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Abstract We extend the existing leading (LO), next-to-
leading (NLO), and next-to-next-to-leading order (NNLO)
NNPDF4.0 sets of parton distribution functions (PDFs) to
approximate next-to-next-to-next-to-leading order (aN3LO).
We construct an approximation to the N3LO splitting func-
tions that includes all available partial information from
both fixed-order computations and from small and large x
resummation, and estimate the uncertainty on this approxi-
mation by varying the set of basis functions used to construct
the approximation. We include known N3LO corrections to
deep-inelastic scattering structure functions and extend the
FONLL general-mass scheme to O (

α3
s

)
accuracy. We deter-

mine a set of aN3LO PDFs by accounting both for the uncer-
tainty on splitting functions due to the incomplete knowledge
of N3LO terms, and to the uncertainty related to missing
higher corrections (MHOU), estimated by scale variation,
through a theory covariance matrix formalism. We assess
the perturbative stability of the resulting PDFs, we study the
impact of MHOUs on them, and we compare our results to
the aN3LO PDFs from the MSHT group. We examine the
phenomenological impact of aN3LO corrections on parton
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luminosities at the LHC, and give a first assessment of the
impact of aN3LO PDFs on the Higgs and Drell–Yan total pro-
duction cross-sections. We find that the aN3LO NNPDF4.0
PDFs are consistent within uncertainties with their NNLO
counterparts, that they improve the description of the global
dataset and the perturbative convergence of Higgs and Drell–
Yan cross-sections, and that MHOUs on PDFs decrease sub-
stantially with the increase of perturbative order.
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1 Introduction

Calculations of hard-scattering cross-sections at fourth per-
turbative order in the strong coupling, i.e. at next-to-next-
to-next-to-leading order (N3LO), have been available for a
long time for massless deep-inelastic scattering (DIS) [1–4],
and have more recently become available for a rapidly grow-
ing set of hadron collider processes. These include inclusive
Higgs production in gluon-fusion [5,6], bottom-fusion [7],
in association with vector bosons [8], and in vector-boson-
fusion [9], Higgs pair production [10], inclusive Drell–Yan
production [11,12], differential Higgs production [13–17],
and differential Drell–Yan distributions [18,19], see [20] for
an overview.

In order to obtain predictions for hadronic observables
with this accuracy, these partonic cross-sections must be
combined with parton distribution functions (PDFs) deter-
mined at the same perturbative order. These, in turn, must be
determined by comparing to experimental data theory pre-
dictions computed at the same accuracy. The main bottleneck
in carrying out this programme is the lack of exact expres-
sions for the N3LO splitting functions that govern the scale
dependence of the PDFs: for these only partial information is
available [21–31]. This information includes a set of integer
N -Mellin moments, terms proportional to nkf with k ≥ 1,
and the large- and small-x limits. By combining these partial
results it is possible to attempt an approximate determination
of the N3LO splitting functions [30,32], as was successfully
done in the past at NNLO [33].

At present a global PDF determination at N3LO must con-
sequently be based on incomplete information: the approxi-
mate knowledge of splitting functions, and full knowledge of
partonic cross-sections only for a subset of processes. A first
attempt towards achieving this was recently made in Ref.
[32], where the missing theoretical information on N3LO

calculations was parametrized in terms of a set of nuisance
parameters, which were determined together with the PDFs
from a fit to experimental data.

Here we adopt a somewhat different strategy. Namely, we
use a theory covariance matrix formalism in order to account
for the missing perturbative information. It was shown in
Ref. [34] that nuclear uncertainties can be included through
a theory covariance matrix, and it was further shown in Refs.
[35,36] how such a theory covariance matrix can be con-
structed to account for missing higher-order uncertainties
(MHOUs), estimated through renormalization and factor-
ization scale variation. Here we will use the same formal-
ism in order to also construct a theory covariance matrix
for incomplete higher-order uncertainties (IHOUs), namely,
those related to incomplete knowledge of the N3LO theory,
specifically for the splitting functions and for the massive
DIS coefficient functions. Equipped with such theory covari-
ance matrices, we can perform a determination of PDFs at
“approximate N3LO” (hereafter denoted aN3LO), in which
the theory covariance matrix accounts both for incomplete
knowledge of N3LO splitting functions and massive coef-
ficient functions (IHOUs), and for missing N3LO correc-
tions to the partonic cross-sections for hadronic processes
(MHOUs).

We will thus present the aN3LO NNPDF4.0 PDF determi-
nation, to be added to the existing LO, NLO and NNLO sets
[37], as well as the more recent NNPDF4.0 MHOU PDFs [38]
that also include MHOUs in the PDF uncertainty. Besides
using a different methodology to the MSHT20 study [32],
here we are also able to include more recent exact results
[28–31] that stabilize the N3LO splitting function parametri-
sation. Our construction is implemented in the open-source
NNPDF framework [39]. Specifically, our aN3LO evolution
is implemented in EKO [40] and the N3LO DIS coefficient
functions, including the FONLL general-mass scheme, in
YADISM [41]. With PDFs determined from the same global
dataset and using the same methodology at four consecu-
tive perturbative orders it is now possible to assess carefully
perturbative stability and provide a reliable uncertainty esti-
mation.

The outline of this paper is as follows. In Sect. 2 we
construct an approximation to the N3LO splitting functions
based on all known exact results and limits. We compare it
with the MSHT approximation [32] as well as with the more
recent approximation of Refs. [28–30]. In Sect. 3 we discuss
available and approximate N3LO corrections to hard cross-
sections: specifically, DIS coefficient functions, including a
generalization to this order of the FONLL [42–44] method
for the inclusion of heavy quark mass effects, and the Drell–
Yan cross-section. In Sect. 4 we present the main results of
this work, namely the aN3LO NNPDF4.0 PDF set, based on
the results of Sects. 2 and 3. Perturbative convergence before
and after the inclusion of MHOUs is discussed in detail, and
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results are compared to those of the MSHT group [32]. A first
assessment of the impact of aN3LO PDFs on Drell–Yan and
Higgs production is presented in Sect. 5. Finally, a summary
and outlook on future developments are presented in Sect. 6.
Expressions for the anomalous dimensions parametrized in
Sects. 2.3, 2.4 are given in Appendix A.

2 Approximate N3LO evolution

We proceed to the construction and implementation of
aN3LO evolution. We first describe our strategy to approxi-
mate the N3LO evolution equations, the way this is used to
construct aN3LO anomalous dimensions and splitting func-
tions, and to estimate the uncertainty in the approximation
and its impact on theory predictions. We then use this strat-
egy to construct an approximation in the nonsinglet sector,
where accurate results have been available for a while [22],
and benchmark it against these results. We then present our
construction of aN3LO singlet splitting functions, examine
our results, their uncertainties and their perturbative behavior,
and also how they relate to NLL small-x resummation. We
next describe our implementation of aN3LO evolution and
study the impact of aN3LO on the perturbative evolution of
PDFs. Finally, we compare our aN3LO singlet splitting func-
tions to those of the MSHT group and to the recent results of
[28–30].

2.1 Construction of the approximation

We write the QCD evolution equations as

μ2 ∂ fi (x, μ2)

∂μ2 =
1∫

x

dz

z
Pi j (x/z, as(μ

2)) f j (z, μ
2), (2.1)

where fi (x, μ2) is a vector of PDFs and, with n f active quark
flavors, the

(
2n f + 1

)× (
2n f + 1

)
splitting function matrix

Pi j (x, as(μ2)) is expanded perturbatively as

Pi j (x, as(μ
2)) = as P

(0)
i j (x) + a2

s P
(1)
i j (x) + a3

s P
(2)
i j (x)

+a4
s P

(3)
i j (x) + O

(
a5
s

)
. (2.2)

in powers of the strong coupling as(μ2) = αs(μ
2)/4π .

Defining Mellin space PDFs fi (N , μ2) (denoted in a
slight abuse of notation by the same symbol as the x-space
PDFs), and anomalous dimensions γi j (N , as(μ2)) as minus
the Mellin transforms of splitting functions,

fi (N , μ2) = M[ fi (x, μ2)](N )

=
1∫

0

dx xN−1 fi (x, μ
2) (2.3)

γi j (N , as(μ
2)) = −M[Pi j (x, as(μ2))](N )

= −
1∫

0

dx xN−1Pi j (x, as(μ
2)) (2.4)

the evolution equations become

μ2 ∂ fi (N , μ2)

∂μ2 = −γi j (N , as(μ
2)) f j (N , μ2), (2.5)

where the perturbative expansion of the anomalous dimen-
sions is

γi j (N , as(μ
2)) = asγ

(0)
i j (N ) + a2

s γ
(1)
i j (N ) + a3

s γ
(2)
i j (N )

+a4
s γ

(3)
i j (N ) + O

(
a5
s

)
. (2.6)

The
(
2n f + 1

) × (
2n f + 1

)
matrix of anomalous dimen-

sions has seven independent entries (see e.g. [45]), driving
the evolution of various PDF combinations as follows:

• All nonsinglet combinations

q±
i j = q±

i − q̄±
j , (2.7)

q±
i = qi ± q̄i (2.8)

satisfy decoupled evolution equations with the same two
anomalous dimension γns,±; note that the plus and minus
variants of γns,± start differing from each other already
at NLO.

• The total valence combination

V =
n f∑

i=1

q−
i (2.9)

satisfies a decoupled evolution equation with an anoma-
lous dimension

γns,v = γns,s + γns,− ; (2.10)

note that the flavor-independent “sea” contribution γns,s

starts being nonzero only at NNLO.
• The singlet combination

� =
n f∑

i=1

q+
i (2.11)

mixes with the gluon

μ2 ∂

∂μ2

(
�(N , μ2)

g(N , μ2)

)

= −
(

γqq(N , as(μ2)) γqg(N , as(μ2))

γgq(N , as(μ2)) γgg(N , as(μ2))

)

×
(

�(N , μ2)

g(N , μ2)

)
. (2.12)
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The quark-quark entry of the anomalous dimension
matrix can be further decomposed into nonsinglet and
pure singlet contributions according to

γqq = γns,+ + γqq,ps, (2.13)

where the pure singlet contribution γqq,ps starts at NLO.

There are thus seven independent contributions: three in
the nonsinglet sector, γns,± and γns,s, and four in the singlet
sector, γqq,ps, γqg , γgq , and γgg . In turn, each of these anoma-
lous dimensions can be expanded according to Eq. (2.6). Our
goal is to determine an approximate expression for the cor-
responding seven γ

(3)
i j (N ) N3LO terms.

The information that can be exploited in order to achieve
this goal comes from three different sources: (1) full ana-
lytic knowledge of contributions to the anomalous dimen-
sions proportional to the highest powers of the number of
flavors n f ; (2) large-x and small-x resummations provide all-
order information on terms that are logarithmically enhanced
by powers of ln(1 − x) and ln x respectively; (3) analytic
knowledge of a finite set of integer moments. We construct
an approximation based on this information by first separat-
ing off the analytically known terms (1–2), then expanding
the remainder on a set of basis functions and using the known
moments to determine the expansion coefficients. Finally, we
vary the set of basis functions in order to obtain an estimate
of the uncertainties.

Schematically, we proceed as follows:

1. We include all terms in the expansion

γ
(3)
i j (N ) = γ

(3,0)
i j (N ) + n f γ

(3,1)
i j (N )

+n2
f γ

(3,2)
i j (N ) + n3

f γ
(3,3)
i j (N ), (2.14)

of the anomalous dimension in powers of n f that are fully
or partially known analytically. We collectively denote
such terms as γ

(3)
i j,n f

(N ).
2. We include all terms from large-x and small-x resum-

mation, to the highest known logarithmic accuracy,
including all known subleading power corrections in
both limits. We denote these terms as γ

(3)
i j,N→∞(N ) and

γ
(3)
i j,N→0(N ), γ

(3)
i j,N→1(N ) respectively. Possible double

counting coming from the overlap of these terms with
γ

(3)
i j,n f

(N ) is removed.
3. We write the approximate anomalous dimension matrix

element γ (3)
i j (N ) as the sum of the terms which are known

exactly and a remainder γ̃
(3)
i j (N ) according to

γ
(3)
i j (N ) = γ

(3)
i j,n f

(N ) + γ
(3)
i j,N→∞(N ) + γ

(3)
i j,N→0(N )

+γ
(3)
i j,N→1(N ) + γ̃

(3)
i j (N ). (2.15)

We determine the remainder as a linear combination of
a set of ni j interpolating functions Gi j

� (N ) (kept fixed)

and Hi j
� (N ) (to be varied)

γ̃
(3)
i j (N ) =

ni j−nH∑

�=1

bi j� Gi j
� (N ) +

nH∑

�=1

bi j
ni j−2+�

Hi j
� (N ),

(2.16)

with ni j equal to the number of known Mellin moments
of γ

(3)
i j (N ). We determine the coefficients bi j� by equating

the evaluation of γ̃
(3)
i j (N ) to the known moments of the

splitting functions.
4. In the singlet sector, we take nH = 2 and we make

Ñi j different choices for the two functions Hi j
� (N ), by

selecting them out of a list of distinct basis functions (see
Sect. 2.4 below). Thereby, we obtain Ñi j expressions for

the remainder γ̃
(3)
i j (N ) and accordingly for the N3LO

anomalous dimension matrix element γ
(3)
i j (N ) through

Eq. (2.15). These are used to construct the approximate
anomalous dimension matrix and the uncertainty on it,
in the way discussed in Sect. 2.2 below. In the nonsinglet
sector instead, we take nH = 0, i.e. we take a unique
answer as our approximation, and we neglect the uncer-
tainty on it, for reasons to be discussed in greater detail
at the end of Sect. 2.3.

2.2 The approximate anomalous dimension matrix and its
uncertainty

The procedure described in Sect. 2.1 provides us with an
ensemble of Ñi j different approximations to the N3LO

anomalous dimension, denoted γ
(3), (k)
i j (N ), k = 1, . . . Ñi j .

Our best estimate for the approximate anomalous dimension
is then their average

γ
(3)
i j (N ) = 1

Ñi j

Ñi j∑

k=1

γ
(3), (k)
i j (N ). (2.17)

We include the uncertainty on the approximation, and
the ensuing uncertainty on N3LO theory predictions, using
the general formalism for the treatment of theory uncertain-
ties developed in Refs. [34–36]. Namely, we consider the
uncertainty on each anomalous dimension matrix element
due to its incomplete knowledge as a source of uncertainty
on theoretical predictions, uncorrelated from other sources
of uncertainty, and neglecting possible correlations between
our incomplete knowledge of each individual matrix ele-
ment γ (3)

i j . This uncertainty on the incomplete higher (N3LO)
order terms (incomplete higher order uncertainty, or IHOU)
is then treated in the same way as the uncertainty due to miss-
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ing higher order terms (missing higher order uncertainty, or
MHOU).

Namely, we construct the shift of theory prediction for
the m-th data point due to replacing the central anomalous
dimension matrix element γ

(3)
i j (N ), Eq. (2.17), with each of

the instances γ
(3), (k)
i j (N ), viewed as an independent nuisance

parameter:

�m(i j, k) = Tm(i j, k) − T̄m, (2.18)

where T̄m is the prediction for the m-th datapoint obtained
using the best estimate Eq. (2.17) for the full anomalous
dimension matrix, while Tm(i j, k) is the prediction obtained
when the the i j matrix element of our best estimate is replaced
with the k-th instance γ

(3), (k)
i j (N ).

We then construct the covariance matrix over theory pre-
dictions for individual datapoints due to the IHOU on the
i j N3LO matrix element as the covariance of the shifts
�m(i j, k) over all Ñi j instances:

cov(i j)
mn = 1

Ñi j − 1

Ñi j∑

k=1

�m(i j, k)�n(i j, k). (2.19)

We recall that we do not associate an IHOU to the nonsinglet
anomalous dimensions and we assume conservatively that
there is no correlation between the different singlet anoma-
lous dimension matrix elements. Thus we can write the total
contribution to the theory covariance matrix due to IHOU as

covIHOU
mn = cov(gg)

mn + cov(gq)
mn + cov(qg)

mn + cov(qq)
mn . (2.20)

The mean square uncertainty on the anomalous dimension
matrix element itself is then determined, by viewing it as a
pseudo-observable, as the variance

(σi j (N ))2 = 1

Ñi j − 1

Ñi j∑

k=1

(
γ

(3), (k)
i j (N ) − γ

(3)
i j (N )

)2
.

