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1 Introduction

Experimental evidence for the existence of exotic hadrons containing four or five valence
quarks has been accumulating since the observation of X(3872) [1]. The early candidate
four quark states contained a heavy quark anti-quark pair (for reviews, see e.g. [2–5]). More
recently, however, states with a ccūd̄ flavor content, labelled T+

cc [6, 7], as well as a candidate
ccc̄c̄ state called X(6900) [8] have also been identified by the LHCb experiment. The nature of
all the tetraquark states is still debated. The future experimental program will provide more
data on the existing states and may potentially lead to observation of new states such as the
analogs of Tcc involving one or two b quarks or even states with more than two heavy quarks.

The observed candidate states exhibit the peculiar feature of extreme closeness to the
corresponding two meson thresholds. In particular the mass of the X(3872) is within 120 keV
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of the D0D̄∗0 threshold, and T+
cc has been observed to have a mass within only around

400 keV of the D0D∗+ threshold. Other candidates tetraquarks (e.g. Zc(3900), Zc(4020),
and Zb(10650)) are also found within ∼ 10 MeV of the corresponding two meson threshold.
Interpreting these states as compact tetraquarks, one would expect their binding energy to
be O(ΛQCD), while for loosely bound molecular states one would expect it to roughly scale
as Λ2

QCD/M , with M is the mass of the constituent mesons. Nevertheless, in both cases, the
extreme closeness to threshold seems to require parametric tuning, tough at different levels.

The ongoing debate on the true nature of tetraquarks, as well as the potential for future
experimental progress, strongly motivates studying them within a controlled theoretical
framework. It is possible that, in view of the strongly coupled nature of the relevant dynamics,
a full clarification will only eventually come with sufficiently accurate lattice QCD simulations.
Nonetheless systematic Effective Field Theory (EFT) approaches, like Heavy-Quark Effective
Theory (HQET) (see e.g. [9]) or Non Relativistic EFT (see e.g. [10]), will surely always
play a central role in the description of both the spectrum and of the phenomenology,
illustrations of the former and latter approaches can be found for instance in [11, 12] and [13–
15] respectively. Alongside these systematic approaches the large N limit [16] has since long
offered a qualitative or semi-quantitative, yet deep, understanding of the strong interactions.
The large N limit is normally considered in the strongly coupled regime, involving massless
quarks and gluons. In this paper we will instead use it in conjunction with the large quark
mass limit. The conjunction of the two limits will allow us to treat analytically, within
non-relativistic quantum mechanics, the non-trivial four body bound state problem. That in
our mind compensates for the fact that the system we are considering is not fully realistic.
Nonetheless lessons for the real world are not excluded.

The existence of narrow tetraquarks in the large N limit of QCD has been under debate
during the last decade. Arguments for the absence of such states were originally given by
Witten [17] and by Coleman in [18] in their classic papers on the large N expansion. The
main argument consists in the observation that in the leading large N approximation the
two point function of tetraquark operators factorizes into the disconnected product of meson
propagators, so that tetraquark poles are not found in such correlators. That mesons (and
baryons) represent the only resonances at infinite N also intuitively matches the fact that
mesons are free in that limit, and thus cannot bind into tetraquarks. However in 2013
Weinberg [19] pointed out a potential loophole in the main argument: the connected part of
the tetraquark 2-point function, even if subleading in the 1/N expansion, may still contain
a tetraquark pole. Application of the LSZ approach would then allow to construct the
scattering amplitudes involving this state. The main issue in that respect is whether its
width is self-consistently suppressed at large N . Indeed an unsuppressed width would offer
an additional argument against the existence of tetraquarks. Now, as shown by Weinberg
and subsequently analyzed in more detail, the N power counting of the 3-point function for
one tetraquark and two mesonic operators shows that the width would, self-consistently, be
1/N suppressed. To be more precise, arguments have also been provided indicating that
a tetraquark singularity can only exist in diagrams with non-planar topology ([20–22], for
reviews see e.g. [23] or [24]). But even in that case the N power counting is consistent with a
suppressed width, albeit by a different power of 1/N . Of course while Weinberg’s remark, and
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the works that followed, points to a possible loophole in the arguments against tetraquark,
it unfortunately cannot provide a solid argument in favor. Our study is partly motivated
by this frustrating state of things. We focus on an admittedly more special situation with
the goal to be rewarded with some solid conclusions.

There are different ways to define the large N limit such that the exotic hadrons reduce for
N = 3 to QCD tetraquarks. In this paper, tetraquarks are bound states involving two quarks
in the fundamental representation of SU(N) and two anti-quarks in the anti-fundamental.
Another approach is to consider large N QCD with quarks in two-index-antisymmetric
representation [25], with tetraquarks made up of two quarks and two antiquarks [26]. Yet
another option is to stick to quarks in the fundamental and consider baryonium states,
made up of N − 1 quarks and N − 1 antiquarks as considered already by Witten [17], for
a recent discussion see e.g. [27].

We will work in the regime where all quark masses are much above the QCD scale,
treating the ’t Hooft coupling αsN as fixed but much smaller than O(1). This will allow
us to study tetraquarks benefiting from both the non-relativistic approximation and the
1/N expansion. Allowing additionally for a hierarchy among the quark masses will allow us
to also employ a controlled Born-Oppenheimer (BO) approximation in the study of bound
states. Throughout the paper, we will denote the heavier quarks (antiquarks) with Q (Q̄) and
the lighter ones with q (q̄), and we will consider the cases with both different and identical
flavors of quarks or antiquarks. We will find that stable QQq̄q̄ tetraquark states with two
heavier quarks and two lighter antiquarks can be systematically constructed if the mass
hierarchy is larger than O(N). This condition can be understood as follows. At leading
order in 1/N , free mesons are the exact eigenstates of the Hamiltonian while a BO potential
for the heavier quarks only arises as a subleading 1/N correction. The latter can bind the
mesons only if their kinetic energy is similarly suppressed, i.e. if their mass is sufficiently
large. In the regime of validity of the BO approximation the ground state of the four quark
system is indeed a stable tetraquark. However our construction also entails excited states
that are expected to decay mostly into mesons when considering either corrections to the BO
approximation or gluon emission. While most our explicit results pertain the BO regime,
in a final section we provide evidence that no exactly stable tetraquark exists outside this
regime. We have not systematically studied the possible occurrence of metastable states. But
overall our results seem in line with the standard expectation of large N QCD, that mesons
(and baryons) are the only bound states, unless some other parameter (in our case the mass
hierarchy between quarks and anti quarks) enters the game.

In our analysis we find two types of 4-body bound states with distinct color-coordinate
wavefunctions which we refer to as type-I and type-II tetraquarks. In Type-I states the heavy
quarks are predominantly in a color anti-symmetric configuration and localized within a
region that is much smaller than that where the light anti-quarks are localized. Instead, in
type-II states, the average relative distances among the 4 constituents are comparable, and
moreover color and position are strongly entangled. Due to the 1/N suppression of the BO
potentials, the states are parametrically close to the two meson threshold. Moreover for the
type-II states we remarkably find a sort of accidental additional closeness to threshold, which
originates from the peculiar exponential form of the BO potential.
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The type-I tetraquarks are the large N incarnation of states whose existence was estab-
lished long ago in QCD for heavy enough quarks. In color SU(3) these states can be thought
of as baryons made of two (anti-)quarks and a tightly bound heavy diquark. The existence of
such states for a large enough mass ratio was first pointed out in the early 80’s [28] using
a phenomenological potential. The picture of tetraquarks as a compact heavy anti-triplet
diquark bound to two light antiquarks, like in a baryon, was painted in [29]. It was then
studied systematically in [30] (see also [31]). In the early 2000’s, the appearance in the SELEX
data [32, 33] of a candidate doubly heavy Ξ+

cc baryon prompted a first study [34] where a
prediction for the T+

cc mass was made on the basis of a simple quark model using the observed
Ξ+

cc mass. As the SELEX results where later not confirmed by several other experiments, one
had to wait for the observation by LHCb in 2017 of the doubly heavy baryon Ξ++

cc [35] for
the resumption of theoretical activity on this front. That was first undertaken in ref. [36],
again on the basis of a simple quark model, for which a systematic study of the uncertainties
seems unfortunately not possible. In ref. [11] a more systematic approach based on heavy
quark effective theory and quark-diquark symmetry was then undertaken. That was further
significantly refined in ref. [12], which includes also a comprehensive evaluation of the errors.
Although these works all agree on the existence below the two meson threshold of tetraquarks
containing two b quarks (which are the analogue of our type-I states), they don’t agree on
tetraquarks containing two charm quarks. More precisely ref. [36] predicts the mass of Tcc to
be within a few MeV from threshold, while refs. [11, 12] predict it O(100) MeV above, with
a comparably small error. But the mass of Tcc has in the meantime been measured, and it
is perhaps as baffling as anything about tetraquarks that the measured value sits right on
threshold, in agreement with the seemingly more qualitative prediction of the quark model,
and in disagreement with the prediction of the more systematic heavy quark EFT approach.
On the other hand there is still space for further refinement of the HQET analysis, which in
its present form neglects effects associated with the finite size of the heavy diquark system.
The leading such correction was already estimated in [37] and can significantly affect the
mass of Tcc. Yet another possibility, suggested by our work, is that the observed Tcc is more
akin to our loosely bound type II tetraquark than to the deeply bound type I.

The existence of stable tetraquarks at large N with all quark masses large and possibly
hierarchical has been previously studied in [38]. There, only the states where the two heavier
quarks are bound in a diquark are considered. A hierarchy of masses is also found necessary
for the existence of tetraquarks. However the condition they find for the ratio between the
quarks and the antiquarks masses is M/m≫ N3/2, which is different and stronger than our
M/m ≫ N . We have not been able to sort out the source of disagreement. On the one
hand, in their analytic estimate they require specific terms to be small for self-consistency,
while we find these terms can be included in a systematic 1/N expansion. On the other,
their necessary condition for the existence of tetraquarks is ultimately obtained numerically,
making it difficult to find the source of disagreement.

In recent years the application of the BO approximation to the study of tetraquarks in
real world QCD has started being explored. The grand goal, as outlined for instance in [39]
would be to use lattice QCD to compute the BO potential among the heavy constituents.
Significant progress has then been made in particular for QQq̄q̄, and apparently less so
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in the case of QQ̄qq̄ (see however [40, 41]). In particular [42] computed the potential for
two static quarks on the lattice and applied it to the Tbb (see ref. [43] for a recent review
of the lattice results) finding bound states below threshold. Other studies, perhaps while
waiting for more reliable lattice simulations, have relied on phenomenological modelling of
the potential (see e.g. [44, 45]). While these approaches are worthy of consideration, our
study of the BO approximation in a fully controllable situation indicates the approximations
made by these approaches are probably still too crude. For instance ref. [45] works under
the assumption of factorized color-coordinate wave functions, while our study shows that
the resulting energy eigenstates are often entangled. That is due, as we shall see, to the
existence of terms in the Hamiltonian which mix different color singlet configurations and
which we can precisely account for.

This paper is organized as follow. In section 2 we write the leading Hamiltonian for
the four-quark system and discuss its regime of applicability as well as the main subleading
corrections. In section 3 we study the tetraquark states containing two heavy quarks and
two lighter antiquarks using the Born-Oppenheimer approximation, showing the existence of
two distinct types of tetraquarks. We also study the excited states and the consequences of
the spin-statistics theorem for these tetraquarks. In section 4 we extend our study beyond
regime of applicability of the BO approximation and argue for non-existence of tetraquark
ground states in this regime. In section 5 we discuss to what extent our results may be
extrapolated to realistic values of parameters in QCD with N = 3 and physical quark masses
and what they may imply for the tetraquark states.

2 Hamiltonian

In this section we begin our investigation of the existence of tetraquark states in QCD with
a large number of colors N and heavy quark masses by writing the leading Hamiltonian
governing the dynamics of the system. We then present a discussion of the subleading
corrections which further clarifies the regime of validity of the leading description.

2.1 The single gluon exchange Hamiltonian

A systematic study of the four quark system can be performed in the limit where the quarks
are heavy and thus their dynamics is controlled by a non-relativistic Hamiltonian. At large
N , the expansion is conveniently organised in terms of 1/N and a ’t Hooft coupling

α = 1
2αsN, (2.1)

where αs = g2
s/4π, with gs being the gauge coupling and the 1/2 factor is included for later

convenience. The strong coupling scale ΛQCD is the scale at which α becomes order unity.
We work in the regime where all quark masses are heavy,

mi ≫ ΛQCD. (2.2)

This implies that α≪ 1 evaluated at the relevant scales controlled by mi. The same parameter
α controls gluon emission as well as the relativistic corrections. This can be seen most easily
by introducing separate units for space and time and thus reintroducing the speed of light
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c. That way the coupling α is conveniently defined as carrying units of velocity. Higher
corrections are then controlled by the dimensionless ratio α/c, as systematized within the
framework of NRQCD, see e.g. [9]. The truncation to the non-relativistic Hamiltonian, which
we shall employ, is then self-consistently justified by taking the formal limit c → ∞.

