑚quad×𝑚elem and the diagonal matrix 𝐃 ∈ R𝑚quad×𝑚quad involve function
evaluation (at quadrature points) and perform multiplication with quadrature weights, respectively.

The block-diagonal matrix 𝐌̃ = diag(𝐌𝑇 ) = 𝐁⊤𝐃𝐁 is comprised of the local mass matrices indexed by each individual element
𝑇 in the mesh  . Note that each 𝐌𝑇 is symmetric positive definite and, therefore, we can use a local Cholesky decomposition to
factor each local mass matrix 𝐋𝑇𝐋⊤

𝑇 = 𝐌𝑇 independently. Moreover, defining 𝐇 = 𝐏⊤𝐆⊤diag(𝐋𝑇 ) ∈ R𝑚×𝑚elem , we find that

𝐌 = 𝐏⊤𝐆⊤𝐌̃𝐆𝐏 = 𝐏⊤𝐆⊤diag(𝐋𝑇𝐋⊤
𝑇 )𝐆𝐏 = 𝐏⊤𝐆⊤diag(𝐋𝑇 )(𝐏⊤𝐆⊤diag(𝐋𝑇 ))⊤ = 𝐇𝐇⊤ . (23)

In summary, it is only necessary to factor the mass matrix locally, because of this, the cost of sampling the white noise vector
𝐛 scales linearly in the number of elements and DOFs. We encourage the interested reader to inspect our parallel and scalable
implementation of the above sampling strategy in the latest release of MFEM [24,60].
7
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Fig. 2. The finite element assembly procedure in a typical finite element code reduces to matrix multiplication. For the mass matrix, we multiply through the
actorization 𝐌 = 𝐏⊤𝐆⊤𝐁⊤𝐃𝐁𝐆𝐏 depicted above. Figure modified from [23,24].

.3. Fractional exponents

The SPDE (2) includes a non-integer exponent, specifically 𝑘 = 2𝜈+𝑑
4 . Solving boundary value problems with such fractional

exponents, as they are known, presents unique challenges and demands substantial computational resources due to the non-local
nature of the associated operator. However, the past decade has witnessed significant progress in developing efficient techniques
to tackle these problems [61,62]. A notable approach is based on the Caffarelli–Silvestre extension, in which the fractional PDE
solution is identified as a restriction of the solution to an integer-order boundary value problem set in a higher-dimensional semi-
infinite cylinder [63]. This identification allows the higher-dimensional integer-order PDEs to be discretized using the Galerkin
finite element method [64–66]. Another technique involves using an integral representation of the inverse fractional operator,
combined with a specific quadrature rule, to break down the problem into a series of integer-order PDEs [67–69]. This technique
has recently been applied to the SPDE [70]. An alternative strategy suggests modeling the fractional PDE as a transient pseudo-
parabolic problem, where numerical integration over a ‘time’ parameter results in a sequence of integer-order PDEs [71,72]. In our
implementation [60], we adopt a rational approximation method [20,21,73], which involves approximating the operator’s spectrum
with a rational function. The multipole expansion of this function then leads to a set of independent integer-order PDEs that can be
solved simultaneously. This method is summarized below.

The rational approximation method can be applied to a wide variety of elliptic differential operators , with spectrum 𝜎() ⊂
[𝜆min, 𝜆max], 0 < 𝜆min < 𝜆max. However, in (9), we are specifically interested in the fractional PDEs of the form

𝑘𝑢 = 𝜂 , 𝑘 > 𝑑∕4 , (24)

where  ∶= −𝜅−2𝛥 with its associated boundary conditions. If the rational function 𝜆 ↦
∑𝑁

𝑛=1
𝑐𝑛

𝜆+𝑑𝑛
approximates the function 𝜆 ↦

𝜆−𝛼 on the interval [𝜆min, 𝜆max], i.e.,
𝑁
∑

𝑛=1

𝑐𝑛
𝜆 + 𝑑𝑛

≈ 𝜆−𝛼 for all 𝜆 ∈ [𝜆min, 𝜆max] , (25)

hen the solution 𝑢 can be approximated as the weighted average of the solutions of 𝑁 problems written in terms of 𝐴; namely,

𝑢 ≈
𝑁
∑

𝑛=1
𝑐𝑛𝑢𝑛 , where

(

𝑑𝑛 +
)

𝑢𝑛 = 𝜂 . (26)

Because 𝐴 is an integer-order differential operator, each of the 𝑁 problems above can be solved using the finite element method
as described previously in this section. It remains to explain how to generate the weights 𝑐𝑛 and the poles −𝑑𝑛 of the rational
function (25). These can be obtained with one of the various rational approximation algorithms; see, e.g., [19–21]. In our MFEM
implementation, we used the adaptive Antoulas–Anderson (AAA) algorithm proposed in [19]. From this point on, the generalization
of the numerical scheme from (2) to (9) is straightforward and merely requires replacing the scalar number 𝜅−2 with the matrix
Θ∕2𝜈 in the weak form (14) and the corresponding matrix assembly.

The fractional exponent gives fine control over the smoothness of the GRF, which may not be achieved with integer-order
exponents. Indeed, we remind the reader of Fig. 1, which depicts a variety of isotropic random fields that can be generated from
the SPDE approach. In Fig. 3, we illustrate the impact of the regularity parameter 𝜈 on GRFs generated via the generalized SPDE (9)
with strong anisotropy. We use a pointwise non-linear transformation of the generated samples to demonstrate the effect. Such
transformations are common in modeling material properties [74], loads, and inputs with marginal distributions [75] different
from Gaussian. In the random field samples presented in Fig. 3, we threshold the generated GRF. All values of the GRF sample
between zero and one are projected to one and all others to zero. We generated three GRF samples with enforced strong anisotropy
and rotated them with different angles. The final image is obtained by pointwise summation and thresholding the result at one.
The presented model can model the random distribution of fibers in composite materials. Close inspection of the images reveals
that smoother fields, i.e., larger 𝜈, produce thicker fibers with well-defined spaces between them. The fibers’ size relative to the
8
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Fig. 3. Combination of three, thresholded random fields to mimic material uncertainties for different smoothness (columns) and different white noise samples
(rows). Thresholds are set to 0 and 1.

i.e., smaller values of the parameter 𝜈, result in well-separated clumps of thinner fibers. The clumping phenomena can be modeled
only by increasing the roughness of the field. Thus, varying the parameter 𝜈 combined with a non-linear transformation provides
another control parameter for developing models of physically realistic distributions. Further examples for microstructure models
based on the post-processing of Matérn-type random fields can be found in [10].

3.4. The SPDE method on manifolds

The SPDE approach is especially desirable to generate random fields on complex geometries and embedded surfaces. Indeed,
the representation (12) provides a natural generalization to any sufficiently smooth manifold if the symbol 𝛥 is interpreted as the
corresponding Laplace–Beltrami operator. In turn, instead of (1), the general formula for the covariance involves the eigenvalues
𝜆𝑗 and eigenfunctions 𝛹𝑗 of the Laplace–Beltrami operator,

𝐶(𝐱, 𝐲) =
∞
∑

𝑗=1

𝑐𝑘
(𝜅2 + 𝜆𝑗 )𝛼

𝛹𝑗 (𝐱)𝛹𝑗 (𝐲) . (27)

Typically, a closed from for (27) cannot be derived because the eigenfunctions are unknown. Notable exceptions are intervals, rectan-
gles, parallelepipeds, disks, sectors, spheres, spherical shells, ellipses, equilateral triangles, and circular and elliptical annuluses [76].
Truncated and spherical domains are particularly interesting in the context of the SPDE method and our examples. Khristenko and
co-workers [50] thoroughly analyzed the effect of the boundaries on the SPDE covariance on 𝐷 = (0, 1). They derived closed from
solutions for (27) with homogeneous Dirichlet and Neumann boundary conditions resulting in a sum over sine and cosine terms,
respectively. They then found that the difference between the Matérn covariance (1) and the different expressions for (27) rapidly
decays as the distance to the boundary increases and that the covariance is practically indistinguishable for points further than one
to two correlation lengths away from the boundary. The authors additionally considered periodic boundaries, where they observe
wrap-around effects due to the topology. Such effects are also present in the sphere. Here, the eigenfunctions are the spherical
harmonics but (27) can be further simplified to a sum over the Legendre polynomials [51,77]. The Matérn-type covariance on the
sphere is very similar to the Matérn covariance (1) if 𝑙∕𝑅 ≪ 1, where 𝑅 denotes the radius of the sphere. Intuitively this can be
understood from realizing that decreasing 𝑙 on the sphere restricts the action of the filter defined by the Laplace–Beltrami operator
to small local patches that are increasingly similar to R2. Finding the eigenfunctions and, therefore, the covariance of more intricate
domains or manifolds requires numerical methods [78]. For further details regarding the SPDE on manifolds, we refer to Lindgren
and co-worker’s original work [13] and the associated ten-year review [12]. Additional insights regarding the Matérn covariance on
Riemannian manifolds can be found in the work of Borovitskiy and co-workers [79]. Lastly, we wish to highlight the recent work
of Bonito et al. [70], providing a complete error analysis for GRFs on closed surfaces defined via the SPDE.