(2.21)

2.3 aN3LO anomalous dimensions: the nonsinglet sector

Information on the Mellin moments of nonsinglet anomalous
dimensions is especially abundant, in that eight moments of
γ

(3)
ns,± and nine moments of γ

(3)
ns,s are known. An approxima-

tion based on this knowledge was given in Ref. [22]. More
recently, further information on the small-x behavior of γ

(3)
ns,±

was derived in Ref. [23]. While for γ
(3)
ns,s we directly rely on

the approximation of Ref. [22], which already includes all
the available information, we construct an approximation to
γ

(3)
ns,± based on the procedure described in Sect. 2.1, in order

to include also this more recent information, and also as a

warm-up for the construction of our approximation to the
singlet sector anomalous dimension that we present in the
next section.

Contributions to γ
(3)
ns,± proportional to n2

f and n3
f are

known exactly [21] (in particular the n3
f contributions to

γ
(3)
ns,± coincide), whileO(n0

f ) andO(n f ) terms1 are known in

the large-Nc limit [22] and we include these in γ
(3)
ns,±,n f

(N ).
Small-x contributions to γns,± are double logarithmic, i.e.

of the form an+1
s ln2n−k(x), corresponding in Mellin space

to poles of order 2n − k + 1 in N = 0, i.e. 1
N2n−k+1 , so at

N3LO we have n = 3 and thus

P(3)
ns,±(x) =

6∑

k=1

ckns, N→0 lnk(1/x) + O(x). (2.22)

The coefficients ckns, N→0 are known [23] exactly up to NNLL

accuracy (k = 4, 5, 6), and approximately up to N6LL (k =
1, 2, 3). Hence, we let

γ
(3)
ns,±, N→0(N ) =

6∑

k=1

ckns, N→0(−1)k
k!

Nk+1 . (2.23)

Large-x logarithmic contributions in the MS scheme only
appear in coefficient functions [47], and so the x → 1
behaviour of splitting functions is provided by the cusp
anomalous dimension ∼ 1

(1−x)+ , corresponding to a single
ln(N ) behavior in Mellin space as N → ∞. This behavior is
common to the pair of anomalous dimensions γ

(3)
ns,±(N ). Fur-

thermore, several subleading power corrections as N → ∞
can also be determined and we set

γ
(3)
ns,±, N→∞(N ) = Aq

4 S1(N ) + Bq
4 + Cq

4
S1(N )

N
+ Dq

4
1

N
,

(2.24)

where S1 denotes the harmonic sum (see Eqs. A.18–A.19).
The coefficient of the ln(N ) term Aq

4 , is the quark cusp
anomalous dimension [24]. The constant coefficient Bq is
determined by the integral of the nonsinglet splitting func-
tion, which was originally computed in [22] in the large-Nc

limit and recently updated to the full color expansion [25] as
a result of computing different N3LO cross-sections in the
soft limit. The coefficients of the terms suppressed by 1/N
in the large-N limit, Cq and Dq , can be obtained directly
from lower-order anomalous dimensions by exploiting large-
x resummation techniques [21]. The explicit expressions of
γ

(3)
ns ±, N→∞(N ) and γ

(3)
ns ±, N→0(N ) are given in Appendix A.

The remainder terms, γ̃ (3)
ns,±(N ), are expanded over the set

of eight functionsGns,±
� (N ) listed in Table 1. The coefficients

1 The n f C3
F terms have also been published very recently [46], but we

do not include them yet.
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Table 1 The Mellin space interpolating functions Gns,±
� (N ) entering

the parametrisation of the remainder term γ̃
(3)
ns ±(N ) for the nonsinglet

anomalous dimension expansion of Eq. (2.16)

Gns,±
1 (N ) 1

Gns,±
2 (N ) M[(1 − x) ln(1 − x)](N )

Gns,±
3 (N ) M[(1 − x) ln2(1 − x)](N )

Gns,±
4 (N ) M[(1 − x) ln3(1 − x)](N )

Gns,±
5 (N )

S1(N )

N2

Gns,±
6 (N ) 1

(N+1)2

Gns,±
7 (N ) 1

(N+1)3

Gns,+
8 (N ), Gns,−

8 (N ) 1
(N+2)

, 1
(N+3)

bns,±
� (defined in Eq. (2.16)) are determined by imposing that

the values of the eight moments given in Ref. [22] be repro-
duced. The set of functions Gns,±

� (N ) is chosen to adjust
the overall constant (� = 1), model the large-N behavior
(2 ≤ � ≤ 5) and model the small-N behavior (� = 6, 7),
consistent with the general analytic structure of fixed order
anomalous dimensions [48]. Specifically, the large-N func-
tions are chosen as the logarithmically enhanced next-to-
next-to-leading power terms (lnk(N )/N 2, � = 2, 3, 4, 5)
and the small-N functions are chosen as logarithmically
enhanced subleading poles (1/(N + 1)k , � = 6, 7) and sub-
subleading poles (1/(N + 2) or 1/(N + 3), � = 8). The
last element, � = 8, is chosen at a fixed distance from the
lowest known moment, N = 2 for γ

(3)
ns,+(N ) and N = 1 for

γ
(3)
ns,−(N ).

In Fig. 1 we plot the resulting splitting functions P(3)
ns,±(x),

obtained by Mellin inversion of the anomalous dimension.
We compare our approximation to the approximation of Ref.
[22], for αs = 0.2 and n f = 4, and also show the (exact)

NNLO result for reference. Because the splitting function is
a distribution at x = 1 we plot (1 − x)P(x). The result of
Ref. [22] also provides an estimate of the uncertainty related
to the approximation, shown in the figure as a band, and
we observe that this uncertainty is negligible except at very
small x . As we include further constraints on the small-x
behavior, the uncertainty on the approximation becomes neg-
ligible, as it can be checked by comparing results obtained
by including increasingly more information in the construc-
tion of the approximation. Consequently, as mentioned in
Sect. 2.1 above, we take nH = 0 in Eq. (2.16).

2.4 aN3LO anomalous dimensions: singlet sector

In order to determine the singlet-sector anomalous dimension
matrix entering Eq. (2.12), we must determine γqq,ps that,
together with the previously determined nonsinglet anoma-
lous dimension, contributes to the qq entry, Eq. (2.13), and
then also the three remaining matrix elements γqg , γgq , and
γgg .

For all matrix elements, the leading large-n f O(n3
f ) con-

tributions in Eq. (2.14) are known analytically [21], while
for γqq,ps [49] and γgq [31] the O(n2

f ) contributions are also

known and we include all of them in γ
(3)
i j,n f

(N ).
Small-x contributions in the singlet sector include, on top

of the double-logarithmic contributions an+1
s ln2n−k(x) that

are present in the nonsinglet case, also single-logarithmic
contributions an+1

s
1
x lnn(x). In Mellin space, this means that

on top of order 2n−k+1 subleading poles in N = 0, there are
also leading poles in N = 1 of order n−k+1, i.e. 1

(N−1)n−k+1 .
The leading-power single logarithmic contributions can be
extracted from the leading [50–54] and next-to-leading [55–
59] high-energy resummation at LLx [60] and NLLx [61–
63] accuracy. This allows for a determination of the coeffi-

Fig. 1 The aN3LO nonsinglet splitting functions (1 − x)Pns,+(x, αs)

and (1 − x)Pns,−(x, αs), evaluated as a function of x for n f = 4 and
αs = 0.2 in our approximation compared to the previous approximation

of Ref. [22] (denoted FHMRUVV), for which the approximation uncer-
tainty, as estimated by its authors, is also displayed. For comparison,
the (exact) NNLO result is also shown
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cients of the leading 1
(N−1)4 and next-to-leading 1

(N−1)3 con-

tributions to γ
(3)
gg and of the next-to-leading 1

(N−1)3 contri-

butions to γ
(3)
qg . The remaining entries can be obtained from

these by using the color-charge (or Casimir scaling) relation
γiq = CF

CA
γig [63,64]. Hence, we set

γ
(3)
gg, N→1(N ) = c4

gg, N→1
1

(N − 1)4 + c3
gg, N→1

1

(N − 1)3 ;
(2.25)

γ
(3)
qg, N→1(N ) = c3

qg, N→1
1

(N − 1)3 ; (2.26)

γ
(3)
iq, N→1(N ) = CF

CA
γ

(3)
ig, N→1(N ), i = q, g. (2.27)

Although only the leading pole of γgq satisfies Eq. (2.27)
exactly, at NNLO this relation is only violated at the sub-
percent level [65], so this is likely to be an adequate approx-
imation also at this order: this approximation is also adopted
in Ref. [30]. An important observation is that both NLO and
NNLO coefficients of the leading poles, 1

(N−1)2 and 1
(N−1)3

respectively, vanish accidentally. Hence, at N3LO the lead-
ing poles contribute for the first time beyond leading order.
The subleading poles can be determined up to NNLL accu-
racy [23] and, thus, fix the coefficients of the 1

N7 , 1
N6 and

1
N5 subleading poles for all entries of the singlet anomalous
dimension matrix. All these contributions are included in
γ

(3)
i j,N→1(N ) and γ

(3)
i j,N→0(N ).

In the singlet sector, large-x contributions whose Mellin
transform is not suppressed in the large-N limit only appear in
the diagonal qq and gg channels. In the quark channel these
are already included, through Eq. (2.13) in γ

(3)
ns,+, N→∞(N ),

according to Eq. (2.24), while γ
(3)
qq,ps is suppressed in this

limit. In the gluon-to-gluon channel they take the same form
as in the nonsinglet and diagonal quark channel. Hence, we
expand, as in Eq. (2.24),

γ
(3)
gg, N→∞(N ) = Ag

4S1(N ) + Bg
4 + Cg

4
S1(N )

N
+ Dg

4
1

N
.

(2.28)

The coefficients Ag
4 , Bg

4 , Cg
4 and Dg

4 are the counterparts of
those of Eq. (2.24): the gluon cusp anomalous dimension was
determined in Ref. [24] and the constant in Ref. [25], while
the Cg

4 and Dg
4 coefficients can be determined using results

from Refs. [30,66].
Off-diagonal qg and qg splitting functions have logarith-

mically enhanced next-to-leading power behavior at large-x :

P(3)
i j (x) =

6∑

k=0

∞∑

l=0

ck,li j, N→∞(1 − x)l lnk(1 − x). (2.29)

For l = 0 the coefficients of the higher logs k = 4, 5, 6 can
be determined from N3LO coefficient functions, based on a
conjecture [27,67] on the large-x behavior of the physical
evolution kernels that give the scale dependence of struc-
ture functions. The coefficient with the highest power k = 6
cancels and thus we let

γ
(3)
gq, N→∞(N ) =

5∑

k=4

ck,0gq, N→∞M
[
lnk(1 − x)

]
(N ),

(2.30)

γ
(3)
qg, N→∞(N ) =

5∑

k=4

ck,0qg, N→∞M
[
lnk(1 − x)

]
(N )

+ck,1qg, N→∞M
[
(1−x) lnk(1−x)

]
(N ),

(2.31)

where in γ
(3)
qg, N→∞ we have retained also the l = 1 terms

[29].
Finally, the pure singlet quark-to-quark splitting func-

tion starts at next-to-next-to-leading power as x → 1, i.e.
it behaves as (1− x) lnk(1− x), with k ≤ 4. The coefficients
of the higher logs k = 3, 4 can be extracted by expanding
the x = 1 expressions from Refs. [27,28]. Hence, we let

γ
(3)
qq,ps, N→∞(N ) =

4∑

k=3

[
ck,1qq,ps, N→∞M

[
(1 − x) lnk(1 − x)

]
(N )

+ck,2qq,ps, N→∞M
[
(1 − x)2 lnk(1 − x)

]
(N )

]

(2.32)

Note that for the qq and qg entries we also include the
(known) next-to-leading power contributions, while we do
not include them for gq and gg because for these anomalous
dimension matrix elements a significantly larger number of
higher Mellin moments is known, hence there is no risk that
the inclusion of these contributions could contaminate the
intermediate x region where they are not necessarily domi-
nant. The explicit expressions of γ

(3)
i j N→∞(N ), γ

(3)
i j N→0(N )

and γ
(3)
i j N→1(N ) are all given in Appendix A.

As discussed in Sect. 2.1, the remainder contribution
γ̃

(3)
i j (N ), Eq. (2.16), is determined by expanding each of

its matrix elements over a set of ni j basis functions, where
ni j is the number of known Mellin moments, and determin-
ing the expansion coefficients by demanding that the known
moments be reproduced. Specifically, the known moments
are the four moments computed in Ref. [26], the six addi-
tional moments for γqq,ps and γqg computed in Ref. [28] and
Ref. [29] respectively, and the additional moment N = 10
for γgg and γgq evaluated in Ref. [30]. These constraints
automatically implement momentum conservation:
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γqg(N = 2) + γgg(N = 2) = 0,

γqq(N = 2) + γgq(N = 2) = 0.
(2.33)

The set of basis functions is chosen based on the idea of
constructing an approximation that reproduces the singular-
ity structure of the Mellin transform of the anomalous dimen-
sion viewed as analytic functions in N space [48], hence
corresponding to the leading and subleading (i.e. rightmost)
N -space poles with unknown coefficients as well as the lead-
ing unknown large-N behavior. As mentioned in Sect. 2.1,
the uncertainty on the answer is then estimated by varying
the set of basis functions, specifically by varying two out
of the ni j basis functions. The way the basis functions are
partitioned between the fixed functions Gi j and the varying
functions Hi j is by always including in the fixed set the most
leading unknown contributions, and in the Hi j further sub-
leading ones. The number of varying Hi j is chosen to be
larger when less exact information is known.

Specifically, the functions Gi j are chosen as follows.

1. The function Gi j
1 (N ) reproduces the leading unknown

contribution in the large-N limit, i.e. the unknown term
in Eq. (2.29) with highest k and lowest l.

2. The functions Gi j
2 (N ) and Gi j

3 (N ) reproduce the first
two leading unknown contributions in the small-N limit,
i.e. the unknown 1

(N−1)k
leading poles with highest and

next-to-highest values of k, i.e. k = 2 and k = 1. For
γqq,ps and γqg a subleading small-x pole with the same
power and opposite sign is added to the leading pole with
respectively k = 1, 2 and k = 1, so as to leave unaffected
the respective large-x leading power behavior Eqs. (2.31,
2.32).

3. For γqq,ps and γqg , for which an additional five moments

are known, the functions Gqj
4,...,8(N ) reproduce sublead-

ing small- and large-N terms.

Note that a larger number of basis functions is chosen to
describe the small-N poles rather than the large-N behavior
because less exact information is available in the former case:
so for instance only the leading pole Eq. (2.26) is known for
γ

(3)
qg (N ), while the first two logarithmically enhanced large-
N contributions to it Eq. (2.31) are known.

As mentioned, the functions Hi j are chosen to reproduce
further subleading contributions:

1. The functions Hgj
1 (N ), Hgj

2 (N ) in the gluon sector,
where only five moments are known exactly, are cho-
sen to reproduce subleading small- and large-N terms,
i.e. similar to Gqj

4,...,8(N ).
2. The functions Hqg

1 (N ), Hqg
2 (N ) are chosen as sublead-

ing and next-to-leading power large-x terms and the
remaining unknown leading small-N pole.

3. The functions Hqq, ps
1 (N ), Hqq, ps

2 (N ) are chosen as low-
order polynomials, i.e., sub-subleading small-x poles.

Also as mentioned, the number of basis functions is greater
for anomalous dimension matrix elements for which less
exact information is available: 7 in the gluon sector (i.e. gg
and gq), 6 for the qg entry and 4 for the pure singlet entry.
For the gg entry two combinations are discarded as they
lead to unstable (oscillating) results and we thus end up with
Ñgg = 19, Ñgq = 21, Ñqg = 15, and Ñqq = 6 different
parametrizations. The full set of basis functions Gi j and Hi j

is listed in Table 2. We have checked that results are stable
upon variation of these choices, so for instance including a
larger number of Hi j functions does not lead to significantly
larger uncertainties.

Upon combining the exactly known contributions with
the Ñi j remainder terms according to Eq. (2.15) we end up

with an ensemble of Ñi j instances of γ
(3), (k)
i j (N ) for each

singlet anomalous dimension matrix element and the final
matrix elements γ

(3)
i j (N ) and their uncertainties σi j (N ) are

computed using Eqs. (2.17) and (2.21) respectively.

2.5 Results: aN3LO splitting functions

We now present the aN3LO splitting functions constructed
following the procedure described in Sects. 2.1–2.4. The non-
singlet result, already compared in Fig. 1 to the previous
approximation of Ref. [22], is shown in Fig. 2 at the first four
perturbative orders as a ratio to the aN3LO result. For each
order we include the MHOU determined by scale variation
according to Refs. [35,36] and recall that there are no IHOU
in the nonsinglet sector. As the nonsinglet splitting function
are subdominant at small x we only show the plot with a
linear scale in x . The relative size of the MHOU is shown in
Fig. 3.

