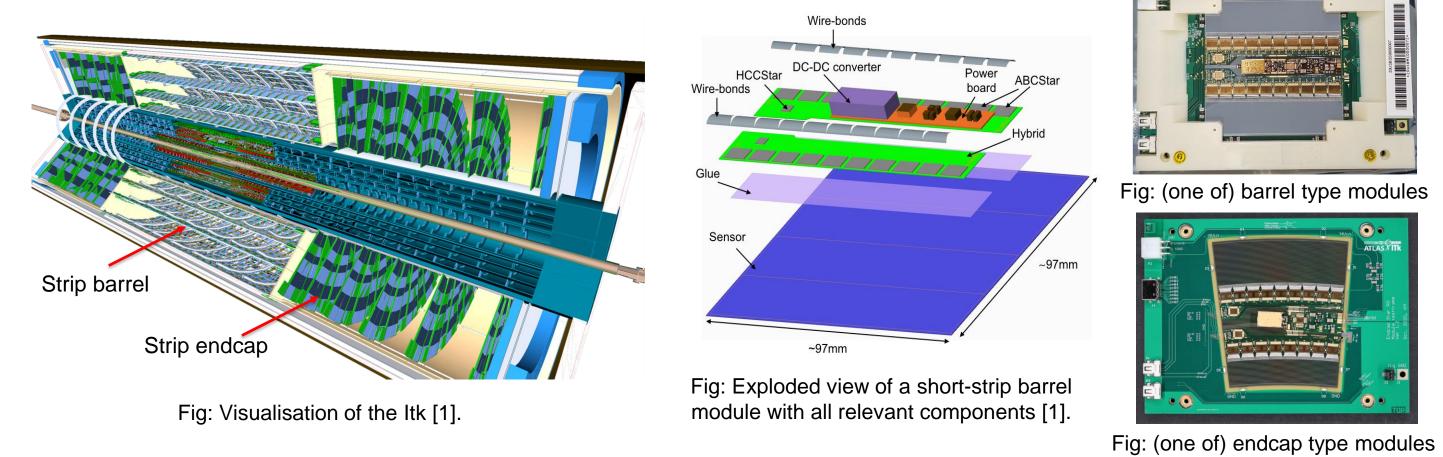


The ATLAS ITk Strip Module Pre-Production

JiaJian TEOH, on behalf of ATLAS ITk Strip Community

42nd International Conference on High Energy Physics (17-24 Jul 2024)

ICHEP 2024 | PRAGUE


UNIVERSITY OF TORONTO

Introduction

For the High-Luminosity phase of the Large Hadron Collider (HL-LHC), the current ATLAS Inner Detector will be replaced by an all-silicon new Inner Tracker (ITk), featuring a strip detector surrounding an inner pixel detector. A total of 19,000 barrel and endcap type modules are required to complete the strip detector.

Each module is built from a silicon strip sensor and between one and three flexes containing readout electronics, through a series of precision assembly and quality control steps. Assembly tools and quality control procedures are standardized across the project to ensure consistent results.

To prepare for the module production phase, 5% of the module production volume was assembled during the pre-production phase to test the entire assembly and quality control (QC) chain. This contribution presents an overview of the results from the ATLAS ITk strip tracker pre-production phase and highlights selected issues discovered during the process.

Site Qualification

- 1. An internal reviewing process based on a set of agreed-upon procedures.
- 2. Nearly 30 module assembly institutes worldwide. Each site is allowed to start production when reaching production readiness, i.e.
 - completion of pre-production
 - full site qualification and production readiness check

QC Programmes

- Motivated from past experience of large assemblies:
- Bonding issues/bonding reliability (e.g. SCT)
- Sensor bow (as seen in ATLAS07 prototype sensors)

Ex	ternal parts QC				
	Ensure third party manufactured parts are fit for purpose				
	-situ / post-assembly QC				
Ensure correctness of assembly and suitable for next step					

