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Abstract—Federated Learning (FL) methods adopt efficient
communication technologies to distribute machine learning tasks
across edge devices, reducing the overhead in terms of data
storage and computational complexity compared to central-
ized solutions. Rather than moving large data volumes from
producers (sensors, machines) to energy-hungry data centers,
raising environmental concerns due to resource demands, FL
provides an alternative solution to mitigate the energy demands
of several learning tasks while enabling new Artificial Intelligence
of Things (AIoT) applications. This paper proposes a framework
for real-time monitoring of the energy and carbon footprint
impacts of FL systems. The carbon tracking tool is evaluated
for consensus (fully decentralized) and classical FL policies. For
the first time, we present a quantitative evaluation of different
computationally and communication efficient FL methods from
the perspectives of energy consumption and carbon equivalent
emissions, suggesting also general guidelines for energy-efficient
design. Results indicate that consensus-driven FL implementa-
tions should be preferred for limiting carbon emissions when
the energy efficiency of the communication is low (i.e., < 25
Kbit/Joule). Besides, quantization and sparsification operations
are shown to strike a balance between learning performances
and energy consumption, leading to sustainable FL designs.

Index Terms—Federated Learning, Consensus, Energy Con-
sumption, Green Machine Learning, Internet of Things.

I. INTRODUCTION

Data centers are today a key component of many Artificial
Intelligence of Things (AIoT) services, which rely on the
network for data sharing and Artificial Intelligence (AI) for
analytics. They contribute 0.3 % of the global equivalent Green
House Gas (GHG) emissions (and about 15% of the emissions
of the entire Information and Communication Technology
(ICT) ecosystem), which will further increase in the years
to come [1], [14]. Federated Learning (FL) [2] is emerging
as a promising alternative to centralized AIoT, especially for
training tasks where the data privacy needs to be protected
(i.e., medical data): it distributes the computing tasks across
many edge devices possibly characterized by a more efficient
use of the energy compared with data centers [4], [14].
Combined with a judicious design of networking and training
stages, FL is expected to bring significant benefits in terms of
environmental impact, obviating in many cases the need for a
large centralized infrastructure for cooling or power delivery,
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LO: local optimizer (SGD, Adam …), 
SQ+TX: sparsification + quantization + transmission

b) CFA

Local Data (𝒌)

DEC 𝒉LO

𝒬(𝑷ℎ,𝑖)

𝑷𝑘,𝑖+1

SQ+
TX

𝒉

𝒌

AP/BS

𝒉

PS

AP/BS

𝑺𝑘,𝑖

𝑿𝑘,𝑖

𝒌

𝒬(𝑷𝑘,𝑖)

𝜔𝑘,ℎ

Local Data (𝒌)

DECLO

𝐖𝑡

𝑷𝑘,𝑖+1

SQ+
TX

𝑾𝑘,𝑖+1

𝛾

𝑾𝑘,𝑖+𝟏

𝜔𝑘,𝑘

a) FA

C
ar

b
o

n
 f

o
o

tp
ri

n
t

PS devices (learners)

PS learners

Computing
Communication

C
ar

b
o

n
 f

o
o

tp
ri

n
t

𝐶ℎ(𝑡)

Ck(t)

Cℎ(t)

𝐶0(𝑡)
∑𝑖C0(𝑡𝑖) Computing

Communication
∑𝑘∑𝑖C𝑘(𝑡𝑖)

∑𝑘∑𝑖C𝑘(𝑡𝑖)

Fig. 1. Federated Averaging (FA) relying on (a) Parameter Server (PS) for
model aggregation and (b) Consensus process based on CHOCO-SGD tool.
Sparsification and quantization operations and on-device carbon tracking.

or reducing the emissions by migrating training tasks across
different geographic locations according to time-dependent
availability of sustainable energy.

FL architectures can be broadly divided into centralized
and decentralized, each involving different energy models, as
shown in Fig. 1. For example, vanilla Federated Averaging
(FA) [2] resorts to the classical server-client architecture,
where a Parameter Server (PS) coordinates the learning pro-
cess, collects the local models (rather than raw data as in
classical Machine Learning (ML)) and sends back the updated
models (by averaging) to the devices. Both the PS and the
federation of the devices contribute to the energy footprint. On
the other hand, in decentralized FL tools, such as Consensus-
driven FA (CFA), the local model parameters are shared and
synchronized across multiple learners via mesh, or Device-to-
Device (D2D) networking, without relying on the PS [3].