Inspecting Figs. 2 and 3 reveals good perturbative con-
vergence2 for all values of x . Specifically, the differences
between two subsequent perturbative orders are reduced as
the accuracy of the calculation increases, and, correspond-
ingly, the MHOUs associated to factorization scale varia-
tions decrease with the perturbative accuracy. Indeed, the
MHOU appears to reproduce well the observed behaviour
of the higher orders, with overlapping uncertainty bands
between subsequent orders except at LO at the smallest x
values. Hence, the behavior of the perturbative series sug-
gests that the MHOU estimate based on scale variation at
N3LO is reliable.

Based on these results it is clear that in the nonsinglet sec-
tor the N3LO contribution to the splitting function is essen-

2 Here and henceforth by “convergence” we mean that the size of the
missing N4LO corrections is negligible compared to the target accuracy
of theoretical predictions, i.e. at the sub-percent level.
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Table 2 The set of basis functions Gi j
� (N ) and Hi j

� (N ) used to parametrize the singlet sector remainder anomalous dimensions matrix elements

γ̃
(3)
i j (N ) according to Eq. (2.16)

γ
(3)
gg (N ) Ggg

1 (N ) M[(1 − x) ln3(1 − x)](N )

Ggg
2 (N ) 1

(N−1)2

Ggg
3 (N ) 1

N−1

{Hgg
1 (N ), Hgg

2 (N )} 1
N4 , 1

N3 , 1
N2 , 1

N+1 , 1
N+2 , M[(1 − x) ln2(1 − x)](N ), M[(1 − x) ln(1 − x)](N )

γ
(3)
gq (N ) Ggq

1 (N ) M[ln3(1 − x)](N )

Ggg
2 (N ) 1

(N−1)2

Ggq
3 (N ) 1

N−1

{Hgq
1 (N ), Hgq

2 (N )} 1
N4 , 1

N3 , 1
N2 , 1

N+1 , 1
N+2 , M[ln2(1 − x)](N ), M[ln(1 − x)](N )

γ
(3)
qg (N ) Gqg

1 (N ) M[ln3(1 − x)](N )

Gqg
2 (N ) 1

(N−1)2

Gqg
3 (N ) 1

N−1 − 1
N

Gqg
4,...,8(N ) 1

N4 , 1
N3 , 1

N2 , 1
N , M[ln2(1 − x)](N )

{Hqg
1 (N ), Hqg

2 (N )} M[ln(x) ln(1 − x)](N ), M[ln(1 − x)](N ), M[(1 − x) ln3(1 − x)](N )

M[(1 − x) ln2(1 − x)](N ), M[(1 − x) ln(1 − x)](N ), 1
1+N

γ
(3)
qq,ps(N ) Gqq,ps

1 (N ) M[(1 − x) ln2(1 − x)](N )

Gqq,ps
2 (N ) − 1

(N−1)2 + 1
N2

Gqq,ps
3 (N ) − 1

(N−1)
+ 1

N

Gqq,ps
4,...,8(N ) 1

N4 , 1
N3 , M[(1 − x) ln(1 − x)](N )

M[(1 − x)2 ln(1 − x)2](N ), M[(1 − x) ln(x)](N )

{Hqq,ps
1 (N ), Hqq,ps

2 (N )} M[(1 − x)(1 + 2x)](N ), M[(1 − x)x2](N )

M[(1 − x)x(1 + x)](N ), M[(1 − x)](N )

Fig. 2 The nonsinglet splitting functions at LO, NLO, NNLO, and aN3LO, normalized to the aN3LO central value and with a linear scale on the
x axis. In each case we shown also the uncertainty due to missing higher orders (MHOU) estimated by scale variation according to Refs. [35,36]

tially negligible except at the smallest x values, as shown
in Fig. 1. Consequently, for all practical purposes we can
consider the current approximation to the nonsinglet anoma-
lous dimension to be essentially exact, and with negligible
MHOU.

The situation in the singlet sector is more challenging. The
singlet matrix of splitting functions is shown in Figs. 4 and 5,

respectively with a logarithmic or linear scale on the x axis.
Because the diagonal splitting functions are distributions at
x = 1 in the linear scale plots we display x(1 − x)Pii . The
corresponding relative size of the MHOU is shown in Fig. 6
for the first four perturbative orders, along with the IHOU on
the aN3LO result, determined using Eq. (2.21).
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Fig. 3 The relative size of the uncertainty due to missing higher orders (MHOU) on the splitting functions of Fig. 2

Fig. 4 The singlet matrix of splitting functions x Pi j at LO, NLO,
NNLO and aN3LO. From left to right and from top to bottom the gg,
gq, qg and qq entries are shown. The MHOU estimated by scale varia-

tion is shown to all orders. At aN3LO the dark blue band corresponds to
IHOU only, while the light blue band is the sum in quadrature of IHOU
and MHOU
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Fig. 5 Same as Fig. 4 with a linear scale on the x axis, and plotting (1 − x)x Pii for diagonal entries

A different behaviour is observed for the quark sector
Pqi and for the gluon sector Pgi . In the quark sector, the
MHOU decreases with perturbative order for all x , but it
remains sizable at aN3LO for essentially all x , of order 5% for
10−2 � x � 10−1. In the gluon sector instead for x � 0.03
the MHOU is negligible, but at smaller x it grows rapidly,
and in fact at very small x it becomes larger than the NLO
MHOU. This is due to the presence of leading small-x loga-
rithms, Eq. (2.25), which are absent at NLO. In fact the true
gluon-sector MHOU at very small x is likely to be under-
estimated by scale variation, because while it generates the
fourth-order leading pole present in the N4LO (the fifth-order
pole vanishes), it fails to generate the sixth-order pole known
to be present in the N5LO splitting function.

We now turn to the IHOU and find again contrasting
behaviour in the different sectors. In the quark sector, thanks
to the large number of known Mellin moments and the copi-
ous information on the large-x limit, the IHOU are signifi-
cantly smaller than the MHOU, by about a factor three, and
become negligible for x � 10−2. In the gluon sector instead
the IHOU, while still essentially negligible for x � 0.1, is

larger than the MHOU except at very small x � 10−4 where
the MHOU dominates.

Consequently, for all matrix elements at large x � 0.1
the behaviour of the singlet is similar to the behaviour of the
nonsinglet: IHOU and MHOU are both negligible, meaning
that aN3LO results are essentially exact, and the perturbative
expansion has essentially converged, see Fig. 5. At smaller x ,
while the aN3LO and NNLO results agree within uncertain-
ties, the uncertainties on the aN3LO are sizable, dominated
by MHOUs in the quark channel and by IHOUs in the gluon
channel.

In the singlet sector the most dramatic impact of the
aN3LO correction is at small x . It is thus interesting to
compare the aN3LO singlet splitting functions with those
obtained by the resummation of leading and next-to-leading
order small-x logarithms of Ref. [68], namely the two highest
powers of ln x contained in the N3LO result; this comparison
is shown in Fig. 7. The agreement of all four entries x Pgg ,
x Pgq , x Pqg and x Pqq is remarkably good and well within
the uncertainties in the two approaches. In particular the dip
in x Pgg at intermediate x at aN3LO (albeit with significant
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Fig. 6 Same as Fig. 3 for the singlet splitting function matrix elements. At NLO and NNLO we show the MHOU, while at aN3LO we also show
the IHOU

IHOU) is also a feature of the resummation. This is nontriv-
ial, as the resummation includes only the asymptotic LLx
and NLLx singularities at N = 1, but none of the subleading
results incorporated at aN3LO. Instead, it uses a symmetriza-
tion which resums collinear and anti-collinear logarithms in
the small-x expansion, and the effects of running coupling
which change the nature of the small-x singularity (from a
fourth order pole at N = 1 in the fixed order N3LO result to
a simple pole a little further to the right on the real axis).

That both the resummed and fixed order approaches con-
verge to very similar results, at least in the range of x rele-
vant for HERA and LHC, is very reassuring. It shows that
in a global fit with current data, while NLLx resummation
significantly improves the quality of a fixed order NNLO fit
[69], the same improvement should also be seen by adding
aN3LO corrections. Thus to find evidence for small-x resum-
mation at aN3LO, it will probably be necessary to go to yet
smaller values of x , e.g. below 10−5, where the fixed order
and resummed results will eventually diverge again.

2.6 Results: aN3LO evolution

The aN3LO anomalous dimensions discussed in the previous
sections have been implemented in the Mellin-space open-
source evolution codeEKO [40] which enters the new pipeline
[70] adopted by NNPDF in order to produce theory predic-
tions used for PDF determination. The parametrization is
expressed in terms of a basis of Mellin space functions which
are numerically efficient to evaluate. In order to achieve full
aN3LO accuracy, in addition to the anomalous dimensions,
the four-loop running of the strong coupling constant αs(Q)

and the N3LO matching conditions dictating the transitions
between schemes with different numbers of active quark fla-
vor have also been implemented.

The N3LO matching conditions have been presented in
Ref. [71] and subsequently computed analytically in Refs.
[72–81]. The exception is the a(3)

Hg entry of the matching

condition matrix, which is still unknown3 and which instead

3 The terms recently computed in Ref. [82] are not yet included and
left for future updates.
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Fig. 7 Comparison of the NLO, NNLO, and aN3LO splitting functions (same as in Fig. 4) to the small-x resummed NLO+NLL result of Ref.
[68]. Only the IHOU on the aN3LO result is shown

is parametrized using the first 5 known moments [71] and the
LLx contribution as done in Ref. [83]. Also these matching
conditions are implemented in EKO and thus it is possible
to assess the impact of the inclusion of aN3LO terms on
perturbative evolution.

In Fig. 8 we compare the result of evolving a fixed set of
PDFs from Q0 = 1.65 GeV up to Q = 100 GeV at NLO,
NNLO, and aN3LO. We take as input the NNPDF4.0NNLO
PDF set, and show results normalized to the aN3LO evolu-
tion. Results are shown for all the combinations that evolve
differently, as discussed in Sect. 2.1, namely the singlet,
gluon, total valence and nonsinglet ± combinations, with
a logarithmic scale on the x axis for the singlet sector and
a linear scale for the valence and nonsinglet combinations.
The relative uncertainty on the gluon and singlet are shown
in Fig. 9, with MHOU and IHOU separately displayed at
N3LO.

In all cases the perturbative expansion appears to have
converged everywhere, with almost no difference between
NNLO and aN3LO except at small x � 10−3, where sin-
glet evolution is weaker at aN3LO than at NNLO due to the

characteristic dip seen in the gluon sector splitting functions
of Fig. 4. Because the gluon-driven small-x rise dominates
small-x evolution this is a generic feature of all quark and
gluon PDFs in this small-x region. It is interesting to observe
that this is an all-order feature that persists upon small-x
resummation, as already discussed at the end of Sect. 2.5
and seen in Fig. 7. In fact, the total theory uncertainty at
aN3LO is at the sub-percent level for all x � 10−3. Hence,
not only has the MHOU become negligible, but also the effect
of IHOU on PDF evolution is only significant at small x .

2.7 Comparison to other groups

We finally compare our approximation of the N3LO split-
ting functions to other recent results from Refs. [28–30,32].
While the approach of Refs. [28–30] (FHMRUVV, hence-
forth) is very similar to our own, with differences only due
to details of the choice of basis functions, a rather differ-
ent approach is adopted in Ref. [32] (MSHT20, henceforth).
There, the approximation is constructed from similar theo-
retical constraints (small-x , large-x coefficients and Mellin
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Fig. 8 Comparison of the result obtained evolving from Q0 =
1.65 GeV to Q = 100 GeV at NLO, NNLO, and aN3LO using
NNPDF4.0 NNLO as fixed starting PDF. Results are shown as ratio
to the aN3LO (from left to right and from top to bottom) for the gluon

and singlet �, and for the V , V3 and T3 quark eigenstates of perturbative
evolution (see Sect. 2.1). The total theory uncertainty is shown in all
cases, i.e. the MHOU at NLO and NNLO, and the sum in quadrature of
MHOU and IHOU at aN3LO
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Fig. 9 The relative size of the uncertainty on the gluon and singlet PDFs shown in Fig. 8. The MHOU is shown in all cases, and at aN3LO the
IHOU is also shown

moments), but supplementing the parametrization with addi-
tional nuisance parameters, which control the uncertainties
arising from unknown N3LO terms. However, these approx-
imations are taken as a prior, and the nuisance parameters
are fitted to the data along with the PDF parameters. The
best-fit values of the parameters determine the posterior for
the splitting function, and their uncertainties are interpreted
as the final IHOU on it. A consequence of this procedure is
that the posterior can reabsorb not only N3LO corrections,
but any other missing contribution, of theoretical or experi-
mental origin.

The comparison is presented in Fig. 10, for all the four
singlet splitting functions. For the MSHT20 results both
prior and posterior are displayed. It should be noticed that
even though the uncertainty bands on the NNPDF4.0, DHM-
RUVV and MSHT20 prior are all obtained by varying the set
of basis functions, they are found using somewhat different
procedures, and their meaning is accordingly somewhat dif-
ferent. Indeed, for NNPDF4.0 the is constructed out of the
covariance matrix according to Eq. (2.21). For FHMRUVV is
instead the band between an upper and lower estimates which
are representative of the envelope of all variations. Finally for
the MSHT20 prior it is the variance of the probability dis-
tribution obtained assuming a multigaussian distribution of
suitable nuisance parameters.

As expected, excellent agreement is found with the FHM-
RUVV result, for all splitting functions and for all x , espe-
cially for the Pqg and Pqq splitting functions, for which the
highest number of Mellin moments is known. Good qual-
itative agreement is also found for Pgq and Pgg , although
at small x IHOUs are larger and consequently central val-
ues differ somewhat more, though still in agreement within
uncertainties. Uncertainties are qualitatively similar, except
at small x , where less exact information is available and both
central values and uncertainties are less constrained. In this
region the NNPDF4.0 is generally somewhat more conser-

vative, possibly due to the fact that it is obtained by adding
individual shifts in quadrature, rather than taking their enve-
lope.

Coming now to MSHT20 results, good agreement is found
with the prior, except for Pgq , for which MSHT20 shows a
small-x dip accompanied by a large-x bump. The different
small-x behaviour is likely due to the fact that MSHT20 do
not enforce the color-charge relation Eq. (2.27) at NLLx ,
with the large-x bump then following from the constraints
Eq. (2.33). Also, in the quark sector the MSHT20 prior has
significantly larger IHOUs due to the fact that it does not
include the more recent information on Mellin moments from
Refs. [23,28–31], which were not available at the time of the
MSHT20 analysis [32]. At the level of posterior, however,
significant differences appear also for Pgg , while persisting
for Pgq . This means that the gluon evolution at aN3LO is
being significantly modified by the data entering the global
fit, and it is not fully determined by the perturbative com-
putation. Further benchmarks of aN3LO splitting functions
will be presented in Ref. [84].

3 N3LO partonic cross-sections

A PDF determination at N3LO requires, in addition to the
splitting functions discussed in Sect. 2, hard cross-sections
at the same perturbative order. Exact N3LO massless DIS
coefficient functions have been known for several years [1–
4,85,86], while massive coefficient functions are only avail-
able in various approximations [83,87,88]. For hadronic pro-
cesses, N3LO results are available for inclusive Drell–Yan
production for the total cross-section [8,11,12] as well as for
rapidity [18] and transverse momentum distributions [19],
though neither of these is publicly available.

We now describe the implementation of these corrections.
First, we review available results on DIS coefficient func-
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Fig. 10 Same as Fig. 4, now comparing our aN3LO result to those of Ref. [32] (MSHT20) and Refs. [28–30] (FHMRUVV). In all cases the
uncertainty band correspond to the IHOU as estimated by the various groups. For the MSHT20 results, we display both the prior and the posterior
parametrizations (see text)

tions and summarize the main features of the approximation
that we will use for massive coefficient functions [87,88].
Next we discuss how massless and massive DIS coefficient
functions are combined to extend the FONLL general-mass
variable-flavor number scheme to O (

α3
s

)
. Finally, we dis-

cuss N3LO corrections for hadronic processes and different
options for their inclusion in PDF determination.

