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Abstract.

The development of quantum computers needs reliable quantum hardware and tailored
software for controlling electronics specific to various quantum platforms. Middleware is
a type of computer software program that aims to provide standardized software tools
across the entire pipeline, from high-level execution of quantum computing algorithms
to low-level driver instructions tailored to specific experimental setups, including in-
struments. This paper presents updates to Qibolab, a software library that leverages
Qibo’s capabilities to execute quantum algorithms on self-hosted quantum hardware plat-
forms. Qibolab offers an application programming interface (API) for instrument control
through arbitrary pulses and driver operations including sweepers. This paper offers an
overview of the new features implemented in Qibolab since Ref. [1], including the rede-
fined boundaries between platform and channel classes, the integration of an emulator for
simulating quantum hardware behaviour, and it shows updated execution times bench-
marks for superconducting single qubit calibration routines.

1 Introduction
Nowadays, quantum computing research and development needs both reliable quantum hardware and
classical hardware. The latter is what is usually called the control electronics and takes care of synthesizing
the simultaneous synchronized control waveforms, specific to each different quantum platform technology,
required to operate quantum hardware. The objective of middleware is to provide standardized software
tools for the whole pipeline, e.g., from the high-level execution of quantum computing algorithms based
on the quantum circuit paradigm, to operate the low-level control instrument instructions tailored to a
specific experimental setup.

The commitment to build a software with a platform-agnostic interface helps the transition from
theory to experiments by reducing the effort and expertise required to operate a quantum platform and
develop novel quantum algorithms. Additionally, it ensures reusability and this allows the creation of
a community of quantum laboratories that can share experiments and data significantly reducing the
burden coming from the different setups.

Our commitment to open-source and community-driven software started with Qibo [2], a framework
for gate-based and adiabatic quantum computing with hardware acceleration.

ar
X

iv
:2

40
7.

21
73

7v
2 

 [
qu

an
t-

ph
] 

 1
2 

A
ug

 2
02

4



In this paper, we present updates to Qibolab [1], a software library that leverages Qibo ’s potential
to execute quantum algorithms on self-hosted quantum hardware platforms.

Qibolab takes care of all the necessary operations to prepare the execution of quantum circuits on a
fully characterized device.

Qibolab is running on a host computer, which communicates, typically via a network protocol, with
the control electronics used for generation of synchronized signal sequences. These electronics are con-
nected to the quantum processing unit (QPU) via different channels.

In the case of operating a superconducting quantum device: the readout and feedback channels in a
closed loop for measuring the qubit, the drive channels for applying gates and, for flux-tunable qubits,
the flux channels for tuning their frequency. Moreover, some architectures there may have coupler qubits
between some computational qubits that need flux pulses to control computational qubit interactions.

The library offers a dedicated application programming interface (API) not only for quantum circuit
design, but also qubit calibration, instrument control through arbitrary pulses, driver operations as
sweepers.

Thanks to Qibolab, we can operate the control electronics required to fully calibrate a quantum device
performing specific experiments. In order to make this process as smooth as possible, we have also devel-
oped on top of Qibolab the Qibocal [3] library collecting some calibration protocols for superconducting
qubits with a user-friendly interface.

Successful implementation of the whole Qibo ecosystem will provide the research community with a
prototype of an extensible, quantum hardware-agnostic, open-source hybrid quantum operating system,
fully tested and benchmarked on superconducting platforms.

In the following sections, we first give an overview of the project in Sec. 2, highlighting the differences
with the old software version described in Ref. [1], then we provide the updated time benchmarks in
Sec. 3, at the end we provide some details about the emulator in Sec. 4.

2 Project Overview
Qibolab provides four main interface objects: the Pulse object, which is used to define arbitrary pulses
played on the quantum device, a series of pulses can be collected in PulseSequence and executed on a
specific QPU through the Channels.

Pulses constitute the basic building blocks of programs executed on quantum hardware. They repre-
sent a physical pulse, i.e., they are used to read the state of a qubit, drive it to change its state, or flux
bias a qubit to change its resonant frequency to probe two-qubit interactions.