The problem of quantifying the energy and GHG emissions,
namely the carbon footprint, of FL has been recently tackled
(see e.g., [4], [14]) although the development of sustainable
design and monitoring tools still remains partially unexplored.
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Quantitative and qualitative evaluation of energy-efficient FL
strategies has been also carried out by comparing different
implementations [10], [5]. Quantization and sparsification
approaches [15], [22] along with optimized strategies for
selecting suitable devices or informative ML model param-
eters [11], [12] to be exchanged during the FL process are to
be considered as critical for reducing FL emissions.

Contributions. This paper develops a carbon tracking
framework aiming to provide: 1) a systematic reporting of
carbon and energy footprints in FL processes over wireless
networks; and 2) a toolkit to assess and compare different
computationally efficient methods for ML model parameter
selection, compression and quantization, adapted to both cen-
tralized (FA) and decentralized (CFA) processes, and taking
into account their carbon and energy footprints. Compared
to the previous works [4], [14], the developed tool quantifies
explicitly the impact of model parameter sparsification and
quantization, proposed in emerging FL designs [15], [16], on
the energy balance. In particular, the proposed carbon tracking
framework quantifies the carbon emissions on each FL round
and accounts for the emissions from energy grids, as well as
the energy outputs from CPU/GPUs of the individual devices.
Results consider two increasingly complex image classification
tasks, namely MNIST [8] and CIFAR10 [9], as well as ML
model sizes to comprehensively evaluate the energy/carbon
consumption of FA and CFA implementations. The goal is to
study the optimal configuration of quantization and ML model
sparsification to limit the FL process energy demands while
maximizing learning performances. The analysis shows that
decentralized FL (CFA) policies should be preferred when
energy-inefficient communication protocols are adopted. On
the other hand, vanilla FA solutions may be selected when
more efficient uplink/downlink communications are available.
Moreover, devices and PS carbon emissions need also to be
well balanced to provide sustainable training processes.

The remainder of this paper is organized as follows. Sec. II
introduces the carbon tracking framework, while Sec. III
presents the quantization and sparsification strategies adopted.
Sec. IV assesses the energy/carbon footprint of the proposed
FL designs. Finally, Sec. V concludes the paper.

II. CARBON TRACKING FRAMEWORK

Energy and carbon footprint models in FL (see [4], [14] for
a review) assume that the energy budget of the learning process
can be broken down into computing and communication costs.
Notice that both the PS (denoted with index k = 0), when
used, and the learners/devices (k > 0) contribute to the energy
balance, and their footprints should be evaluated separately.
In what follows, we assume that a carbon tracking update is
issued on every new FL round i that occurs at (discrete) time
ti ≥ t0, with t0 being the starting time of the learning process.
Let Ck(ti) refer to the equivalent GHG emissions of device
k observed up to time ti, the proposed carbon tracking tool
quantifies the GHG footprint through an iterative approach

Ck(ti) = Ek,i · Ik,i +Ck(ti−1), (1)

where Ek,i is the energy cost to implement the new FL round
i, including local model optimization and communication, and
Ik,i = Ik(ti) is the Carbon Intensity (CI) of the electricity
generation [21], measured in Kg CO2-equivalent emissions
per kWh (KgCO2-eq/kWh) at time ti. CI quantifies how much
carbon emissions are produced per kilowatt hour of locally
generated electricity. The Ik,i terms are typically monitored
on an hourly basis [7], [14] as they depend on the specific
regional energy grid where the device k or PS is installed.
Notice that grid differences can result in large variations in
eq. CO2 emissions [1], as analyzed in Sec. IV.

In the following, we model the energy cost Ek,i based on
the specific FL method employed. The communication costs
are quantified on average, in terms of the corresponding energy
efficiencies (EE), standardized by the European Telecommu-
nications Standards Institute (ETSI) [18]. Efficiency terms in
downlink (DL) EED, uplink (UL) EEU, or sidelink (S) EES

transmissions are measured here in bit/Joule [bit/J] [19]. The
efficiencies also include the power dissipated in the RF front-
end, baseband processing, and transceiver stages.