3.1 N3LO corrections to DIS structure functions

The DIS structure functions Fi are evaluated from the con-
volution of PDFs and coefficient functions

Fi (x, Q
2) =

n f∑

k=1

Ci,k(x, αs) ⊗ xq+
k (x, Q2)

+ Ci,g(x, αs) ⊗ xg(x, Q2), i = {2, L},

xF3(x, Q
2) =

n f∑

k=1

C3,k(x, αs) ⊗ xq−
k (x, Q2), (3.1)

with the coefficient functions evaluated in a perturbative
QCD expansion

Ci,k(x, αs(Q
2)) =

∑

n=0

αn
s (Q

2)C (n)
i,k (x). (3.2)

Coefficient functions with all quarks assumed to be massless
were evaluated at N3LO in [1,2] for neutral-current charged-
lepton scattering and recently independently benchmarked
in [86]. The corresponding results for charged-current scat-
tering were presented in [3,4,85].

For sufficiently low scale, some or all of the heavy quark
masses cannot be neglected. Heavy quark contributions to
structure functions may be treated in a decoupling scheme
[89], in which heavy quarks do not contribute to the run-
ning of αs and to PDF evolution, and coefficient functions
acquire a dependence on the heavy quark mass mh [90]:
Ci,k = Ci,k(x, αs,m2

h/Q
2) (massive coefficient functions,

henceforth). The massive coefficient functions are known
exactly up to NNLO for photon [91,92], Z [93,94] and W [95]
exchange (for massless to massive transitions only) while at
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Fig. 11 Comparison of the exact NNLO massive gluon-initiated coef-
ficient function xC (2)

2,g(η) to the approximation Eq. (3.3) from Ref. [87],

plotted as a function of η, Eq. (3.5), for fixed Q2. Results are shown for

two different values of Q2, one close to threshold Q2 = 2m2
h (left) and

one at high scales Q2 = 16m2
h (right). The uncertainty on the approxi-

mate result is obtained by varying the interpolating functions f1(x) and
f2(x) in Eq. (3.3)

Fig. 12 The approximate N3LO massive gluon (left) and quark singlet (right) coefficient functions as a function of η for fixed Q2 = 2m2
h . Our

result based on the approximation of Ref. [87] is compared to the approximation of Ref. [83] (KLMV)

N3LO only partial results are available [83,88,96,97] or in
the Q2 � m2

h limit [71,72,74,75,77,98].
We adopt an approximation for the N3LO contribu-

tion C (3)
i,k (x, αs,m2

h/Q
2) to massive coefficient functions

for photon-induced DIS and neglect the axial-vector cou-
pling of the Z boson, while we treat heavy quarks in the
massless approximation for the W boson exchange. Such an
approximation, based on known partial results, has been pre-
sented in Ref. [83], and recently revisited in Ref. [87]. The
approaches of these references rely on the same known exact
results, and differ in the details of the way they are com-
bined and interpolated. Here we will follow Ref. [87], see
also Ref. [88], to which we refer for further details. Exact
results come from threshold resummation and high-energy
resummation, and are further combined with the asymptotic

large-Q2 limit, thereby ensuring that the approximate mas-
sive coefficient function reproduces the exact massless result
in the Q2/m2

h → ∞ limit. In the approach of Refs. [87,88]
the massive coefficient functions are written as

C (3)
i,k (x,m2

h/Q
2) = C (3),thr

i,k (x,m2
h/Q

2) f1(x)

+C (3),asy
i,k (x,m2

h/Q
2) f2(x), (3.3)

where C (3),thr
i,k and C (3),asy

i,k correspond to the contributions
coming from differently resummations, and f1(x) and f2(x)
are two suitable matching functions.

For massive quarks the threshold limit is x → xmax

with xmax = Q2

4m2
h+Q2 or β → 0, with β ≡

√
1 − 4m2

h
s

and s = Q2 1−x
x the center-of-mass energy of the par-
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Fig. 13 Square root of the diagonal entries of the IHOU covariance
matrix for the DIS datasets normalized to the experimental central value
Di . We show the IHOU before and after adding to the covariance matrix

Eq. (2.20) that accounts for uncertainty on anomalous dimensions the
extra component Eq. (3.6) due to the massive coefficient function. The
experimental uncertainty is also shown for comparison

tonic cross-section. In this limit, the coefficient function con-
tains logarithmically enhanced terms of the form αn

s lnm β

with m ≤ 2n due to soft gluon emission, which are pre-
dicted by threshold resummation [99]. Further contributions
of the form αn

s β
−m lnl β, with m ≤ n, arise from Coulomb

exchange between the heavy quark and antiquark, and can
also be resummed using non-relativistic QCD methods [100].
At N3LO all these contributions are known and can be
extracted from available resummed results [83]; they are
included in C (3),thr

i,k .
In the high-energy limit, the coefficient function contains

logarithmically enhanced terms of the form αn
s lnm x with

m ≤ n − 2, which are determined at all orders through
small-x resummation at the LL level [97], from which the
N3LO expansion can be extracted [83]. This result can be
further improved [87,88] by including a particular class of
NLL terms related to NLL perturbative evolution and the
running of the coupling. In the approach of Refs. [87,88] the
high-energy contributions are combined intoC (3),asy

i,k with the

asymptotic Q2 � m2
h limit of the coefficient function in the

decoupling scheme [71,72,74,75,77,98], while subtracting
overlap terms. This ensures that in the Q2 � m2

h limit, the

structure function, computed from C (3),asy
i,k combined with

decoupling-scheme PDFs, coincides with the structure func-
tion computed in the limit in which the heavy quark mass is
neglected and the heavy quark is treated as a massless par-
ton. However, the asymptotic limit can only be determined
approximately since in particular some of the matching con-
ditions are not fully known.

The interpolating functions, used to combine the two con-
tributions in Eq. (3.3), are chosen to satisfy the requirements

f1(x) −−−→
x→0

0, f1(x) −−−−→
x→xmax

1,

f2(x) −−−→
x→0

1, f1(x) −−−−→
x→xmax

0,
(3.4)

which ensure that the threshold contribution vanishes in the
small-x limit and conversely. This guarantees that the approx-
imation Eq. (3.3) is reliable in a broad kinematic range in
the (x, Q2) plane: C (3),asy

i,k reproduces the massless limit for

large Q2 values and for all values of x , including the small-
x limit, while C (3),thr

i,k describes the threshold limit, with x
close to xmax. An uncertainty on the approximate coefficient
function can be constructed varying the functional form of
the interpolating functions, as well as that of terms which
are not fully known. This includes the NLL small-x resum-
mation and the matching functions that enter the asymptotic
high Q2 limit. This uncertainty vanishes in the x → xmax

limit, for which the exact known limit is reproduced (with a
fixed choice for the unknown constant β-independent terms),
and becomes larger in the intermediate η region. The inter-
polating functions and their uncertainties are optimized by
using the same methodology at NNLO, where the full result
is known. We refer to Ref. [87] for a detailed discussion of
this construction.

This optimized approximation at NNLO is shown in
Fig. 11, where we compare it to the exact result for the mas-
sive gluon-initiated coefficient function xC (2)

2,g(η), expressed
in terms of the variable
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η = Q2(1 − x)

4m2
hx

− 1. (3.5)

Results are shown for two different values of the Q2/m2
h

ratio, close to threshold and at higher scales. Note that η → 0
corresponds to x → xmax (threshold limit), while η → ∞
corresponds to either Q2/m2

h → ∞ for fixed x (asymptotic
limit), or x → 0 for fixed Q2 (high-energy limit). In this case
the uncertainty band is obtained by varying the interpolating
functions only.

The results found using the same procedure for the gluon
and quark singlet coefficient functions at N3LO are displayed
in Fig. 12, compared to the approximation of Ref. [83],
each shown with the respective uncertainty estimate. Good
agreement between the different approximations is found,
especially for the dominant gluon coefficient function. The
approximations agree in the asymptotic η → 0 and η → ∞
limits and in most of the η range, but differ somewhat in
the subasymptotic large η region at fixed Q2, which corre-
sponds to the small x limit at fixed Q2. These differences can
be traced to the aforementioned inclusion in the procedure
of Ref. [87,88] of a particular class of NLL terms related.

The uncertainty involved in the approximation can be
included as a further IHOU, alongside that discussed in
Sect. 2.2, through an additional contribution to the theory
covariance matrix. Namely, we define

covCmn = 1

2
(�m(+)�n(+) + �m(−)�n(−)) . (3.6)

Here �m(±) is the shift in the prediction for the m-th DIS
data point obtained by replacing the central approximation to
the massive coefficient function with the upper or lower edge
of the uncertainty range determined in Ref. [87] and shown as
an uncertainty band in Fig. 12. Note that unlike in Eq. (2.20),
we divide by the number of independent variations, with-
out decreasing it by one, because the central value is not
the average of the variations, and thus is independent. The
contribution Eq. (3.6) is then added to the IHOU covariance
matrix as a further term on the right-hand side of Eq. (2.20).

The impact of this contribution to the IHOU is assessed in
Fig. 13, where the square root of the diagonal component of
the covariance matrix is shown for all the DIS data points in
our dataset, comparing the IHOU before and after adding to
Eq. (2.20) the extra component Eq. (3.6) due to the IHOU on
the massive coefficient function. It is clear that the impact of
IHOUs due to perturbative evolution is generally negligible,
in agreement with the results discussed in Sect. 2.6 and shown
in Fig. 8: IHOUs on splitting functions are only significant at
small x , but available small-x data are at relatively low scale
where the evolution length is small. The impact of IHOUs on
massive coefficient functions is relevant for data on tagged
bottom and charm structure functions, but otherwise moder-

ate and only significant for structure function data close to
the heavy quark production thresholds.

3.2 A general-mass variable flavor number scheme at
N3LO

The N3LO DIS coefficients functions described in the pre-
vious section enable the extension to O (

α3
s

)
of the FONLL

[101] general-mass variable flavor number scheme for DIS
[42–44]. The goal of the FONLL strategy is results that are
accurate and reliable for all values of Q2 from the production
threshold Q2 ∼ m2

h to the asymptotic limit Q2 � m2
h .

Assuming a single heavy quark, calculations performed
in a decoupling scheme with n� light quarks retain the full
dependence on the heavy quark mass and include the contri-
bution of heavy quarks at a fixed perturbative order (massive
scheme, henceforth). Calculations performed in a scheme
in which the heavy quark is treated as massless (massless
scheme, henceforth), and endowed with a PDF that satis-
fies perturbative matching conditions, resums logarithms of
Q2/m2

h to all orders through the running of the coupling and
the evolution of PDFs, but does not include terms that are

suppressed as powers of
m2
h

Q2 and thus become relevant when

Q2 ∼> m2
h . The FONLL prescription matches the two calcu-

lations by defining

FFONLL
i = F (n)

i (x, Q2,m2
h) + F (n+1)

i (x, Q)

−F (n,0)
i (x, ln(Q2/m2

h)), i = 2, L , 3,

(3.7)

where F (n)
i denotes the massive computation in which the

(n+1)-th (heavy) flavor decouples, F (n+1)
i the one in which

it is treated as massless, and F (n,0)
i is the asymptotic large-Q2

limit of the massive scheme calculation, which depends only
logarithmically on the heavy quark mass. This construction
reduces to the decoupling calculation for Q2 ≈ m2

h and to
the massless one for Q2 � m2

h .
The FONLL prescription of Eq. (3.7) was implemented

in Ref. [42–44] for DIS to NNLO, by expressing all terms
on the right-hand side in terms of αs and PDFs all defined in
the massless scheme. This has the advantage of providing an
expression that can used with externally provided PDFs, that
are typically available only in a single factorization scheme
for each value of the scale Q.

However, the recent EKO code [40] allows, at any given
scale, the coexistence of PDFs defined in schemes with a dif-
ferent number of massless flavors. Furthermore, the recent
YADISM program [41] implements DIS coefficient functions
corresponding to all three contributions on the right-hand
side of Eq. (3.7). It is then possible to implement the FONLL
prescription Eq. (3.7) by simply combining expressions com-
puted in different schemes [102]. This formalism is especially
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Fig. 14 The charm structure function F (c)
2 (x, Q2,m2

c) in the FONLL-
E scheme, compared to the massive and massless scheme results (see
text). Results are shown as a function of Q2 for x = 2 × 10−4 (top
left), x = 2 × 10−3 (top right), x = 2 × 10−2 (bottom left), and

x = 2 × 10−1 (bottom right). The uncertainty shown on the FONLL
and massive curves is the IHOU on the heavy quark coefficient functions
Eq. (3.6)

Fig. 15 Same as Fig. 14, now comparing the FONLL-A (used at NLO O (αs)), FONLL-C (used at NNLO O (
α2
s

)
), and FONLL-E (used at N3LO

O (
α3
s

)
), all shown as a ratio to FONLL-E. The FONLL-E result includes the IHOU on the heavy quark coefficient functions Eq. (3.6)
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advantageous at higher perturbative orders, where the ana-
lytic expressions relating PDFs in different scheme grow in
complexity, and also above bottom threshold, where the iter-
ation of Eq. (3.7) on charm and bottom heavy quarks leads to
coexisting n f = 3, 4, 5 PDFs, while the method of Ref. [42–
44] would require re-expressing the massive scheme PDFs
into massless scheme PDFs twice.

In the FONLL method, Eq. (3.7), the first two terms on
the right-hand side may be computed at different perturba-
tive orders, provided one ensures that the third term correctly
includes only their common contributions. In Ref. [42] some
natural choices were discussed, based on the observation that
in the massive scheme, the heavy quark contributes to the
structure functions only at O (αs) and beyond, while in the
massless scheme it already contributes at O (

α0
s

)
. Hence nat-

ural choices are to combine both the massive and massless
contributions atO (αs) (FONLL-A), or else the massive con-
tribution at O (

α2
s

)
and the massless contribution at O (αs),

i.e. both at second nontrivial order (FONLL-B). The corre-
sponding two options at the next order are called FONLL-C
and -D.

Here, we will consider FONLL-E, in which both the mass-
less and massive contributions are determined at O (

α3
s

)
.

The charm structure function F (c)
2 (x, Q2), computed in this

scheme, is displayed in Fig. 14 as a function of Q2 for four
values of x (with mc = 1.51 GeV), and compared to the
massive and massless scheme results, with the IHOU on the
massive coefficient function shown for the first two cases.
The structure functions are computed using the NNPDF4.0
aN3LO PDF set (to be discussed in Sect. 4 below) which
satisfies aN3LO evolution equations, as is necessary for con-
sistency with the massless scheme result at high scale. It is
clear that the FONLL results interpolate between the massive
and massless calculations as the scale grows. The Q2 value
at which either of the massive or massless results dominate
depend strongly on x . Except for the lowest Q2 values, the
IHOUs associated with the calculation remain moderate.

The perturbative convergence of the charm structure func-
tion is assessed in Fig. 15, where we compare the FONLL-
A, FONLL-C and FONLL-E results, all shown as a ratio to
FONLL-E, the latter also including the IHOU as in Fig. 14.
Clearly, convergence is faster at higher scales due to asymp-
totic freedom, and it appears that the perturbative expansion
has essentially converged for Q2 � 10 GeV2. On the other
hand, the impact of aN3LO at low scale is sizable, up to 50%
for small Q2 and x = 2×10−3. The IHOUs are correspond-
ingly sizable at low scale, and in fact always larger than the
difference between the NNLO and aN3LO results except at
the highest x values and the lowest scales, implying that for
the charm structure function aN3LO may be more accurate,
but possibly not more precise than NNLO.

An analogous study of perturbative convergence of the
inclusive structure function is shown in Fig. 16 (note the
different scale on the y axis). Interestingly, the effect of the
aN3LO corrections changes sign when going from x = 2 ×
10−4 to larger values of x . In general, N3LO corrections are
smaller at the inclusive level: specifically, aN3LO corrections
to the inclusive structure function are below 2% for Q2 ∼> 10
GeV2, and at most of order 10% around the charm mass
scale. The impact of the IHOUs on the heavy coefficient is
further reduced due to the fact that charm contributes at most
one quarter of the total structure function. Consequently, the
aN3LO correction to the NNLO result is now larger than the
IHOU in a significant kinematic region. This, together with
the fact that aN3LO corrections are comparable or larger than
typical experimental uncertainties on structure function data,
motivates their inclusion in a global PDF determination.

3.3 N3LO corrections to hadronic processes

N3LO corrections to the total cross-section for inclusive
neutral- (NC) and charged-current (CC) Drell–Yan produc-
tion [11,12] are available through the n3loxs public code [8],
both for on-shell W and Z and as a function of the dilepton
invariant mass m��. Differential distributions at the level of
leptonic observables for the same processes have also been
computed [18,19], but are not publicly available. No N3LO
calculations are available for other processes included in the
NNPDF4.0 dataset.