Fig. 4 displays a series of images depicting random field realizations on sphere, mobius strip, and Klein bottle geometries. These
independent random fields were generated with our MFEM implementation of the SPDE method [60]. Additionally, we note that
MFEM has long-standing native support for FEM discretizations of elliptic surface PDEs [23]. This feature was easy to leverage, and
provided immediate support for the SPDE method on embedded surfaces without any code duplication.
9
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Fig. 4. Matérn random fields on sphere, mobius strip, and Klein bottle geometries.

Fig. 5. The synthetic aneurysms are obtained from a reference geometry (grey mesh) [87] via the SPDE method and shifting the respective vertices in normal
direction proportionally to the random field values (red-blue color bar) multiplied by a scaling parameter 𝛼𝑆 > 0. Regions with positive random field values are
lifted while negative values are lowered. Matérn-type GRF parameters: 𝑙 = 5.0, 𝜈 = 2.0, and 𝛼𝑆 = 0.2. We choose a larger scaling parameter 𝛼𝑆 than in Table 1 so
that the geometric variations are easier to observe. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

4. Simulating random fields on complex domains

To demonstrate the relevance of the SPDE method for geometric uncertainties, we borrow an example from biomedical
engineering; namely, cerebral aneurysms. Cerebral aneurysms are weakened areas in the brain’s blood vessel walls that bulge and
sometimes rupture, potentially leading to fatality. Various factors influence cerebral aneurysm formation, including hemodynamics,
genetics, and weakened vessel walls; see [80–82] and references therein. Once an aneurysm has formed, endovascular coiling has
become a popular treatment option. In this procedure, medical professionals insert a thin wire into the aneurysm, forming a tiny
coil to fill the space and prevent rupture [83–85].

Mathematical models for cerebral aneurysms and their treatment describe a complex interplay between fluid dynamics,
biomechanics, and aneurysm geometry [82,86]. The computational domain, represented by a numerical mesh, is the foundation for
these simulations. However, geometric uncertainties arise from the limitations of CT scans and subsequent post-processing techniques
from which the meshes are extracted. These uncertainties propagate through the subsequent flow field and coiling simulations,
potentially influencing predictions and conclusions that may be drawn from these analyses.

In the following, we assess uncertainties arising because of geometric ambiguities of the computational domain, i.e., the
boundary of the synthetic aneurysm. Section 4.1 demonstrates the generation of synthetic aneurysms via the SPDE method followed
by two forward problems for UQ presented in Section 4.2. We investigate how endovascular coiling deforms and stretches the
aneurysm surface and complete the examples with blood flow simulations through perturbed geometries via the Stokes equation.
The overarching goal of these forward problems is to illustrate the relationship between uncertainties in the aneurysm geometry and
QoIs that influence the risk of rupture, such as the wall shear stress and pressure. This information can provide valuable medical
insights and inform the development of more robust and reliable treatment strategies.

4.1. Synthetic aneurysms

We generate synthetic aneurysms to quantify the influence of uncertainties in an aneurysm geometry. We proceed in three steps.
First, we employ the SPDE method to sample an isotropic (i.e., Θ = 𝑙2𝐈) Matérn-type random field 𝑢 on the surface of a reference
10
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Table 1
Parameters for the UQ aneurysm experiments.

Problem SPDE Membrane

Parameter 𝜈 𝑙𝑖 𝛼𝑆 𝑇 ℎ 𝜈𝑀 𝑔 𝑎𝑘 𝑏𝑘 𝑡1 𝑡2 = 𝑡3 𝛼𝑀
Value 2.0 5.0 0.1 0.1 0.05 0.5 10.0 4.0 1.0 20.0 0.05 0.05

aneurysm reconstructed from a CT scan [87]. Next, we estimate the outward-facing unit normal vector 𝐧𝑘 at each vertex 𝐯𝑘 of
the triangulated aneurysm surface. To achieve this, we average the normals of the bordering elements on the triangulated surface.
Lastly, we shift the vertices of the triangulated aneurysm surface proportionally to the values of the generated random fields; i.e., we
translate the vertices 𝐯𝑘 ↦ 𝐯𝑘 + 𝛼𝑆𝑢(𝐯𝑘)𝐧𝑘, where 𝛼𝑆 ∈ R+. This process introduces physical variations in the aneurysm geometry
capable of modeling the uncertainty introduced by errors in the CT scans and associated post-processing techniques.

Fig. 5 shows an example of a synthetic aneurysm. It displays the grey mesh of the reference geometry [87] and the synthetic
aneurysm colored in red and blue to indicate the values of the random field sample. The computational mesh comprises
approximately 71 ⋅ 103 nodes that define 142 ⋅ 103 triangular elements. The shape of the random synthetic aneurysms depends in a
natural way on the model parameters 𝑙, 𝜈, and 𝛼𝑆 . Here, and throughout this section, we choose relatively long correlation lengths 𝑙
and high smoothness parameters 𝜈 to avoid creating unrealistic, rough, and highly-oscillatory aneurysm surfaces. The SPDE method
allows us to generate as many synthetic aneurysm geometries as we wish in parallel. Computing a single random field realization
as depicted in Fig. 5 (𝜈 = 2.0, 𝑙 = 5.0) takes slightly less than one second on a standard notebook using 4 MPI ranks.

4.2. Aneurysm deformation through coiling

We may now focus on uncertainty quantification with the synthetic aneurysm geometries. We consider an example motivated
by endovascular coiling [88]. Here, we are interested in estimating how a medical coil inside the aneurysm stretches the surface.
The mathematical model, introduced by Nobile and Vergara in [89], describes the displacement 𝜂 of the aneurysm surface in the
presence of a load 𝑓 by a diffusion equation,

(∇ ⋅ 𝑇∇ + 𝛽(𝐱)) 𝜂(𝐱) = 𝑓 (𝐱) , (28)

where the coefficient 𝑇 describes the stiffness of the membrane and 𝛽 is constructed from weighted curvature terms. Denoting the
mean and Gaussian curvature as 𝜌𝑀 and 𝜌𝐺, the latter coefficient reads

𝛽(𝐱) = 2𝑇ℎ
(

2𝜌𝑀 (𝐱)2 − 𝜌𝐺(𝐱)
)

+ 2 𝑔
(

2𝜌𝑀 (𝐱)2 − (1 − 𝜈𝑚)𝜌𝐺(𝐱)
)

, (29)

with the parameters ℎ and 𝜈𝑀 denoting the membrane thickness and Poisson coefficient, respectively. The original authors derived a
second-order time-dependent membrane equation from the Koiter shell model [90,91]. Our model further simplifies their pre-stressed
model by assuming a stationary solution and an isotropic, spatially invariant coefficient 𝑇 .

A detailed representation of the load 𝑓 in (28) would require simulating the coiling [88] and coupling this to the membrane
equation. Instead, we focus on the effect of geometric uncertainties on complicated manifolds and limit ourselves to an explicit
model for the internal force 𝑓 arising from the coiling. We sample a set of 𝑀 points 𝐱1,…,𝑀 near the aneurysm center and model
the force at a point 𝐱 on the aneurysm surface as

𝑓 (𝐱) = max
𝑘∈{1,…,𝑀}

(

𝑏𝑘 exp
(

−𝑎−1𝑘 (𝐱 − 𝐱𝑘)𝑇Θ𝑘(𝐱 − 𝐱𝑘)
))

with Θ𝑘 = 𝐑𝑇
𝑘

⎛

⎜

⎜

⎝

𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

⎞

⎟

⎟

⎠

𝐑𝑘 , (30)

where 𝑎𝑘, 𝑏𝑘, and 𝑡𝑖 > 0 parametrize the force. The matrices 𝐑𝑘 ∈ SO(3) are random rotation matrices obtained by sampling Euler
angles.

Conveniently, the mathematical problem defined via (28) through (30) is similar to the SPDE problem. We discretize it using the
finite element method and solve the arising linear system with the conjugate gradient method preconditioned with an algebraic
multi-grid. For more details, we refer to Section 3. Computationally, the time for solving it is dominated by the approximate
computation of the curvature terms in (29) [92], such that 𝑐 = 𝑇𝑟∕𝑇𝑝 ≪ 1 holds. Fig. 6 shows the solution of the forward problem
for the parameter choices given in Table 1 and used throughout this section.

Based on the solution 𝜂 of (28) depicted in Fig. 6(c), we define our quantity of interest (QoI) as the surface distortion resulting
from shifting the vertices 𝐯𝑘 ↦ 𝐯𝑘 + 𝛼𝑀𝜂(𝐯𝑘)𝐧𝑘, where 𝛼𝑀 ∈ R+. More specifically, we compute the relative surface change (RSC),

𝑞𝑗 =
𝐴𝑛𝑒𝑤
𝑗 − 𝐴𝑜𝑙𝑑

𝑗

𝐴𝑜𝑙𝑑
𝑗

, (31)

n element-wise QoI, where 𝐴𝑗 denotes the 𝑗th face surface area and 𝑗 ranges over the number of faces in the mesh. Regions
xperiencing high stretches are prone to ruptures and, thus, are of significant interest for treatment planning [93]. Consequently,
e are interested in the largest (or 𝑘 largest) observed RSC values per sample.