Qibolab provides pulse objects for each one of these operations as its Pulse object holds the required
information about amplitude, duration and phase of the pulse for the generation of physical pulses. Dif-
ferently from the previous version, the Pulse object now further facilitates the integration with different
control electronics.

Abstract pulse sequences defined using the Pulse API can be deployed on hardware using a Platform.
Platform is the Qibolab core object and it orchestrates the different instruments for qubit control. Each
Platform instance corresponds to a specific quantum device controlled by a specific set of instruments. It
allows users to execute a single sequence, a batch of sequences, or perform a sweep, in which one or more
pulse parameters are updated in real-time, within the control instrument without external communica-
tion. This new Qibolab version allows the Platform to execute all of them within a single instrument
connection step, increasing the uptime of the QPU.

The Platform object also contains single qubit, two qubit interactions and coupler qubits informa-
tion and eventually any other quantum components like parametric amplifiers that may be present in
the experimental setup. Since, computational qubits and coupling qubits are similar objects from the
instrument point of view, as elements you send pulses to, so in the software level they can be defined by
the same class we called QuantumElement.

To define two qubit interactions, QubitPair objects contain information about coupled qubits pairs
in a given device for a given configuration and their corresponding two-qubit native gates.

Finally, Channel represents the connection between the quantum device inputs and outputs to the
proper instrument port.This connection is essential for the instrument our interface to target the desired
QuantumElement. It also provides a QuantumElement-centric interface instrument parameter setting,
which is useful in calibration routines.

Channels are also responsible of signal generation. Differently from the previous Qibolab version,
now the readout is decoupled into probe and acquisition channels, thus giving more freedom to the end
user to decide which part of the readout pulse to acquire or extend the acquisition beyond the time
interval defined by the readout pulse.



100 101 102

Experiment duration [s]

Resonator spectroscopy
(20 points)

Resonator spectroscopy
(100 points)

Qubit spectroscopy
(300 points)

Rabi amplitude
(75 points)

Ramsey detuned
(30 points)

T1 experiment
(40 points)

T2 experiment
(32 points)

Single shot classification

Standard RB

Calibration routines benchmarks
Ideal
ZI
RFSoC
QM
QBlox

1 10 100
Experiment duration
(ratio with ideal time)

Figure 1: Execution time of different qubit calibration routines on various electronics as in Ref. [1]. On
the left side, we show the absolute times in seconds for each experiment. The ideal time (black bar) shows
the minimum time the qubit needs to be affected in each experiment. On the right side, we calculate the
ratio between the actual execution time and the ideal time. Real-time sweepers are used, if supported by
the control device, in all cases except the Ramsey detuned and Standard RB experiments.

With the new refactoring, the boundaries between the Platform and Channel classes are redefined:
there is no more distinction between readout and drive pulses. Since, they are just defined by the physical
channel where the pulses are sent, the frequency is now a Channel property, so this class is closer to a
logical definition of channel.

Another significant change is Transpiler which got moved to Qibo. This choice is driven by a
rethinking of the respective roles of the Qibo ecosystem libraries and transparency. The transpilation
procedure consists of processing the sequence of gates required by an algorithm and integrate SWAP
gates, if necessary, so that the connectivity of the chip is respected. In practice, given the topology of the
device, this is a task completely solvable within Qibo itself. Once a connectivity-compatible sequence of
gates is defined, Qibolab provides a compiler, that is, the translation of abstract gates into native gates,
and thus into pulses.

3 Cross-platform benchmark
In this section, we show the updated benchmarks already presented in the Qibolab paper. They are
related to the execution times of a set of calibration experiments performed on a single qubit by different
control electronics (see Tab.1) currently supported by Qibolab out of the box.

In contrast to the previous benchmark version, Qibolab side, we have implemented the possibility to
unroll a list of sequences to a single pulse sequence that contains multiple measurements. This approach
achieves much faster execution compared to executing the sequences one by one in a software loop. On the
side of the control electronics, we have updated the Zurich Instrument software to LabOneQ 2.16.0 [4].

The experiments chosen for this benchmark represent the minimal set of routines required for super-
conducting single qubit calibration.