- 3. Site qualification is motivated by:
 - the need to streamline and to standardize QC procedures and thresholds for comparability and cross check
 - limited number of components available during pre-production
 - \rightarrow to ensure that all parts being built follow procedures
 - \rightarrow to ensure sufficient number of parts available to develop procedures
 - \rightarrow to ensure possibility of partial site qualification

Module In-situ / Post-assembly QC

- 1. Module metrology: measure hybrid and powerboard position, glue height, height of powerboard components \rightarrow different machines and procedures are
 - validated by cross-checks and module exchanges between institutes
- 2. Module glue weight: weigh parts before and after gluing and calculate glue weight from the difference

 \rightarrow data showed glue dispensing is well under control, may be descoped as it requires many risky handling

Table: Module metrology specifications. **Specification** Dimension

	Old	New	10
X alignment of hybrid and powerboard, Δx	±100 µm	±250 μm	8
Y alignment of hybrid and powerboard, Δy	±300 μm	±250 μm	6 5
Average glue heights under ASIC and powerboard, <i>h</i>	120 ± 40 <i>µ</i> m	70 to 170 μ m: Pass 40 to 70 μ m: Pass with Problems <40 μ m or > 170 μ m :Failure	
Shield box height	< 5710 μ m over sensor surface		
Matrology foodbook and furthe	r atudiaa lad	to relevation of accomply	

Metrology feedback and further studies led to relaxation of assem tolerances allow for higher throughput/yields.

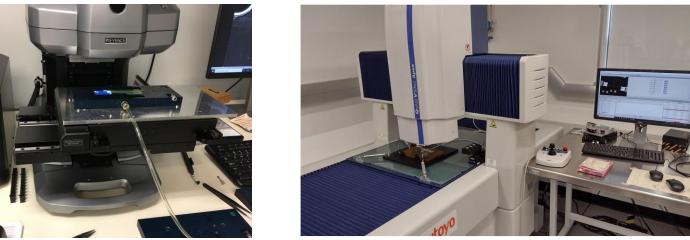
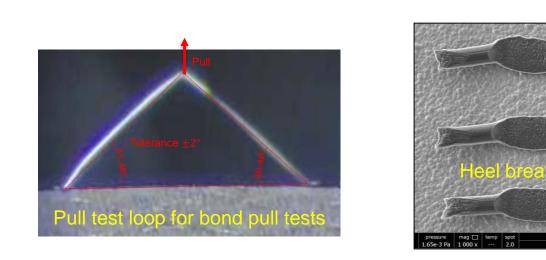


Fig: Metrology is performed using specialized optical (z-focusing, edge finding, pattern recognition) or laser ranging measurement system (e.g Keyence, CMM)

	Mean ASIC glue height		Hybrid x deviations
	Pass w/ probs 10 10 10 10 10 10 10 10 10 10		DIS 12 8 10 8 12 10 8 12 10 8 12 10 8 12 10 8 12 10 12 10 12 10 12 10 12 10 10 10 10 10 10 10 10 10 10
	Mean Powerboard glue height		
ms	Pass w/ probs Pass w/ probs	Out of spec cases w carefully studies to pinpoint the cause, e mismatch of modifier old tools + new powerboards is less able to control the gl heights of warped	e.g: d Height map (250 m color
hbly	Fig: Example of	flexes. f endcap module m	


- Concerns from other activities that involves modules (e.g. clearance within local support/global structures)
- Other requirements (no hybrids overhanging the sensor edge, proper glue coverage for support and good thermal contact)

Performance QC Ensure parts performance is within specification and fit for purpose within ATLAS detector. **Reception QC** Ensure parts are not damaged during shipping.

3. Module wire bonding:

→ periodic wire bond pull test to ensure optimal bond weld quality to various bonding surfaces, cross check between different building sites.

→ record repaired and missing bonds for quantification of "bad channels" and identification of any systematic issues.