Having defined the uncertainties, the mathematical forward model, and the QoIs, we now lay out the UQ workflow. We generate
set of 5000 synthetic aneurysms following the procedure described in Section 4.1 and using the parameters given in Table 1. The

orce field defined via (30) is generated once before generating the synthetic aneurysms and left unchanged for all samples.
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Fig. 6. The solution of Eq. (28) through Eq. (30) on the reference aneurysm. Images (a) and (b) show the functions defined in Eq. (29) and Eq. (30), respectively.
(c) shows the solution 𝜂 of Eq. (28) obtained with the finite element method. The model parameters are given in Table 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Effects of uncertainties in the aneurysm geometry on the stretching of elements caused by a coil force. The reference aneurysm is obtained via a CT
scan and depicted in Fig. 5. (a) Histogram of the maximal relative surface change of an element observed across 5000 synthetic samples. (b) KDE estimates of
the largest 50 relative surface changes for the reference aneurysm (blue) and ten synthetic aneurysms. (c) Histogram of the largest 50 relative surface changes
accumulated over 5000 samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7 shows the results of this representative study. The histogram in Fig. 7(a) displays the distribution of the maximal RSC
value in each sample. While the reference aneurysm obtained via a CT scan shows a maximal RSC of roughly 4.4% (blue), the
synthetic aneurysms (orange) show a wide spread of the QoI, with some aneurysms showing RSCs of over 5.5%. This suggests that
only simulating on the reference aneurysm may underestimate the risk of rupture during treatment. Fig. 7 (b,c) provides additional
insights. Both figures show the distribution of the 50 largest RSC values for various samples. Fig. 7(b) shows the kernel density
estimate (KDE) of the 50 largest RSC values for the reference aneurysm (blue, filled) and ten randomly chosen synthetic aneurysms.
Fig. 7(c) presents a histogram of all of the top 50 RSC values across all synthetic RSC distributions. The heavy tails in both (b) and
(c) provide additional support to the conclusion that only simulating on the reference aneurysm may underestimate the probability
of a rupture.

The same GRF model can also be used for analyzing blood flow variations through different realizations of the aneurysm
geometry. From basic fluid dynamics considerations, we expect the flow, particularly the pressure drop, to be very sensitive to
geometric uncertainties. This can be understood from the Hagen–Poiseuille law, which states that the pressure drop is inversely
proportional to the fourth power of the vessel’s radius [94]. However, because this law is derived for a cylindrical pipe instead
of the complicated vessel geometry, we choose to numerically probe this hypothesis with a steady state Stokes flow model. We
use a parabolic velocity profile prescribed at the inlet, free flow boundary conditions at the outlet, and no-slip boundaries at the
vessel walls. The solutions for three different random vessels are shown in Fig. 8, and significant differences in the flow velocity
and pressure distributions can be observed. Indeed, the first two vessels show similar pressure losses and velocity distributions.
However, the third realization has a narrow diameter close to the outlet, which results in much more significant pressure loss and
higher velocities towards the outlet. This change to the velocity profile will result in larger shear stresses on the aneurysm, increasing
its risk of rupturing. The considered Stokes model is only utilized here for illustration purposes, and a more realistic blood flow
model with a non-trivial Reynolds number and pulsating boundary conditions is outside of the scope of the current article, yet
necessary for further medical analyses [82,86,95].
12
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Fig. 8. Effects of geometric uncertainties for three realizations on a fluid flow throughout the aneurysm. The streamlines are colored by the pressure in the
fluid using the color scale shown in the figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

5. Topology optimization under uncertainty

The ability to sample Gaussian random fields with a wide range of correlation lengths opens the possibility of investigating the
impact of realistic operational, manufacturing, and material uncertainties on topology-optimized designs. Thus, the main goal of this
section is to demonstrate these capabilities, discuss the computational complexity, and share details on the method’s performance.
In the following, Section 5.1 provides a concise introduction to the standard techniques and notations of topology optimization. The
experienced practitioner may directly proceed to the selected examples, demonstrating the effect of such uncertainties. Section 5.2
considers a heat sink design problem subject to operational and material uncertainties. We treat the problem in 2D and on a surface
embedded in 3D, and investigate how different correlation lengths, anisotropy, and symmetry affect the design. Section 5.3 presents
the optimized design of bridges under stochastic excitation in 2D and 3D. If not explicitly stated to be otherwise, all GRFs generated
via the SPDE (9) obey homogeneous Neumann boundaries. The vast collection of examples illustrates the flexibility and parallel
scalability of the SPDE method, as well as the importance of incorporating uncertainties into the design problem.

5.1. Topology optimization

Topology optimization is an iterative design process aiming to find a material distribution by optimizing a specified performance
measure and fulfilling a set of constraints [96]. Mathematically, the associated optimization problems can be written in the following
form:

minimize 𝑗 (𝜌,𝐮) over (𝜌,𝐮) ∈ 𝑍 × 𝑉 (32a)

subject to 𝑎 (𝐮, 𝐯; 𝜌) = 𝓁 (𝐯) for all 𝐯 ∈ 𝑉 . (32b)

Here, 𝑗 ∶𝑍 × 𝑉 → R is an integral functional subject to a set of constraints. The first constraint is a weak formulation of a partial
differential equation (PDE). If the PDE is linear, then 𝑎∶𝑉 × 𝑉 → R is a parametric bilinear form, 𝓁∶𝑉 → R is a linear form, 𝑉 is
the admissible solution space of the weak formulation, and 𝑍 is the so-called design space defined as

𝑍 =
{

𝜌 ∈ 𝐿1 (𝐷) ∶ 0 ≤ 𝜌 ≤ 1 a.e.,∫𝐷
𝜌 d𝐱 ≤ 𝛾 |𝐷|

}

, (33)

for some fixed volume fraction parameter 𝛾 ∈ (0, 1). Eq. (32b) is called the state equation, whose coefficients depend on a material
distribution 𝜌 ∈ 𝑍, which in the topology optimization literature is referred to as the density field.

Assuming that (32b) is uniquely solvable for every 𝜌 ∈ 𝑍, the state variable 𝐮 = 𝐮(𝜌) in (32a) is often eliminated and the design
problem is reduced to

minimize 𝐽 (𝜌) ∶= 𝑗 (𝜌,𝐮 (𝜌)) over 𝜌 ∈ 𝑍 . (34)

The above form provides the basis of the so-called nested design space approach in topology optimization [96]. It is often
advantageous compared to the original formulation (32) because the state equations are always satisfied during the optimization
process, often allowing the users to stop the iterative optimization process early.

For most practical problems, the density 𝜌 ∈ 𝑍 should take on discrete values, zero or one, at every point in the design domain
𝐷 ⊂ R𝑑 , 𝑑 = 2, 3. However, gradient-based optimization techniques require that the density vary continuously between zero and one.
Such relaxation leads to ‘grey’ transition regions where 0 < 𝜌(𝐱) < 1. The transition zone can be controlled by penalization [97],
13
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projections [98], or by reformulating the optimization problem to include manufacturing uncertainties [53,99,100]. Applying a
penalization, i.e., making all intermediate densities unfavorable, without incorporating additional restrictions on the density field
leads to an ill-posed optimization problem, i.e., a mesh-dependent solution. A standard remedy is to employ filtering [101], where
the material distribution is obtained by convolving the density field 𝜌 with a filter kernel. Instead of an explicit convolution integral,
the filtered density can be modeled as the solution of the following screened Poisson equation [102],

− ∇ ⋅ 𝑟2∇𝜌̃ + 𝜌̃ = 𝜌 in 𝐷 , (35)

where 𝑟 > 0 is often referred to as a length scale parameter for design. This PDE filter is equivalent to the standard convolution
filter [102]. However, it offers additional benefits such as convenient enforcement of boundary conditions on the filtered density
field 𝜌̃, using the same finite element discretization machinery for solving the state PDE, and an efficient parallel implementation.

ypically, the homogeneous Neumann boundary condition ∇𝜌̃⋅𝐧 = 0 is applied along the boundary 𝜕𝐷, with 𝐧 denoting the outward-
facing unit normal. However, mixed Dirichlet/Neumann boundary conditions enforcing the density to take values zero or one on
specified parts of the boundary, 𝜌 = 0 ∨ 1 on 𝛤D ⊂ 𝜕𝐷, are often employed in practical applications.

The most popular penalization approach in density-based compliance topology optimization is the so-called SIMP (solid isotropic
aterial with penalization) interpolation [103]. Taking the modulus of the elasticity as an representative example, it is written as

𝐸 = 𝐸min + 𝜌̃𝑝
(

𝐸max − 𝐸min
)

, (36)

where 𝜌̃ is the filtered density field, 𝑝 is a penalization parameter, and 𝐸max is the modulus of elasticity of the solid material. 𝐸min is
a small positive constant ensuring that the state equation (32b) is well-defined. Depending on the application, analogous equations
govern other physical coefficients in the state PDE, for instance, the material diffusion coefficient 𝜅 in (42) below. In [103], 𝐸min is set
to zero, and in such cases, 𝜌 and correspondingly 𝜌̃ has to be bounded from below to remain greater than zero. The penalization (36)
is controlled by the power parameter 𝑝, which, in combination with an active volume constraint, makes intermediate densities
0 < 𝜌(𝐱) < 1 unfavorable. The penalization parameter is often set to be 𝑝 ≥ 3, with larger values resulting in a steeper transition
between void and solid. The intermediate densities cannot be removed entirely in the final optimized solution, and if necessary,
these parts of the design can be realized by using spatially varying microstructures [97].