They also offer a view of the different execution modes supported by Qibolab: in particular the Single
shot classification experiment executes fixed pulses sequences, while the Spectroscopies perform different
sweeps over pulse parameters.

All the results are summarized in Fig. 1, for each calibration protocol we provide also the theoretical
execution time Tideal, defined as the total duration of the pulse sequences executed during the acquisition,



Device Firmware Software
Qblox 0.4.0 qblox-instruments 0.9.0 [5]
QM QOP213 qm-qua 1.1.1 [6]
Zurich Latest (November 2023) LabOneQ 2.16.0 [4]
RFSoCs Qick 0.2.135 [7] Qibosoq 0.0.3 [8]
Erasynth++ - -
R&S SGS100A - QCoDeS 0.37.0 [9]

Table 1: Outline of the devices and firmware/software version supported during the benchmark.

whose formula [1] is

Tideal = nshots

∑
i

(Tsequence,i + Trelaxation). (1)

where Tsequence,i is the duration of the whole pulse sequence in the i-th point of the sweep, Trelaxation the
time we wait for the qubit to relax to its ground state between experiments, nshots the number of shots
in each experiment and the sum runs over all points in the sweep. The ideal time denotes how long the
qubit is used during an experiment and provides the baseline for our benchmark.

As already pointed out in Ref. [1], the comparison between the ideal and real execution times show
that the first one is always less than the second one, because of different overheads, indeed we can express
the real execution time Treal as

Treal = Tqibo + Tinst +Tideal, (2)

where Tqibo is the overhead coming from Qibolab backend and Tinst the instruments one. We found
that the overhead coming from the Qibolab, Tqibo, is negligible compared to that of the control instru-
ments, i.e.,

Treal ≃ Tinst +Tideal. (3)

4 Emulator
The new Qibolab version supports emulators to simulate quantum hardware. It is a crucial tool especially
for Qibocal, as it could be used both for testing the software itself (especially when access to the real
device is limited or unavailable) and serve as a digital twin to a specific quantum hardware to assist with a
range of functionalities including predicting output of calibration experiments, coarse-grain calibrations,
pulse-shaping and test-bedding, and more. For the latter, the emulator requires the device parameters
that characterize the quantum hardware of interest as inputs to build an accurate model of the hardware.

To integrate the emulator into the Qibolab ecosystem, we deployed an ad-hoc controller class called
PulseSimulator. The PulseSimulator is exclusively called by the emulator and it serves primarily as a
middleman to translate and communicate objects between Qibolab and the selected quantum dynamics
simulation library (hereafter referred to as the simulation engine) used to numerically solve the under-
lying quantum dynamics of the device model in the presence of time-dependent control pulse sequences.
Specifically, it initializes the simulation engine with a device model specified by the device parameters and
simulation settings in the runcard, extracts modulated signal waveforms from Qibolab pulse sequences
and sends them to the simulation engine which in turn performs the dynamics simulation, and at the end
of the simulation, translates the results generated from the simulation engine back to Qibolab (or Qibo)
result objects.

From the user’s point of view therefore, the emulator platform behaves like a quantum hardware
platform and both are equivalent in terms of attributes and functions. Consequently, it requires a
platform folder and it is initialized as any other device platform. In addition, the emulator returns
simulated results – a time series of statevectors (or density matrices when including dissipation) of the
underlying quantum system that was generated sequentially by the simulation engine as it solves the
dynamics described by the Lindblad master equation,

ρ̇(t) = −i[H(t), ρ(t)] +
∑
k

γk
2

[
2Akρ(t)A

†
k − ρ(t)A†

kAk −A†
kAkρ(t)

]
. (4)



In the above, ρ(t) is the density matrix of the system’s quantum state at time t, H(t) is its time-dependent
Hamiltonian, and Ak are the operators through which the environment couples to the system with rate γk.
As Qibolab currently only supports superconducting-qubits-based hardware, the device model used by
the emulator is based on N capacitively coupled transmon qubits modelled as Duffing oscillators [10, 11]
with number of energy levels predefined by the user in the PulseSimulator settings:

H(t) = Hsys +Hdrive(t), (5)