A. Energy tracking for Parameter Server based FL (FA)

In vanilla FL methods (FA), the PS collects the local models
produced by K learners and produces a global model of size
bW bits, which is fed back to active devices on each round.
Learners are powered on as they run the local optimizer (LO)
and decode the updated global model Wi−1 obtained from
the PS at round i − 1. During a FL round, the energy cost
Ek,i = E

(FA)
k,i [Joule] of a device (k > 0) can be written as

E
(FA)
k,i = E

(C)
k,i +

bW
EED

+
Qk,i[bW]

EEU
+ E

(C)
k,Q + E

(C)
k,sleep, (2)

namely, the superposition of the energy spent for receiving
the global model from the PS bW

EED
, the cost for the LO at

round i E
(C)
k,i required for SGD computation, and the UL

communication Qk[bW]
EEU

of the selected local model parameters
according to the model selection and quantization policy Qk[·]
(see Sec. III). Implementation of policy Qk[·] has a cost which
is quantified here as E

(C)
k,Q . Finally, E(C)

k,sleep is the energy cost
in sleep mode, which is required by devices while waiting for
the global model to be produced by the PS.

The PS (k = 0) energy per round is

E
(PS)
0,i = K ·E(C)

0,global+
bW
EEU

+

K∑
k=1

Qk,i[bW]

EED
+E

(C)
0,sleep, (3)

which accounts for the cost for K global model updates each
with cost E

(C)
0,global, global model DL publication bW

EEU
, and

collection of local model parameters Qk,i[bW]
EED

from the K
learners. The total carbon emissions produced by FA can be
then evaluated as

C(FA)
tot =

∑
i

K∑
k=1

C
(FA)
k (ti) +

∑
i

C
(PS)
0 (ti) (4)



where C
(FA)
k (ti) = E(FA)

k,i · Ik,i + C
(FA)
k (ti−1) is the carbon

footprint of device k at round i while C
(PS)
0 (ti) = E(PS)

0,i ·
I0,i+C

(PS)
0 (ti−1) is the carbon footprint of the PS at round i.

B. Energy tracking for decentralized CFA

Decentralized CFA techniques [2], [3] do not employ the PS
as the devices mutually exchange their local model parameters,
i.e., through publish-subscribe operations [13]. Each learner
is responsible for producing a global model representation
which is the result of a consensus over the received local
model parameters obtained from neighbor devices. CFA adopts
a distributed weighted averaging approach [3], [2] used to
combine the received neighbor models.

As shown in Fig. 1, the devices mutually exchange their
local model parameters with an assigned number N < K
of neighbors. Let Nk,i be the set that contains the N chosen
neighbors of node k at round i, the energy cost Ek,i = E

(CFA)
k,i

of an individual learner (k > 0) can be written as

E
(CFA)
k,i = E

(C)
k,i +N · E(C)

k,global +
∑

h∈Nk,i

Qh,i[bW]

EES

+
Qk,i[bW]

EES
+ E

(C)
k,Q + E

(C)
k,sleep,

(5)

where now each learner runs the LO (with cost E
(C)
k,i ), pro-

duces a global model representation via N weighted averaging
steps E

(C)
k,global, distributes the local (selected) parameters and

obtains the neighbor ones using sidelink communications.
The total carbon consumption under CFA can be quantified

as

C(CFA)
tot =

∑
i

K∑
k=1

C
(CFA)
k (ti), (6)

with C
(CFA)
k (ti) = E

(CFA)
k,i ·Ik,i+C

(CFA)
k (ti−1) being the carbon

footprint of device k at round i.

III. QUANTIZATION AND PARAMETER SELECTION IN FL

This section presents the compression strategies employed
for evaluating the impact of the communication on the en-
ergy/carbon footprint for the proposed FL setups. To guar-
antee a fair comparison, we assume that both centralized
and decentralized FL tools rely on the same compression
operators. More specifically, we consider two widely-adopted
mechanisms, namely top-t sparsification [23] and probabilistic
quantization [22], which are applied independently by each
device member of the federation.