The ratio of the NC total cross-section evaluated at two
subsequent perturbative orders with a fixed set of PDFs, cho-
sen as NNPDF4.0 NNLO when comparing NNLO to NLO
results, and aN3LO when comparing N3LO to NNLO results,
is shown in Fig. 17. Results are shown in the high-mass
region, as a function of m��, with the same binning as the
ATLAS 7 TeV measurement [103]. Perturbative convergence
is apparent, with the N3LO/NNLO ratio closer to unity and
smoother than its NNLO/NLO counterpart: while NNLO cor-
rections range between +0.5% and +4%, at N3LO they are
reduced to −1.2% and +0.5%.

Total cross-section data are obtained by extrapolating
measurements performed in a fiducial region. Whereas for
NC Drell–Yan production in the central rapidity region
and for dilepton invariant masses around the Z -peak, the
N3LO/NNLO cross-section ratio depends only mildly on the
dilepton rapidity y�� [18,19], it is unclear whether this is the
case also off-peak or at very large and very small rapidities.
Hence, the inclusion of N3LO corrections for hadronic pro-
cesses is, at present, not fully reliable. We have consequently
not included them in our default determination, but only in a
dedicated variant, with the goal of assessing their impact.

The datasets for which N3LO corrections have been
included in this variant are listed in Table 3. We include the
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Fig. 16 Same as Fig. 15 for the inclusive structure function F (tot)
2 (x, Q2). Note the different scale on the y axis

Fig. 17 Ratio of the total NC Drell–Yan cross-section as a function
of the NNLO/NLO and N3LO/NNLO calculations for the inclusive
NC Drell–Yan cross-section in bins of m��, the invariant mass of the
final-state dilepton pair, using the n3loxs code, integrated over all
other kinematic variables. The m�� binning is chosen to be that of the

ATLAS 7 TeV high-mass DY measurement [103]. The same PDF set
is used in the numerator and denominator, namely NNPDF4.0 NNLO
(for NNLO/NLO) and aN3LO (for N3LO/NNLO). The vertical bands
show the MHOU on the K -factors computed from scale variations

high-mass NC cross-section, the Z rapidity distribution in
the central rapidity region for on-shell Z -production, and
the total W and Z cross-sections. For all these processes the
N3LO cross-section is determined by multiplying the NNLO
result by a K -factor determined using a fixed underlying PDF
set, namely the aN3LO NNPDF4.0 PDF set to be discussed
in Sect. 4 below. Specifically, for the rapidity distribution we

take the same fixed K -factor as for the total cross-section. We
do not include off-shell or double-differential rapidity distri-
butions (specifically from CMS), off-forward rapidity distri-
butions (specifically from LHCb) and low-mass total cross-
sections, for all of which the approximation of assuming the
K -factor to be independent of rapidity and/or amenable to
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fiducial extrapolation is even less reliable. The datasets are
labeled as in Table 2.4 of Ref. [37].4

Despite the fact that we are not yet able to determine reli-
ably N3LO corrections for currently available LHC measure-
ments, we wish to include the full NNPDF4.0 dataset in our
aN3LO PDF determination. To this purpose, we endow all
data for which N3LO are not included with an extra uncer-
tainty that accounts for the missing N3LO terms. This is esti-
mated using the methodology of Refs. [35,36], recently used
in Ref. [38] to produce a variant of the NNPDF4.0 PDF sets
that includes MHOUs.

Thus, when not including N3LO corrections to the hard
cross-section, the theory prediction is evaluated by combin-
ing aN3LO evolution with the NNLO cross-sections. The
prediction is then supplemented with a theory covariance
matrix, computed varying the renormalization scale μR using
a three-point prescription [35,36]:

covNNLO
mn = 1

2
(�m(+)�n(+) + �m(−)�n(−)) , (3.8)

analogous to Eq. (3.6), but now with �m(±) the shift in
the prediction for the m-th data point obtained by replac-
ing the coefficient functions with those obtained by perform-
ing upper or lower renormalization scale variation using the
methodology of Ref. [36] (as implemented and discussed in
Ref. [38], Eq. (2.9)). This MHOU covariance matrix is then
added to the IHOU covariance matrix as a further term on
the right-hand side of Eq. (2.20).

The impact of this uncertainty is shown in Fig. 18, where
we show for all hadronic datasets the square root of the diag-
onal entries of the MHOU covariance matrix Eq. (3.8), com-
pared to those of the IHOU covariance matrix Eq. (2.20), and
to the experimental uncertainties, all normalized to the cen-
tral theory prediction. The MHOU is generally larger than
the IHOU, indicating that the missing N3LO terms in the
hard cross-sections are larger than the IHOU uncertainty in
N3LO perturbative evolution. The experimental uncertainties
are generally larger still.

In addition to the NNPDF4.0 aN3LO baseline PDF set
obtained in this manner, we will also produce a NNPDF4.0
MHOU aN3LO set, in analogy to the NLO and NNLO
MHOU sets recently presented in Ref. [38]. For this set,
MHOUs on both perturbative evolution and on the hard
matrix elements are included using the methodology of Refs.
[35,36] with a theory covariance matrix determined perform-
ing combined correlated renormalization and factorization
scale variations with a 7-point prescription, as discussed in
detail in Ref. [38]. In this case, we simply perform scale
variation on the expressions at the order at which they are

4 The number of datapoints for the rapidity distributions differs from
the numbers in this table because here we only include Z distributions.

being computed, namely aN3LO for anomalous dimensions
and DIS coefficient functions and NNLO for hadronic pro-
cesses. The scale variation then is automatically larger and
suitable deweights processes for which N3LO corrections are
not available. The possibility of simultaneously including in
a PDF determination processes for which theory predictions
are only available at different perturbative orders is an advan-
tage of the inclusion of MHOUs in the PDF determination,
as already pointed out in Refs. [107,108].

4 NNPDF4.0 at aN3LO

We now present the aN3LO NNPDF4.0 PDF sets. They have
been obtained by using the dataset and methodology dis-
cussed in [37] and used for the construction of the LO, NLO,
and NNLO NNPDF4.0 presented there, now extended to
aN3LO. The aN3LO results are obtained using the approx-
imate N3LO splitting functions of Sect. 2, the exact mass-
less and approximate massive N3LO coefficient functions of
Sect. 3.1, and NNLO hadronic cross-sections supplemented
by an extra uncertainty as per Sect. 3.3.

Theoretical predictions are obtained using the new theory
pipeline of Ref. [70], which relies on the EKO evolution code
[40] and on the YADISM DIS module [41]. As discussed in
Sect. 3.2, this pipeline in particular includes a new FONLL
implementation, that differs from the previous one by sub-
leading terms. A further small difference in comparison to
Ref. [37] is the correction of a few minor bugs in the data
implementation. The overall impact of all these changes was
assessed in Appendix A of Ref. [109], and was found to be
very limited, so that the new and old implementations can
be considered equivalent, and the PDF sets presented here
can be considered the extension to aN3LO of the NNPDF4.0
PDF sets of Ref. [37].

In addition to the default NNPDF4.0 aN3LO PDF deter-
mination, we also present an aN3LO PDF determination
that includes MHOUs on all the theory predictions used in
the PDF determination. This is constructed using the same
methodology recently used to produce the NNPDF4.0MHOU
NNLO PDF set in Ref. [38]. In order to be able to discuss
perturbative convergence and the impact of MHOUs we will
also present a NNPDF4.0MHOU NLO PDF set constructed
using the same methodology, and exactly the same dataset
as the default NNPDF4.0 NLO PDF set (which differs from
the NNPDF4.0 NNLO dataset).

We finally construct two variants of the aN3LO PDF sets
(both with and without MHOUs) with modified N3LO the-
ory. In a first variant, we replace our own approximation to
the N3LO anomalous dimensions, discussed in Sect. 2, with
that of Refs. [28–30]. In the second variant, we will also
include N3LO corrections for the processes listed in Table 3,
as discussed in Sect. 3.3.
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Fig. 18 Same as Fig. 13 now comparing the IHOU from Eq. (2.20)
with the MHOU from Eq. (3.8) due to the missing N3LO correction
to the matrix element. Results are shown for all hadronic data in the

NNPDF4.0 dataset: specifically Drell–Yan (top) and top pair, single
top, single-inclusive jet, prompt photon and dijet production (bottom)

Table 3 The LHC NC DY production datasets in NNPDF4.0 for which an N3LO K -factor has been included in a variant of the default aN3LO
PDF determination (see Sect. 4). For each dataset we indicate the published references, the number of datapoints and the kinematic variables

Dataset References ndat Kin1 Kin2 [GeV] C-factor N3LO/NNLO

ATLAS high-mass DY 7 TeV [103] 13 |η�| ≤ 2.1 116 ≤ m�� ≤ 1500 dσ/dm��

ATLAS Z 7 TeV (L = 35 pb−1) [104] 8 |η�, yZ | ≤ 3.2 Q = mZ dσ/dm�� (66 < m�� < 150)

ATLAS Z 7 TeV (L = 4.6 fb−1) CC [105] 24 |η�, yZ | ≤ 2.5, 3.6 Q = mZ dσ/dm�� (46 < m�� < 116)

ATLAS σ tot
W,Z 13 TeV [106] 3 – Q = mW ,mZ σ
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We first assess the fit quality, then present the PDFs and
their uncertainties, and study perturbative convergence and
the effect on it of the inclusion of MHOUs. We then specif-
ically study the impact of aN3LO corrections on intrinsic
charm. We then turn to the variants, and finally compare our
results to the recent MSHT20 aN3LO PDFs.

4.1 Fit quality

Tables 4, 5, 6, 7 display the number of data points and the
χ2 per data point obtained in the NLO, NNLO, and aN3LO
NNPDF4.0 fits with and without MHOUs. In Table 4 the
datasets are grouped according to the process categorization
used in Ref. [38]. Results for individual datasets are displayed
in Table 5 (NC and CC DIS), in Table 6 (NC and CC DY),
and in Table 7 (top pairs, single-inclusive jets, dijets, isolated
photons, and single top). The naming of the datasets follows
Ref. [37]. The value of the total χ2 per data point is also
shown as a function of the perturbative order in Fig. 19.

The NLO and NNLO results without MHOUs are obtained
using the NLO and NNLO NNPDF4.0 PDF sets [37].
The NNLO result with MHOUs is obtained using the
NNPDF4.0MHOU NNLO set from Ref. [38], while, as
already mentioned, the NNPDF4.0MHOU NLO presented
here for the first time uses an identical methodology to
NNPDF4.0MHOU NNLO [38], but the same dataset as
NNPDF4.0 NLO [37]. Hence, the datasets with and without
MHOU are always the same, but the NLO and NNLO datasets
are not the same but rather follow Ref. [37]. The N3LO
dataset is the same as NNLO. In all cases, the theoretical
predictions entering the computation of the χ2 are obtained
with the new theory pipeline. The covariance matrix, when-
ever needed, is computed as described in Sect. 4.1 of Ref.
[38]. The N3LO predictions are computed with the afore-
mentioned aN3LO PDF sets. These are based on the same
datasets and kinematic cuts as the NNPDF4.0 NNLO PDF
sets, use the theoretical predictions discussed in Sects. 2,
3, and are supplemented with a IHOU covariance matrix as
discussed in Sects. 2.2–3.1 and a MHOU for hadronic pro-
cesses for which N3LO hard cross-sections are not available
as discussed in Sect. 3.3.

Table 4 and Fig. 19 show that without MHOUs fit qual-
ity improves as the perturbative order increases. Note that
this also happens when going from NNLO to N3LO, despite
the fact that N3LO corrections are only partially included,
with hadronic matrix elements still computed at NNLO. This
shows that the impact of N3LO corrections to evolution and
DIS coefficient functions is significant enough to affect fit
quality in a way that is qualitatively compatible with what
one would expect when adding an extra perturbative order
to the improvement already seen when going from NLO to
NNLO.

On the other hand, when MHOUs are included, fit quality
becomes independent of perturbative order within uncertain-
ties (note that, with Ndat = 4462, σχ2 = 0.03). This suggests
that the MHOU covariance matrix estimated through scale
variation is correctly reproducing the observed shift between
perturbative orders, i.e. the true MHOU. Note that if true this
also means that at aN3LO the missing N3LO corrections to
hadronic processes are correctly accounted for by the corre-
sponding MHOU which is always included. Also, at aN3LO
the fit quality is the same within uncertainties irrespective of
whether MHOUs are included or not. This strongly suggests
that inclusion of higher order terms in perturbative evolu-
tion and DIS coefficient function would not lead to further
improvements, i.e. that in this respect, with experimental
uncertainties, current methodology and current dataset the
perturbative expansion has converged.

4.2 Parton distributions

We now examine the NNPDF4.0 aN3LO parton distributions.
We compare the NLO, NNLO and aN3LO NNPDF4.0 PDFs,
obtained without and with inclusion of MHOUs, in Figs. 20,
21 and in Figs. 22, 23, respectively. Specifically, we show
the up, antiup, down, antidown, strange, antistrange, charm
and gluon PDFs at Q = 100 GeV, normalized to the aN3LO
result, as a function of x in logarithmic and linear scale. Error
bands correspond to one sigma PDF uncertainties, which do
(MHOU sets) or do not (no MHOU sets) include MHOUs on
all theory predictions used in the fit. The PDF sets, with and
without MHOUs, are the same used to compute the values
of the χ2 in Tables 4, 5, 6, 7.

The excellent perturbative convergence seen in the fit qual-
ity is also manifest at the level of PDFs. In particular, the
NNLO PDFs are either very close to or indistinguishable
from their aN3LO counterparts. Inclusion of MHOUs fur-
ther improves the consistency between NNLO and aN3LO
PDFs, which lie almost on top of each other. This means that
the NNLO PDFs are made more accurate by the inclusion of
MHOUs, and that the aN3LO PDFs have converged, in the
sense discussed above. Exceptions to this stability are the
charm and gluon PDFs, for which aN3LO corrections have a
sizable impact. In the case of charm, they lead to an enhance-
ment of the central value of about 4% for x ∼ 0.05; in the
case of gluon, to a suppression of about 2–3% for x ∼ 0.005.
In both cases, inclusion of MHOUs leads to an increase in
PDF uncertainties by about 1–2%. This makes the NNLO
and aN3LO charm PDFs with MHOUs compatible within
uncertainties, and the NNLO and aN3LO gluon PDFs with
MHOU almost compatible.

Figure 24 presents a comparison similar to that of Figs. 20,
21, 22 for the gluon-gluon, gluon-quark, quark-quark, and
quark-antiquark parton luminosities. These are shown inte-
grated in rapidity as a function of the invariant mass of the
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Table 4 The number of data points and the χ2 per data point obtained in the NLO, NNLO, and aN3LO NNPDF4.0 fits without and with MHOUs,
see text for details. The datasets are grouped according to the same process categorization as that used in Ref. [38]

Dataset NLO NNLO aN3LO

Ndat No MHOU MHOU Ndat No MHOU MHOU Ndat No MHOU MHOU

DIS NC 1980 1.30 1.22 2100 1.22 1.20 2100 1.22 1.20

DIS CC 988 0.92 0.87 989 0.90 0.90 989 0.91 0.92

DY NC 667 1.49 1.32 736 1.20 1.15 736 1.17 1.16

DY CC 193 1.31 1.27 157 1.45 1.37 157 1.37 1.36

Top pairs 64 1.90 1.24 64 1.27 1.43 64 1.23 1.41

Single-inclusive jets 356 0.86 0.82 356 0.94 0.81 356 0.84 0.83

Dijets 144 1.55 1.81 144 2.01 1.71 144 1.78 1.67

Prompt photons 53 0.58 0.47 53 0.76 0.67 53 0.72 0.68

Single top 17 0.35 0.34 17 0.36 0.38 17 0.35 0.36

Total 4462 1.24 1.16 4616 1.17 1.13 4616 1.15 1.14

Table 5 Same as Table 4 for DIS NC (top) and DIS CC (bottom) datasets

Dataset NLO NNLO aN3LO

Ndat No MHOU MHOU Ndat No MHOU MHOU Ndat No MHOU MHOU

NMC Fd
2 /F p

2 121 0.87 0.86 121 0.87 0.88 121 0.88 0.88

NMC σNC,p 203 1.82 1.30 204 1.57 1.33 204 1.57 1.36

SLAC F p
2 33 1.64 0.74 33 0.91 0.68 33 0.93 0.72

SLAC Fd
2 34 0.90 0.68 34 0.61 0.54 34 0.62 0.58

BCDMS F p
2 333 1.62 1.24 333 1.40 1.29 333 1.39 1.40

BCDMS Fd
2 248 1.05 1.00 248 1.01 0.99 248 1.04 1.03

HERA I+II σNC e− p 159 1.44 1.40 159 1.40 1.39 159 1.45 1.40

HERA I+II σNC e+ p (Ep = 460 GeV) 192 1.12 1.05 204 1.09 1.04 204 1.07 1.05

HERA I+II σNC e+ p (Ep = 575 GeV) 236 0.85 0.84 254 0.93 0.88 254 0.87 0.88

HERA I+II σNC e+ p (Ep = 820 GeV) 54 1.15 0.85 70 1.12 0.95 70 0.96 0.86

HERA I+II σNC e+ p (Ep = 920 GeV) 317 1.30 1.21 377 1.31 1.25 377 1.27 1.24

HERA I+II σ c
NC 24 2.18 1.40 37 1.96 1.75 37 1.86 1.57

HERA I+II σ b
NC 26 1.42 1.05 26 1.44 1.11 26 1.26 1.07

CHORUS σν
CC 416 0.96 0.95 416 0.96 0.97 416 0.97 0.98

CHORUS σ ν̄
CC 416 0.90 0.88 416 0.88 0.87 416 0.88 0.88

NuTeV σν
CC (dimuon) 39 0.24 0.22 39 0.33 0.33 39 1.27 1.28

NuTeV σ ν̄
CC (dimuon) 36 0.43 0.35 37 0.56 0.64 37 0.63 0.59

HERA I+II σCC e− p 42 1.34 1.19 42 1.25 1.29 42 1.29 1.34

HERA I+II σCC e+ p 39 1.26 1.22 39 1.23 1.25 39 1.27 1.28

final state mX for a center-of-mass energy
√
s = 14 TeV.