The Hamiltonian of the system of two quarks and two anti-quarks, labeled respectively
with indices 1 − 2 and 3̄ − 4̄, is then given by

H =
∑

i

p2
i

2mi
+
∑
i<j

αs

T a
(i)T

a
(j)

rij
+ small corrections, for rij ≪ Λ−1

QCD, (2.3)

where rij = |r⃗i − r⃗j | are the relative distances between particles i and j. We consider
the quarks to be in the fundamental representation of the SU(N) gauge group. The T a

matrices are the N2 − 1 generators of the SU(N) color group in the (anti-) fundamental
representation for (anti-) quarks. The pairwise Coulomb interactions are at most of order
α/rij (see appendix A for more details). Let us note that, because at short distances the
running of the ’t Hooft coupling is very slow, it is self-consistent to neglect its scale dependence
and choose its scale a posteriori as the typical size of the bound state. Some care has to be
taken if the state is characterized by parametrically separated scales.

The state of two heavy quarks and two heavy anti-quarks can be defined by assigning
their position and their color state, as well as their flavor and spin. The possible color states
come from the tensor product of two fundamental and two anti-fundamental representations
of SU(N). This gives rise to two singlets, two adjoints, and four other colored representations
given by the tensor product of two adjoints. We restrict our analysis to the color singlet
subspace, as we expect the ground state to lie in this sector. In the next section we will
show that is indeed the case, at least for a specific hierarchy of quark masses. We then
write a generic state of the system in the form

|Ψ⟩ =
∑

ρ

∫ 4∏
k=1

d3rk Ψi j
m n (r, ρ) |1i(r1, ρ1) 2j(r2, ρ2) 3̄m(r3̄, ρ3̄) 4̄n(r4̄, ρ4̄)⟩ , (2.4)

with Ψi j
m n invariant under the action of SU(N) on the color indices (i, j,m, n). We have

also collectively denoted the flavor and spin quantum numbers by ρ. The wave function
must be localized inside the region rij ≪ Λ−1

QCD for its dynamics to be controlled by the
Hamiltonian in (2.3). As there exist two independent color singlet contractions of the four
color indices, the wave function spans a two-dimensional subspace. Different choices for the
basis of this subspace can be made, with their convenience depending on the question being
asked and the regime being considered. (for a more detailed exposition see appendix A). One
possibility is to pick a basis where one element corresponds to a pair of qq̄ singlets, while
the orthogonal element corresponds to a state where the same qq̄ pairs lie in the adjoint
representation. Obviously, there exist two such options, corresponding to the two possible
pairings, either 13̄ and 24̄ or 14̄ and 23̄. A more “symmetric” basis is obtained by first
considering the two states where the qq lie in either a color symmetric (ΨS) or anti-symmetric
(ΨA) configuration, with the q̄q̄ pair in the conjugate representation so as to make up a
singlet, and by then forming the combinations

Ψ+ = 1√
2

(ΨS + ΨA), Ψ− = 1√
2

(ΨS − ΨA). (2.5)
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In color space the potential is then given by a two dimensional matrix,

V =
(
V++ V−+
V+− V−−

)
(2.6)

with elements (see appendix A.2)

V++ = − α

r13̄
− α

r24̄
+ O

( 1
N2

)
,

V+− = V−+ = α

2N

( 2
r12

+ 2
r3̄4̄

− 1
r13̄

− 1
r14̄

− 1
r23̄

− 1
r24̄

)
+ O

( 1
N2

)
,

V−− = − α

r14̄
− α

r23̄
+ O

( 1
N2

)
.

(2.7)

The N → ∞ limit, with the quark masses kept fixed, is manifest. The mixing between the
singlets vanishes and the diagonal elements consists of just two qq̄ Coulombic potentials.
In this limit,

Ψ+ → (13̄)singlet(24̄)singlet,

Ψ− → (14̄)singlet(23̄)singlet,
(2.8)

and the spectrum corresponds to that of two free mesons for both possible pairings. When
N is large but finite, the physics of this system is richer. In particular, we will show that
the 1/N corrections can form tetraquark states in specific regimes of the particles masses.
Since in the Hamiltonian in eq. (2.3), we keep the 1/N corrections and neglect the α2 ones,
it naively seems to be necessary to impose α≪ 1/N . However, as we will show below, this is
not the case. The leading interactions in 1/N , to any order in α, only modify the Coulombic
interactions among the pairs of quark anti-quark binding into mesons when N → ∞. Thus
they do not give rise to interactions among the two pairs. Indeed, they correspond to diagrams
with the two-meson topology that is two fermion loops that must be disconnected in order to
survive in the N → ∞ limit. A more detailed large N counting is provided in the next section.
For our purposes, the knowledge of the qq̄ interactions at leading order in α will be sufficient
to compute the distance from threshold of the tetraquark states to first order in α and in 1/N .

We will then be interested in the study of the bound states of this system as a function
of the particle masses in the region where we can gain some analytic understanding. To
this purpose, the Hamiltonian previously defined is too complicated as it generically entails
the solution of a four-body problem. The dynamics can be simplified if we consider the
regime with a mass hierarchy between the four particles. More specifically, we will study the
situation where two of them are heavier, with masses of order M while the other two have a
mass of order m with ΛQCD ≪ m≪M . Up to charge conjugation, there are two classes of
systems, that where two quarks are heavy, denoted as QQq̄q̄, with masses M1,M2 = O(M)
and m3̄,m4̄ = O(m), and that where the heavy particles are a quark and an anti-quark QQ̄qq̄
with M1,M3̄ = O(M) and m2,m4̄ = O(m). The hierarchy m/M ≪ 1 does not guarantee by
itself the separation between two dynamical scales as these are determined by the structure
of the interactions and the reduced masses of the system. Indeed only for the QQq̄q̄ case do
we find self-consistent bound states in an expansion in powers of m/M . At leading order,
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one can first solve for the dynamics of the light particles with the heavy ones providing
a static background and then use the solution to generate an effective potential for the
heavy quarks. This is the Born-Oppenheimer approximation which will be shown to be
valid as long as m/M < 1/N .

As the mass hierarchy becomes larger m/M ≲ 1/N2, the heavy quarks eventually
dominate the binding energy of the lowest-lying states and their dynamic becomes faster than
that of the anti-quarks. For this reason, it is convenient to use a basis of states with a definite
color configuration of the quarks. These can either be in a symmetric or an anti-symmetric
configuration. The matrix elements of the potential in this basis are

VSS = −α2

( 1
r13̄

+ 1
r14̄

+ 1
r23̄

+ 1
r24̄

)
+ α

2N

( 2
r12

+ 2
r3̄4̄

− 1
r13̄

− 1
r14̄

− 1
r23̄

− 1
r24̄

)
+ O

( 1
N2

)
,

VSA = VAS = −α2

( 1
r13̄

+ 1
r24̄

− 1
r14̄

− 1
r23̄

)
+ O

( 1
N2

)
,

VAA = −α2

( 1
r13̄

+ 1
r14̄

+ 1
r23̄

+ 1
r24̄

)
− α

2N

( 2
r12

+ 2
r3̄4̄

− 1
r13̄

− 1
r14̄

− 1
r23̄

− 1
r24̄

)
+ O

( 1
N2

)
.

(2.9)

In this regime, one can thus solve first for the states of the heavy pair, which bind at short
distances in an anti-symmetric state, and then consider the system of the compact diquark
interacting with the two anti-quarks.

2.2 Corrections to the single gluon exchange Hamiltonian

In this subsection we discuss why we can include the interactions of order α/N in eq. (2.3)
while dropping terms of O(α2) without assuming a hierarchy between the ’t Hooft coupling α
and 1/N . We also justify why we can limit our analysis to the singlet subspace. The reader
who is satisfied with these statements can directly skip to section 3.

To power count the different contributions to the Hamiltonian of the system, we study
the position space propagator of the two quarks and two anti-quarks. This is expanded in
diagrams with four incoming and four outgoing fermion lines each of which carries either
a fundamental or an anti-fundamental color index. These indices will be contracted with
the ones of the wave functions of the possible color states of the quarks and anti-quarks.
To proceed in the usual counting of powers of N , we thus need to give a diagrammatic
representation for the external states. This is easily done once the color wave functions are
known. Indeed, they are constructed in terms of Kronecker deltas δi

j , and the generators
of the fundamental representation (T a)i

j for which the double line notation is the canonical
one used in large N . As an example, consider the color state of a qq̄ pair, this can be either
a singlet or one of the N2 − 1 states of the adjoint representation. The wave functions are
given by 1√

N
δi

j and
√

2(T a)i
j respectively. The diagrammatic contraction with a quark and

an anti-quark line is represented in figure 1.
As for the system of two quarks and two anti-quarks, the tensor product of two fundamen-

tal and two anti-fundamental representations in SU(N) gives rise to two singlets, two adjoints,
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Figure 1. Diagrammatic representation of the color wave functions of a qq̄ system. The open color
line represents an adjoint index labeling the possible N2 − 1 states in the representation.

and four other colored representations coming from the tensor product of two adjoints. We
start studying the order of the corrections within the singlet subspace, before studying the
mixing with higher dimensional representations in the next subsection. For the ease of the
reader, let us recall some of the results in the large N counting that will use in the following.

• The leading contribution in 1/N is a sum of diagrams whose boundary is defined by
fermion lines and planar gluons decorate its interior.

• Non planar gluon corrections come in powers of 1/N2.

• Internal quark loops are suppressed by 1/N with respect to a gluon loop with the same
topology. For this reason, they can be neglected.

2.2.1 Singlet subspace

Let us start studying the Hamiltonian in the singlet subspace. The wave-functions for the
states defined in (2.5) to sub-leading order in 1/N are (see appendix A)

P (+)ij
mn ≡ P (S)ij

mn + P (A)ij
mn =

√
2
N
δi

mδ
j
n + 1√

2N2 δ
i
nδ

j
m + O

( 1
N3

)
,

P (−)ij
mn ≡ P (S)ij

mn − P (A)ij
mn =

√
2
N
δi

nδ
j
m + 1√

2N2 δ
i
mδ

j
n + O

( 1
N3

)
.

(2.10)

As shown in figure 2, we see that the diagrams contributing to the diagonal elements of the
Hamiltonian, at leading order in 1/N , are made of two fermion loops. Other structures of
fermion lines are suppressed at least by 1/N2. This effect comes either from the wave function
factor (as in the rightmost diagram of figure 2) or from the combined contribution of the
topology of the diagram and the wave function (as in the middle diagrams of the figure). The
two fermion loops must then be decorated with gluons in all possible ways. There are two
types of decorations. The ones connecting the loops and the ones that don’t. One diagram of
each type is shown in figure 4. The former, besides additional powers of the ’t Hooft coupling,
are 1/N2 suppressed. The latter, on the contrary, give rise to α corrections to the SGE
Hamiltonian at leading order in 1/N . However, they all share the structure of a two meson
state and they will not generate interactions between the mesons that can compete with
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Figure 2. Structure of the fermion lines of the diagrams contributing to the diagonal entries of the
Hamiltonian in the basis (2.5). The explicit factors of 1/N come from the wave functions (2.10). The
letters denote which fermion is related to that line of the propagator. For the ++ component we have
a = 1, b̄ = 3, c = 2, d̄ = 4 while a = 1, b̄ = 4, c = 2, d̄ = 3 for the −− one. When decorated with gluons,
each diagram gives at most a contribution of the order of the wave-function prefactor multiplied by N
to the power of the number of fermion loops.

Figure 3. Structure of the leading diagrams contributing to the off-diagonal entries of the Hamiltonian
in the basis (2.5). The wave function factor (1/N2 for the first diagram and 1/N3 for the other two
diagrams) combines with the factors coming from the fermion loops (N for the first diagram, N2 for
the other two) to give the term in equation (2.7).

Figure 4. Examples of planar (left) and non planar (right) gluon corrections to the first diagram in
figure 2. The diagram on the left contribute at order α while the one on the right gives a contribution
of order α2/N2.

the off-diagonal ones at order α/N . We then conclude that the corrections to the diagonal
elements of the single gluon exchange Hamiltonian that give rise to interactions among the
mesons come at order 1/N2. As regards the off-diagonal element, the one in (2.7) is the
leading one. Indeed, the dominant diagrams in 1/N are shown in figure 3.

2.2.2 Mixing with higher dimensional representations

As we stated before, we expect the ground state of the system to be dominantly in the
singlet subspace. In some special cases, this is easy to see. For example in the mass
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hierarchy M1,2 ≫ N2m3̄ ≫ N2m4̄, the problem reduces to a series of two-body problems
that we can easily analyze. The leading order problem consists of two heavy quarks, and the
binding energy is maximal if the two heavy quarks forming a compact color anti-symmetric
diquark. Then including the lighter anti-quarks one-by-one we can see that the configuration
maximizing the binding energy is a total color-singlet. A similar conclusion is found for
N2m4̄ ≫M1,2 ≫ Nm3̄ ≫ Nm4̄. This time the binding energy of the full system is dominated
by forming the color singlet meson involving q̄3̄, while the leading corrections come from
forming the meson involving q̄4̄. The full system is therefore in the color singlet subspace, up
to small corrections. From now on we assume that the ground state is dominantly a color
singlet, and investigate the mixing with the other color representations.