Projections were introduced in [104] to sharpen the transition from void to solid. The original idea is to use a filter function with
finite support combined with a pointwise Heaviside projection. Applying a zero threshold to the Heaviside projection – where all
filtered densities above zero are projected to one – ensures that the final solid design corresponds to the support of the filtered density
function 𝜌̃, thereby guaranteeing the non-trivial size of all solid features in the design. Conversely, setting the threshold to one in
the Heaviside projection – meaning all filtered densities below one are projected to zero – enforces a non-zero size upon all void
features in the design. The Heaviside projection is replaced with a non-linear differentiable expression in practical implementations,
with its transition sharpness is controlled by a single parameter.

The above approach does not work for the PDE filter regularization approach because the filter is a Green’s function whose
support coincides with the entire computational domain. Thus, the so-called robust formulation was introduced in [99] to alleviate
the lack of a length scale in either the void or the solid part of the design for the classic convolution filter with finite support size,
as well as to sharpen the transition regions for problems regularized with the screened Poisson Eqs. (35). The projection in [99] is
performed point-wise using the following non-linear transformation:

𝜌 =
tanh (𝛽𝜂) − tanh (𝛽 (𝜌̃ − 𝜂))
tanh (𝛽𝜂) − tanh (𝛽 (1 − 𝜂))

, (37)

where 𝜂 ∈
(

𝜂𝑑 , 𝜂𝑒
)

is a threshold parameter, 0 < 𝜂𝑑 ≤ 𝜂𝑒 < 1, and 𝛽 controls the sharpness of the projection. The above expression
approaches the Heaviside projection as 𝛽 → ∞. The projection alone does not enforce a length scale on the design. The length scale
is enforced by minimizing the worst possible compliance from all possible realizations for 𝜂 between 𝜂𝑑 and 𝜂𝑒, with a bound on
the worst possible volume. Thus, the optimization problem (32) is replaced by

minimize max
𝜂𝑑≤𝜂≤𝜂𝑒

𝑗
(

𝜌 (𝜂) ,𝐮
)

over (𝜌,𝐮) ∈ 𝑍 × 𝑉

subject to 𝑎
(

𝐮, 𝐯; 𝜌 (𝜂)
)

= 𝓁 (𝐯) for all 𝐯 ∈ 𝑉

𝑎f (𝜌̃, 𝑤) = 𝓁f (𝑤; 𝜌) for all 𝑤 ∈ 𝑊 ,

(38)

where the equation with the linear form 𝓁f ∶𝑊 ×𝑍 → R represents the PDE filter equation (35), and the design space is redefined
to be

𝑍 =
{

𝜌 ∈ 𝐿1 (𝐷) ∶ 0 ≤ 𝜌 ≤ 1 a.e. , max
𝜂 ∫𝐷

𝜌 (𝜌) d𝐱 ≤ 𝛾 |𝐷|

}

.

The compliance objective is the most popular choice of performance measure. It is monotonic with respect to the threshold
arameter 𝜂. Thus, searching for the worst possible objective and material volume case can be avoided [98]. Threshold 𝜂 = 𝜂𝑑
epresents the most dilated realization, 𝜂 = 𝜂𝑒 the most eroded one, with all realizations in between providing a simple model for
he outcomes of a production process with uniform manufacturing errors along the perimeter of the topology-optimized design.
ncluding these simplified production uncertainties in the optimization process avoids post-processing and engineering intervention
14
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Uniform erosion or dilation of the design is a crude approximation of real-life manufacturing uncertainties. These can vary
patially and, in many cases, introduce changes in the topology between different realizations. Therefore, more realistic models
here the design’s geometry or material stiffness varies spatially were proposed in [53,54]. For geometric uncertainties, the threshold
is modeled as a random field, and for material uncertainties, the random field represents the modulus of elasticity. In these models,

inding the worst case is extremely expensive, and the maximum in (38) is replaced by the expectation or another risk measure.
In this work, we use several topology optimization problems to demonstrate various properties and effects of the SPDE approach

o modeling random fields. The exact objectives and constraints are explained for every numerical example individually, ensuring
comprehensive understanding of the application and impact of the SPDE method in each case. It is important to note that

he threshold interpretation of density-based topology optimization introduced in [99] shares similarities with many level-set
pproaches [106,107], and such formulations under geometric, material, or operational uncertainties can be found in [55,108–
10]. Thus, the SPDE representation of random fields applies beyond the density-based formulations utilized here and could also
e employed in other topology optimization approaches.

.2. Heat sink

Optimizing thermal compliance is a textbook example of topology optimization [96]. The goal is to find a topology that
xtracts heat from a given domain 𝐷 by minimizing the thermal compliance of the design, given a distributed heat source 𝑓

on 𝐷. The problem may be considered with a constant (deterministic) or spatially-varying (stochastic) heat source. We first
describe the physical model and the deterministic problem in 5.2.1. Afterward, we explore how GRFs influence the design in 5.2.2,
explain efficient symmetrization techniques based on the SPDE method in 5.2.3, and demonstrate the effect of anisotropy in 5.2.4.
Sections 5.2.5 and 5.2.6 present additional examples of optimized topologies on embedded manifolds and those subject to random
material damage, respectively.

5.2.1. Deterministic thermal compliance optimization
We describe the topology with a zero/one bounded density field with intermediate grey values penalized using SIMP material

interpolation with penalty parameter 𝑝 = 3. We consider the domain 𝐷 = (−0.5, 0.5)2 upon which we define a heat source represented
by the function 𝑓 . The domain’s boundary 𝜕𝐷 is divided into two parts, 𝛤N and 𝛤D. The boundary 𝛤N is insulated, i.e., the normal
gradient of the heat flow along the boundary is zero. On 𝛤D, with length 1∕7 centered at the bottom of the domain, the temperature
is fixed to zero. A diffusion equation describes the physics of the heat transfer, namely,

− ∇ ⋅ 𝜅 (𝜌̃) ∇𝑢 = 𝑓 in𝐷 , ∇𝑢 ⋅ 𝐧 = 0 on 𝛤N , 𝑢 = 0 on 𝛤D , 𝛤N ∪ 𝛤D = 𝜕𝐷 , (39)

where 𝑢 represents the temperature in the domain. The weak formulations of (39) is given as follows,

𝑎1 (𝑢, 𝑣) = 𝓁1 (𝑣) , ∀𝑣 ∈ 𝑉0 ∶=
{

𝑣 ∈ 𝐻1 (𝐷) ∶ 𝑣 = 0 on𝛤D
}

. (40)

with bilinear form 𝑎1 and linear form 𝓁1 defined by

𝑎1 (𝑢, 𝑣) = ∫𝐷

(

𝜅 (𝜌̃) ∇𝑢 ⋅ ∇𝑣
)

d𝐱, 𝓁1 (𝑣) = ∫𝐷
𝑓 𝑣 d𝐱 . (41)

At every point of the design domain, the diffusion coefficient is evaluated as

𝜅 (𝜌̃) = 𝜅min + 𝜌̃𝑝
(

𝜅max − 𝜅min
)

, (42)

with 𝜌̃ obtained by solving the finite element discretized PDE-filter equation (35) with weak bilinear and linear forms (𝑊 = 𝐻1 (𝐷))
defined as

𝑎f (𝜌̃, 𝑣) = ∫𝐷

(

𝑟2∇𝜌̃ ⋅ ∇𝑣 + 𝜌̃𝑣
)

d𝐱, 𝓁f (𝑣) = ∫𝐷
𝜌 𝑣 d𝐱 . (43)

In the deterministic setting, the heat source is a constant 𝑓 = 1, and the objective is to minimize thermal compliance given as

𝑗 (𝜌, 𝑢) = ∫𝐷
𝑢𝑓d𝐱 , (44)

with 𝑢 defined via (39) and with 𝜌 subject to a volume constraint

∫𝐷
𝜌̃(𝐱)d𝐱 ≤ 𝑉 . (45)

We note that (44) depends indirectly on 𝜌, i.e., 𝑢 = 𝑢 (𝜌̃ (𝜌)). The obtained optimized topology minimizing the thermal compliance
for the uniform deterministic heat source is shown in Fig. 9. The deterministic problem is self-adjoint, and gradients of the thermal
compliance with respect to the discrete representation of the original density field 𝜌 are obtained using the chain rule. The domain
is discretized using quad elements, with approximately 0.33M DOFs representing the temperature field.
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Fig. 9. Optimized density 𝜌̃ for thermal compliance problem with deterministic heat source and volume constraint 50% (i.e., 𝛾 = 0.5). The length parameter in
the PDE filter is set to 𝑟 = 0.02.