- Wirebonding requirements:
- \geq 100 wires per sample
- \geq 8g mean pull strength with <10% peel offs
- $\sigma \leq 1.5g$
- \geq 5g for single wire pull strength

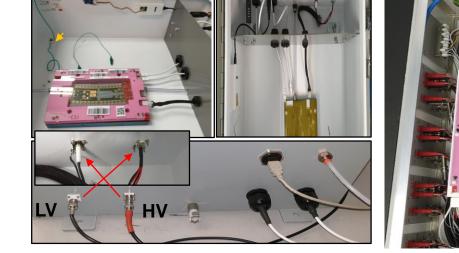
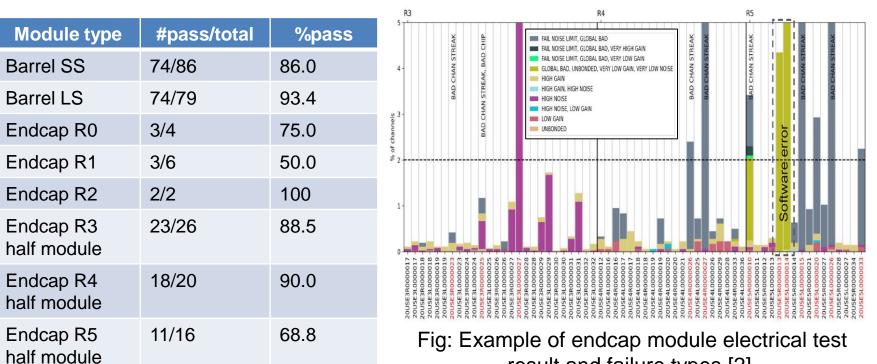
Fig: Pull test results with half moons sensor sample. 50 samples from 15 sites (barrel and endcap) [2].

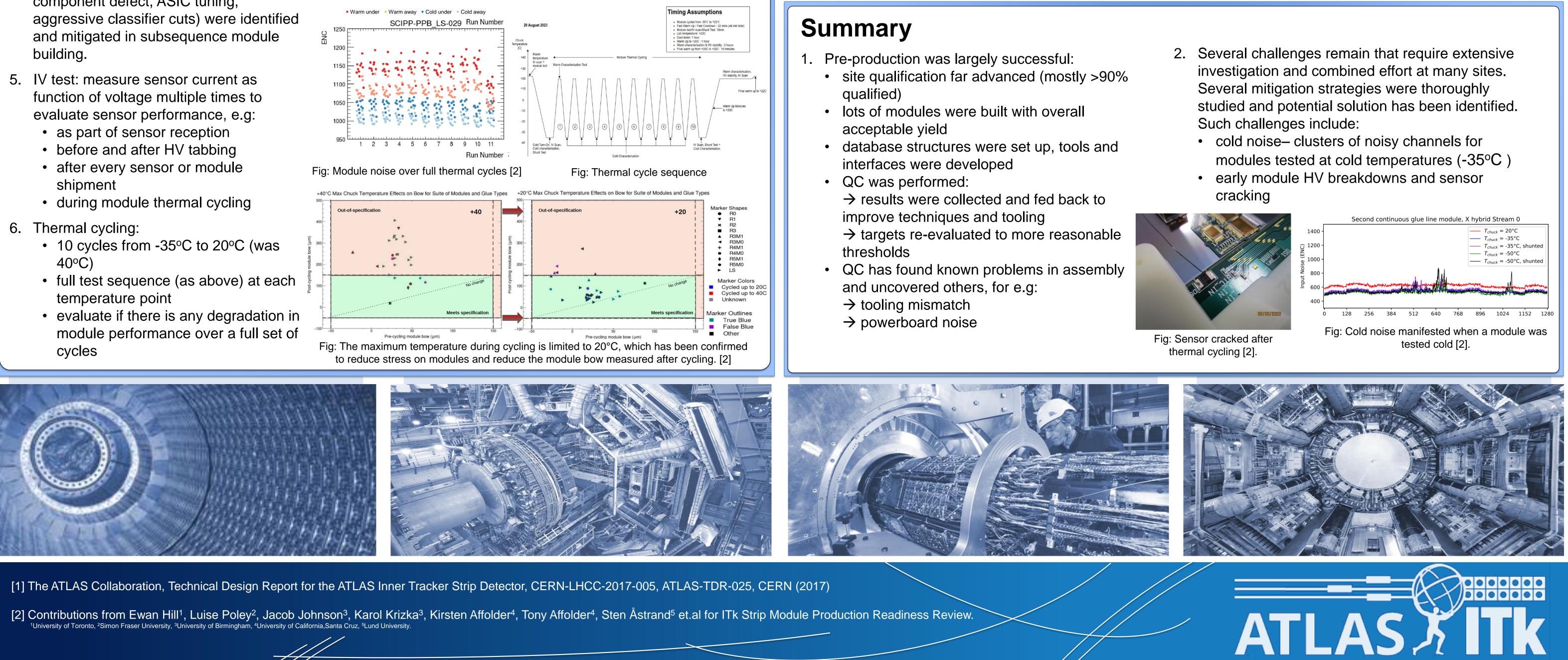
4. Visual Inspection: after each assembly step to ensure objects were not damaged or no obvious issues occurred (e.g. glue seepage onto bond pads)