Hsys =

N∑
i=1

(
ωib

†
i bi +

αi

2
b†i bi(b

†
i bi − 1)

)
+

∑
i ̸=j

gij(b
†
i bj + b†i bj), (6)

Hdrive(t) =

N∑
i=1

[ΩX,i(t) cos(ωdrive,it) + ΩY,i(t) sin(ωdrive,it)] (b
†
i + bi). (7)

In the above, ωi, ωdrive,i and αi denote the resonant frequency, drive frequency and anharmonicity respec-

tively for transmon i, bi(b
†
i ) its annihilation(creation) operator, and ΩX,i(t),ΩY,i(t) the drive amplitudes

on its quadratures, while gij denotes the coupling strength between transmon i and j. Decoherence is
incorporated using the Bloch-Redfield model [10], whereby each transmon is characterized by its longi-
tudinal and transverse relaxation times Ti,1 and Ti,2 respectively,

Ai,1 =
1

2
(σi,X + iσi,Y ), Ai,2 = σi,Z , γi,1(2) =

2π

Ti,1(2)
, (8)

with σi,µ=X,Y,Z the Pauli matrices corresponding to transmon i. As an example, we show in Fig. 2
the state overlap between the transmon qubit, modelled as a three-level system, with each of its energy
modes as it interacts with the pulse for the X gate followed by the Hadamard gate. This can be easily
extended to include other quantum computing technologies when they are available on Qibolab. The
first supported simulation engine is based on QuTiP [12], with plans to incorporate JAX [13] support for
GPU acceleration, as well as tensor-network based quantum dynamics simulation libraries to speed up
the simulation of larger system sizes with a lower memory footprint but with a small accuracy cost.
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Figure 2: State overlap between the simulated qubit modelled as a three-level system with each of its
energy modes as it evolves under a control pulse sequence for an X gate followed by a Hadamard (H)
gate.

For the initial release, resonators are not included in the simulation model and therefore the only
acquisition modes supported are the discrimination and integration, where the latter is currently imple-
mented as a projection onto the in-phase pulse component. Despite this limitation, the available emulator
can already execute most Qibocal protocols to simulate calibration and device characterization. This



part of the library is still a work in progress and we plan to expand it with new features. Increasing the
complexity of the simulated quantum system with the inclusion of flux tunable qubits, resonators and
couplers is part of our roadmap.

5 Conclusions
In this proceedings, we have presented significant updates to Qibolab, a software library designed to
harness the full potential of Qibo for executing quantum algorithms on self-hosted quantum hardware
platforms. The enhancements introduced in Qibolab include a more platform-agnostic approach to pulse
definitions, streamlined orchestration of quantum hardware control through the Platform object, and
the integration of an emulator for simulating quantum hardware behaviour.

Our work goal is a platform-agnostic interface to facilitate the transition from theoretical quantum
computing models to practical experiments. This approach not only reduces the expertise required to
operate diverse quantum platforms but it also ensures tools reusability as well as experiment and data
sharing across a community of quantum laboratories. This collaborative environment significantly lower
the barriers associated with different experimental setups.

Benchmark results demonstrate that Qibolab improvements lead to more efficient execution times
for qubit calibration routines, highlighting the library’s capability to optimize the performance of various
quantum control electronics. The refined boundaries between the Platform and Channel classes and
the relocation of the Transpiler to Qibo further streamline the software architecture, ensuring a clearer
separation of roles and greater transparency.

The addition of the emulator component represents a crucial tool for both software testing and pre-
dictive analysis of calibration experiments. While currently, it is still a work in progress, the emulator
sets the stage for future expansions, including more complex quantum systems and advanced acquisition
modes.

In conclusion, the advancements in Qibolab not only enhance its functionality and efficiency but also
contribute to the broader goal of creating an extensible, quantum hardware-agnostic, open-source hybrid
quantum operating system. This system, fully tested and benchmarked on superconducting platforms,
offers a robust foundation for ongoing research and development in the field of quantum computing. By
fostering a collaborative community and providing powerful, flexible tools, Qibolab and Qibo collectively
advance the frontier of quantum technology, supporting both current and future innovations in quantum
research and applications.
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