We consider a generic input vector w, of NP elements wn,
n = 1, ..., NP , that collects the entries of the model parameters
Wk,i or some surrogate quantities, such as the corresponding
gradients or updates. The compression policy aims at obtaining
a lower bit representation of w by successively applying
sparsification and quantization as

w̄ = Q(w) = fq(fs(w)), (7)

where Q(.) denotes the overall compression function, while
fs(.) and fq(.) indicate the operators required for top-t

sparsification and probabilistic quantization, respectively. The
sparsification operator fs(.) outputs a new representation
w̃ = fs(w) that selects the t largest absolute values of w,
and sets all other entries to 0. Quantization fq(.) encodes the
sparsification output w̃ via a randomized rounding operation.
By setting the output quantization bits to Nb ≤ Nbc, with
(typical) Nbc = 32 bits, the element w̄n of w̄ is defined as [22]

w̄n = ∥w̃∥2 · sign(w̃n) · ξn(w̃, 2Nb), (8)

where sign(.) denotes the sign operator, while ξn(ṽ, 2
Nb) is

defined as in [22].
Compression output w̄ = Q(w) in (7) corresponds to the

vector w̄ = [w̄1 · · · w̄NP
]T, and can be used as a lower bit

representation of w. The number Qk,i[bW] of bits that are sent
by device k on round i according to carbon tracking models
(2)-(5), can be quantified as

Qk,i[bW] = δ · Nb

Nbc
· bW = t ·Nb, (9)

where δ = t
NP

represents the fraction of the model parameters
selected by top-t sparsification function fs(.), while Nb

Nbc
sets

the quantization level according to fq(.) for each parameter.
In what follows, we review the specific operations required

for implementing the considered compression strategies for the
FA (Sec. III-A) and CFA (Sec. III-B) schemes.

A. Parameter Server based FL (FA)

In FA, the devices send to the PS the model updates being
more suited for compression [2]. Given the model parameters
Wk,i, the model updates are evaluated as

Pk,i = Wk,i+1/2 −Wk,i, (10)

where Wk,i+1/2 denotes the parameters obtained after apply-
ing the LO for device k at round i. Then, Pk,i is compressed
as

P̄k,i = Q(Pk,i), (11)

with Q(.) as in (7) and transmitted to the PS. The PS updates
its global model by aggregating the received contributions as

Wt+1 = Wt +

N∑
k=1

σkP̄k,i, (12)

where σk is a weighting factor chosen as in [14]. Note that
the PS forwards back the updated global model uncompressed
as in Sec. II.

B. CFA based on CHOCO-SGD framework

The CFA process considered here relies on the CHOCO-
SGD algorithm proposed in [16]. This scheme employs two
additional variables stored at each device for preserving the
average of the model iterates across consecutive rounds and
for controlling the noise introduced by the compression [16].
In the same spirit as FA, each device k compresses the model
updates in a manner similar to (10)-(11) leading to

P̄k,i = Q(Pk,i) = Q(Wk,i+1/2 −Xk,i), (13)



TABLE I
MODEL AND ENERGY PARAMETERS FOR FA AND CFA SCHEMES

MNIST CIFAR10
NP 59500 28146954
bW 0.24 MB 112.59 MB
δ 10%, 50%, 100% 10%, 50%, 100%
Nb 8, 16, 32 16, 24, 32

E
(C)
k,i 3.51 Joule 5.53 KJoule

E
(C)
k,Q 0.04 - 0.14 Joule 18.9 - 66.2 Joule

E
(C)
k,sleep 0.12 Joule 59.92 Joule

E
(C)
k,global 0.06 Joule 29.96 Joule

Ik 0.449 KgC02-eq/kWh 0.449 KgC02-eq/kWh

E
(C)
0,sleep 0.70 Joule 1.10 KJoule

E
(C)
0,global 0.24 Joule 114.02 Joule

I0 0.449 KgC02-eq/kWh 0.449 KgC02-eq/kWh

where Q(.) is defined as in (7) and Xk,i is a local variable,
with Xk,0 = 0 for round i = 0. The compressed representation
P̄k,i is then exchanged over the network.