Besides the singlets, the two quarks and two anti-quarks can lie in higher dimensional
representations where the color is neutralized by additional gluons. The tensor product N ⊗
N ⊗ N̄ ⊗ N̄ gives rise to two adjoint representations and four other irreducible representations
whose color must be screened by at least two gluons. If the color is neutralized at the length
scale Λ−1

QCD, we expect any mixing to be suppressed by powers of ΛQCD/αm with m denoting
collectively the mass of the quarks. However, if the gluons can localize at a much shorter
scale, binding the quarks with the anti-quarks, we expect the mixing to be suppressed only
by powers of the weak coupling α(binding scale)1/2. At least one power is needed for the
adjoint states while two are needed for the others. Nevertheless corrections that survive as
N → ∞, can only give rise to interactions that modify the Coulombic potential between a
quark/anti-quark pair. This stems from the fact that the topology of the diagrams associated
with interactions among the “mesons” necessarily corresponds to sub-leading order in 1/N ,
just as above for the corrections within the singlet sector. Said differently, they only modify
the meson states of the N → ∞ Hamiltonian mixing the qq̄ singlet with qq̄ + gluons at some
sub-leading order in α. Therefore, for the purpose of determining the leading interaction
among the “mesons”, it is sufficient to consider the singlet subspace.

3 Tetraquarks within the Born-Oppenheimer approximation: two heavy
quarks and two lighter antiquarks

In this section, we begin our analysis of the Hamiltonian of eq. (2.3) focusing on a specific
mass hierarchy, where the quarks are much heavier than the antiquarks. We first focus on
the case where all quark flavors are different, while the case where quarks or antiquarks are
of the same flavor will be discussed in section 3.4.

Denoting the masses of the quarks by M1 and M2 and those of the antiquarks by m3̄
and m4̄, our starting assumption is then1

M1 ≥M2 ≫ m3̄ ≥ m4̄ ≫ ΛQCD . (3.1)

As it will become clear below, it is convenient to introduce the following coordinates

R⃗CM = M1r⃗1 +M2r⃗2 +m3̄ r⃗3̄ +m4̄ r⃗4̄
M1 +M2 +m3̄ +m4̄

, (3.2)

R⃗ = r⃗2 − r⃗1, (3.3)
1The case where the antiquarks are much heavier than the quarks is simply related to this one by

charge conjugation.
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r⃗
′

3̄ = r⃗3̄ −
r⃗1 + r⃗2

2 , (3.4)

r⃗
′

4̄ = r⃗4̄ −
r⃗1 + r⃗2

2 , (3.5)

with their corresponding momenta denoted by P⃗CM , P⃗ , p⃗ ′

3̄ , and p⃗
′

4̄ . Galilean invariance
ensures the decoupling of the dynamics of the center of mass (CM) canonical pair (R⃗CM , P⃗CM ).
For the bound state problem we then need to consider only R⃗, r⃗ ′

3̄, r⃗ ′

4̄ and their conjugated
momenta. Notice that r⃗ ′

3̄/4̄ are simply the distances of the light anti-quarks from the midpoint
of quark 1 and 2, which can be interpreted as a sort of center of color charge. This choice
has been made for later convenience. In these coordinates, the Hamiltonian reads

H = P 2
CM

2 (M1 +M2 +m3̄ +m4̄) + P 2

2M12
+

p′23̄
2m3̄

+
p′24̄

2m4̄
+ V + corrections, (3.6)

with M12 ≡M1M2/(M1 +M2) the reduced mass of the heavy quark system. The corrections
not written explicitly above consist of terms of the form P p′i

M and p′jp′i
M , where M is a heavy

quark mass. We will see below that within the Born-Oppenheimer approximation these
terms can be consistently dropped.

To apply the Born-Oppenheimer approximation (see e.g. [46] and appendix B), we first
focus on a reduced Hamiltonian for the light antiquarks

HR =
p′23̄

2m3̄
+

p′24̄
2m4̄

+ V , (3.7)

where we neglect all the (kinetic) terms suppressed by the heavy quark masses, and where
we treat R⃗, which appears in V , as a classical parameter.

The energy eigenvalues and eigenstates of the reduced Hamiltonian, satisfying

HR|ψA⟩ = EA|ψA⟩ , (3.8)

with A a collective quantum number, can then be found working in a 1/N expansion. The
eigenvalues EA, with their dependence on R⃗, then provide the BO potential for the Q1-Q2
system. More precisely, each light quark state |ψA⟩, leads to an approximate effective
Hamiltonian

HBO = P 2

2M12
+ EA(R) (3.9)

whose Schrödinger equation provides the approximate wavefunctions and energy levels of
the bound 4-quark system. Notice that HR is invariant under rotations when treating the
parameter R⃗ as a vector. Therefore its eigenvalues can only be functions of the norm |R⃗| ≡ R,
corresponding to a spherically symmetric BO potential.

A crucial final step is to check for the self-consistency of the BO approximation. A simple
example of the BO approximation for a molecule with large charge nuclei, where a systematic
analysis can be performed analytically, is presented in appendix B.1. The approximation
is valid if the motion of the heavy quarks has negligible influence on the wavefunction of
the light antiquarks. As also reviewed in appendix B.1, that happens to be the case when
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the heavier quarks are much more localized than the lighter antiquarks, or, equivalently,
in terms of their momenta (see eq. (3.6))

P ≫ p′3̄,4̄. (3.10)

That is also the same condition that allows us to drop the corrections to the kinetic terms in
eq. (3.6). As we will show, it reduces in our case to a condition on the masses:

M2 ≫ Nm3̄. (3.11)

The scaling with N comes from the fact that the BO potential is only generated at subleading
order in 1/N , while at leading order, the energy eigenstates are a set of approximately
color-singlet free “mesons”.

In the regime of eq. (3.11), we find two distinct tetraquark solutions, while in the regime
m3̄ ≪M2 ≪ Nm3̄ we show that there are no tetraquark bound states within the domain of
validity of the BO approximation. In section 4, we offer a general argument indicating that
in this other regime the ground state is a two meson state and not a tetraquark.

3.1 Leading order in 1/N : the mesons

In this subsection, we study the reduced HR Hamiltonian of eq. (3.7), at leading order in
1/N . In the +/− basis of eq. (2.7) the potential matrix then becomes

V = α


− 1

r13̄
− 1

r24̄
0

0 − 1
r14̄

− 1
r23̄

+ O(α/N). (3.12)

The Hamiltonian with the leading order potential is straightforward to solve and simply
gives rise to two pairs of free “mesons”: (Q1q̄3̄) and (Q2q̄4̄) with the + color configuration
and (Q2q̄3̄) and (Q1q̄4̄) in the − configuration. Indeed the + (−) states, up to 1/N correc-
tions, correspond to configurations where Q1 and Q2 form singlets with q̄3̄ (q̄4̄) and q̄4̄ (q̄3̄)
respectively. HR has then two degenerate ground states, corresponding to the two different
meson pairs. Their energy E0 is simply given by

E0 = −E3̄ − E4̄ with E3̄ = 1
2α

2m3̄ and E4̄ = 1
2α

2m4̄, (3.13)

with E3̄ and E4̄ respectively the binding energies of the meson involving q̄3̄ and q̄4̄. The
mesons have Bohr radii

a3̄ = (αm3̄)−1, and a4̄ = (αm4̄)−1. (3.14)

Note that in the BO approximation, the heavy quarks Q1 and Q2 are treated as static,
and thus in the above equations it is indeed m3̄ and m4̄ that appears and not the respective
reduced masses. It is clear that within the BO approximation, at this order in 1/N , the
energy eigenvalues are independent of the position of the heavy quarks and no BO potential
is generated. Moreover, at this order there is a degeneracy between the energy eigenvalues
in + and - color configurations. As we shall now see, this degeneracy is broken by the 1/N
corrections which also gives rise to a BO-potential that can bound the heavy mesons together.
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3.2 Subleading in 1/N : the Born-Oppenheimer potential

According to the discussion in the previous subsection, at leading order in 1/N the ground state
of the lighter quark dynamics is independent of R ≡ r12 and has a two-fold degeneracy. We
denote the two ground states by |ψ±

0 ⟩, with ± superscript specifying their color configuration.
The subleading 1/N effects split the degeneracy by an R-dependent correction, with the
resulting ground state being a linear combination of the two initially degenerate states. In
order to study that, we first compute the matrix element of the potential between the two
(degenerate) leading order ground states,

∆(R)
N

= ⟨ψ+
0 |V+−|ψ−

0 ⟩, (3.15)

where we factored out a 1/N so that ∆(R) does not scale with N . In terms of this matrix
element and of the leading order ground state energy, E0 = −E3̄ − E4̄, the energy eigenvalues
are E0 ± ∆(R)

N and correspond to the states |ψ+
0 ⟩ ± |ψ−

0 ⟩. The BO potentials (with the free
meson energies subtracted) for |ψ+

0 ⟩± |ψ−
0 ⟩ are therefore simply given by V ±

eff,BO(R) = ±∆(R)
N .

In figure 5, we show ∆(R) for various choices of m4̄
m3̄

. In the limit m4̄
m3̄

→ 0, it takes the
following simple analytic form

∆(R)
E3̄

∣∣∣
m4̄/m3̄→0

= 2e−R/a3̄

(
a3̄
R

− 2
3
R

a3̄

)
. (3.16)

For R≪ a3̄ this is well approximated by a repulsive ∝ 1
R potential, clearly resulting from the

1
r12

interaction between Q1 and Q2. At R ≫ a3̄, the overlap of the spatial wavefunction of
the states is exponentially suppressed and so is ∆(R). These asymptotic behaviors also hold
for generic m4̄

m3̄
. The dependence of the curves on m4̄

m3̄
can also be understood as follows. As we

increase m4̄
m3̄

, the overlap |∆(R)| drops faster at large R because of the more spatially localized
q̄4̄ wavefunction. On the other hand, at small R ≲ a3̄, the same increased localization of q̄4̄
boosts the negative contribution to ∆(R) of the terms proportional to 1

r14̄
and 1

r24̄
in V+−

(see eq. (2.7)), thus leading to a smaller ∆(R). The analytic expression for ∆(R) expanded
up to second order for m4̄/m3̄ ≪ 1 is given in the appendix C. For m4̄/m3̄ ≪ 1, ∆(R) is
dominated by the contribution from m3̄, so that the results become independent of m4̄. In
particular they are unaffected by m4̄ being bigger or smaller than ΛQCD.

We can easily see from figure 5, that the BO potential can potentially give rise to two
distinct tetraquark bound states: one on the (−) branch where V −

eff,BO = −∆(R)
N provides

at R ≪ a3̄ an attractive ∝ 1
R potential that can localize the two heavy quarks, and the

other on the (+) branch where V +
eff,BO = +∆(R)

N has a minimum around R ∼ a3̄. We discuss
these possibilities in detail in the next subsection. So far, the discussion only involved the
two ground states of the LO Hamiltonian, however, similar BO potentials arise for excited
states, some of which will be discussed in section 3.4.

3.3 Two types of tetraquarks

Having found the BO potentials, we now discuss the possibility of having 4-quark bound states.
We will first show that for M2 ≫ Nm3̄ two distinct sets of tetraquarks exist, with states
below the two-meson thresholds in both sets. We will then argue that there are no tetraquark
bound states, identifiable under the lamppost of the BO approximation, for M2 ≪ Nm3̄.
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Figure 5. ∆(R)/E3̄ for different values of m4̄/m3̄. One can see the minimum at R ∼ O(a3̄), which
leads to type-II tetraquarks, as well as the 1/R behaviour at small distances that gives rise to type-
I tetraquarks.

With the BO potential found in the previous subsection and including the kinetic terms
of the heavy quarks, we can now solve for the dependence of the wavefunction of the energy
eigenstates on the heavy quark coordinates. This is a two-body problem with a potential
dependent only on the relative distance, which can be reduced to a one-body problem with
a central potential for the relative coordinate R.

Type-I tetraquarks. We first consider the (−) branch where the potential V −
eff,BO = −∆(R)

N

is attractive at R ≲ a3̄. That can give rise to bound states where the heavy quarks are
localised much closer to each other than to the lighter antiquarks. We call such states type-I
tetraquarks. At R≪ a3̄, the BO potential is ∼ − 1

N
α
R so that the possible energy eigenstates

would be localised within a radius

A12 ≡ N(αM2)−1 = a3̄
Nm3̄
M2

. (3.17)

The BO condition in eq. (3.10) reads A12 ≪ a3̄, which by the above equation implies M2
m3̄

≫ N .
The same condition also ensures that the resulting ∼ α2

N2M2 binding energy is much larger
than E3̄/N . Consequently the energy of these states

Etype-I = E0 −O
(
α2

N2M2

)
(3.18)

not only falls well below the two meson threshold, but also below the minimum of the BO
potential in the (+) branch and hence below the energy of any bound state that may exist in
that other branch. Therefore for M2 ≫ Nm3̄, the ground state of the 4-quark system under
study is a tetraquark with the heavier quarks bound together at distances much shorter than
the size of the mesons involving the lighter quarks. Notice that |ψ+

0 ⟩ and |ψ−
0 ⟩ have different
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Figure 6. Sketch of type I tetraquark. The black and red dots represent the heavier quarks and the
colored regions are where the wavefunction of the lighter antiquarks have a significant support. The “+”
and “-” subscripts denote the color configuration of the state, as defined in eq. (2.5). We also indicate
the large overlap with the state with the two heavy quarks in the antisymmetric color representation.

color structure and generically different coordinate dependence, so that generically |ψ+
0 ⟩−|ψ−

0 ⟩
is an entangled superposition of color and spacial variables. However, the type-I bound
states are non-generic superpositions where the two heavy quarks are localized is a small
region of size A12 ≪ a3̄. That leads to factorization of color and position up to O(A12/a3̄)
corrections, with the two heavy (and two light) quarks lying in the anti-symmetric color state
(see eq. (2.5)). A schematic sketch of the type-I tetraquark wavefunctions is shown in figure 6.