Their definition follows Eqs. (1)-(4) of Ref. [110].
As already observed for PDFs, perturbative convergence

is excellent, and improves upon inclusion of MHOUs. The
NNLO and aN3LO results are compatible within uncertain-
ties for the gluon-quark, quark-quark, and quark-antiquark
luminosities. Some differences are seen for the gluon-
gluon luminosity, consistent with the differences seen in
the gluon PDF. Specifically, the aN3LO corrections lead to
a suppression of the gluon-gluon luminosity of 2–3% for

mX ∼ 100 GeV. This effect is somewhat compensated by
an increase in uncertainty of about 1% upon inclusion of
MHOUs. Indeed, the NNLO and aN3LO gluon-gluon lumi-
nosities for mX ∼ 100 GeV differ by about 2.5σ without
MHOU, but become almost compatible within uncertainties
when MHOUs are included.

All in all, these results show that aN3LO corrections are
generally small, except for the gluon PDF, and that at aN3LO
the perturbative expansion has all but converged, with NNLO
and aN3LO PDFs very close to each other, especially upon
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Table 6 Same as Table 4 for DY NC (top) and DY CC (bottom) datasets

Dataset NLO NNLO aN3LO

Ndat No MHOU MHOU Ndat No MHOU MHOU Ndat No MHOU MHOU

E866 σ d/2σ p (NuSea) 15 0.59 0.47 15 0.52 0.51 15 0.53 0.51

E866 σ p (NuSea) 89 1.33 0.86 89 1.59 1.00 89 1.08 1.03

E605 σ d/2σ p (NuSea) 85 0.43 0.42 85 0.46 0.45 85 0.45 0.45

E906 σ d/2σ p (SeaQuest) 6 1.47 0.74 6 0.97 0.90 6 0.82 0.88

CDF Z differential 28 1.23 1.24 28 1.23 1.18 28 1.23 1.22

D0 Z differential 28 0.69 0.71 28 0.64 0.64 28 0.64 0.63

ATLAS low-mass DY 7 TeV 4 0.69 0.66 6 0.88 0.78 6 0.78 0.76

ATLAS high-mass DY 7 TeV 5 1.74 1.66 5 1.60 1.67 5 1.64 1.68

ATLAS Z 7 TeV (L = 35 pb−1) 8 0.67 0.44 8 0.58 0.57 8 0.56 0.61

ATLAS Z 7 TeV (L = 4.6 fb−1) CC 16 3.82 2.99 24 1.80 1.68 24 1.66 1.69

ATLAS Z 7 TeV (L = 4.6 fb−1) CF 15 1.77 1.22 15 1.07 1.02 15 1.02 0.99

ATLAS low-mass DY 2D 8 TeV 47 1.38 0.94 60 1.23 1.08 60 1.17 1.13

ATLAS high-mass DY 2D 8 TeV 48 1.52 1.38 48 1.11 1.08 48 1.09 1.09

ATLAS σ tot
Z 13 TeV 1 0.12 0.41 1 0.24 0.60 1 0.24 0.66

ATLAS Z pT 8 TeV (pT ,m��) 41 1.08 0.91 44 0.91 0.91 44 0.89 0.89

ATLAS Z pT 8 TeV (pT , yZ ) 28 0.87 0.52 48 0.90 0.70 48 0.77 0.68

CMS DY 2D 7 TeV 88 1.29 1.11 110 1.34 1.32 110 1.34 1.36

CMS Z pT 8 TeV 28 1.66 1.47 28 1.40 1.41 28 1.35 1.39

LHCb Z → ee 7 TeV 9 1.47 1.18 9 1.65 1.53 9 1.48 1.46

LHCb Z → μ 7 TeV 15 1.03 0.87 15 0.80 0.73 15 0.77 0.73

LHCb Z → ee 8 TeV 17 1.58 1.38 17 1.24 1.26 17 1.31 1.27

LHCb Z → μ 8 TeV 15 1.25 1.06 15 1.44 1.59 15 1.60 1.60

LHCb Z → ee 13 TeV 15 1.68 1.60 15 1.72 1.80 15 1.78 1.76

LHCb Z → μμ 13 TeV 16 1.10 1.11 16 0.94 0.99 16 0.99 0.94

D0 W muon asymmetry 8 2.42 2.17 9 1.86 1.95 9 2.07 2.03

ATLAS W 7 TeV (L = 35 pb−1) 22 1.20 1.13 22 1.11 1.12 22 1.09 1.12

ATLAS W 7 TeV (L = 4.6 fb−1) 22 2.18 2.13 22 2.08 2.16 22 2.16 2.10

ATLAS σ tot
W 13 TeV 2 0.16 0.54 2 1.21 1.60 2 1.38 1.67

ATLAS W++jet 8 TeV 15 0.26 0.28 15 0.79 0.79 15 0.73 0.73

ATLAS W−+jet 8 TeV 15 0.98 1.27 15 1.49 1.45 15 1.41 1.41

CMS W electron asymmetry 7 TeV 11 0.92 1.03 11 0.84 0.85 11 0.82 0.86

CMS W muon asymmetry 7 TeV 11 2.03 1.77 11 1.71 1.73 11 1.70 1.71

CMS W rapidity 8 TeV 22 0.93 0.74 22 1.33 1.03 22 1.11 1.08

LHCb W → μ 7 TeV 14 1.63 1.26 14 2.78 1.99 14 2.12 2.03

LHCb W → μ 8 TeV 14 0.60 0.44 14 0.97 0.92 14 0.80 0.84

inclusion of MHOUs. They also show that MHOUs generally
improve the accuracy of PDFs, though at aN3LO they have a
very small impact. The phenomenological consequences of
this state of affairs will be further discussed in Sect. 5.

4.3 PDF uncertainties

We now take a closer look at PDF uncertainties. In Fig. 25
we display one sigma uncertainties for the NNPDF4.0 NLO,
NNLO, and aN3LO PDFs with and without MHOUs at

Q = 100 GeV. All uncertainties are normalized to the central
value of the NNPDF4.0 aN3LO PDF set with MHOUs. The
NLO uncertainty is generally the largest of all in the absence
of MHOUs, and for quark distributions the smallest once
MHOUs are included. All other uncertainties, at NNLO and
aN3LO, with and without MHOUs, are quite similar to each
other, especially for quark PDFs. The fact that upon inclusion
of an extra source of uncertainty, namely the MHOU, PDF
uncertainties are reduced (at NLO) or unchanged (at NNLO
and aN3LO) may look counter-intuitive. However, as already
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Table 7 Same as Table 4 for (from top to bottom) top pair, single-inclusive jet, isolated photon and single top production datasets

Dataset NLO NNLO aN3LO

Ndat No MHOU MHOU Ndat No MHOU MHOU Ndat No MHOU MHOU

ATLAS σ tot
t t 7 TeV 1 10.4 0.96 1 4.50 2.40 1 2.78 2.05

ATLAS σ tot
t t 8 TeV 1 1.74 0.59 1 0.02 0.03 1 0.04 0.08

ATLAS σ tot
t t 13 TeV (L=139 fb−1) 1 3.82 0.96 1 0.49 0.41 1 0.51 0.44

ATLAS t t̄ �+jets 8 TeV (1/σdσ/dyt ) 4 4.16 1.79 4 3.13 3.70 4 2.98 3.64

ATLAS t t̄ �+jets 8 TeV (1/σdσ/dyt t̄ ) 4 8.93 3.73 4 4.50 5.80 4 4.26 4.92

ATLAS t t̄ 2� 8 TeV (1/σdσ/dyt t̄ ) 4 1.94 1.76 4 1.60 1.86 4 1.66 1.80

CMS σ tot
t t 5 TeV 1 0.61 0.73 1 0.02 0.01 1 0.03 0.02

CMS σ tot
t t 7 TeV 1 5.27 1.30 1 1.01 0.50 1 0.60 0.34

CMS σ tot
t t 8 TeV 1 3.50 0.85 1 0.26 0.17 1 0.21 0.10

CMS σ tot
t t 13 TeV 1 0.75 0.26 1 0.06 0.01 1 0.04 0.05

CMS t t̄ �+jets 8 TeV (1/σdσ/dyt t̄ ) 9 1.87 1.59 9 1.21 1.59 9 1.31 1.52

CMS t t̄ 2D 2� 8 TeV (1/σdσ/dyt dmtt̄ ) 15 2.03 1.89 15 1.30 1.25 15 1.28 1.37

CMS t t̄ 2� 13 TeV (dσ/dyt ) 10 0.78 0.69 10 0.51 0.59 10 0.55 0.60

CMS t t̄ �+jet 13 TeV (dσ/dyt ) 11 0.66 0.25 11 0.60 0.66 11 0.52 0.71

ATLAS incl. jets 8 TeV, R = 0.6 171 0.67 0.74 171 0.68 0.64 171 0.68 0.64

CMS incl. jets 8 TeV 185 0.95 0.83 185 1.19 0.95 185 0.97 0.99

ATLAS dijets 7 TeV, R = 0.6 90 1.47 1.72 90 2.14 1.69 90 1.76 1.63

CMS dijets 7 TeV 54 1.57 2.01 54 1.79 1.74 54 1.84 1.78

ATLAS isolated γ prod. 13 TeV 53 0.57 0.47 53 0.76 0.67 53 0.72 0.68

ATLAS single t Rt 7 TeV 1 0.43 0.29 1 0.50 0.57 1 0.51 0.58

ATLAS single t Rt 13 TeV 1 0.04 0.03 1 0.06 0.07 1 0.06 0.07

ATLAS single t 7 TeV (1/σdσ/dyt ) 3 0.83 0.84 3 0.96 0.94 3 0.97 0.97

ATLAS single t 7 TeV (1/σdσ/dyt̄ ) 3 0.06 0.06 3 0.06 0.06 3 0.06 0.06

ATLAS single t 8 TeV (1/σdσ/dyt ) 3 0.38 0.31 3 0.25 0.26 3 0.22 0.24

ATLAS single t 8 TeV (1/σdσ/dyt̄ ) 3 0.19 0.21 3 0.19 0.19 3 0.20 0.20

CMS single t σt + σt̄ 7 TeV 1 0.89 0.88 1 0.74 0.84 1 0.39 0.43

CMS single t Rt 8 TeV 1 0.15 0.08 1 0.18 0.20 1 0.18 0.21

CMS single t Rt 13 TeV 1 0.33 0.27 1 0.36 0.38 1 0.36 0.38

Fig. 19 The values of the total χ2 per data point in the NNPDF4.0
NLO, NNLO, and aN3LO fits without and with MHOUs

pointed out in Refs. [34,38,111], this can be understood to
be a consequence of the increased compatibility of the data
due to inclusion of MHOUs and of higher-order perturbative
corrections.

The impact of MHOUs on NLO and NNLO PDFs was
extensively assessed in Ref. [38]. In a similar vein, here we
focus on the impact of MHOUs on aN3LO PDFs. To this
purpose, in Fig. 26 we compare the NNPDF4.0 aN3LO PDFs
with and without MHOUs. The related comparison for parton
luminosities is presented in Fig. 27. Again, aN3LO PDFs and
luminosities with and without MHOU are very compatible
with each other. This evidence reinforces the expectation that
perturbative corrections beyond N3LO will not alter PDFs
significantly, at least with current data and methodology.

In analogy with Ref. [38], we also compare the φ estimator
introduced in Ref. [112] (see Eq. (4.6) there). The estimator
gives the ratio of the average correlated PDF uncertainty to
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Fig. 20 The NLO, NNLO and aN3LO NNPDF4.0 PDFs at Q = 100 GeV. We display the up, antiup, down, antidown, strange, antistrange, charm
and gluon PDFs normalized to the aN3LO result. Error bands correspond to one sigma PDF uncertainties, not including MHOUs on the theory
predictions used in the fit
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Fig. 21 Same as Fig. 20 in linear scale
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Fig. 22 Same as Fig. 20 for NNPDF4.0MHOU PDF sets. Error bands correspond to one sigma PDF uncertainties also including MHOUs on the
theory predictions used in the fit
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Fig. 23 Same as Fig. 22 in linear scale
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Fig. 24 The gluon-gluon, gluon-quark, quark-quark, and quark-
antiquark parton luminosities as a function of mX at

√
s = 14 TeV,

computed with NLO, NNLO and aN3LO NNPDF4.0 PDFs without

MHOUs (left) and with MHOUs (right), all shown as a ratio to the
respective aN3LO results. Uncertainties are as in Figs. 20, 21, 22
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Fig. 25 Relative one sigma uncertainties for the PDFs shown in Figs. 20, 21, 22. All uncertainties are normalized to the central value of the
NNPDF4.0 aN3LO set with MHOUs
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Fig. 26 Same as Figs. 20, 21, 22, now comparing NNPDF4.0 aN3LO PDFs without and with MHOUs
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Fig. 27 Same as Fig. 24, now comparing NNPDF4.0 aN3LO PDFs without and with MHOUs

Table 8 The φ uncertainty
estimator for NNPDF4.0 PDFs
at NLO, NNLO and aN3LO
without and with MHOUs for
the process categories as in
Table 4

Dataset NLO NNLO N3LO

No MHOU MHOU No MHOU MHOU No MHOU MHOU

DIS NC 0.14 0.13 0.15 0.13 0.13 0.13

DIS CC 0.11 0.11 0.12 0.12 0.12 0.12

DY NC 0.19 0.17 0.18 0.17 0.17 0.18

DY CC 0.33 0.27 0.35 0.32 0.31 0.32

Top pairs 0.18 0.17 0.17 0.17 0.16 0.19

Single-inclusive jets 0.13 0.13 0.13 0.13 0.13 0.13

Dijets 0.10 0.10 0.11 0.10 0.10 0.10

Prompt photons 0.06 0.07 0.06 0.06 0.05 0.05

Single top 0.04 0.04 0.04 0.04 0.04 0.04

Total 0.18 0.15 0.16 0.15 0.15 0.15

123



Eur. Phys. J. C           (2024) 84:659 Page 37 of 59   659 

the data uncertainty. As such, it provides an estimate of the
consistency of the data: consistent data are combined by the
underlying theory and lead to an uncertainty in the prediction
which is smaller than that of the original data. The value
of φ obtained in the NLO, NNLO, and aN3LO NNPDF4.0
fits with and without MHOUs (as in Table 4) is reported in
Table 8. It is clear that φ converges to very similar values with
the increase of the perturbative order and/or with inclusion
of MHOUs for both the total dataset and for most of the data
categories. This fact is further quantitative evidence of the
excellent perturbative convergence of the PDF uncertainties.

4.4 Implications for intrinsic charm

The availability of the aN3LO PDFs discussed in Sects. 4.2,
4.3 allows us to revisit and consolidate our recent results on
intrinsic charm. Specifically, based on the NNPDF4.0 NNLO
PDF determination, we have found evidence for intrinsic
charm [113] and an indication for a non-vanishing valence
charm component [114]. In these analyses, the dominant
source of theory uncertainty was estimated to come from the
matching conditions that are used in order to obtain PDFs
in a three-flavor charm decoupling scheme from high-scale
data, while MHOUs were assumed to be subdominant. The
uncertainty in the matching conditions was in turn estimated
by comparing results obtained using NNLO matching and
the best available aN3LO matching conditions, both applied
to NNLO PDFs.