5.2.2. Stochastic thermal compliance optimization via SPDE
In the stochastic setting, we model 𝑓 as a zero-mean Mátern-type GRF with different correlation length parameters and

smoothness 𝜈 = 1 obtained via the SPDE method, i.e., as the solution to (9) using the same discretization as the physical problem.
The considered stochastic optimization problem is formulated akin to the deterministic one. The objective becomes the minimization
of the expected thermal compliance defined as

𝑗 (𝜌, 𝑢) = E
[

∫𝐷
𝑢𝑓d𝐱

]

≈ 1
𝑁

𝑁
∑

𝑖=1
∫𝐷

𝑢𝑖𝑓𝑖d𝐱 . (46)

For the numerical examples to follow, we approximate the expectation operator with the fixed number of samples 𝑁 = 300, and each
optimization step uses the same 300 GRF samples. We determined the number of samples with numerical experiments systematically
testing the effect of the sample size on the objective and resulting designs; from 300 samples onwards, the designs and objective
showed only very minor differences. More details may be found in Appendix B. We remark that more sophisticated, adaptive
algorithms can address the approximation of the expectation operator during stochastic optimization, such as the ones presented
in [5,111–115]. They begin with a small number of samples and adaptively increase it as the solution approaches the minimum.
This allows the algorithms to reduce the number of forward model evaluations needed to converge to the solution. However, due
to the stochastic nature of the algorithm and the small number of initial samples, these algorithms are prone to falling into a local,
asymmetric minimum. For the heat sink with a risk-neutral objective, i.e., mean compliance, an adaptive sampling algorithm is
presented in the authors’ earlier work [114] producing results similar to the ones presented in this section. As the presented SPDE
approach applies to any optimization algorithm based on sampling, and our focus is on the effect of uncertainties on the design, the
results presented here will use the most popular optimization algorithm in topology optimization, the Method of Moving Asymptotes
(MMA) [116]. Additionally, one may use more suitable risk measures instead of the expectation in (46), for example, the conditional
value-at-risk [5,117–119]. However, such risk measures often require specialized numerical optimization algorithms lying beyond
the scope of this work.

Comparing the results of the deterministic and stochastic problems in Figs. 9 and 10, respectively, we observe significant
differences. The deterministic optimization problem finds a tree-like structure trying to extract the heat through shortest paths
to the support without violating the volume constraint. The stochastic formulation results in many closed loops of solid material
decorated with more minor tree-like features. The reason for this difference can be understood by realizing that the only mechanism
to extract heat from a point in a domain with uniform source is to connect conductive material to the fixed temperature support.
On the other hand, when the source is a random field that provides both positive and negative values spatially varying throughout
the domain, an area with negative heating can be locally neutralized by an area with positive heating by connecting them with
conductive material. Therefore, the role of the closed loops in the obtained topologies is to establish local heat equilibrium, and
only the excess heat is transferred to the support by the underlying tree-like skeleton. Decreasing the correlation length results in
smaller loops reflecting the average size of the positively/negatively heated regions.

Intuitively, increasing the correlation length yields GRF samples that show fewer local fluctuations and become more locally
uniform. This behavior can be observed in Fig. 1 along the correlation length axis. Here, the areas with similar field values become
larger as 𝑙 increases, and in the limit of 𝑙 → ∞, the SPDE solutions become constant in space. Thus, with increasing lengths, the
stochastic case behaves more and more similar to the deterministic case with its uniform load. Our results support this reasoning; by
lowering the correlation length from (a) to (d) in Fig. 10, we observe that the resulting designs develop structures which increasingly
deviate from the deterministic case. While we observe two dominant main branches diagonally extending from the center to the
top left and right corners in Panel (a) as for the deterministic problem, Panel (d) shows many small loops, and most branches
have similar widths. From (a) to (d), the main branches become less pronounced as the correlation length decreases, resulting in
significantly different designs compared to the deterministic case.

Another striking difference between the deterministic and stochastic designs is the lack of symmetry of the latter. The
deterministic problem is symmetric about the 𝑦-axis, i.e., all operators and loads in the SPDE and physical problem are invariant
under reflection. Introducing GRFs as loads breaks this symmetry since 𝑓 (𝑥, 𝑦) ≠ 𝑓 (−𝑥, 𝑦) with probability equal to one for all sample
16
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Fig. 10. Optimized density distributions 𝜌̃ (bottom) for thermal compliance problems with stochastic heat source of different correlation lengths (top,
representative sample). The length parameter in the PDE filter is set to 𝑟 = 0.02, and the volume constraint is 50% (i.e., 𝛾 = 0.5). The stochastic fields are
isotropic, i.e., 𝚯 = 𝑙2 𝐈. The value of the objective function is denoted with 𝑗.

realizations. Consequently, using a finite number of samples inevitably leads to asymmetric designs. While considering larger sample
sizes 𝑁 yields increasingly symmetric designs (see Appendix B), this approach is computationally infeasible and we propose to
enforce the natural symmetry via a modification to the algorithm.

5.2.3. Enforcing symmetries
Although the individual GRFs break the system’s symmetry, the expectation E (𝑓 (𝑥, 𝑦)) = E (𝑓 (−𝑥, 𝑦)) preserves it. In fact, the

reflection symmetry extends to the full probability density function of 𝑓 at each (𝑥, 𝑦) ∈ 𝐷. This, together with the same reflection
symmetry in the state equation (39), boundary conditions, and other problem constraints ensures that at least a locally optimal
symmetric design exists. While this is not sufficient to conclude that a globally optimal design must obey any symmetry, it shows
that it is of substantial interest to investigate optimized designs exhibiting the same reflection symmetry found in the deterministic
problem. The following changes to the algorithm ensure the design’s symmetry while simultaneously lowering the computational
cost. We describe these changes in detail because their complexity is greater than in the deterministic optimal design setting.

As before, we begin with a symmetric initial guess for the density field satisfying the volume constraint (45). The gradients and
the corresponding design updates preserve symmetry if we consider mirrored pairs of GRF realizations (𝑓 (𝑥, 𝑦) and 𝑓 (𝑥, 𝑦) = 𝑓 (−𝑥, 𝑦))
instead of randomly chosen ones. Conveniently, the SPDE allows for constructing such pairs efficiently, only considering half of the
domain 𝐷1∕2 = (−0.5, 0)×(−0.5, 0.5). Moreover, the solution of the state equation (39) can also be computed on 𝐷1∕2 since it exhibits
the same symmetry.

We consider a GRF 𝑓 generated via the SPDE method for a given, random white noise realization  and decompose it into its
symmetric and antisymmetric components, i.e., 𝑓 = (𝑓𝑠 + 𝑓𝑎)∕

√

2 and 𝑓 = (𝑓𝑠 − 𝑓𝑎)∕
√

2. Linearity of the SPDE ensures that both 𝑓𝑠
and 𝑓𝑎 satisfy (9) with white noise realizations 𝑠 and 𝑎 that are proportional to the symmetric and antisymmetric components
of  . Symmetry and anti-symmetry imply 𝜕𝑥𝑓𝑠(𝑥 = 0, 𝑦) = 0 and 𝑓𝑎(𝑥 = 0, 𝑦) = 0. In other words, 𝑓𝑠 and 𝑓𝑎 obey homogeneous
Neumann and Dirichlet boundary conditions, respectively, along the centerline of the domain 𝐷, defined 𝛤C = {(𝑥, 𝑦) ∈ 𝐷 ∣ 𝑥 = 0}.
Well-posedness of the SPDE (9) implies that we can solve the equation on 𝐷1∕2 with homogeneous Dirichlet boundary conditions on
𝛤C and white noise 𝑎|𝐷1∕2

to obtain 𝑓𝑎|𝐷1∕2
. Likewise, using homogeneous Dirichlet boundary conditions and white noise 𝑠|𝐷1∕2

gives 𝑓𝑠|𝐷1∕2
. Together, 𝑓𝑠|𝐷1∕2

and 𝑓𝑎|𝐷1∕2
allow us to construct 𝑓 |𝐷1∕2

and 𝑓 |𝐷1∕2
, which can be reflected to construct 𝑓 and 𝑓

at any point in 𝐷, if necessary. In practice, we do not derive 𝑠 and 𝑎 from  , instead we simply generate two independent
Gaussian white noise samples on 𝐷1∕2 using the procedure explained in Section 3.2.

The GRFs 𝑓 serve as loads in the state equation of this Eq. (39). Given that the physical problem is linear and also exhibits a
reflection symmetry, we may restrict the entire optimization workflow to 𝐷1∕2 by considering the symmetric and antisymmetric
solutions of (39), 𝑢𝑠 and 𝑢𝑎, respectively. The boundary conditions are analogous to the restricted SPDEs discussed in the previous
paragraph, meanwhile, 𝑓𝑠 and 𝑓𝑎 become the loads for the symmetric and antisymmetric restricted state equations, respectively.
Finally, we may recover the final temperature fields 𝑢 and 𝑢̄ corresponding to 𝑓 and 𝑓 from the equations

𝑢 = 1
√

(

𝑢𝑠 + 𝑢𝑎
)

, 𝑢̄ = 1
√

(

𝑢𝑠 − 𝑢𝑎
)

. (47)
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Fig. 11. Optimized symmetric density distributions 𝜌̃ for thermal compliance problems with stochastic heat source, different correlation lengths, and volume
constraint 50% (i.e., 𝛾 = 0.5). The length parameter in the PDE filter is set to 𝑟 = 0.02. The stochastic fields are isotropic, i.e., 𝚯 = 𝑙2 𝐈. Symmetry is enforced
across the vertical axis 𝑥 = 0 of the design domain. The optimized value of the objective function is denoted by 𝑗.

Although the above modification requires twice as many PDE solves, it reduces the overall computational cost because each solve
requires only half of the original domain.