In the regime of still heavier quarks M2 ≫ N2m3̄, one can establish the existence of
type-I states even without using the BO approximation, see e.g. [11, 31]. In this regime,
one can first solve the dynamics of system of two heavier quarks, where one finds deeply
bound diquark states in the antisymmetric representation. As the quark-quark potential is
roughly − α

Nr12
, the resulting binding energy E12 ∼ α2 M2

N2 dominates over all other possible
contributions to the energy of the four quark system, as they are all ≲ E3̄ ∼ α2m3̄. Moreover,
and relatedly, the time scale associated to motion in the diquark system, ∼

(
α2 M2

N2

)−1
, is

much shorter than the time scale associated to the motion of the lighter anti-quarks. One
can therefore integrate out the diquark dynamics first and then solve the effective dynamics
of the system composed of the diquark and the two antiquarks. Nevertheless we can find this
state consistently also within the BO approximation, as the dynamics of the heavy quarks has
negligible influence on the light antiquarks, since they are localized in a small region. This is
against the common lore according to which the BO approximation corresponds to integrating
out the faster dynamics of the light particles. The unique color-singlet configuration out of the
antisymmetric diquark and the two antifundamental antiquarks has a binding potential and
leads to a bound state of the three constituents.2 One can solve easily for the wavefunction
of such states; at leading order in 1/N , the antiquarks only interact with the diquark and
not with each other (see equation (2.9)) so that the problem factorizes into two “Hydrogen
atoms”. The subleading 1/N corrections can be treated perturbatively. That is the same
situation of a nucleus with large charge Ze ≫ e surrounded by just two electrons.

Type-II tetraquarks. Let us consider now the (+) branch where the potential V +
eff,BO =

∆(R)
N is repulsive at small R and has a minimum at R ∼ a3̄. We refer to the bound states that

can possibly arise around the minimum as type-II tetraquarks. For such states, the Schrödinger
2For SU(3), the antisymmetric representation coincides with the antifundamental, so that the unique color

singlet contraction of the diquark and the two antiquarks is the same as that of a baryon.
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equation for the R coordinate is approximately that of a one-dimensional harmonic oscillator,
with frequency ω ∼

√
E0

Na2
3̄

1
M2

∼
√

Nm3̄
M2

E0
N set by the BO potential.3 The low-lying bound

states of such a harmonic oscillator are localized within a length ∆R ∼
(

Nm3̄
M2

)1/4
a3̄ from

the minimum of the potential. The choice Nm3̄
M2

≪ 1, then coincidentally implies the BO
condition of eq. (3.10) and the validity of the harmonic oscillator approximation for the
BO potential around the minimum. That allows to self-consistently identify a set of bound
states, with energies given by

Etype−II = E0 −O
(E3
N

)
+ O(ω), (3.19)

below the two-meson thresholds. In figure 7, we show a sketch of the type-II tetraquarks.
In contrast to the type-I states, the type-II tetraquarks correspond to a highly entangled
superposition in color and coordinate space. In other words they are not in a definite
color configuration.

Note that the BO potentials shown in figure 5 are not only suppressed by 1/N but have
an additional numerical O(0.1) suppression at the minimum, leading to tetraquarks that are
very close to the two meson threshold. Remarkably, this numerical suppression can be shown
to happen generically and is easily understood given the potential in equation (3.16) obtained
for m3̄ ≫ m4̄. To make the discussion more clear, consider potentials of similar form

Vϵ(X) = e−X
( 1
X

− ϵX

)
, (3.20)

where we introduced an additional parameter ϵ. The minimum of this potential occurs at
Xmin ∼ 1/

√
ϵ, where it is of order

√
ϵ e−1/

√
ϵ. Hence an algebraically small ϵ leads to an

exponentially suppressed energy difference between the tetraquarks and the threshold.4 Even
for ϵ = 2/3 as in eq. (3.16), the position of the minimum is already at a somewhat large value
of X ≃ 2.07, leading to a significant suppression from the exponential. Similarly for m3̄ ∼ m4̄,
the potential has an overall exponential factor coming from the wavefunction overlap, which
again leads to an exponential suppression if the minimum occurs at a large R/a3̄.

We have just seen that the condition M2 ≫ Nm3̄ allows to identify two different types
of tetraquarks, for which we could check a posteriori the validity of the BO approximation
(see discussion around equation (B.9)). We can now ask more generally if that condition is
indeed necessary for the existence of bound states in the BO effective potential. For the case
of a particle with mass M in a central potential V (r) such that V (r) is zero at infinity, the
following Bargmann-Schwinger condition [47, 48] is necessary for the existence of bound states∫ ∞

0
Θ (−V (r)) r|V (r)|dr ≥ 1

2M , (3.21)

3For non-zero and O(1) angular momentum l, the contribution of the “centrifugal” term is small compared
to that of the BO potential around its minimum for M2 ≫ m3̄N . Hence its effect on the wavefunction for the
coordinate R can be neglected. In other words the level separation due to rotational modes is small compared
to the vibrational modes of the heavier quarks.

4A similar mechanism ensures the exponential suppression of mass scales generated by the slow RG evolution
of marginally relevant parameters, like the gauge coupling in QCD or like the Goldberger-Wise dual coupling
in the Randall-Sundrum model.
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where the Heaviside theta function is inserted such that the integral is only over the regions
where the potential is negative. The condition for the case of our BO potentials reads
parametrically as M2 ≳ Nm3̄. That means that, without a hierarchy of masses (at least) as
large as N , there are no four-quark bound states within the BO approximation.

Indeed by studying numerically the Schrödinger equation for our BO potentials, we found
the critical ratio M12

Nm3̄
for which ground state tetraquarks are formed, where M12 = M1M2

M1+M2
.

In the limit m3̄ ≫ m4̄, the critical ratio is 1.7 and 0.9 for respectively Type-I and Type-II
tetraquarks. Instead for m3̄ = m4̄ we find somewhat larger critical ratios of 2.4 and 1.5 again
for respectively Type-I and Type-II. We note that for parameters around the critical ratios
the heavy quarks are not localized in a region ∆R≪ a3̄ and thus cannot be self-consistently
described by the BO approximation. However, as we will see in section 4, for m3̄ = O(m4̄),
the bound state problem can be easily be studied beyond the domain of validity of the BO
approximation. It also turns out that for the specific case m3̄ = m4̄, the BO approximation
and the full treatment coincide at leading order in 1/N and m/M (see eq. (4.18)). Therefore,
in this specific case, the critical ratios quoted above can be trusted even though they occur
at the edge of validity of the BO approximation.

The very special case of very excited states. The study of tetraquarks within the BO
approximation so far only considered light quarks sitting in their ground state. As discussed
in the next section, particle statistics can force some of them to occupy an excited orbital.
The condition of applicability of the BO approximation for the lowest excited states is of
course still given by eq. (3.11). However, one may wonder what happens in the case of very
excited orbitals, characterized by principal quantum numbers n, n′ ≫ 1. In order to get an
idea we have repeated the analysis of this section for the case of large n = n′. What essentially
happens is that the length scale of the BO potential now grows with n. In particular for type
I tetraquarks, the region where the potential behaves like a Coulombic ∝ 1/R, before having
significant overlap suppression extends up R ∼ n3/2a3̄. This can be understood as follows: for
very small R, the overlap is dominated by the last peak of the meson wavefunction located
at a distance ∼ n2a3̄. This peak has however a width of order n3/2a3̄ and therefore beyond
the distance specified by the width, the BO potentials drops significantly compared to a
∝ 1/R Couloumbic potential. We have confirmed this also numerically. At face value this
implies bound states exist in a wider range of M ,

M > Nm3̄/n
3/2. (3.22)

On the other hand, the request of the BO condition eq. (3.10) implies a slightly tighter
constraint

M > Nm3̄/n, (3.23)

which is nonetheless weaker than eq. (3.11). These constituent excited states are in reality
expected to be unstable, as we do not see any conserved quantum number preventing their
decay to either more deeply bound tetraquarks, through gluon emission, or to unbound
mesons, possibly without gluon emission. So we are not sure how much significance to
attribute to this result. Finally, considering the type II sector at large n one does not find
any extension to the range of validity of the BO approximation.
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Figure 7. Sketch of the type-II tetraquarks. The black and red dots represent the heavier quarks and
the colored regions are where the wavefunction of the lighter antiquarks have a significant support.
The “+” and “-” subscripts denote the color configuration of the state, as defined in eq. (2.5). This
state has no similarity to any state with a fixed color configuration.

3.4 Tetraquarks with identical quarks: spin-statistics and excited states

In this subsection we consider the cases with at least two identical quarks (or antiquarks). For
non-identical quarks, all the states constructed so far are allowed, but in the presence of iden-
tical particles only the subset with the suitable transformation properties under permutations
is allowed. A general state is described by a vector wave function Ψα1,...α4,β(r⃗1, r⃗2, r⃗3̄, r⃗4̄) with
αi labelling the spin of each quark and with β = ± labelling the two possible color singlet
contractions associated with P (±)ij

mn (see eq. (2.10)). The constraints from statistics are
expressed in terms of the action of the permutation operators, P12 and P3̄4̄, for respectively
the quantum numbers of Q1,2 and q̄3,4. Notice that under the permutation of the color indices
of either Q1,2 or q̄3,4 the color structures P (±)ij

mn are mapped into each other. The action
of P12 on Ψα1,...α4,β(r⃗1, r⃗2, r⃗3̄, r⃗4̄) then consists in α1 ↔ α2, β → −β, r⃗1 ↔ r⃗2. For P3̄4̄ one
has instead α3 ↔ α4, β → −β, r⃗3̄ ↔ r⃗4̄.

Using the coordinate basis introduced at the beginning of section 3, in the BO approxi-
mation it is convenient to pick a basis of factorized wave functions of the form

χspin
α1,α2,α3,α4ΦP⃗CM

(R⃗CM ) ΦA
ñl̃m̃

(R⃗)ψA
β (r⃗ ′

3̄, r⃗
′

4̄; R⃗). (3.24)

Here the first factor χspin is a coordinate independent vector in spin space. The second
describes the motion of the CM and plays no role in our discussion of bound states. The third
factor describes a state of the Q1-Q2 system with orbital quantum number ñ and angular
momentum numbers l̃ , m̃.5 The last factor is the wavefunction for the color (index β) and
for the coordinates of the lighter antiquarks, which as we have seen can be entangled. The
label “A”, which is common to the last two factors, describes the overall color configuration
and the orbital configuration of q̄3,4. Hence it also labels the resulting BO potential and
orbital states of the Q1-Q2 system.

Let us consider first the case of identical q̄3̄,4̄. As it turns out, it will in some case be
necessary to consider excited states of the reduced q̄3̄-q̄4̄ Hamiltonian. We must thus proceed
with slightly more generality than in the previous sections, by identifying the symmetries
of the reduced Hamiltonian and by characterizing the A quantum numbers.

5Notice that, as the effective BO Hamiltonian in eq. (3.9) is rotationally invariant, it’s eigenstates can be
chosen to have definite angular momentum.
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To identify the symmetries of the reduced Hamiltonian, where R⃗ is treated as a parameter,
we should first identify the symmetries of the full Hamiltonian with the kinetic terms of
the heavy quarks neglected. These are rotations (SO(3)), parity (Π), the full exchange of
the light quark quantum numbers P3̄4̄ (for m3̄ = m4̄), but also that of the heavy quark
quantum numbers P12. The latter is not a symmetry of the full Hamiltonian for M1 ̸= M2,
but the neglect of the kinetic terms restores it. The symmetry of the reduced Hamiltonian
is then the subgroup of the above symmetries under which the position vector R⃗ is left
invariant. Choosing coordinates such that R⃗ is along the z axis we then have that the residual
symmetries of the reduced Hamiltonian are:

• SO(2) rotations around the z axis: the states of the light antiquarks can then be
labeled by the angular momentum in the z direction, mz, and eigenstates of the
leading Hamiltonian with different mz are not mixed by the subleading terms of the
Hamiltonian.

• Parity in the (x, y)-plane: Ay : (x, y) → (x,−y). Note that AyLz = −LzAy, corre-
sponding to SO(2) ⋊Ay = O(2). Then the action of Ay on any state with mz ̸= 0 gives
a corresponding degenerate state with equal and opposite mz.

• The Z2 transformation Π̃ = P12Π. Indeed, as R⃗ → −R⃗ under both P12 and Π, their
combined action clearly leaves R⃗ invariant. Indeed, thanks to eqs. (3.4), (3.5), Π̃ can
also be written by combining the action of parity on the antiquarks Π̄ : r⃗ ′

3̄,4̄ → −r⃗ ′

3̄,4̄
with the exchange of their color indices. In the ± color wave-function space that
corresponds to

Π̃ =
(

0 Π̄
Π̄ 0

)
. (3.25)

Note that Π̃ commutes with both Lz and Ay.

• P3̄4̄.
Let us now construct the complete labels A of the light anti-quark states. In the leading

N → ∞ approximation the eigenstates of the reduced Hamiltonian, see eq. (3.12), are simply
pairs of mesons. In an obvious notation, these can be labelled as

|±; {n, l,m}, {n′, l′,m′}⟩ ≡ |A⟩, (3.26)

where, besides the color contraction ±, the first set of quantum numbers specify the state of
q̄3̄, and the second set that of q̄4̄. For these states, the coordinates r⃗ ′

3̄ and r⃗
′

4̄ are centered
respectively around −R⃗/2 and R⃗/2 for the + color configuration (and instead around R⃗/2
and −R⃗/2 for the − color configuration).