It is now possible to improve these results on three counts.
First, we can now fully include MHOUs. Second, we can con-
sistently combine aN3LO matching conditions and aN3LO
PDFs, and perform a consistent comparison of NNLO and
aN3LO results. Finally, knowledge of aN3LO matching con-
ditions themselves is now improved thanks to recent results
[81] that were not available at the time of the analysis of
Ref. [113]. We will specifically discuss the determination of
the total intrinsic charm component and we do not consider
the valence component, because effects of MHOUs and of
the flavor scheme transformation are already very small at
NNLO [114].

To this purpose, in Fig. 28 we show the total charm PDF,
xc+(x, Q2), in the 4FNS at Q = 1.65 GeV and in the 3FNS,
as obtained from using NNPDF4.0 NLO, NNLO and aN3LO
without and with MHOUs. Note that in the 3FNS the charm
PDF does not depend on scale. Error bands correspond to one
sigma PDF uncertainties. The 4FNS results share the general
features discussed in Sect. 4.2: the perturbative expansion
converges nicely, with the aN3LO result very close to the
NNLO. The convergence is further improved by the inclu-
sion of MHOUs, which move the NNLO yet closer to the
aN3LO. The 3FNS result is especially remarkable: whereas
the combination of aN3LO matching with NNLO PDFs, used
in Ref. [113] to conservatively estimate MHOUs, was some-

what unstable, now results display complete stability, and in
particular the NNLO and aN3LO results completely coincide.

In order to assess the impact of MHOUs more clearly, in
Fig. 29 we compare the total charm PDF in the 3FNS with
and without MHOUs, respectively at NNLO and aN3LO.
At NNLO MHOUs have a small but non-negligible impact
on central values, with almost unchanged uncertainty, but
at aN3LO they have essentially no impact, confirming the
perturbative convergence of the result.

We thus proceed to a final re-assessment of the signifi-
cance of intrinsic charm through the pull, defined as the cen-
tral value divided by total uncertainty, using NNPDF4.0MHOU
NNLO and aN3LO PDFs. We estimate the total uncertainty
by adding in quadrature to the PDF uncertainty (which
already includes the MHOU from the theory predictions used
in the fit) a further theory uncertainty, taken equal to the dif-
ference between the central value at given perturbative order,
and that at the previous perturbative order (so at NNLO from
the difference to NLO, and so on). This now also includes the
MHOU due to change in the matching from 4FNS to 3FNS,
but also the shift in the 4FNS result that is in principle already
accounted for by the MHOU. Also, it conservatively assumes
that the shift between the current order and the next is equal
to that from the previous order, rather than smaller. Results
obtained with this conservative error estimate are shown in
Fig. 30. It is clear that the significance of intrinsic charm is
increased somewhat when going from NNLO to aN3LO. It
is now also somewhat increased already at NNLO in com-
parison to the result of Ref. [113], despite the more conser-
vative uncertainty estimate, thanks to the increased accuracy
of MHOU PDFs and the consistent and improved treatment
of matching aN3LO conditions. Indeed, local significance at
the peak is now more than three sigma for the default fit.

4.5 Dependence on the treatment of aN3LO corrections.

We now discuss two variants in the treatment of aN3LO cor-
rections: a different approximation to perturbative evolution,
and a different treatment of hadronic cross-sections.

The aN3LO PDF sets presented in Sect. 4.2 are based
on our approximation to the full set of N3LO splitting func-
tions presented in Sect. 2. This approximation was compared
in Sect. 2.7 to that recently presented in Refs. [22,28–30]
(FHMRUVV). In order to fully assess the impact of this
different approximation to N3LO perturbative evolution we
have repeated the aN3LO PDF determination, without and
with MHOUs, but now using the FHMRUVV approxima-
tion to N3LO perturbative evolution, with everything else
unchanged. PDFs obtained using the FHMRUVV approxi-
mation vs our own are compared in Fig. 31 without MHOUs
and in Fig. 32 with MHOUs. PDFs are displayed at Q =
100 GeV, normalized to the central value of our default result.
Differences turn out to be completely negligible, as might
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Fig. 28 The total charm PDF, xc+(x, Q2), in the 4FNS at Q =
1.65 GeV (left) and 3FNS (right), as obtained from the NNPDF4.0
NLO, NNLO, and aN3LO fits without (top) and with (bottom) MHOUs.

Error bands correspond to one sigma PDF uncertainties. Note that in
the 3FNS the charm PDF does not depend on scale

Fig. 29 Same as Fig. 28, now comparing the total charm PDF in the 3FNS with and without MHOUs, respectively at NNLO (left) and aN3LO
(right)
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Fig. 30 The pull (central value divided by total uncertainty) for the
total charm PDF in the 3FNS obtained in the NNPDF4.0 NNLO and
aN3LO fits with MHOUs

have been expected given the good agreement at the level of
splitting functions seen in Fig. 10.

As discussed in Sect. 3.3 N3LO corrections to hadronic
hard cross-sections are not included in our default aN3LO
PDF determination. We can however assess the impact of the
inclusion of all the publicly available corrections for all rele-
vant data in the NNPDF4.0 dataset, listed in Table 3 and dis-
cussed in Sect. 3.3, using the methodology discussed in that
Section. To this purpose, we have repeated the aN3LO PDF
determination, with and without MHOUs, now with N3LO
corrections for these datasets included. Note that for these
processes NNLO corrections are currently already included
through K -factors, hence this requires combining NNLO and
N3LO K -factors, with ensuing loss of accuracy, which is one
of the reasons why these corrections are not included in our
default aN3LO determination. MHOUs on these N3LO pre-
dictions can be determined by scale variation as usual, given
that renormalization scale variation at N3LO only requires
knowledge of the NNLO result.

The fit quality for the datasets of Table 3 both in the default
determinations (with and without MHOU, same as Table 6)
and after the inclusion of N3LO corrections (also with and
without MHOU) is shown in Table 9. The ensuing PDFs are
compared to the default NNPDF4.0 aN3LO in Fig. 33 without
MHOUs and in Fig. 34 with MHOUs. In both cases, PDFs are
displayed at Q = 100 GeV and are normalized to the cen-
tral value of the corresponding default NNPDF4.0 aN3LO
set. The impact of these N3LO corrections on fit quality is
very moderate, though in all cases but one (and in all cases
with MHOUs) it leads to improved agreement. At the level
of PDFs, however, the impact is only (barely) visible in the
PDFs without MHOUs, and even in this case it only signif-
icantly impacts the strange and antistrange PDFs, for which
it leads to an enhancement of 4–5% for x ∼ 0.1, though well
within the PDF uncertainty. Even this small effect is absent
in the PDFs with MHOUs. We conclude that at present avail-

able N3LO corrections for hadronic processes have no effect
on PDF determination. On the other hand, the improvement
in fit quality is reassuring, and suggests that a more signif-
icant effect might be seen once N3LO corrections become
available for a wider set of processes.

4.6 Comparison with MSHT20

We compare the NNPDF4.0 aN3LO PDF set to the only other
existing aN3LO PDF set, MSHT20 aN3LO [32]. As already
discussed in Sect. 2.7, MSHT20 aN3LO PDFs are determined
by fitting to the data the nuisance parameters that parametrize
the IHOU uncertainty on a prior approximation to splitting
functions. It follows that the ensuing central value is partly
determined by the data, and the IHOU is entirely data-driven.
When comparing NNPDF4.0 and MSHT20 aN3LO PDF sets
it should of course be borne in mind that the sets already differ
at NNLO due to differences in dataset and methodology. The
NNLO MSHT20 and NNPDF4.0 PDF sets were compared
in Fig. 21 and the corresponding parton luminosity in Fig. 60
of Ref. [37], while a detailed benchmarking was presented
in Ref. [115].

The comparison of the aN3LO sets is presented in Fig. 35,
where we show the NNPDF4.0 no MHOU set and the
MSHT20 set recommended as baseline in Ref. [32] at Q =
100 GeV, normalized to the NNPDF4.0 central value. All
error bands are one sigma uncertainties. The dominant differ-
ences between the PDF sets are the same as already observed
at NNLO, with the largest difference observed for the charm
PDF, which is independently parametrized in NNPDF4.0,
but not in MSHT20, where it is determined by perturba-
tive matching conditions. However, the differences, while
remaining qualitatively similar, are slightly reduced (by 1–
2%) when moving from NNLO to aN3LO. Exceptions are
the charm and especially the gluon PDF, which differ more
at aN3LO. Specifically, the gluon PDF, while reasonably
compatible for x � 0.07 at NNLO, disagrees at aN3LO,
with the MSHT20 result suppressed by 3–4% in the region
10−3 � x � 10−1, with a PDF uncertainty of 1-2%. This
suppression of the MSHT20 gluon can likely be traced to the
behavior of the Pgq splitting function seen in Fig. 10.

Parton luminosities are compared in Fig. 36. Again the
pattern is similar to that seen at NNLO, but now with a consid-
erable suppression of the gluon-gluon and gluon-quark lumi-
nosities in the MX ∼ 100 GeV region that can be traced to the
behavior of the gluon PDF seen in Fig. 35. The quark-quark
luminosity remains similar in MSHT20 and NNPDF4.0 both
at NNLO and aN3LO. The impact of these effects on the com-
putation of precision LHC cross-sections will be addressed
in Sect. 5.

In order to understand better the comparative impact of
aN3LO corrections, we compare for each set the NNLO
and aN3LO luminosities. Results are shown in Fig. 37, nor-
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Fig. 31 Same as Fig. 20, now comparing the NNPDF4.0 aN3LO PDFs and PDFs obtained using the FHMRUVV approximation to N3LO
perturbative evolution
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Fig. 32 Same as Fig. 31 for aN3LO PDF sets with MHOUs
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Table 9 The number of data
points and the χ2 per data point
for the datasets of Table 3
comparing the default fits (same
as Table 6) to fits in which
N3LO corrections are included
following the methodology of
Sect. 3.3, in both cases with and
without MHOUs

Dataset Default With N3LO K -factors

Ndat No MHOU MHOU Ndat No MHOU MHOU

ATLAS high-mass DY 7 TeV 5 1.64 1.68 5 1.63 1.56

ATLAS Z 7 TeV (L = 35 pb−1) 8 0.56 0.61 8 0.47 0.52

ATLAS Z 7 TeV (L = 4.6 fb−1) CC 24 1.66 1.69 24 1.90 1.59

ATLAS σ tot
Z 13 TeV 1 0.24 0.66 1 0.06 0.00

ATLAS σ tot
W 13 TeV 2 1.38 1.67 2 1.33 1.59

malized to the aN3LO result. The qualitative impact of the
aN3LO corrections on either set is similar, but with a stronger
aN3LO suppression of gluon luminosities for MSHT20.
In particular the gluon-gluon luminosity is suppressed for
102 � mX � 103 GeV by about 3% in NNPDF4.0 and 6%
in MSHT20 and the gluon-quark luminosity is suppressed
in the same region by about 1% in NNPDF4.0 and 3% in
MSHT20. In the case of the gluon-gluon luminosity the dif-
ferences between NNLO and aN3LO are larger than the
respective PDF uncertainties (that do not include MHOUs
in either case). As already mentioned in Sect. 2.7, a dedi-
cated benchmark of aN3LO results is ongoing and will be
presented in Ref. [84].

5 LHC phenomenology at aN3LO accuracy

We present a first assessment of the implications of aN3LO
PDFs for LHC phenomenology, by looking at processes for
which N3LO results are publicly available, namely the Drell–
Yan and Higgs total inclusive cross-sections. We present pre-
dictions at NLO, NNLO, and aN3LO using both NNPDF4.0
and MSHT20 PDFs, consistently matching the perturbative
order of the PDF and matrix element. At N3LO we also show
results obtained with the currently common approximation
of using NNLO PDFs with aN3LO matrix elements.

At each perturbative order, the uncertainty on the cross-
section is determined by adding in quadrature the PDF uncer-
tainty to the MHOU on the hard matrix element determined
performing 7-point renormalization and factorization scale
variation and taking the envelope of the results. This is the
procedure that is most commonly used for the estimation of
the total uncertainty on hadron collider processes, and we fol-
low it here for ease of comparison with available results. In
a more refined treatment, MHOUs on the hard cross-section
can be included through a theory covariance matrix for the
hard cross-section itself, like the MHOUs and IHOUs on
the PDF. This would then make it possible to keep track of
the correlation between these different sources of uncertainty
[116–118].

Here we plot results with a total uncertainty obtained
combining these uncertainties in quadrature (both with and

without MHOUs in the fit), and we also tabulate this total
uncertainty (without MHOUs in the fit) along with the PDF
uncertainty both with and without MHOUs. Also, in order to
assess the impact of the use of aN3LO PDFs, we plot N3LO
results obtained using NNLO and aN3LO PDFs, we tabu-
late the shift between the N3LO prediction obtained using
NNLO and aN3LO PDFs, and we compare it to previous esti-
mate of this expected shift based on the differences between
NNLO and NLO PDFs. Indeed, predictions for processes
computed at N3LO accuracy are commonly obtained using
NNLO PDFs, with an extra uncertainty assigned to the result
due to this mismatch in perturbative order between the PDF
and the matrix element. A commonly used prescription in
order to estimate this uncertainty [8,119] is to take it equal
to

�
app
NNLO ≡ 1

2

∣∣∣∣
∣
σNNLO

NNLO−PDF − σNNLO
NLO−PDF

σNNLO
NNLO−PDF

∣∣∣∣
∣
, (5.1)

namely to assume that the same percentage shift, computed
at one less perturbative order, would be twice as large. This
prescription can now be compared to the exact result

�exact
NNLO ≡

∣∣
∣∣∣∣

σN3LO
N3LO−PDF

− σN3LO
NNLO−PDF

σN3LO
N3LO−PDF

∣∣
∣∣∣∣
. (5.2)

5.1 Inclusive Drell–Yan production

We show results for inclusive charged-current and neutral-
current gauge boson production cross-sections followed by
their decays into the dilepton final state. Cross-sections are
evaluated using the n3loxs code [8] for different ranges in
the final-state dilepton invariant mass, Q = m�� for neutral-
current and Q = m�ν for charged-current scattering. Fig-
ure 38 displays the inclusive neutral-current Drell–Yan cross-
section pp → γ ∗/Z → �+�− and Figs. 39, 40 the charged-
current cross-sections pp → W± → �±ν�. We consider
one low-mass bin (30 GeV ≤ Q ≤ 60 GeV), the mass peak
bin (60 GeV ≤ Q ≤ 120 GeV), and two high-mass bins
(120 GeV ≤ Q ≤ 300 GeV and 2 TeV ≤ Q ≤ 3 TeV),
relevant for high-mass new physics searches [120]. In all
cases, we compare the NLO, NNLO, and aN3LO predictions
using NNPDF4.0 and MSHT20 PDFs determinations, with
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Fig. 33 Same as Fig. 20, now comparing the NNPDF4.0 aN3LO baseline PDF set without MHOUs to a variant obtained with inclusion of N3LO
corrections for the hadronic processes of Table 3
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Fig. 34 Same as Fig. 33 for aN3LO PDF sets with MHOUs
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Fig. 35 Same as Fig. 20, now comparing the NNPDF4.0 aN3LO baseline PDF set without MHOUs to the MSHT20 set recommended as baseline
in Ref. [32]
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Fig. 36 Same as Fig. 35 for parton luminosities as in Fig. 24

the same perturbative order in matrix element and PDFs,
and also the aN3LO result with NNLO PDFs, and then we
compare the aN3LO with NNPDF4.0 aN3LO PDFs with and
without MHOUs. The values of cross-sections and uncer-
tainties are collected in Table 10.

In general we observe a good perturbative convergence,
with predictions at two subsequent orders in agreement
within uncertainties, and generally improved convergence
upon including MHOUs on the PDF. Predictions based on
NNPDF4.0 and MSHT20 are always consistent with each
other within uncertainties. We can draw three main conclu-
sions from Figs. 38, 39, 40 and Table 10. First, in many cases
differences between the NNLO and N3LO predictions tend
to be reduced when using consistently the appropriate PDFs
at each order, rather than NNLO PDFs with N3LO matrix
elements (though in some cases the results are unchanged).
For instance, for the two lowest m�� bins for NC production
aN3LO PDFs drive upwards the N3LO prediction, making it
closer to the NNLO result. Second, the difference between

PDFs with and without MHOUs, while moderate, remains
non-negligible even at N3LO, where it starts being compa-
rable to the overall uncertainty, and thus it must be included
in precision calculations. Third, the impact of using aN3LO
instead of NNLO PDFs is actually smaller than the guess
based on the estimate Eq. (5.1).