Fig. 11 shows the stochastic heat sink designs with enforced symmetry. The proposed modification produces symmetric designs
with topological features similar to Fig. 10 for a lower computational cost. Comparing Figs. 10 and 11 shows that similar correlation
lengths yield similar structures. For instance, the main branches in (a), (b), and (c) show strong similarities. Moreover, the
characteristic loop sizes match. We observe that the point where the main branches split above 𝑥 = 0 moves closer to the
bottom boundary with decreasing correlation length. This point seems to be consistently lower for the symmetrized designs.
The most significant differences between symmetrized and non-symmetrized designs appear for short correlation lengths, i.e., in
panels (d). Here, the main branches in the symmetrized design are completely separated, while the non-symmetrized branches are
still connected. Overall, the latter branches appear thicker than the symmetrized ones.

The optimization of the symmetrized examples was carried out entirely on 𝐷1∕2. The images in Fig. 11 are post-processed such
that the second half is added by reflection. While every optimization on 𝐷1∕2 with subsequent reflection will produce symmetric
results, we emphasize that the presented algorithm is equivalent to running the optimization on 𝐷 with mirrored sample pairs.
However, it bypasses the need for a symmetric mesh and reduces computational costs.

5.2.4. Effects of anisotropy
Introducing different correlation lengths, 𝑙𝑖 ≠ 𝑙𝑗 for 𝑖 ≠ 𝑗, when constructing the matrix Θ in (9) allows the SPDE method

to generate anisotropic random fields. The effect of such anisotropy on topology-optimized heat sinks is demonstrated in Fig. 12.
Panel (a) shows the designs resulting from using long correlation lengths in the horizontal 𝑥-direction and short correlation lengths in
the vertical 𝑦-direction, and vice-versa for panel (b). In both cases, the anisotropy does not break the mirror symmetry of the problem,
and we employ the symmetrization technique proposed in Section 5.2.3 above. The two designs show significant differences that
reflect the implied directionality of the different random heat sources. Additionally, we may rotate Θ with a standard 2-dimensional
rotation matrix; cf. 𝐑 in (9). Introducing this rotation breaks the symmetry, and we solve the problem without symmetrization.
Panels (c) and (d) depict the designs given two different rotation angles 𝜗 = ±𝜋∕4. Overall, we find that anisotropy significantly
biases the topologies, demonstrating the modeling freedom of the SPDE method. While not explicitly considered here, we remark that
the method generalizes to spatially-varying coefficients Θ = Θ(𝐱), providing great flexibility in the construction of inhomogeneous
fields.

5.2.5. Optimization on embedded surfaces
We continue investigating stochastic thermal compliance optimization and consider a surface embedded in 3D. In this case, 𝐷

is now a manifold equal to the surface of the unit-radius sphere intersected with a half-space passing through the point (0, 0, 4∕5)
and parallel to the 𝑥-𝑦-plane; see Fig. 13. More specifically, 𝐷 is defined to be

𝐷 = {(𝑥, 𝑦, 𝑧) ∈ R3
| 𝑥2 + 𝑦2 + 𝑧2 = 1 and 𝑧 < 4∕5} . (48)

The problem formulation is identical to the one posed on the unit square; however, the boundary 𝜕𝐷 is now the circle {(𝑥, 𝑦, 𝑧) ∈
R3

| 𝑥2 + 𝑦2 + 𝑧2 = 1 and 𝑧 = 4∕5}. We impose a homogeneous Dirichlet boundary condition along the entire boundary 𝛤D = 𝜕𝐷.
Moreover, all Laplace-type operators in the problem formulation (39) are now interpreted as Laplace–Beltrami operators. For a
detailed discussion of the covariance of GRFs on the sphere, including the Matérn-type covariance, we refer to [51,77,120]. We
initialize the density to 𝜌0 = (sin(5𝜑) + 1) ∕2 with 𝜑 ∈ (0, 2𝜋) denoting the azimuthal angle. This prescription satisfies the volume
constraint (45) with 𝛾 = 0.5 and biases the topology towards a periodic pattern. Besides these minor differences, the optimization
proceeds akin to the previous cases. Fig. 13 shows the density fields 𝜌̃ resulting from random heating modeled by isotropic Matérn-
type GRFs of different correlation lengths. Similar to optimization on the unit square, decreasing the correlation length results in
fast oscillatory fields, causing the optimization to form smaller closed loops of solid material to equilibrate the heat distribution
locally. The tree-like skeleton transfers the excess heat to the support. Such capability extends to arbitrary surfaces embedded in
R3, enabling heat sink designs on complex surfaces such as battery packs, tablets, and laptops [121].
18
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Fig. 12. Optimized density distributions 𝜌̃ (bottom) for thermal compliance problems with stochastic heat source of different correlation lengths (top,
representative sample). The length parameter in the PDE filter is set to 𝑟 = 0.02, the volume constraint is 50% (i.e., 𝛾 = 0.5)and the stochastic fields are
anisotropic. For (a,c), symmetry is enforced across a vertical axis 𝑥 = 0. The value of the objective function is denoted with 𝑗.

5.2.6. Effects of random material damage
Apart from operational uncertainties like external excitations or time variations in boundary conditions, material properties are

another common source of randomness. Examples of such formulations can be found in [17,54,122]. The experience from these
studies shows that differences between design topologies are barely noticeable for slowly varying uncertain material properties,
modeled by random fields with long correlation lengths compared to the characteristic size of the design domain. On the other
hand, [123] presents a very different outcome by modeling the localized damage caused by a small random projectile in the design
domain. This form of uncertainty leads to significant differences in the optimized topologies. Indeed, redundant members are clearly
observable in [123], providing numerous possibilities to transfer the load to the supports in case neighboring members fail.

These summarized examples from the literature represent two idealized corner cases that are relatively easy to model with limited
computational resources but avoid the full range of spatial variations necessary for more realistic damage and material models. The
SPDE approach allows for representing intermediate cases as demonstrated in Fig. 14. Instead of using SIMP interpolation (42) as
before, we employ the robust formulation of topology optimization [99] with thresholds 𝜂𝑑 = 0.3 for the dilation and 𝜂 = 0.7 for the
erosion parameters. The dilated volume is restricted to be less than 35% of the total volume of the design domain, and the filter
parameter is selected to be 𝑟 = 0.05. The projection parameter is chosen to be 𝛽 = 8. In this example, the uncertainty is encompassed
solely within the diffusion coefficient and the load is deterministic. More specifically, we use a uniform heat input 𝑓 and model the
random diffusion coefficient in (39) as

𝜅
(

𝜌
)

= 𝜅min + 𝜏𝜌
(

𝜅max − 𝜅min
)

, (49)

where 𝜏 is a binary (zero/one) field obtained by a pointwise transformation of the SPDE solution. This transformation projects all
values of above 2.5 to zero, and maps the remaining values to one. The zero values model local damage or material inclusions with
very low conductivity.

Similar to the examples shown in Fig. 3, the shape of the damage regions, shown in the bottom row of Fig. 14, and their scale
and relative positions can be controlled easily. The impact of such material variations can be seen on the top row. Transforming an
isotropic Gaussian random field with a small correlation length cannot impact the optimized topology since it results in a model
with small, well-distributed damage regions and characteristic sizes much smaller than the length scale enforced on the design.
Increasing the correlation length in one of the directions and rotating the random field results in elongated damage regions following
the prescribed orientation. Furthermore, the small damage regions are replaced by elongated damage zones with larger lengths than
the length scale of the design. Therefore, the optimization provides alternative paths to transfer the heat to the support and creates
closed loops of high-conductivity material. It should be pointed out that the selected material model visually affects the topology
of an optimization formulation with mean value (risk-neutral) objective. This stands in contrast to all previously mentioned cases
in the literature, where topology changes are only observed for risk-averse objective functions like the sum of mean and standard
deviation or the min–max formulation.
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Fig. 13. Optimized density distributions 𝜌̃ for thermal compliance problems with stochastic heat source, different correlation lengths, and volume constraint 50%
on a cut sphere. The length parameter in the PDE filter is set to 𝑟 = 0.02. The stochastic fields are isotropic. The values of the objective function are 𝑗(𝑎) = 39.74,
𝑗(𝑏) = 17.75, and 𝑗(𝑐) = 7.61.