The action of Lz, Ay, Π̃ and P3̄4̄ in this basis is given by6

Lz|±; {n, l,m}, {n′, l′,m′}⟩ = (m+m′)|±; {n, l,m}, {n′, l′,m′}⟩ (3.27)
Ay|±; {n, l,m}, {n′, l′,m′}⟩ = |±; {n, l,−m}, {n′, l′,−m′}⟩ (3.28)
Π̃ |±; {n, l,m}, {n′, l′,m′}⟩ = (−1)l+l′ |∓; {n, l,m}, {n′, l′,m′}⟩ (3.29)
P3̄4̄|±; {n, l,m}, {n′, l′,m′}⟩ = |∓; {n′, l′,m′}, {n, l,m}⟩. (3.30)

6The action of Ay corresponds to choosing the standard spherical harmonics for angular momentum
eigenstates, which satisfy Yl,m(θ,−φ) = Yl,−m(θ, φ).
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We have now all the ingredients to construct the states for identical bosonic or fermionic
q̄3 q̄4̄. Acting with the projectors 1

2 (1 ± P3̄4̄) we project on states that are symmetric or
antisymmetric under exchange the color and the position of q̄3̄-q̄4̄

anti − symmetric 1
2
[
|+; {n, l,m}, {n′, l′,m′}⟩ − |−; {n′, l′,m′}, {n, l,m}⟩

]
(3.31)

symmetric 1
2
[
|+; {n, l,m}, {n′, l′,m′}⟩ + |−; {n′, l′,m′}, {n, l,m}⟩

]
. (3.32)

These states have to be combined with a spin wave-function with the suitable transformation
under P3̄4̄. Notice that, according to the discussion in the previous sections, in the ground
state n = n′ = 1 and l = m = l′ = m′ = 0 the anti-symmetric and symmetric states
correspond respectively to type I and type II tetraquarks. Then in the case of identical
fermionic anti-quarks, the total spin of the q̄3̄ − q̄4̄ system should be 1 and 0 for respectively
type-I and type-II tetraquarks.

If instead q̄3̄,4̄ are identical scalars, the absence of a spin factor leaves as the only option
for their ground state the symmetric combination in eq. (3.32), corresponding to the type-II
tetraquark |ψ+

0 ⟩ + |ψ−
0 ⟩. However when considering excited states with (n, l,m) ̸= (n′, l′,m′),

also type-I tetraquarks are allowed by the statistics. In some situation these may even
constitute the ground state of the full system, as can be seen even bypassing all the careful
classification we have been making. Consider indeed the regime M2 ≫ N2m3̄ where one can
first solve for the Q1 − Q2 diquark bound state in the antisymmetric color configuration.
The resulting binding energy dominates over all other contributions, in particular over the
binding energies of the lighter antiquarks. One can then construct bound states of the
diquark and of the two antiquarks which are symmetric under exchange of q̄3̄ and q̄4̄ and
whose energy is obviously lower than that of the type-II state. Therefore for M2 ≫ N2m3̄,
the ground state is in this class.

To get an idea of the states that arise when considering excited antiquark orbitals,
consider the simplest such case {n, n′} = {1, 2}. The symmetric subset of these states in
eq. (3.32) has an eight-fold degeneracy at leading order in 1/N : a factor 4 from the spin
states of the n = 2 orbital and a factor 2 from color. Now, the operators 1

2

(
1 ± Π̃

)
project

on 4-dimensional subspaces which do not mix even considering higher orders, given Π̃ is a
symmetry. Each subspace features one state with mz = 1, one with mz = −1, and two states
with mz = 0. Invariance under SO(2) forbids mixing between mz = 1, or mz = −1, with all
the other states. Moreover, as Ay maps these states into each other, their energies (and the
corresponding BO effective potential) are degenerate. Instead the two states with mz = 0
in general mix. At any fixed R the BO potentials are then found by diagonalizing the 1/N
perturbation in this two dimensional subspace. The result is shown in figure 8. Note that
the corresponding states with opposite Π̃ quantum numbers lead to BO potentials with the
same magnitude but opposite sign. This stems from the fact that the 1/N correction to the
Hamiltonian is off-diagonal in the basis of eq. (2.7). The shape of these potential makes it
evident that there exist both type I and type II tetraquarks even for identical bosonic q̄3,4
as soon as their excited orbital states are considered.

For identical heavier quarks Q1,2, both type-I and type-II tetraquarks are allowed as the
full action of the permutation P12 now also depends on the angular momentum quantum
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Figure 8. The first excited BO-potentials for identical antiquarks and P3̄4̄-symmetric wavefunctions.
Left: BO potentials which lead to type-I tetraquarks. Right: BO potentials leading to type-II
tetraquarks. π̃ denotes the eigenvalue of the Π̃ transformation. Note that the mz = ±1 potentials are
degenerate on both sides.

number l̃ in eq. (3.24). Consider indeed for simplicity the ground state n = n′ = 1 of the
antiquark orbital. The action of P12 on the states in eqs. (3.31), (3.32) is just a flip of +
and −: type I (|ψ+

0 ⟩ − |ψ−
0 ⟩) has then P12 = −1 while II (|ψ+

0 ⟩ + |ψ−
0 ⟩) has P12 = +. These

should be suitably combined with the action of P12 on the orbital part, (−1)l̃, and on the spin
part which for fermionic quarks is (−1)S+1. Identical bosonic quarks and identical fermionic
quarks in the S = 0 state then feature the same correlation between tetraquark type and
angular momentum l̃: type-I eigenstates have odd l̃ while type-II have even l̃. For fermionic
quarks in the S = 1 spin state one has the reverse: type I have even l̃ while type II have odd l̃.

4 Beyond Born-Oppenheimer

We will here study the Q1Q2q̄3̄q̄4̄ ground state supplementing eq. (3.1) with

Nm3̄ ≫M2 ≫ m3̄, (4.1)

for which the Born-Oppenheimer approximation fails. Deriving an effective description for
slow moving ground state meson system and applying variant of the Bargmann-Schwinger
condition we will show that the ground state consists of two unbound mesons. Indeed our
argument is also easily adapted to show that also for other mass hierarchies and other mass
ordering the ground state consists of a meson pair. In particular we do so for the case of a
heavy quark and heavy antiquark Q1Q̄3̄q2q̄4̄ corresponding to M1 > M3̄ > m2 > m4̄.

4.1 Two heavy quarks and two lighter anti-quarks

Recall that in the regime of eq. (3.11) where the BO approximation was applicable, we could
ignore the kinetic terms of the heavier quarks when solving for the light anti-quark dynamics
up to subleading 1/N order. The heavy quark dynamics was then solved in a second step.
In the regime of eq. (4.1), which we are here considering, this is no longer possible: Q1,2
are here not heavy enough to permit neglecting their recoil effect on the light anti-quark
dynamics at order 1/N . We must then swap the order at which we include 1/M and 1/N
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effects. For the present analysis, as it will be soon clarified, it is convenient to work in the
singlet-adjoint (I/Ad) basis. The Hamiltonian takes the form

H = P 2
1

2M1
+ P 2

2
2M2

+
p2

3̄
2m3̄

+
p2

4̄
2m4̄

+ V (0) + 1
N
V (1) + O

( 1
N2

)
, (4.2)

where the leading order potential is

V (0) = −α
( 1

r13̄
+ 1

r24̄
0

0 1
r14̄

+ 1
r23̄

)
, (4.3)

and where the 1/N correction is purely off-diagonal with matrix elements

V
(1)

I,Ad = V
(1)

Ad,I = α

( 1
r12

+ 1
r3̄4̄

− 1
r14̄

− 1
r23̄

)
. (4.4)

The full potential in this basis is given in eq. (A.9). As we shall better explain below, the
benefit of the singlet-adjoint basis is that the off-diagonal potential manifestly falls off faster
than 1/R at large meson separation. The leading order system is exactly solvable and consists
of two decoupled sectors each containing two non-interacting mesons (and their excited states).
We call these sectors A and B, where A is the sector involving Q1q̄3̄ and Q2q̄4̄ mesons while
B involves Q1q̄4̄ and Q2q̄3̄. To solve the problem, besides the common CM coordinate R⃗CM ,
it is convenient to use different coordinate bases in sector A and sector B. In sector A we
choose r⃗13̄ and r⃗24̄, which describe the inner dynamics of the (13̄) and (24̄) mesons, and
the relative distance between their centers of mass

R⃗A = M1r⃗1 +m3̄r⃗3̄
M1 +m3̄

− M2r⃗2 +m4̄r⃗4̄
M2 +m4̄

. (4.5)

In sector B, in full analogy, we choose instead r⃗14̄ and r⃗23̄, as well as

R⃗B = M1r⃗1 +m4̄r⃗4̄
M1 +m4̄

− M2r⃗2 +m3̄r⃗3̄
M2 +m3̄

. (4.6)

We indicate the momenta conjugate to R⃗A and R⃗B as respectively P⃗A and P⃗B. The Hamil-
tonian then becomes

H = P 2
CM

2(M1 +M2 +m3̄ +m4̄) +

 P 2
A

2µA
+ p2

13̄
2µ13̄

+ p2
24̄

2µ24̄
0

0 P 2
B

2µB
+ p2

14̄
2µ14̄

+ p2
23̄

2µ23̄

+ V, (4.7)

where µij̄ = Mimj̄

Mi+mj̄
are the reduced masses corresponding to relative coordinates r⃗ij̄ and

µA,B are given by

µA = (M1 +m3̄)(M2 +m4̄)
M1 +m3̄ +M2 +m4̄

, and µB = (M1 +m4̄)(M2 +m3̄)
M1 +m3̄ +M2 +m4̄

. (4.8)
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According to eq. (3.1), the ground states energies in the A and B sector, which we
indicate respectively by EA and EB, are separated by a positive energy gap

∆E ≡ EB − EA ≃ (M1 −M2)(m3̄ −m4̄)
M1M2

(E3̄ + E4̄) −→ m3̄
M2

E3̄ . (4.9)

In the last step we have taken for illustrative purpose the limit M1 ≫ M2, m3̄ ≫ m4̄, but
notice that the gap disappears if either the quarks or the antiquarks are degenerate. A sketch
of the spectrum is shown in the left panel of figure 9.

The leading order Hamiltonian is diagonal in the basis {|A, P⃗A, αA⟩ , |B, P⃗B, αB⟩} where
the αA,B denote the quantum numbers of the hydrogen-like problem. As such, they can
be either discrete, when they describe mesons states, or continuous.7 A general state of
the system can be written as

|Ψ⟩ =
∑
αA

∫
d3RA ψαA(R⃗A) |A, R⃗A, αA⟩ +

∑
αB

∫
d3RB ψαB (R⃗B) |B, R⃗B, αB⟩ . (4.10)

The problem is now to study under what condition the 1/N correction to the potential
in eq. (4.4) is sufficiently strong a perturbation of the zeroth order Hamiltonian to lead to
meson-meson bound states. In fact we can ask two different questions: one is whether the
lowest energy state is a bound state, the other is whether there exist bound states composed
of excited mesons. For this second class of states, as we already mentioned, we do not see
any argument for absolute stability, so that we expect them to become metastable when
including corrections to the BO approximations and/or when bringing dynamical gluons back
into existence. We will study here only the first question, though we think our study could
easily be extended to that case as well. We will prove, subject to a reasonable assumption
about the spectrum of excited states, that the ground state of the system is a tetraquark only
in the same range where the BO approximation applies, i.e. for M2 ≳ m3̄N . We think with
some more effort we could also prove our additional assumption thus making our argument
complete. However we think that would take us way beyond the scope of this paper.

In order to proceed it is convenient to first shift the unperturbed N0 Hamiltonian
H0 → H0 − EA ≡ H ′

0, so that the unperturbed ground state has zero energy. Then, as the
perturbation V (1)/N vanishes for RA,B → ∞, the condition for the existence of a stable
tetraquark is that the spectrum of the perturbed Hamiltonian H ′ ≡ H ′

0 + V (1)/N extend to
negative values. In order to assess that, we should study the expectation value of H ′ over the
most general class of states in eq. (4.10). We will not perform this study in full generality
but we will work under the reasonable assumption that the lowest energy state of the full
Hamiltonian is dominantly a linear superposition of states in the low end of the unperturbed
spectrum and study in detail the most general such states.8 Consider now the spectrum in
figure 9. To simplify the discussion we will work under the assumption that the gap EB −EA

between the ground states is parametrically smaller than the gap E4̄ to the first excited meson
7Notice that the portion of the excited meson spectrum, discrete or continuous, with absolute value of the

energy ≲ ΛQCD is not described by weakly coupled non-relativistic quantum mechanics. Still, as we will now
argue, these states decouple from the study of the ground state problem. That is therefore not an issue.