Performance QC

- Electrical tests is performed in light-tight enclosure fed with dry air.
- in a single module test setup at room temperature as quick confirmation and for finding number of bad channels
- in a multi-module thermal cycling box as a stress test.
- Test evaluates the threshold, gain, input 2. noise, output noise and noise occupancy of each strip/ channels.
- 3. A module fails if:
 - \geq 1 bad chips
 - >2% channels fail a set of channel requirements
 - streak of >8 consecutive ad channels
- 4. Causes of failure (trapped charge, component defect, ASIC tuning, aggressive classifier cuts) were identified and mitigated in subsequence module building.
- function of voltage multiple times to evaluate sensor performance, e.g.

 - shipment


Fig: Example of an single

module test box.

Fig: Four endcap modules in thermal cycling box.

result and failure types [2]

Database

- 1. It is aims to record the entirety of ITk production.
 - trace component relations even for large assembly components, e.g.: when an ASIC is glued onto a hybrid, the ASIC becomes a child of the hybrid
 - to track components, components are associated to an institute where it is built, so does its current location: \rightarrow physical shipment must be accompanied by a database shipment record

 \rightarrow such component tracking is especially necessary for restricted items.

- to reflect their QC status/stage
- every test result and its properties are also recorded in the database, useful for further studies
- 2. Stored information can be retrieved and generate yield report, track module throughput and overall project status and etc.

ick and Place Mach 20USEGL000006 ue Svrina **Component Details** ICC bonds cross ow details of selected Component of the Inner Trac UT-R0H0-008 /brid Name ig for ASIC assemb STAR Hybrid Assembly - R0H0 Assembly tage History 9/06/2024 13:3 Basic Information @ TLAS Serial Nun /03/2024 14.9 Alternative Id Parent List Component Ty Type R0H0 Assembl 🛎 20/03/2024 🛛 👤 Laurelle Maria Veloo Current Stage BURN IN **III** University of Toronto U Current Locatio Child Component List 🕼 **TRIUMF** TRIUMF STAR Hybrid Flex - R0H0 2 Shipment Destin 🖞 18/03/2024 🛛 💂 Laurelle Maria Velo **III** University of Toronto Home Institut 20/03/2024 👤 Jia Jian Teoh 3 properti Test Run List 🝘 Test date 15/03/2024 12: 21/03/2024 12:30 18/03/2024 15:11 18/03/2024 15: FAILED Noise Occupancy PPA 729-16 27/03/2024 07:5 12/04/2024 14:15 PASSED P 27/03/2024 07:4 12/04/2024 14:15

Fig: Example of component record in the database.