Fig. 14. The figure shows optimized topologies (top) for heat sinks obtained using the robust formulation with materials uncertainties. Samples of the material
distributions are shown in the bottom row and correspond to 𝜏 in Eq. (49). In this row, the color grey indicates 𝜏 = 1, while black indicates regions with 𝜏 = 0.
The random damage fields are rotated 0.3 radians counterclockwise with correlation lengths specified above for each optimization case.
20
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5.3. Bridge design

We are now concerned with finding the optimal topology of a bridge to support a given load. We use the SPDE method to impose
andom fluctuations on the boundaries of a design problem, mimicking random horizontal loads. For all 2D and 3D solid mechanics
xamples, the system’s response is governed by the Navier–Cauchy PDE, given as

−div𝝈 (𝐮) = 𝐟 ,
𝝈 (𝐮) = 𝐂 ∶ 𝜺 (𝐮) in 𝐷 ,

(50)

here 𝝈 is the so-called stress tensor, and 𝜺 is the linearized strain tensor defined as 𝜺 =
(

∇𝐮 + ∇𝐮𝖳
)

∕2. 𝐂 is an elastic material
roperties tensor, 𝐮 denotes the displacement field, and 𝐟 is a distributed input supplied to the system. The boundary 𝜕𝐷 =

𝛤Di
∪ 𝛤Ni

, 𝑖 = 1, ., 𝑑, is decomposed into disjoint subsets for each component 𝑖 = 1, ., 𝑑, 𝛤Di
with prescribed displacements 𝑢𝑖 = 0,

and 𝛤Ni
with prescribed traction 𝑡𝑖. The material properties tensor is isotropic and has the following form 𝐂 (𝐱) = 𝐸 (𝐱)𝐂0, where

𝐂0 is a constant isotropic elasticity tensor obtained for a predefined Poisson ratio 𝜈 smaller than 0.5 and modulus of elasticity one.
𝐸 (𝐱) is a spatially varying modulus of elasticity 𝐸 (𝑥) ∈

[

𝐸min, 𝐸max
]

; cf. (36). Here, the Poisson’s ratio is kept constant; however, if
necessary, it can also be modeled as a random field.

The variational formulation of (50) is given as

𝑎 (𝐮, 𝐯) = 𝓁 (𝐯) for all 𝐯 ∈ 𝑉0 , (51a)

with 𝑉0 =
{

𝐯 ∈
[

𝐻1 (𝐷)
]𝑑 ∶ 𝑣𝑖 = 0 on𝛤Di

, 𝑖 = 1, ., 𝑑
}

⊂ 𝑉 =
[

𝐻1 (𝐷)
]𝑑 and bilinear form 𝑎 and linear form 𝓁 defined by

𝑎 (𝐮, 𝐯) = ∫𝐷
(𝐂 ∶ 𝜺 (𝐮)) ∶ 𝜺 (𝐯) d𝐱 , (51b)

𝓁 (𝐯) = ∫𝐷
(𝐟 ⋅ 𝐯) d𝐱 + ∫𝛤N

(𝐭 ⋅ 𝐯) d𝑠 . (51c)

.3.1. Two-dimensional bridge design
The first set of examples is inspired by [110,124] and consists of 2D bridge design problems. The geometry of the 2D problem

s shown in Fig. 15. We choose the design domain to be the unit square. Two distributed loads are applied on top of the design
omain: a uniform vertical load 𝑓𝑣 = 1 and a spatially varying random horizontal distributed force 𝑓ℎ. The vertical and horizontal
isplacements at the bottom of the design domain are set to zero. We use the so-called robust formulation [98,99] discussed earlier
o obtain black-and-white designs with a prescribed length scale. We optimize the mean compliance for the most eroded design
btained with 𝜂𝑒 = 0.7, and the volume constraint is enforced on the most dilated design with 𝜂𝑑 = 0.3. The maximum amount
f solid material is limited to 30% of the total area of the design domain. The projection parameter in (37) is set to 𝛽 = 8, and
he length parameter in the PDE filter (35) is set to 𝑟 = 0.02∕

√

12. The interested readers are referred to [102] for more details
n the length scale relation. For the PDE filter, we enforce the Dirichlet boundary condition 𝜌̃ = 1 on the bridge deck, i.e., on
op of the design domain, 𝜌̃ = 0 on the vertical sides, and zero Neumann on the remaining boundary. The domain is discretized
sing second-order quad elements, with approximately 1M DOFs representing the displacement field and 0.5M DOFs representing
he filtered density. The density field is optimized using the PETSc implementation [125] of the Method of Moving Asymptotes
MMA) [116], and the total number of iterations is set to 350. The optimization uses a fixed number of 400 realizations for 𝑓ℎ. The
ealizations do not change between the optimization iterations, resulting in a deterministic optimization problem similar to the one
or thermal compliance. Symmetrized designs are obtained as in Section 5.2.3.

The results from the topology optimization for different initial density distributions and correlation lengths for the random
patially varying horizontal load 𝑓ℎ are presented in Figs. 16 and 17. The min–max optimization problem (38) is not convex, and
he iterative optimization process will likely end up in a local minimum. Furthermore, the final topology is influenced significantly
y the initial density distribution, which can be observed by comparing Figs. 16 and 17. The designs in the former figure are
btained from an initial density field proportional to a cosine function with a period of 1∕4, and the designs presented in the latter

are obtained from uniform initial density distribution. The non-uniform initial density distribution supports the appearance of five
legs for transferring the vertical load to the support. On the other hand, the uniform initial guess results in two inclined main legs
that branch to support the bridge deck.

As mentioned earlier, the optimization problem is not convex, and even though we have symmetry in the design domain with
respect to the dashed line in the middle, we cannot expect a symmetric solution as the optimization process will likely end up in a
local minimum. Furthermore, during the optimization, we use a limited number of realizations for the horizontal load 𝑓ℎ without
guaranteeing the symmetry of the realized distribution concerning the dashed axis. Therefore, for optimization runs executed on
the entire optimization domain, we clearly observe a lack of symmetry in the obtained topologies in Figs. 16 (f)–(j) and 17 (f)–(j).
Since we enforce 𝜌̃ = 1 for the boundary condition of the PDE filter on the deck, the solid material locally balances the negative
and positive oscillations of the load, and only the unbalanced part of the horizontal force is transferred to the supports, forcing the
topology optimization algorithm to develop diagonal support members.

The optimized topologies are significantly affected by the correlation length of the horizontal stochastic load 𝑓ℎ. Shorter
correlation lengths result in a fast oscillatory load applied on the bridge’s deck. In these cases, the horizontal forces are balanced
locally for the non-uniform initial distribution experiments, resulting in topologies without diagonal members required for stiffening
21
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Fig. 15. 2D bridge — design domain and boundary conditions. The vertical and horizontal loads are denoted by 𝑓𝑣 and 𝑓ℎ, respectively.

Fig. 16. Compliance-optimized design of a bridge structure with uniformly distributed unit vertical load and random horizontal Gaussian noise with a standard
deviation 0.2 and different correlation lengths 𝑙. The correlation length 𝑙 increases from left to right. The top (a–e) and bottom (f–j) rows display the results
with and without enforced symmetry, respectively. The initial distribution, a scaled cosine wave, aids the appearance of five supporting legs in all designs.

visually from those obtained for the pure vertical load without horizontal disturbance. Therefore, to avoid redundancy, designs
for deterministic cases with 𝑓ℎ = 0 are omitted in Figs. 16 and 17.

On the other hand, for longer correlation lengths, the ergodic average along the bridge deck significantly differs from zero for
most realizations, forcing the optimization to develop diagonal supporting structural members for transferring the unbalanced forces
to the bottom of the design domain. For a uniform initial density distribution, the deck loads are transferred by only two legs to the
bottom of the design domain. In this case, the optimization process develops small loops close to the deck for shorter correlation
lengths versus larger loops for longer lengths. Like the multi-leg case above, the structural loops balance the forces as close as
possible to the bridge deck, and the main two legs transfer only the excess, unbalanced load to the supports.

5.3.2. Three-dimensional bridge design
The final solid mechanics example demonstrates topology optimization of a 3D bridge structure with designs shown in

Figs. 18, 19, 20. The bridge is loaded with a unit vertical distributed load. The optimization is performed only on a quarter of
the domain shown in the figures. Periodic boundary conditions are enforced along vertical planes perpendicular to the deck axis
and a symmetric boundary condition is placed on a vertical plane aligned with the long deck axis. The bridge is supported at the
bottom of the domain. The computational domain 𝐷 = (0, 1)×(0, 0.5)×(0, 1) is discretized with approximately 20M elements, resulting
22
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Fig. 17. Compliance-optimized design of a bridge structure with uniformly distributed unit vertical load and random horizontal Gaussian noise with a standard
deviation 0.2 and different correlation lengths 𝑙. The correlation length 𝑙 increases from left to right. The top (a-e) and bottom (f-j) rows display the results with
and without enforced symmetry, respectively. The initial density distribution is uniform.

Fig. 18. Deterministic compliance optimization of a 3D bridge structure with uniform (top) and prescribed (bottom) initial density distribution.

in roughly 60M DOFs for the linear elasticity solver. We employ the robust formulation [99] with thresholds of 𝜂𝑑 = 0.3 and 𝜂𝑒 = 0.7
to enforce a strict length scale on the design. The filter parameter 𝑟 is set to 0.04, and the volume constraint is set to 7% of the
design volume.