Upon receiving the contributions from its neighbors, device
k updates Xk,i as

Xk,i+1 = Xk,i + P̄k,i (14)

and then uses the compressed models received from the
neighboring devices to update an additional local variable Sk,i,
with Sk,0 = 0 at round i = 0, as

Sk,i+1 = Sk,i +
∑

j∈Nk,i

ωk,jP̄j,i, (15)

where ωk,j is the (k, j)-th entry of a symmetric doubly
stochastic matrix Ω. Finally, each device k updates its local
model using the following update rule

Wk,i+1 = Wk,i+1/2 + γ(Sk,i+1 −Xk,i+1), (16)

where 0 < γ ≤ 1 is the consensus step-size.

IV. CARBON FOOTPRINT EVALUATION

This section discusses the main factors that are expected
to steer the choice between vanilla FA and CFA paradigms
towards sustainable designs. The goal is to provide a first look
into the impact of quantization and sparsification of model
parameters on carbon emissions and learning accuracy, for
varying communication energy efficiencies typically found in
wireless communication systems. We consider two scenarios
with increasing model size and training dataset complexities.
The first case (Sec. IV-A) focuses on the MNIST classification
task [8], while the second (Sec. IV-B) concentrates on the
CIFAR10 learning problem [9]. Energy and carbon footprints
are influenced by the PS and device hardware configurations.
Table I summarizes the main parameters used by the carbon
tracking tool under the two scenarios. For the PS (FA), we used
a CPU (Intel i7 8700K, 3.7 GHz, 64 GB, GPU not used). A
realistic pool of K = 10 resource-constrained FL learners is
adopted, namely Jetson Nano boards based on a low-power
CPU (ARM-Cortex-A57 and GPU 128-core Maxwell). Their

𝐶𝑡𝑜𝑡
𝐶𝐹𝐴 = 10 gCO2-eq

𝐶𝑡𝑜𝑡
𝐹𝐴 = 10 gCO2-eq

𝐶𝑡𝑜𝑡
𝐶𝐹𝐴

= 100 gCO2-eq

𝐶𝑡𝑜𝑡
𝐹𝐴

= 100 gCO2-eq

Fig. 2. Analysis of the validation accuracy achieved by FA and CFA schemes
under different levels of quantization and sparsification. Rings group together
curves related to the same carbon footprint.

energy expenditure parameters when implementing the FA
and CFA schemes reviewed in Sec. III are summarized in
Table I. Each device is designed to track its carbon emissions
independently as a function of the estimated CI Ik,i = Ik
which is assumed as constant for all FL rounds.

In what follows, rather than choosing a specific commu-
nication or carbon emission setting, we consider a what-if
analysis approach as proposed in [4], [14]. We thus quantify
the achievable loss/accuracy of the proposed FL designs un-
der the assumption of different DL/UL and SL efficiencies
(setting EECOM = EED = EEU = EES) and CI Ik (see
https://app.electricitymaps.com/map for reference values). To
guarantee a fair comparison, we also assume that the PS
collects the (compressed) model updates from all K devices.
Similarly, CFA uses (all) N = K − 1 neighbors. Each device
uses an SGD LO with learning rate 0.01, momentum 0.9,
and batch size of 64 examples chosen in accordance with the
computational capabilities of the chosen learners. For CFA,
we set γ = 0.01 in all experiments. Note that the actual
emissions may be larger than the estimated ones depending
on the specific devices and implementations. Therefore, in the
following, we will highlight relative comparisons.

A. Impact of sparsification, energy and carbon efficiencies

In the example, each device has access to 300 observations
randomly drawn from the MNIST database [8]. The devices
employ a Lenet-5 model [8], with parameters in Table I.