8Notice that in the limit N → ∞ with all other parameters fixed we expect perturbation theory to apply,
in such a way that eigenvalues above a certain finite gap will remain positive under the perturbation.
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state. For instance we can focus on the case m3̄ ∼ m4̄ which implies E3̄ ∼ E4̄ and hence
EB −EA ≪ E4̄ according to eqs. (4.1) and (4.9).9 For this choice of parameters, we will then
proceed as follows. We will divide the Hilbert space as the direct sum of two subspaces

H = HGS ⊕Hexc , (4.11)

where HGS and Hexc consists respectively of the unperturbed states with energy below and
above the gap E4̄ to the lowest excited meson state. Labelling by |A, R⃗A, GS⟩ and |B, R⃗B, GS⟩
the ground state meson states for sector A and B respectively, we then have that HGS is
made up of the most general superposition

|Ψ⟩ =
∫
d3RA ψA(R⃗A)|A, R⃗A, GS⟩ +

∫
d3RB ψB(R⃗B)|B, R⃗B, GS⟩ , (4.12)

subject to the constraint

P 2
A

2µA
+ P 2

B

2µB
< E4̄, (4.13)

corresponding to momenta in the range

PA,B ≲
√
M2E4̄ ∼

√
M2
m4̄

1
a4̄
. (4.14)

The complementary subspace Hexc consist then, obviously, of states either involving at least
one excited mesons or with kinetic energy exceeding E4̄.

The idea is now that bound states, when they first appear as a function of the parameters,
they will approximately consist of linear superposition of states in Hexc. To study the problem
we can then “integrate” out the states in Hexc and derive an effective Hamiltonian for the
reduced ground state Hilbert space HGS. This procedure is discussed in more detail in
appendix D, but the basic implication is easily explained by thinking in terms of standard
perturbation theory. As the states in HGS have a fixed gap, their contribution to the low
energy effective Hamiltonian is quadratic in the perturbation V (1)/N and hence scales like
1/N2. This should be compared to the matrix elements of V (1)/N between states in HGS,
which evidently only scale like 1/N . This different scaling implies (as better detailed in the
appendix) that the effects of the virtual excited states is always subdominant for the purpose
of assessing the first occurrence of bound states. To study the latter one can then simply
study the bound state problem in HGS with a Hamiltonian simply given by H ′ projected
to HGS. The rest of this section is devoted to that.

We need to compute the matrix elements of V (1) on HGS. The potential can be written
in our Hilbert space basis as PABV

(1)
I,Ad(r1 . . . r4) where PAB is the operator switching color

contraction A ↔ B and satisfying P 2
AB = I. For the overlap between the basis states we

9We do not expect our conclusions to be affected by this hypothesis. For instance, one could repeat the
analysis of this section for the case of just three particles Q1,2 and q̄3̄, which corresponds to the formal limit
m4̄ → 0 and for which the unperturbed spectrum consists of states involving one meson and one unbound
heavy quark. One would reach the same conclusions.
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then find10

⟨A, R⃗A, GS|PAB|B, R⃗B, GS⟩ ∼ δ3(R⃗A − R⃗B)e−RA/a3̄e−RA/a4̄ , (4.15)

which leads to

⟨A, R⃗A, GS|V (1)|B, R⃗B, GS⟩ ≃ ∆(RA)δ3(R⃗A − R⃗B), (4.16)

up to corrections that are controlled by m/M , where ∆(R) was defined in eq. (3.15). On
HGS we can then write the energy functional as

⟨Ψ|H ′ |Ψ⟩ = −
∫
d3RAψ

∗
A(R⃗A) ∇2

2µA
ψA(R⃗A) +

∫
d3RBψ

∗
B(R⃗B)

(
− ∇2

2µB
+ ∆E

)
ψB(R⃗B)

×
∫
d3RA d

3RBψ
∗
A(R⃗A)ψB(R⃗B)∆(RA)δ3(R⃗A − R⃗B) + c.c., (4.17)

which leads to the Schrödinger equation[
−
( ∇2

2µB
0

0 ∇2

2µB

)
+
(

µA−µB
2µAµB

∇2 0
0 ∆E

)
+ ∆(R)

N

(
0 1
1 0

)](
ψA(R⃗)
ψB(R⃗)

)
= E

(
ψA(R⃗)
ψB(R⃗)

)
. (4.18)

The second term in square brackets is a positive semi-definite operator, as ∆E ≥ 0 and

µB − µA = (M1 −M2) (m3̄ −m4̄)
M1 +M2 +m3̄ +m4̄

≥ 0. (4.19)

Therefore, it can only increase the ground state energy. We will now study under what
condition the modified Hamiltonian that results by dropping this term has a positive spectrum.
A fortiori then, under the same condition also H ′ is positive definite, at least when reduced
to the subspace of eq. (4.12).

The modified Hamiltonian is particularly simple and can be diagonalized by a basis
rotation, ψA±B = 1/

√
2 (ψA ± ψB). The system reduces to two decoupled subsectors with

potentials ±∆(R)/N . The application of the Bargmann-Schwinger condition of eq. (3.21) to
these potential then shows that there are no bound states, i.e. the spectrum is positive, for
the mass hierarchy Nm3̄ ≫M2 ≫ m3̄. This result is quickly understood. The function ∆(R)
has the form E3̄F (R/a3̄) in such a way that the integral at the left hand side of eq. (3.21) is
of order E3̄a

2
3̄/N ∼ 1/(Nm3̄). As the right hand side is ∼ 1/M2, our result follows.

Finally we note that eq. (4.18) contains the BO approximation when specified to the
regime m/M ≪ 1/N , as in this regime the second term in the square bracket can neglected.
Furthermore, as we already noted in section 3.3, in the case of degenerate masses with
either m3̄ = m4̄ or M1 = M2, the problem of finding the bound states using eq. (4.18)
becomes identical to that within the BO approximation. Therefore, the critical value of
M12
Nm3̄

above which stable tetraquarks exists, which we quoted in that section, can actually
be trusted for identical masses even though that happens in the regime where m/M and
1/N are of the same order.

10Given that R⃗A = R⃗B + O
(

m
M
R⃗B

)
+ O

(
m
M
r⃗ij

)
, the wave function overlap in eq. (4.15) is exponentially

suppressed unless |R⃗A − R⃗B | ≲ am/M . As this length scale is smaller than implied by eq. (4.14), eq. (4.15)
can be well approximated by a δ-function. Notice that our effective theory approach nicely ensures that the
perturbation behaves like a potential between point particles.
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Figure 9. The typical spectrum of the two sectors considering only the interactions at leading order
in 1/N .

4.2 Alternative quark mass hierarchies and orderings

In the mass ordering considered in the previous section, the ground states in the A and B
sectors could in principle have been very degenerate. In order to account for the possible
compensation of the smallness of the 1/N perturbation by the small degeneracy we were then
forced to consider an effective low energy description (the subspace HGS) which encompassed
both sectors. We found that for the mass hierarchy of eq. (4.1) the ground state is not a
tetraquark, essentially because the heavy quarks Q1 and Q2 in this regime are not heavy
enough to make the O(1/N) potential a large perturbation. This result suggest that we
should be able to exclude stable tetraquarks also for the case where there is no hierarchy
between M2 and m3̄. Consider indeed the generic case where M1 > M2 > M3̄ > M4̄ with all
masses roughly of order M . In this case the gap between the A and B ground states as well
as that to first excited meson is ∼ α2M . Proceeding like in the previous section, the study
of the effect of the 1/N suppressed terms can be carried out by zooming on the effective
dynamics on a suitable low energy portion HGS of the Hilbert space. The natural choice is to
have HGS cover the orbital states of the A sector ground state with energy below the relevant
gap α2M . The complement Hexc contains then the whole B sector as well all the excited
mesons plus the continuum in the A sector. The effective potential in the resulting effective
description is then of order 1/N2 and comes from two sources. The first is the diagonal
1/N2 term in the original Hamiltonian. That is easily seen to trivially contribute to just a
correction to the binding energy of the 13̄ and 24̄ mesons of the A sector, and thus does not
influence the existence of stable tetraquarks. The second effect originates from integrating
out the B sector, as discussed in the previous section and as detailed in appendix D. One
can bound the size of this second contribution under the same reasonable hypothesis we
applied previously, i.e. that the O(α2M) is not wildly modified by the perturbation. One
then finds that the resulting effective potential roughly scales like ∼ (α2M/N2)f(RMα) with
f a fast decreasing function for R≫ 1/(αM) and non-singular at smaller R. With this result
the integral on the left hand side of eq. (3.21) is roughly O(1/(N2M). The criterion for the
existence of meson bound states is not passed as soon as N is larger than O(1).
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In a similar manner we can investigate the QQ̄qq̄ system corresponding to the mass
ordering M1 ≥M3̄ > M2 ≥M4̄. That includes in particular the hierarchical case M1 ∼M3̄ =
O(M) ≫M2 ∼M4̄ = O(m) and the case where all masses are comparable and O(M).11 As
the results are the same let us consider for definiteness the hierarchical case.

In the N → ∞ limit this system again consists of two decoupled sectors of two non
interacting meson states. Again, like in the case we just considered, there is a large gap
between the ground states of the two towers (see the right panel of figure 9). In one sector,
say A, the two mesons correspond to the pairing (QQ̄) and (qq̄). The binding energy is
dominated by that of the first couple and is of order α2M . The mesons of the second sector,
say B, are instead of the form (Qq̄) and (Q̄q) with a much smaller binding energy of order
α2m. Again we can zoom on a low energy effective description limited to ground state meson
states in the A sector, with kinetic energy below the ∼ α2M gap. Like previously, the effective
potential arises at O(1/N2) and consists of two contributions. A direct one, which trivially
only provides a small correction to the QQ̄ and qq̄ meson binding energy, and an indirect one
arising from integrating out the B sector. Using analogous estimates as in appendix D, we find
that this second contribution scales roughly like (α2m/N2)(m/M)3f(Rαm), with f smooth
at short distances and rapidly decreasing for R≫ 1/(αm). For such potential the integral on
the left hand side of eq. (3.21) is roughly (1/N2)(m/M)31/m which cannot even marginally
beat the 1/m necessary for the occurrence of a bound state. The case of comparable masses
is simply obtained by taking m ∼M . The situation here coincides with the case first studied
in this section: bound states are not possible as soon as N is bigger than O(1).

We thus conclude that also for these other mass patterns the ground state consists
of two mesons.

5 Discussion and speculations about real-world tetraquarks

Our study focused on the limit where N is large and all masses are far above ΛQCD. Note
however, as already pointed out in section 3, all our results are basically unaffected even
in the case m4̄ ≲ ΛQCD, as long as m3̄ ≫ ΛQCD remains satisfied. Indeed in that case the
effects of q̄4̄ in the binding dynamics are negligible, with type I and type II tetraquarks
bound by the larger binding energies associated with the three heavier quarks Q1, Q2, q̄3̄.
Notice that for this range of masses the excitation spectrum associated with the q̄4̄ orbitals,
and characterized by energy splittings of order ΛQCD, is now beyond perturbative control.
The larger splittings associated with the heavier quarks remain however under control. The
properties of the states with excited q̄3̄ orbitals are the same as discussed in section 3. In
particular for N2 ≫ M2/m3̄ ≫ N these states are metastable with respect to decay into
the ground state mesons.

The existence and the properties of type I tetraquarks are also largely unaffected by
further taking m3̄ below ΛQCD, at least for the states where Q1 −Q2 attraction dominates

11In the case where the flavors of a quark and an antiquark are identical, one could wonder if their annihilation
may be important. However, this case also falls within our approximation. This is because the annihilation
lifetime is parametrically longer than the other relevant time scales, as can be shown by inspecting the various
time scales. For instance the annihilation width for a Q̄Q bound state with identical flavors is O

(
α5M

)
or

smaller, while its binding energy is O
(
α2M

)
.
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the binding. That is easily seen to correspond to states where R≪ Λ−1
QCD, which is realized

for M2 ≫ NΛQCD. The resulting states belong to the same class of the hadrons with QQ

content identified long ago in ref. [31]. On the other hand, for ΛQCD > m3̄ ≥ m4̄ the existence
of type II tetraquarks depends on the detailed form of the BO potential induced at distances
of order Λ−1

QCD by non-perturbative effects. Whether at small or large N the computation
of this quantity can only be done within lattice QCD.

In this section we will try to qualitatively apply the picture obtained in our study to
real world QCD. In that regard, we extrapolate our large N and large mass results to N = 3
and to the physical masses of b and c quarks. Although there are sizeable corrections, we
expect that the qualitative picture is preserved, at least partially.

First we consider the case where all quark masses are above ΛQCD with a “hierarchy”
between quarks and antiquark masses. That is relevant for bbc̄c̄ states. As it was discussed in
section 3.3, we expect stable tetraquark states to form for M

Nm above some critical O(1) value,
which we obtained for various BO potentials. Incidentally, in the real world the ratio mb

Nmc
is

close to unity, making it hard to draw any robust conclusions. Taking the critical mass ratios
obtained, mb

Nmc
> 4.8 for Type-I and mb

Nmc
> 3 for Type-II, at face value, we should not expect

to see bbc̄c̄ tetraquarks that are stable with respect to strong decays into mesons. Of course
we are well aware of the stunt represented by our extrapolation. Notice also, as we discussed
at the end of section 3.3, the existence of excited tetraquark sitting above the two meson
threshold has a lower critical ratio M

Nm . Of course the size of these excited mesons, given
the closeness of mc becomes quickly of order Λ−1

QCD. Also for that reason we have not done a
detailed study of the critical ratio for these excited states. Nonetheless by a rough rule of
thumb (see eq. (3.22)), we expect the critical ratio M

Nm for the existence of the first excited
tetraquark to be roughly a factor 2−3/2 ∼ 1/3 smaller than the values quoted above. That is
close to unity, which we take as indication that metastable bbc̄c̄ tetraquarks may well exist.