The first two designs shown in Fig. 18 are executed with deterministic vertical load and demonstrate the impact of the initial
density distribution on the final design. A predefined initial distribution affects the number of columns supporting the bridge and
their locations. Similar to the 2D case, we add a Matérn-type random field, generated via the SPDE method, to represent the force
23
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Fig. 19. Stochastic compliance optimization of a 3D bridge structure from a uniform initial density distribution.
24
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Fig. 20. Stochastic compliance optimization of a 3D bridge structure from a prescribed initial density distribution.

on the bridge aligned with the deck axis. The experiments were executed with different correlation lengths for the random field
and uniform and prescribed initial distributions. For small correlation lengths, the optimization tries to balance the forces close to
the deck of the bridge by using inclined support legs connected to a well-defined column, which transfers the load to the support.
Increasing the correlation length results in the development of diagonal elements and, for very long correlation lengths, shear walls.
Since second-order effects, i.e., loss of stability, are not accounted for, the most effective way to transfer the excess horizontal force
to the support would be through thin shear walls. However, the enforced length scale does not allow the formation of such thin
features, and the optimization concentrates the material in column-like elements. For the nonuniform initial design density and
short correlation lengths, the optimization process develops a single shear wall along the axis of the deck. The columns close to
the two ends of the deck transfer only the vertical load to the support and do not affect the horizontal stiffness of the bridge. In
25
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contrast to the 2D case, the unbalanced part of the nonuniform horizontal random excitation introduces an equivalent torsion force,
which requires moving the vertical supports close to the two ends of the deck. This effect is observed for the long correlation length
case shown in Fig. 20(c). We emphasize that the presented examples aim to demonstrate the scalability and versatility of the SPDE
approach, and more realistic, physically-relevant bridge loads can be obtained using pointwise, memoryless GRF transformations or
non-Gaussian random fields. The SPDE approach and the current MFEM implementation can be utilized to generate non-Gaussian
random fields with Matérn-type covariances by replacing the Gaussian white noise with a non-Gaussian noise [126,127]. Discussions
covering further generalizations to spatio-temporal processes can be found in [12].

6. Conclusions

This work aimed at incorporating realistic uncertainties into computational mechanics and design optimization workflows
sing Matérn-type Gaussian random fields generated via the SPDE method. We focused on aleatoric uncertainties arising from
nvironmental influences, variating material properties, and geometric uncertainties. We consolidated an efficient numerical scheme,
reviously scattered in the literature, and provided an open-source implementation, which is now part of the widely used MFEM
ibrary. We further identified crucial requirements for effective random field generation within the modern scientific computing
andscape. These requirements encompass the ability to handle diverse correlation lengths and field smoothness, address intricate
omains and manifolds, align with finite element data structures, and computational costs on the order of the physical problem
ubject to uncertainties.

We find that the SPDE method effectively satisfies all the identified requirements. While alternative methods like FFT and EOLE
ffer advantages in specific niche areas, the SPDE method’s overall versatility and scalability outweigh these isolated shortcomings.
ts ability to extend naturally to manifolds enables uncertainty quantification of complex geometries and paves the way for design
ptimization under uncertainty on manifolds embedded in 3D space. Moreover, its integration into design problems bears the
otential to discover novel topological features previously undetectable with established random field discretization methods. We
emonstrated the method’s capabilities through an extensive set of examples including the construction microstructures mimicking
iber materials, handling geometric uncertainties of celebral aneurysms, and optimizing topologies for thermal and structural design,
ven on 2D surfaces embedded in 3D.

While the SPDE method demonstrates remarkable capabilities, it has limitations. The numerical scheme can become expensive
or specific parameter regimes, particularly when the smoothness parameter 𝜈 approaches infinity, leading to a long sequence of
quations in (12). Solving the linear system associated with strongly anisotropic fields can also incur significant computational
osts. Furthermore, the current implementation and theory are confined to Matérn-type covariances. Specific use cases might
ncounter covariance structures diverging from the Matérn kernel (1) or might even necessitate non-Gaussian fields. Various (local)
ransformations can be applied to construct fields with different statistical properties and may alleviate some of these issues.
owever, whether or not the Matérn covariance defines an appropriate spatial structure for a given problem must be assessed on
case-by-case basis. Ideally, such a decision should be supported by experimental data, aiding the identification of the covariance

tructure. While the general behavior of the SPDE covariance is well understood, obtaining a closed-form expression for (27) on
mbedded manifolds and other complex domains often proves challenging. However, even in such cases, the covariance (27) is
ypically well-approximated by (1) given a correlation length smaller than the characteristic features of the domain.

Our observations hold significant implications for a broad audience utilizing finite elements, including researchers in compu-
ational mechanics, design optimization, biomechanics, and inverse problems. The SPDE method simplifies incorporating spatial
ncertainties into diverse scientific computing workflows. Additionally, the open-source implementation allows researchers to
everage this powerful tool with minimal effort within existing MFEM projects. These advancements are expected to drive the
idespread adoption of the SPDE method.

Looking ahead, several promising avenues for future research present themselves. Extending the SPDE method beyond Matérn-
ype covariances would broaden its applicability to encompass a broader range of real-world uncertainty scenarios. Additionally,
xploring the potential of neural operators for accelerating computations holds promise in enhancing the method’s efficiency.
urthermore, developing dedicated numerical schemes tailored to simultaneously solving the equations arising from the rational
pproximation in (26) can significantly improve the method’s computational performance. Collectively, these advancements aim to
urther refine and enhance the SPDE method for various applications across scientific computing domains.

In summary, this work establishes the SPDE method as a powerful and versatile tool for describing aleatoric uncertainties
n modern scientific computing, ultimately leading to substantial advancements in uncertainty quantification, computational
echanics, and design optimization.
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ppendix A. Implementation and scalability

We implemented the SPDE method with MFEM [23,24], and the resulting MPI-parallel solver is part of MFEM’s 4.6 release.1
hile the numerics are non-trivial, using the solver in MFEM-based projects only requires adding three lines of C++ code, see lines

1 to 13 in Algorithm 1. The statement in line 11 initializes the solver and assembles the mass and stiffness matrices in (14). Line
2 sets the seed for all MPI ranks. Lastly, line 13 assembles the white noise, constructs the linear systems arising from the rational
pproximation (26), and solves them with a preconditioned conjugate gradient algorithm [128,129].

Algorithm 1 Application example of the MFEM based SPDE-solver (assumes pre-existing finite element space object "fespace"; see
MFEM documentation for details).

1: ⊳ Define the fractional PDE solution ⊲
2: ParGridFunction u(&fespace);
3: u = 0.0;
4: ⊳ Define GRF parameter ⊲
5: const double nu = 2.0;
6: const double lengthscale = 0.05;
7: const int seed = 1;
8: ⊳ Define the boundary conditions (defaults to Neumann). ⊲
9: spde::Boundary bc;

10: ⊳ Solve the SPDE problem ⊲
11: spde::SPDESolver solver(nu, bc, &fespace, lengthscale, lengthscale, lengthscale);
12: solver.SetupRandomFieldGenerator(seed);
13: solver.GenerateRandomField(u);

We argue that the implementation inherits its scalability from MFEM [23,24] and hypre [130] because these libraries govern
the computationally expensive aspects of the algorithm, i.e., the finite element assembly and solving the linear systems. Detailed
scalability studies have been performed and presented by Fischer and co-workers [131]. They considered solving the equation
(−∇ ⋅ 𝜇∇ + 𝛽) 𝑢 = 𝑓 with MFEM and other numerical libraries via a diagonally preconditioned conjugate gradient method and
measured the performance using (up to) 16,384 MPI ranks distributed among 512 nodes. Their results demonstrate MFEM’s ability
to scale on top-tier supercomputing systems for equations similar to (9). Additional performance analyses on GPU architectures
may be found in [24]. Unlike [131], we use hypre’s BoomerAMG as a preconditioner. Henson and Yang [132] investigated and
emonstrated the preconditioner’s effectiveness and parallel scalability for a set of toy problems with different characteristics. These

1 MFEM 4.6, mfem.org/download/, available in miniapps/spde
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problems included the Laplace equation and related problems with anisotropy and the absence of symmetry. They found that the
preconditioner works well across the set of example problems and scales to tens of millions of unknowns and more than a thousand
processors.

During the development of our solver and the examples presented in Section 5, the solver routinely ran on hundreds of cores at
Lawrence Livermore National Laboratory.

Appendix B. Sample size choice

We optimize the topology with the Method of Moving Asymptotes [116] using a fixed set of samples. For the heat sink design
in Section 5.2, we used a sample size of 𝑁 = 300. For the bride design in Section 5.3, we chose 𝑁 = 400. To determine 𝑁 in a
problem-specific setup, we carefully investigate the effect of the sample size on the objective function and optimized design. Here,
we show our numerical experiments justifying this choice for the heat sink optimization. Analogous experiments were carried out
for the bridge examples.

The numerical experiments proceed akin to Section 5.2.2 with the notable difference that we use different sample sizes
𝑁 ∈ {50, 100, 200, 300, 400}. We choose the correlation lengths 𝑙 = 0.2 and 𝑙 = 0.05 for our numerical experiments, representing
the long and short correlation lengths considered in this work. We expect that larger correlation lengths require fewer samples than
short correlation lengths. Fig. B.21 illustrates the result of this experiment, confirming this hypothesis. Comparing the cases 𝑁 = 50
and 𝑁 = 400, we find that the longer correlation length yields more similar designs than the short correlation length. Overall,
increasing the sample size increases the symmetry, i.e., the main branches resulting from the optimization become more evenly
balanced. Regarding the objective function 𝑗, we find that its value converges once we pass 300 samples. This is also reflected in
the design, which is very similar for the cases 𝑁 = 300 and 𝑁 = 400. We conclude that computationally feasible increases beyond
the sample size of 𝑁 = 300 barely affect the design and limit ourselves to 300 samples for each heat sink optimization experiment.

Fig. B.21. Effect of the sample size on the density 𝜌̃ and objective function 𝑗. The sample size increases from left to right.
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