5.2 Inclusive Higgs production

We now consider Higgs production in gluon fusion, in asso-
ciated production with vector bosons, and via vector-boson
fusion (VBF). Predictions are obtained using the ggHiggs

code [121] for gluon fusion, n3loxs for associate produc-
tion, and proVBFH code [122] for VBF. Results are shown in
Fig. 41 for gluon-fusion and VBF, and Fig. 42 for associate
production with W+ and Z (Table 11).

Here too we observe generally good perturbative conver-
gence, even for gluon fusion, that notoriously has a very
slowly converging expansion. Also in this case, there is gen-
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Fig. 37 Same as Fig. 36, now comparing aN3LO and NNLO parton luminosities, separately for the NNPDF4.0 (left) and MSHT20 (right) PDF
sets, normalized to the aN3LO result
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Fig. 38 The inclusive neutral-current Drell–Yan production cross-
section, pp → γ ∗/Z → �+�−, for different ranges of the dilepton
invariant mass Q = m��, from low to high invariant masses (top to bot-
tom). Results are shown (left) comparing NLO, NNLO and aN3LO with

matched perturbative order in the matrix element and PDF, and also at
aN3LO with NNLO PDFs using NNPDF4.0 and MSHT20 PDFs and
(right) at aN3LO with PDFs without and with MHOUs
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Fig. 39 Same as Fig. 38 for the inclusive charged-current Drell–Yan production cross-section, pp → W+ → �+ν�
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Fig. 40 Same as Fig. 38 for the inclusive charged-current Drell–Yan production cross-section, pp → W− → �−ν̄�

123



Eur. Phys. J. C           (2024) 84:659 Page 51 of 59   659 

Table 10 The N3LO cross-sections and uncertainties for the inclusive
gauge boson production processes displayed in Figs. 38, 39, 40 and
evaluated using the NNPDF4.0 and MSHT20 aN3LO PDFs. We show
the percentage total theory uncertainty δth, obtained adding in quadra-
ture the 7-point scale variation MHOUs and the PDF uncertainty δPDF
(not including MHOUs in the fit), which is also separately provided. In

the case of NNPDF4.0 the value of δPDF with MHOUs in the fit is also
listed. All uncertainties are expressed as percentage of the cross-section.
We finally show the error �exact

NNLO Eq. (5.2) due to using NNLO PDFs at
N3LO, and the estimate of this error �

app
NNLO Eq. (5.1), also expressed

as a percentage

Process NNPDF4.0 MSHT20

σ (pb) δth δnoMHOU
PDF δMHOU

PDF �
app
NNLO �exact

NNLO σ (pb) δthσ δPDF �
app
NNLO �exact

NNLO

W+ (p) 1.2 × 104 1.0 0.5 0.5 1.1 0.1 1.2 × 104 1.9 1.7 2.3 0.8

W− (p) 8.8 × 103 1.0 0.5 0.5 1.1 0.1 8.7 × 103 1.9 1.6 2.1 0.0

Z (p) 1.9 × 103 0.9 0.4 0.5 1.1 0.3 1.9 × 103 1.8 1.6 2.6 0.3

W+ (hm) 4.7 × 10−4 2.8 2.8 3.3 3.2 1.1 4.6 × 10−4 4.0 3.9 2.0 1.3

W− (hm) 1.4 × 10−4 2.9 2.9 3.3 3.3 0.1 1.5 × 10−4 4.2 4.2 2.0 0.6

Z (hm) 2.1 × 10−4 2.3 2.3 2.5 3.4 0.3 2.2 × 10−4 3.6 3.6 2.7 0.2

erally better agreement between NNPDF4.0 and MSHT20
as the perturbative order increases, except for gluon fusion
where the agreement is similar at all orders. Indeed, in all
cases MSHT20 and NNPDF4.0 results agree within uncer-
tainties at aN3LO, while they do not at NLO for VBF, nor
at NLO and NNLO for associated production. The impact
of using aN3LO PDFs instead of NNLO PDFs at N3LO
for NNPDF4.0 is very moderate for gluon fusion, somewhat
more significant for associated production, and more signif-
icant for VBF, in which it is comparable to the PDF uncer-
tainty. For MSHT20 instead a significant change from using
aN3LO instead of NNLO PDFs is also observed for gluon
fusion, where suppression of the cross-sections is seen when
replacing NNLO with aN3LO PDFs. This follows from the
behavior of the gluon luminosity seen in Fig. 37. The impact
of MHOUs on the PDFs is generally quite small on the scale
of the PDF uncertainty at all perturbative orders, and essen-
tially absent for gluon fusion. For associated production it
marginally improves perturbative convergence. Interestingly,
for NNPDF4.0, for all Higgs production processes consid-
ered, and especially for gluon fusion, the estimate Eq. (5.1) is
a substantial underestimate of the actual error which is made
using NNLO PDFs at N3LO. This follows from the fact that
(see Fig. 24) for mX ∼ 100 GeV the NNLO gluon-gluon
luminosity is actually closer to the NLO than to the aN3LO,
which in turn appears to be an accidental consequence of the
behavior of the gluon PDF for x ∼ 10−2.

6 Summary and outlook

We have presented the first aN3LO PDF sets within the
NNPDF framework, by constructing a full set of approximate
N3LO splitting functions based on available partial results
and known limits, approximate massive DIS coefficient func-
tions, and extending to this order the FONLL general-mass
scheme for DIS coefficient functions. We now summarize the

new PDF sets that we are releasing, our main conclusions on
their features, and our plans for future developments.

The NNPDF4.0 aN3LO PDF sets are available via the
LHAPDF6 interface,

http://lhapdf.hepforge.org/ .

Specifically, we provide an aN3LO NNPDF4.0 set

NNPDF40_an3lo_as_01180

that supplements the LO, NLO and NNLO sets of Ref. [37].
We also provide NLO and aN3LO NNPDF4.0MHOU sets

NNPDF40_nlo_as_01180_mhou
NNPDF40_an3lo_as_01180_mhou

that supplement the NNLO NNPDF4.0MHOU PDF set of
Ref. [38]. These sets include in the PDF uncertainty the
MHOU on the processes used for PDF determination, but
in all other respects (including the dataset) follow the default
sets to which they can be directly compared.

For both aN3LO sets, we also release the corresponding
sets including αs variations,

NNPDF40_an3lo_as_01180_pdfas
NNPDF40_an3lo_as_01180_mhou_pdfas

in which replicas 101 and 102 correspond to fits with
αs(mZ ) = 0.117 and 0.119 respectively, in order to evaluate
the combined PDF+αs uncertainties following the prescrip-
tion of [115,123,124].

All these sets are delivered as ensembles of Nrep = 100
Monte Carlo replicas.
However, we also make available Hessian variants following
[125,126] and denoted

NNPDF40_an3lo_as_01180_hessian
NNPDF40_an3lo_as_01180_mhou_hessian
NNPDF40_an3lo_as_01180_pdfas_hessian
NNPDF40_an3lo_as_01180_mhou_pdfas_hessian
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Table 11 Same as Table 10 for the Higgs production processes displayed in Figs. 41, 42

Process NNPDF4.0 MSHT20

σ (pb) δth δnoMHOU
PDF δMHOU

PDF �
app
NNLO �exact

NNLO σ (pb) δthσ δPDF �
app
NNLO �exact

NNLO

gg → h 43.8 4.8 0.6 0.7 0.2 2.2 42.3 5.1 1.7 1.4 5.3

h VBF 4.44 0.6 0.5 0.6 0.2 1.3 4.46 2.1 2.0 1.3 2.9

hW+ 0.97 0.6 0.5 0.6 0.2 0.5 0.95 1.5 1.4 0.8 0.9

hW− 0.61 0.6 0.6 0.6 0.2 0.3 0.60 1.6 1.5 0.9 1.0

hZ 0.87 0.5 0.4 0.5 0.1 0.3 0.85 1.4 1.4 1.1 0.8

Fig. 41 Same as Fig. 38 for Higgs production in gluon-fusion and via vector-boson fusion

each set comprising Neig = 50 eigenvectors.
All these sets are also available on the NNPDF Collabo-

ration website,

https://nnpdf.mi.infn.it/nnpdf4-0-n3lo/ .

where we also give the PDF sets discussed in Sect. 4.5 based
on variant treatments of the aN3LO corrections. In addition to
the LHAPDF grids themselves, all the results obtained in this
work are reproducible by means of the open-source NNPDF
code [39] and the related suite of theory tools.

We have provided a first assessment of these PDF sets by
comparing them to their NLO and NNLO counterparts with
and without MHOUs. Our main conclusions are the following

• For all PDFs good perturbative convergence is observed,
with differences decreasing as the perturbative order
increases, and the aN3LO result always compatible with
the NNLO within uncertainties.

• For quark PDFs the difference between NNLO and
aN3LO results is extremely small, suggesting that with
current data and methodology the effect of yet higher
orders is negligible.
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Fig. 42 Same as Fig. 38 for Higgs production in association with W+ and Z gauge bosons: from top to bottom, Zh, W+h, and W−h

• For the gluon PDF a more significant shift is observed
between NNLO and N3LO, thus making the inclusion of
N3LO important for precision phenomenology.

• The inclusion of MHOUs improves perturbative con-
vergence, mostly by shifting central values at each
order towards the higher-order result, by an amount that
decreases with increasing perturbative order.

• Upon inclusion of MHOUs the fit quality becomes all
but independent of perturbative order, and PDF uncer-
tainties generally decrease (or remain unchanged) due to
the improved data compatibility.

• The effect of MHOUs at N3LO is very small for quarks
but not negligible for the gluon PDF.
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• Evidence for intrinsic charm is somewhat increased
already at NNLO by the inclusion of MHOUs, and some-
what increased again when going from NNLO to N3LO.

• The impact of N3LO corrections on the total cross-section
for Higgs in gluon fusion is very small on the scale of the
PDF uncertainty.

All in all, these results underline the importance of the inclu-
sion of N3LO corrections and MHOUs for precision phe-
nomenology at sub-percent accuracy.

Future NNPDF releases will include by default MHOUs,
will be at all orders up to aN3LO, and will include a pho-
ton PDF. Specifically, we aim to extend to aN3LO with
MHOUs our recent construction of NNPDF4.0QED PDFs
[109]. Indeed, aN3LO PDFs including a photon PDF (such
as those recently released by MSHT20 [127]) will be a nec-
essary ingredient for theory predictions based on state-of-
the art QCD and electroweak (EW) corrections. In fact, we
are working towards the consistent inclusion of combined
QCD × EW corrections also in the theory predictions used
for PDF determination.

Another important line of future development involves
the all-order resummation of potentially large perturbative
contributions in the large x and small x regions [69,128].
This will involve matching resummed and fixed-order cross-
sections and (at small x) perturbative evolution in the new
streamlined NNPDF theory pipeline. Such resummed PDFs
will be instrumental for precision phenomenology: specifi-
cally at small x , forward neutrino production at the LHC and
scattering processes for high-energy astroparticle physics,
and at large x , searches for new physics in high-mass final
states at the LHC and future hadron colliders.
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A Explicit expressions of anomalous dimensions

We provide here explicit expressions for the γ
(3)
ns ±, N→∞(N )

and γ
(3)
ns ±, N→0(N ) anomalous dimension discussed in

Sect. 2.3 and the γ
(3)
ns ±, N→∞(N ), γ

(3)
ns ±, N→0(N ) and

γ
(3)
ns ±, N→1(N ) discussed in Sect. 2.4.

γ
(3)
ns,±(N ):

γ
(3)
ns,±,N→0(N )

= −252.84

N 7 + 1580.25 − 126.42n f

N 6

+ −5806.8 + 752.198n f − 18.963n2
f

N 5

+ 14899.9 − 2253.11n f + 99.1605n2
f − 0.790123n3

f

N 4

+ −28546.4 + 5247.18n f − 226.441n2
f + 2.89712n3

f

N 3

+ 50759.7 − 8769.15n f + 395.605n2
f − 3.16049n3

f

N 2

(A.1)

γ
(3)
ns,±N→∞(N )

=
(
+20702.4 − 5171.92n f + 195.577n2

f

+3.27234n3
f

)
S1(N )

− 23393.8 + 5550.04n f − 193.855n2
f − 3.01498n3

f

+
(

16950.9 − 2741.83n f + 26.6886n2
f

) S1(N )

N

+ +11126.6 − 3248.4n f + 180.432n2
f + 0.526749n3

f

N
(A.2)
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γ
(3)
gg (N ):

γ
(3)
gg,N→0(N )

= −103680 + 20005.9n f − 568.889n2
f

N 7

+ −17280 − 19449.7n f + 1725.63n2
f

N 6

+ −627979 + 80274.1n f − 2196.54n2
f + 4.74074n3

f

N 5

(A.3)

γ
(3)
gg,N→1(N ) = − 49851.7

(N − 1)4 + 213824 + 1992.77n f

(N − 1)3

(A.4)

γ
(3)
gg,N→∞(N )

=
(
+40880.3 − 11714.2n f + 440.049n2

f

+7.36278n3
f

)
S1(N )

− 68587.9 + 18144n f − 423.811n2
f − 0.906722n3

f

−
(
−85814.1 + 13880.5n f − 135.111n2

f

) S1(N )

N

+ −54482.8 + 4341.13n f + 21.3333n2
f

N
(A.5)

γ
(3)
gq (N ):

γ
(3)
gq,N→0(N )

= −37609.9 + 5309.63n f

N 7

+ −35065.7 + 221.235n f

N 6

+ −175455 + 9092.91n f + 778.535n2
f

N 5
(A.6)

γ
(3)
gq,N→1(N ) = − 22156.3

(N − 1)4 + 95032.9 + 885.674n f

(N − 1)3

(A.7)

γ
(3)
gq,N→∞(N )

= (−13.4431 + 0.548697n f
)
L5,0(N )

+
(
−375.398 + 34.4947n f − 0.877915n2

f

)
L4,0(N )

(A.8)

γ
(3)
qg (N ):

γ
(3)
qg,N→0(N )

= 14103.7n f − 1991.11n2
f

N 7

+ 2588.84n f + 2069.33n2
f

N 6

+ 68802.3n f − 7229.38n2
f − 99.1605n3

f

N 5
(A.9)

γ
(3)
qg,N→1(N ) = −7871.52n f

(N − 1)3 (A.10)

γ
(3)
qg,N→∞(N )

=
(
−1.85185n f + 0.411523n2

f

)
L5,0(N )

+
(
−35.6878n f + 3.51166n2

f + 0.0823045n3
f

)
L4,0(N )

+
(
−2.88066n f − 0.823045n2

f

)
L5,1(N )

+
(
+40.5114n f − 5.54184n2

f − 0.164609n3
f

)
L4,1(N )

(A.11)

γ
(3)
qq,ps(N ):

γ
(3)
qq,ps,N→0(N )

= 5404.44n f − 568.889n2
f

N 7

+ 3425.98n f + 455.111n2
f

N 6

+ 20515.2n f − 1856.79n2
f + 4.74074n3

f

N 5
(A.12)

γ
(3)
qq,ps,N→1(N ) = −3498.45n f

(N − 1)3 , (A.13)

γ
(3)
qq,ps,N→∞(N )

=
(
+56.4609n f − 3.6214n2

f

)
L4,1(N )

+
(
+247.551n f − 40.5597n2

f + 1.58025n3
f

)
L3,1(N )

+ 13.1687n f L4,2(N )

+
(
+199.111n f − 13.6955n2

f

)
L3,2(N ). (A.14)

The functions Lk, j (N ) are defined as the Mellin transform
of (1 − x) j lnk(1 − x):

Lk,0(N ) = M
[
lnk(1 − x)

]
(N ) = (−1)kk! S1k ,...,11(N )

N
(A.15)

Lk,1(N ) = M
[
(1 − x) lnk(1 − x)

]

= Lk,0(N ) − Lk,0(N + 1) (A.16)

Lk,2(N ) = M
[
(1 − x)2 lnk(1 − x)

]

= Lk,0(N ) − 2Lk,0(N + 1) + Lk,0(N + 2)

(A.17)
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with the multi-index harmonics of weight-k defined recur-
sively as

S1k ,...,11(N ) =
N∑

j=1

S1k−1,...,11( j)

j
(A.18)

and the termination condition

S∅ = 1. (A.19)
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