Next we consider the case where one anti-quark is light, m4̄ < ΛQCD. For the case of
real world QCD, we may use the results of this regime for the case of bbc̄q̄ states, with q̄

being a light anti-quark (ū, d̄, or s̄). In this case, the BO potential is largely unaffected by
the lightest anti-quark q̄, corresponding to the regime m3̄ ≫ m4̄. The critical mass ratio in
this case is lower than the case m4̄ = m3̄. Again for ground state mesons, we find mb

Nmc
> 3.4

for type-I and mb
Nmc

> 1.8 for type-II, making the existence of these states more likely than
bbc̄c̄. That is even more the case for the tetraquarks with excited c-quark orbital, for which
the critical ratio is further reduced.

Let us finally consider the case of two light anti-quarks below the QCD scale, i.e. the
possible bbq̄q̄ (Tbb), bcq̄q̄ (Tbc), and ccq̄q̄ (Tcc) states. In the heavy quark limit, the existence of
the type-I states relies only on the short distance region where the BO potential is dominated
by the Coulombic potential among the two heavy quarks. According to our results stable
tetraquarks should then exist for M2 ≫ NΛQCD. Taken at face value for the real world,
this result indicates that stable Tbb likely exist, while Tbc and Tcc lie at the edge. That
is qualitatively in agreement with the recent observation of Tcc right around the two DD
threshold [6]. Notice also that in the regime M2 ≫ NΛQCD the binding energy of the
heavy quarks dominates the O(ΛQCD) contributions from the light quarks, whether in their
ground state or whether in an excited state. The excited tetraquarks then can only cascade
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decay to the ground state tetraquark through gluon emission (with consequent conversion
into light mesons).

Tbb, Tbc and Tcc, in their type-I incarnation, correspond to the hadrons with QQ diquark
core identified in ref. [31] and forming the subject of the studies in refs. [11, 12]. In these
papers the masses of this family of tetraquarks was predicted on the basis of HQET in
conjunction with quark-diquark symmetry and using the data for heavy-light mesons and
heavy-light-light baryons. It is interesting to compare the results of these more systematic
studies to the qualitative perspective we just offered above. In the case of Tcc, both analyses
find that it lies well above the two meson threshold, in contrast with the experimentally
determined value of its mass [6], which happens instead to agree with the in principle more
rudimentary estimate based on the quark model in ref. [36]. Notice however that both analyses
did not account for the finite size of the diquark which, as estimated in [37], could easily give
a correction that is comparable to the mismatch with observation. The same corrections can
equally be important for Tbc. In the case of Tbb, however, not only the predictions [11, 12, 36]
for its mass are significantly below threshold but also finite size effects are reduced, by roughly
a (mc/mb)2 ∼ 10 factor. According to these HQET + diquark symmetry a Tbb stable under
QCD interaction should then definitely exist. In fact, lattice studies, see e.g. [49–51], have
reached similar conclusions. This all appears in agreement with the more qualitative picture
suggested by extrapolating the results of our study.

And what about the possibility for type II Tbb, Tbc, Tcc tetraquarks? As we already
explained, unlike for type I states, their existence is not guaranteed in the realistic case of
light anti-quarks below the QCD scale. It would hinge instead on the properties of the BO
potential which we can only imagine computing through lattice QCD simulations. In fact,
the current determination of the potential is not very precise at large separations, and it is
unclear if an additional minimum at such separations exists [49]. But if a second minimum
were determined to exist that would establish the existence of type-II tetraquarks in the
TQQ family. Lacking at the moment such precisely determination, we cannot nonetheless
refrain from speculating about this possibility. By accepting it, we would then have two
options, type I and type II, for the recently discovered Tcc, as both can accommodate the
inferred quantum numbers. In the case of future discovery of Tbb (and Tbc) tetraquarks
their types may be distinguished by their binding energy. While type-I tetraquarks get
more and more bound for heavier constituents, the binding energy for type-II tetraquarks
saturates at the minimum of the BO potential. Assuming Tcc is a type-I tetraquark, the
corresponding Tbc would be more bound by order α2mc/N

2 ∼ α2
smc, while the corresponding

Tbb state would have a binding energy of order α2mb/N
2 ∼ α2

smb. On the other hand,
in the case of type-II, Tbb, Tbc, Tcc the binding energies should roughly be the same, as
they become mass independent in the limit of infinite heavy quark mass. Moreover, be-
sides the 1/N suppression of this energy which should survive in the realistic case, in our
study we also find an additional accidental O(1/10), due to the exponential behaviour of
the light quark wave function. We have no robust reason for that, but if this acciden-
tal suppression were to also survive in the realistic case, then it would significantly help
bringing the expected O(ΛQCD) range of the binding energy of Tcc, closer to its observed
∼ 0.5 MeV value.
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In our construction of tetraquarks within the BO approximation we focused on QQq̄q̄

states. The study of this case is simpler compared to that of QQ̄qq̄ tetraquarks, even within
the 1/N expansion. That is because at leading order in 1/N and in the large mass expansion,
the two ground states of the reduced Hamiltonian eq. (3.7) are degenerate. Then, as discussed
in section 4, the bound state problem can be studied by accounting for the subleading
effects in a truncated low energy Hilbert space around the ground states. In the case of a
heavy QQ̄ pair, however, the two different color contractions lead to very different binding
energies. As we argued in section 4 the low energy effective description consists on just
one sector, that involving the deeply bound QQ̄ meson. It is easy to see that at large N
no tetraquarks bound states can form in this sector. However, our methodology does not
allow us to explore, and thus construct or rule out, metastable QQ̄qq̄ tetraquarks. Indeed
the problem of finding the BO potentials as a function of the distance between the heavy
QQ̄, even though more challenging, is well defined and we leave it for future work. It is
interesting to determine whether these potentials admit minima at distances of the order
of the size of the Qq̄ mesons in which case metastable tetraquarks can form for sufficiently
heavy masses of the heavier Q and Q̄. This picture would be in line with the current observed
candidate states which are all around the Qq̄ meson pair thresholds and can decay to the
more bound (QQ̄, qq̄) pair of mesons.
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A Wave functions and the Hamiltonian

For the reader’s ease, in this appendix, we describe the general structure of the states of a
qqq̄q̄ system and write down the Hamiltonian in the different bases used in the main text.

A.1 The states of a qqq̄q̄ system

A complete set of quantum numbers of a single (anti-)quark state is given by: the position
x, the color, the spin, and, when needed, additional internal degrees of freedom such as the
flavor. The most general q1q2q̄3̄q̄4̄ state can thus be written as

|Ψ⟩ =
∑

ρ

∫ 4∏
k=1

d3xk Ψi j
m n (x, ρ) |1i(x1, ρ1) 2j(x2, ρ2) 3̄m(x3, ρ3) 4̄n(x4, ρ4)⟩ . (A.1)

We collectively denoted the spin and the other internal quantum numbers of the k-th particle
with the index ρk. The sum over the color indices is left implicit. The normalization of
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the ket is chosen so that

⟨Φ|Ψ⟩ =
∑

ρ

∫ 4∏
k=1

d3xk Φ∗m n
i j (x, ρ) Ψi j

m n (x, ρ). (A.2)

As explained in the main text, we are only interested in the two-dimensional subspace of color
singlet states. A class of basis can be defined by asking one pair of particles, either qq or qq̄,
to sit in a definite color representation (R). Indeed, the second pair must always sit in the
conjugate representation to neutralize the color. The wave function can then be expanded as

Ψi j
m n (x, ρ) =

∑
R

ΨR(x, ρ)P (R)i j
m n (A.3)

There are three possible bases of this kind corresponding to three possible pairings: (12),
(13̄),(14̄). In the first case, R can be either the symmetric (S) or the anti-symmetric (A)
representation while in the others R is either the singlet (1) or the adjoint (Adj) representation.
The normalized color wave functions are then given by

P (S)i j
m n = 1√

2N(N + 1)
(δi

mδ
j
n + δi

nδ
j
m), P (A)i j

m n = 1√
2N(N − 1)

(δi
mδ

j
n − δi

nδ
j
m),

P (113̄)i j
m n = 1

N
δi

mδ
j
n, P (Adj13̄)i j

m n = 1√
N2 − 1

(
δi

nδ
j
m − 1

N
δi

mδ
j
n

)
,

P (114̄)i j
m n = 1

N
δi

nδ
j
m, P (Adj14̄)i j

m n = 1√
N2 − 1

(
δi

mδ
j
n − 1

N
δi

mδ
j
n

)
.

(A.4)

Each line corresponds to an orthonormalized basis. Note that the wave function for the
adjoint state of the (13̄) ((14̄)) pair agrees with the (14̄) ((13̄)) singlet to leading order in N .
Finally, let us note that the angle between two color states is given by

cos θ(R1,R2) = P (R1)∗m n
i j P (R2)i j

m n (A.5)

and can be used to perform the change of basis.

A.2 The potential in different bases

Depending on the regime of the masses of the quarks and antiquarks, the qqq̄q̄ system is more
easily studied using one particular choice of basis. Here, we collect the different alternatives
used in the main text. The general form of the potential is the one in equation (2.3).
Contracting the color structures with the wave functions previously introduced, we can
extract the different matrix elements of the potential in the color singlet subspace. Using a
notation where the generators in the full color space are denoted as T a

1 = T a⊗I⊗I⊗I, we have

VR1,R2 = αs

∑
i<j

λij(R1,R2)
rij

, (A.6)

with
λij(R1,R2) = P ∗(R1)pq

mn

(
T a

(i)T
a
(j)

)mn rs

pq kl
P (R2)kl

rs, (A.7)

where P (R) is given in eq. (A.4) for the different representations.
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Symmetric/anti-symmetric basis. When the states are chosen so that the two quarks sit
in a definite color representation, either the symmetric or the anti-symmetric, the potential is

VSS = −αs
(N + 2)(N − 1)

4N

( 1
r13̄

+ 1
r24̄

+ 1
r23̄

+ 1
r14̄

)
+ αs

N − 1
2N

( 1
r12

+ 1
r3̄4̄

)
,

VSA = VAS = −αs

√
N2 − 1

4

( 1
r13̄

+ 1
r24̄

− 1
r23̄

− 1
r14̄

)
,

VAA = −αs
(N − 2)(N + 1)

4N

( 1
r13̄

+ 1
r24̄

+ 1
r23̄

+ 1
r14̄

)
− αs

N + 1
2N

( 1
r12

+ 1
r3̄4̄

)
.

(A.8)

Singlet/adjoint basis. In the basis where the color state of the pair (13̄) is either in the
singlet or in the adjoint representation we have the potential

VII = −αs
N2 − 1

2N

( 1
r13̄

+ 1
r24̄

)
,

VIAd = VAdI = −αs

√
N2 − 1
2N

( 1
r14̄

+ 1
r23̄

− 1
r12

− 1
r3̄4̄

)
,

VAdAd = −αs
N2 − 2

2N

( 1
r14̄

+ 1
r23̄

)
+ αs

1
2N

( 1
r13̄

+ 1
r24̄

− 2
r12

− 2
r3̄4̄

)
.

(A.9)

+/− basis. The last convenient basis for studying the system corresponds to a π/4 rotation
of the Symmetric/Anti-Symmetric basis,

Ψ+ = 1√
2

(ΨS + ΨA), Ψ− = 1√
2

(ΨS − ΨA). (A.10)

Differently from the previous ones, neither state corresponds to a definite color configuration
for a pair of particles. However, they both approach the singlet in the large N limit. In
this case, the off-diagonal terms of the Hamiltonian are 1/N suppressed with respect to
the leading diagonal contributions

V++ = −αs
N2 − 2 +N

√
N2 − 1

4N

( 1
r13̄

+ 1
r24̄

)
− αs

N2 − 2 −N
√
N2 − 1

4N

( 1
r23̄

+ 1
r14̄

)
− αs

1
2N

( 1
r12

+ 1
r3̄4̄

)
,

V+− = V−+ = αs
1
2

( 1
r12

+ 1
r3̄4̄

− 1
2

( 1
r13̄

+ 1
r14̄

+ 1
r23̄

+ 1
r24̄

))
,

V−− = −αs
N2 − 2 −N

√
N2 − 1

4N

( 1
r13̄

+ 1
r24̄

)
− αs

N2 − 2 +N
√
N2 − 1

4N

( 1
r23̄

+ 1
r14̄

)
− αs

1
2N

( 1
r12

+ 1
r3̄4̄

)
.

(A.11)

B The Born-Oppenheimer approximation

In this appendix, we briefly review the Born-Oppenheimer approximation. A general exposi-
tion is beyond the scope of this paper and can be found in textbooks (see, for example [52]).
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We will discuss the main aspects of the method by describing an abelian toy example that
shares some of the features of the tetraquark system, namely, a hierarchy of masses and a
large charge. While some of the results found in this appendix carry over to the non-abelian
case, this is not true for others.