Fig. 2 analyzes the quantization and sparsification impact
on the learning accuracy by enforcing a max. total carbon
emission (carbon budget) of Ctot. We consider two carbon
emission targets, namely Ctot = C(FA)

tot = C(CFA)
tot = {10, 100}

gCO2-eq, modeling low to medium carbon consumptions.
The quantization bits are in the range Nb = 8 − 32 and
the percentage of parameters shared δ = 10% − 100%.
EECOM = 10 Kbit/Joule, which roughly corresponds to an LTE
design for macro-cell delivery [19], [21]. The devices/PS are



Fig. 3. Analysis of the validation accuracy under carbon constraints with
different communication (energy) efficiencies as well as carbon intensities.

here located in the same region, i.e., Italy, with a corresponding
CI Ik = 0.449 KgCO2-eq/kWh for k = 0, . . . , N .

Fig. 2 reports the validation accuracy obtained by the CFA
and FA schemes under the two carbon budgets. For stringent
emission constraints, i.e., Ctot = 10 gCO2-eq, CFA provides
better performances when δ = {10%, 50%} and Nb = 8
bits, while for Ctot = 100 gCO2-eq FA achieves higher
accuracy regardless of the number of parameters shared and
the quantization bits employed. ML model compression is
more critical in CFA rather than in FA since it reduces the
sidelink channel use. FA is not that much affected by the
specific choice of the compression parameters as long as the
carbon budget is high enough, i.e., Ctot = 100 gCO2-eq. On
the other hand, CFA schemes must generally employ a more
aggressive compression, i.e., δ = 10% and Nb = 8 bits, to
guarantee a reasonable target accuracy. For FA, a good choice
for the compression parameters is δ = 10% and Nb = 16 bits
as achieving the highest accuracy under all carbon budgets.

Fig. 3 analyzes the impact of the communication energy
efficiency as well as the CI on the learning accuracy under the
same carbon budget Ctot = 10 gCO2-eq. The energy efficiency
EECOM varies from 5 Kbit/Joule up to 50 Kbit/Joule, with the
last case corresponding to 5G micro-cell delivery and WiFi.
The results consider δ = 10% and Nb = 16 bits for FA, while
δ = 10% and Nb = 8 bits for CFA following the previous
analysis. In the same figure, we also study how the PS location
and its CI I0 affect the carbon consumption. Three CI values
are considered, namely I0 = {0.193, 0.449, 0.952} KgCO2-
eq/kWh, modeling different energy grid efficiencies. These
values correspond to the geographical regions of Finland, Italy,
and Poland, respectively. Comparing the results, CFA is shown
to outperform FA for all CI terms, provided that the energy
efficiency is below 25 Kbit/Joule. On the other hand, when
the communication is more efficient, centralized FA should be
preferred. High carbon intensities, i.e., I0 = 0.952 KgCO2-
eq/kWh, make FA tools more susceptible to accuracy losses
due to the high energy costs. Interestingly, even when the PS

is located in the same region of the devices, CFA strategies
are to be preferred as more accurate compared to PS-based
solutions.

B. CIFAR10 analysis: impact of large model size

To finalize the analysis, we here consider a more challeng-
ing image recognition task based on the CIFAR10 dataset
and a much larger ML model. The goal is to evaluate the
energy/carbon footprint of FA and CFA in a complex and
potentially energy-hungry ML setup. Each learner is assigned
500 examples for each one of the 10 classes and employs a
VGG11 architecture [24] with parameters defined in Table I.

Table II summarizes the results of all the tests. In line with
the previous analysis, we consider two main scenarios: 1) the
learning process is constrained to a maximum carbon emission
of C(FA)

tot = C(CFA)
tot = 1.5 KgCO2-eq and 2) the same process

must achieve a 70% target accuracy with no constraints on
carbon emissions. In particular, the first three rows refer to
scenario 1 and show the validation accuracy obtained by
FA and CFA tools for three quantization and sparsification
cases, namely (δ,Nb) = (10%, 16), (δ,Nb) = (50%, 24) and
(δ,Nb) = (100%, 32), modeling moderate to no compression.
We consider two communication efficiencies EECOM = 10
Kbit/Joule and EECOM = 100 Kbit/Joule. The following three
rows consider scenario 2 with same values for compression
and energy efficiencies, and show now the carbon emissions
required to reach 70% accuracy. Comparing the results, in
accordance with the analysis in Fig. 3, CFA provides a
higher accuracy w.r.t. to FA schemes when the communi-
cation is inefficient, i.e., EECOM = 10 Kbit/Joule. FA is
more effective when the learning process is implemented over
more communication-efficient networks. Focusing now on the
carbon emissions needed to reach a 70% target accuracy, CFA
requires a much larger footprint (i.e., 3×) compared to FA for
all cases considered. Nevertheless, optimizing the compression
parameters is beneficial for reducing carbon consumption with
respect to uncompressed communications: for FA selecting
δ = 10% and Nb = 16 bits allows to reduce the carbon
consumption by roughly 50% while for CFA δ = 50% and
Nb = 24 bits leads to a 42% carbon reduction.