B.1 A large N analog of Hydrogen molecule ion

Consider the system of three electrically charged particles. Two of them have mass M
and unit charge while the last one has mass m and charge −N . We work under the
assumptions: M ≫ m and N ≫ 1. The particles interact via Coulombic interactions. The
Hamiltonian is then

H = P 2
1

2M + P 2
2

2M + p2
3

2m + α

|R⃗1 − R⃗2|
− αN

|r⃗3 − R⃗1|
− αN

|r⃗3 − R⃗2|
, (B.1)

where capital letters are used to denote the heavy particle variables. A convenient change of
coordinates allows us to decouple the center of mass motion. The Hamiltonian becomes

H = P 2
CM

2(2M +m) + P 2

M
+ p2

2µ + α

R
− αN

|r⃗ + 1
2R⃗|

− αN

|r⃗ − 1
2R⃗|

, (B.2)

with the reduced mass µ = 2Mm/(2M +m). The separation of scales M ≫ m suggests the
possibility of integrating out the fast modes p⃗, r⃗ and deriving an effective potential for the
slow degrees of freedom described by the variables P⃗ , R⃗. Let us follow [46] and write the
wavefunction of the full system as a superposition of states

Φ(r⃗, R⃗) =
∑

α

φα(R⃗)ψα(r⃗; R⃗). (B.3)

The functions {ψα} are the eigenstates of the light particle Hamiltonian that is[
p2

2µ − αN

|r⃗ + 1
2R⃗|

− αN

|r⃗ − 1
2R⃗|

]
ψα(r⃗; R⃗) = Eα(R⃗)ψα(r⃗; R⃗). (B.4)

They constitute a complete basis for the fast degrees of freedom. The Schrödinger equation
of the full system is then

∑
α

(
P 2

M
+ α

R
+ Eα(R)

)
φα(R⃗)ψα(r⃗; R⃗) = E

∑
α

φα(R⃗)ψα(r⃗; R⃗). (B.5)

Note that the electronic eigenstates are normalized according to∫
d3r ψe

β(r⃗; R⃗)∗ψα(r⃗; R⃗) = δαβ . (B.6)

We multiply eq. (B.4) with ψβ(r⃗; R⃗)∗ and integrate over r to find∫
d3r ψβ(r⃗; R⃗)∗

[
2P⃗φα(R⃗). P⃗

M
ψα(r⃗; R⃗) + φα(R⃗)P

2

M
ψα(r⃗; R⃗)

]

+
[
P 2

M
+ VN (R) + Eβ(R)

]
φβ(R) = Eφβ(R).

(B.7)
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The Born-Oppenheimer approximation consists in neglecting the terms in the first line with
respect to the first term in the second line, i.e. assuming∫

d3r ψβ(r⃗; R⃗)∗
[
2P⃗φα(R⃗) P⃗

M
ψα(r⃗; R⃗) + φα(R⃗)P

2

M
ψα(r⃗; R⃗)

]
≪ P 2

M
φα(R⃗). (B.8)

As we have Pφα(R⃗) ∼ PNφα(R⃗), where PN is the typical nucleon momentum, and we
generically expect Pψ(r⃗; R⃗) ∼ peψ(r⃗; R⃗) as well as P 2ψ(r⃗; R⃗) ∼ p2

eψ(r⃗; R⃗) with pe the typical
electron momentum,12 this is a good approximation as long as

pe ≪ PN , (B.9)

a condition that we can check a posteriori.
Thus, in the Born-Oppenheimer approximation, we are left with the reduced nuclear

problem with Hamiltonian

H = P 2

M
+ α

R
+ V (R), (B.10)

with the effective potential computed as the eigenvalue of the electronic ground state with
the nuclei treated as static sources. The large N limit allows to solve for ψα(r⃗; R⃗), and thus
also V (R) perturbatively.13 This comes from the fact that due to the large charge of the light
particle, the two heavy particles will self-consistently be localized at distances R0 much shorter
than the typical Bohr radius of the light particle a0. Assuming that this is indeed the case,
one can easily solve for the wavefunction of the light particle perturbatively and in the end
check for self-consistency. To leading order we treat the two heavy particles as being at the
same position. The solution for the light particle is then just a Hydrogen wavefunction around
a nucleus with charge 2, i.e. with Bohr radius a0 = 1/(2Nαm), and ground state energy

E0 = 2Nmα2 (B.11)

This energy is independent of R, while the leading R dependence is O(R2) and can be found
using the first order perturbation theory in terms of the following perturbation Hamiltonian

∆V ≡ 2Qα
r

− Qα

|r⃗ − R⃗/2|
− Qα

|r⃗ + R⃗/2|
, (B.12)

and one finds

∆E(R) = 1
3E0

R2

a2
0

+ O
(
E0
R3

a3
0

)
(B.13)

This acts as a BO potential for the heavy particles, and the reduced problem is[
−∇2

R

M
+ α

R
+ ∆E(R)

]
φ(R⃗) = Eφ(R⃗). (B.14)

12There are however situations in which Pψ(r⃗; R⃗) ≪ peψ(r⃗; R⃗), however typically one still has P 2ψ(r⃗; R⃗) ∼
p2

eψ(r⃗; R⃗). One such situation is exactly the example described in this appendix.
13Note that this is the difference with respect to the often discussed H+

2 , in which no similar expansion
parameter exists. There the electronic system is either solved numerically with the help of cylindrical symmetry,
or by making the ansatz of orbitals. In contrast, in the large N limit, we can find the analytic solution in
perturbation theory.
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The minimum of the potential is at R0 = a0
(

3
2N

)1/3
, thus for verifying our assumptions of

R0 ≪ a0 for N ≫ 1. On top of that, the condition for the validity of the BO approximation
can be checked explicitly and is found to be m/M ≪ 1. This is in contrast to the scaling in
the main text, where the BO approximation is only valid for Nm/M ≪ 1. The difference
stems from the fact that in the non-abelian case the perturbatively generated potential is
down by an additional factor of N , while here it is of leading order in the N counting.

C Analytic form of the Born-Oppenheimer potential

In section 3 we found an analytic expression for the BO potentials in the limit m4̄
m3̄

→ 0.
In this appendix, we provide the corrections to this expressions for small but nonzero m4̄

m3̄
.

Recall that the BO potentials can be written in terms of ∆(R) defined in eq. (3.15) as
VBO = ± 1

N ∆(R). The integral expression for ∆(R) is given by

∆(R)
E3̄

= 2
π2a5

3̄

(
m4̄
m3̄

)3 ∫
d3r3d

3r4 e
−(r13̄+r23̄)/a3̄e

−
m4̄
m3̄

(r14̄+r24̄)/a3̄

×
[ 1
r12

+ 1
r3̄4̄

− 1
2

( 1
r13̄

+ 1
r24̄

+ 1
r14̄

+ 1
r23̄

)]
.

(C.1)

All the terms have a simple analytic form except the following:

I34(R) = 2
π2a5

3̄

(
m4̄
m3̄

)3 ∫
d3r3d

3r4
1
r3̄4̄

e−(r13̄+r23̄)/a3̄e
−

m4̄
m3̄

(r14̄+r24̄)/a3̄ . (C.2)

The BO potential can thus be written as

∆(R)
E3̄

= I34(R) + 2e
−
(

1+
m4̄
m3̄

)
R
a3̄

[
a3̄
R

− 1
3

(
2 + 3m4̄

m3̄
+ 3

(
m4̄
m3̄

)2
)
R

a3̄

−m4̄
m3̄

(
m4̄
m3̄

+ 1
)(

R

a3̄

)2
− 5

9

(
m4̄
m3̄

)2 (R
a3̄

)3
]
.

(C.3)

I34(R) can be computed for m4̄/m3̄ ≪ 1 in a perturbative expansion in m4̄/m3̄. The leading-
order term is proportional to m4̄/m3̄. This term cancels out exactly with the term of the
same order found in eq. (C.3). The next correction to I34(R) is of order (m4̄/m3̄)3. Thus,
in the m4̄/m3̄ ≪ 1, the BO potential is found to be

∆(R)
E3̄

= 2e−
R
a3̄

(
a3̄
R

− 2
3
R

a3̄
− 1

2

(
m4̄
m3̄

)2 R

a3̄
+ 1

9

(
m4̄
m3̄

)2 (R
a3̄

)3
)

+ O
((

m4̄
m3̄

)3
)
. (C.4)

D Effects of the excited states

In this appendix we discuss the effects of the excited states by estimating their contribution
to the effective Hamiltonian governing the dynamics of the low energy part of the spectrum.
In section 4, we showed that considering only states constructed as suppositions of the ground
state mesons, ground state tetraquarks cannot form for the hierarchy M2 ≪ Nm3̄. We will
argue in this appendix that including the contribution of the excited states to the low energy
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dynamics also does not lead to formation of tetraquark ground states. For this argument, in
addition to the mass hierarchy M2 ≪ Nm, we assume that the modification of the spectrum
of the excited states due to the potential at subleading 1/N orders does not remove their
energy gap (from the ground state level of the leading Hamiltonian).

Using the eigenstates of the Hamiltonian H ′
0, we can write the Hilbert space as the direct

sum of a ground state sector and a sector of excited state Hilbert space, H = HGS ⊕Hexc,
and denote the respective projection operators as PGS and Pexc, such that

PGS + PES = I (D.1)

The Hamiltonian can be represented as

H
′ =

(
HGS Hmix
H†

mix Hexc

)
, (D.2)

where HGS = PGSH
′PGS and Hexc = PexcH

′Pexc are the projected Hamiltonian into the two
subspaces and the mixing is governed only by the terms of the potential subleading in 1/N ,

Hmix = 1
N

PGSV
(1)Pexc + O

(
1/N2

)
. (D.3)

According to the standard Green’s function approach (see for instance [53]) time evolution
in the HGS low energy subspace is governed by the effective Hamiltonian is then given by

Heff(E) = HGS + 1
N2 PGS V

(1) Pexc
1

E −Hexc + iε
Pexc V

(1) PGS (D.4)

The first term includes the leading Hamiltonian as well as the potential projected in the
subspace of ground state, the effects of which were shown to not lead to bound states for
M2 ≪ Nm3̄ in section 4. We now focus on the second term which gives the contribution
of the states above the gap to the effective Hamiltonian. For simplicity of the presentation,
we take m4̄ ∼ m3̄ and therefore E3̄ ∼ E4̄. The spectrum of the leading order part of Hexc,
is bounded from below by Eexc ≳ E3̄. We assume that this gap persists also after the 1/N
corrections are included. With this assumption, the second term above is negative definite
and its magnitude can be bounded by

V (1) PES
1

−E +HES
PES V

(1) ≲
V (1)PESV

(1)

E3̄
(D.5)

We can estimate the matrix elements of the right hand side of the equation above in the
basis |s, R⃗s, GS⟩ with s = A,B. This has vanishing matrix elements between two different
sectors A and B since it has two factors of the potential and the potential V (1) is purely
sector-off-diagonal. Using eq. (D.1), it can be split into two terms

V (1)PESV
(1) = V (1)V (1) − V (1)PGSV

(1) (D.6)

which we now study separately. We only quote the expressions for the matrix elements in
the A sector for which given the basis we have chosen, with each meson of the A sector
in a color-singlet state, the fall-off of the interaction at large distance is manifest. Similar
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results hold for the B sector, although the quick fall off of the interaction at large distance
is not manifest in the basis eq. (A.9)

The matrix elements of the first of eq. (D.6) term are

⟨A, R⃗′
A, GS|

(
V (1)

)2
|A, R⃗A, GS⟩ ≃ E2

3̄ F (RA/a3̄) δ3(R⃗A − R⃗
′
A) (D.7)

The approximation works in the regime defined by equation eq. (4.14), see also footnote 10.
The F (RA/a3̄) can be estimated to be

F (RA/a3̄) ∼

(a3̄/RA)2 RA ≲ a3̄,

(a3̄/RA)6 RA ≳ a3̄.
(D.8)

The small RA ≪ a3 is dominated by the contribution of the term proportional to 1/r12
in the potential, while the large RA ≫ a3 can be understood from eq. (4.4) where for
r13, r24 ≪ r12 the potential has a dipole-dipole interaction ∝ 1/r3

12. We now find the matrix
elements of the second term of eq. (D.6) by inserting a complete basis of states in the
ground state mesons sector

⟨A, R⃗′
A, GS|V (1)PGSV

(1)|A, R⃗A, GS⟩

=
∫
d3RB⟨A, R⃗

′
A, GS|V (1)|B, R⃗B, GS⟩⟨B, R⃗B, GS|V (1)|A, R⃗A, GS⟩

= δ3(R⃗A − R⃗
′
A) ∆(RA)2

(D.9)

where we used eq. (4.16). Note that ∆(RA)2 is 1/R2
A for RA ≪ a3̄ which is dominated by

the contribution of the term proportional to 1/r12 in the potential. This indeed cancels the
leading short distance ∝ 1/R2

A contribution of F (RA/a3̄). To see this more clearly, note
that the ground state mesons in the basis labelled by R⃗A are approximate eigenstates of the
∝ 1/r12 term in the potential and hence this term leaves a state in the ground state sector in
HGS so that the action of the projector PES gives a vanishing result. For the same reason,
there are no terms ∝ 1/RA in the full matrix element. Therefore, the effect of the second
term in eq. (D.4) is bounded by a potential which in the A sector is estimated as

E3̄
N2 RA ≲ a3̄,
E3̄
N2 (a3̄/RA)6 RA ≳ a3̄.

(D.10)

From the Bargmann-Schwinger condition, eq. (3.21), it is then obvious that these contribution
cannot lead to formation of the bound states as long as M2/m3̄ ≪ N2. As already stated
above, we only showed the matrix elements in the A sector. For the B sector, the short
distance behavior is reproduced identically following the same steps. But the long distance
∝ 1/R6 fall off is not manifest since in the basis we have chosen the mesons of the B sector
are color-singlets only at leading order in 1/N . However had we chosen a basis defined by
(Q1q̄4̄) and (Q2q̄3̄) pairs being both in the singlet or both in the adjoint color representations,
the fall of would be manifest in the effective description for the B sector mesons.

Data Availability Statement. This article has no associated data or the data will not
be deposited.
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