The last four rows of Table II analyze the impact of the
regional CI on the performances and energy consumption with
same configurations of the PS as described in the previous
section. The results confirm the findings of Fig. 3: FA tools
are advantageous compared to CFA policies when the PS is
located in a region with CI comparable to or better than the
one of the devices. Indeed, optimizing the PS location allows
to further reduce the carbon consumption by 10%.

V. CONCLUSIONS

This paper proposed a carbon tracking framework for
monitoring the energy/carbon footprints of FL policies. The
proposed framework enables to assess the impact of ML
model quantization and sparsification on the carbon/energy
consumption for both centralized (FA) and consensus-driven
(CFA) FL implementations. The developed tool keeps track



TABLE II
CIFAR10 ANALYSIS CONSIDERING DIFFERENT CARBON CONSUMPTION TARGETS, CI VALUES AND COMMUNICATION ENERGY EFFICIENCIES.

Scenario
δ Nb EECOM I0 Ik>0

Validation accuracy Carbon
FA CFA C(FA)

tot C(CFA)
tot

[%] [bits] [Kbit/Joule] [KgCO2-eq/kWh] [KgCO2-eq/kWh] [%] [%] [KgCO2-eq] [KgCO2-eq]

1
10 16 10 - 100 0.449 0.449 45.8 - 74.8 54.8 - 64.9 1.5 1.5
50 24 10 - 100 0.449 0.449 26.1 - 74.5 59.8 - 69.8 1.5 1.5
100 32 10 - 100 0.449 0.449 17.4 - 73.1 52.4 - 66.3 1.5 1.5

2
10 16 10 - 100 0.449 0.449 70 70 3.6 - 0.6 15.6 - 4.2
50 24 10 - 100 0.449 0.449 70 70 5.1 - 0.7 14.8 - 1.8
100 32 10 - 100 0.449 0.449 70 70 8.6 - 1.1 27.3 - 2.9

1
10 16 10 0.449 0.193 - 0.952 60.8 - 45.8 54.8 - 54.8 1.5 1.5
50 24 10 0.449 0.193 - 0.952 51.4 - 26.1 59.8 - 59.8 1.5 1.5

2
10 16 10 0.449 0.193 - 0.952 70 70 3.3 - 4.1 15.6 - 15.6
50 24 10 0.449 0.193 - 0.952 70 70 4.3 - 6.8 14.8 - 14.8

of the energy/carbon demands in an iterative manner and
accounts for computing/communication energy consumption
as well as emissions arising from energy grids, allowing to
identify the optimal operating conditions of FL processes and
their energy expenditure. Experimental results are based on
two increasingly complex image classification tasks and ML
model sizes that serve as reference examples to study the
optimal configuration of the compression parameters.

The analysis shows that CFA tools are more suited under
energy-demanding communication protocols (i.e., when the
communication energy efficiency is below 25 Kbit/Joule),
while FA policies should be preferred under higher energy
efficiency regimes. The optimization of quantization and spar-
sification operations in FA and CFA tools allows to further
reduce the carbon footprint on average by roughly 50% and
42%, respectively, with respect to sending the ML model
uncompressed. Besides, FA strategies have been shown to
provide significant energy savings (up to 10%) when the PS
is located in a region with a carbon efficiency (intensity) that
is at least 2 times larger than that experienced by the devices.

Further research activities may target the integration of
adaptive compression frameworks together with heterogeneous
datasets characterized by multi-modal inputs, i.e., images, time
series, or text data, to fully characterize the energy demands of
FL processes and identify the optimal operating conditions.
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