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Abstract
We demonstrate strongly collimated beam formation, at audible frequencies, in a
three-dimensional acoustic phononic crystal where the wavelength is commensurate with the
crystal elements; the crystal is a seemingly simple rectangular cuboid constructed from
closely-spaced spheres, and yet demonstrates rich wave phenomena acting as a canonical
three-dimensional metamaterial. We employ theory, numerical simulation and experiments to
design and interpret this collimated beam phenomenon and use a crystal consisting of a finite
rectangular cuboid array of 4× 10× 10 polymer spheres 1.38 cm in diameter in air, arranged in a
primitive cubic cell with the centre-to-centre spacing of the spheres, i.e. the pitch, as 1.5 cm.
Collimation effects are observed in the time domain for chirps with central frequencies at 14.2 kHz
and 18 kHz, and we deployed a laser feedback interferometer or Self-Mixing Interferometer – a
recently proposed technique to observe complex acoustic fields—that enables experimental
visualisation of the pressure field both within the crystal and outside of the crystal. Numerical
exploration using a higher-order multi-scale finite element method designed for the rapid and
detailed simulation of 3D wave physics further confirms these collimation effects and
cross-validates with the experiments. Interpretation follows using High Frequency
Homogenization and Bloch analysis whereby the different origin of the collimation at these two
frequencies is revealed by markedly different isofrequency surfaces of the sonic crystal.

1. Introduction

A challenge for acoustics, in particular for phononic crystals, is to generate exotic wave phenomena at
low-frequencies, i.e. at audible frequencies, for sound propagation in the human hearing range; the ability to
achieve precise control would enable the design of novel devices. We address this challenge motivated from
the two-dimensional analysis of simple closely-spaced two-dimensional crystal arrays which operate as
subwavelength tuneable metamaterials [1] enabling the cut-off frequency for the acoustic branch to be
lowered to pull the entire acoustic branch subwavelength; this enables exotic wave phenomena at low
frequencies. Two-dimensional models are a convenient abstraction, but this behaviour needs to carry
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through to full three-dimensions and be verified both numerically and experimentally before moving into
device design; in this paper we investigate collimated beam formation for arrays of closely-packed three
dimensional spheres in acoustics.

In two-dimensions a closely packed array of cylinders creates a network of coupled Helmholtz-like
resonators with large voids coupled to each other by narrow gaps and the asymptotic approach in [1]
generates a discrete mass-spring network analogue. Moving this to three dimensions is non-trivial:
Numerical simulations of meaningfully large finite arrays are hampered by the need to accurately resolve the
extremely thin air-filled regions between the spheres leading to numerical issues that are overcome here.
Experiments are also challenging as, until recently, it was not possible to image the sound field within a
crystal, and lastly, the asymptotic matching methods [1] employed are no longer valid since there are regions
where the spheres nearly touch, but equally other regions where the acoustic medium is not as constrained as
in two-dimensions.

We comprehensively investigate a crystal constructed by closely packed spheres using the following
approaches: We use a specially designed numerical scheme to overcome the computational issues [2]. An
experimental optical interferometry approach [3, 4], developed by some of the team, to enable the imaging,
and we develop the physical modelling and intuition of these closely spaced media to explain the observed
phenomena. Combining these approaches leads to a coherent design capability that we use to create
collimated beams. Consequently, closely-packing a simple phononic crystal makes metamaterial behaviours
appear, which means each element within the crystal is subwavelength and yet critically affects the
macroscale behaviour.

There is a vast literature on acoustic metamaterials [5–7], including analysis of their 3D effective
properties [8–10] and the fabrication of three dimensional mechanical [11] and acoustic [12] metamaterials
with complex geometry. There is, however, a richness of wave phenomena in simple three-dimensional
crystals that has not yet been fully explored, and exploited; examples of the behaviour possible include
acoustic sonic crystals designed to achieve a flat lens effect in waterborne acoustics [13] and airborne
acoustics [14]. For the collimated beam formation in acoustics we draw upon the extensive literature,
primarily in two dimensions and in electromagnetism, using iso-frequency contours to predict extreme
dynamic anisotropy; polygonal contours leading to self-collimation [15–19]. Self-collimation is a powerful
concept, readily observed in 3D for discrete mass-spring systems [20], but apart from some notable examples
in electromagnetism, i.e. [21, 22], its use in three dimensional continuum models has been limited. The
richness of behaviours possible through dynamic anisotropy is also illustrated in [23] for electromagnetic
crystals notably cubic arrays of split ring resonators and also [24–26] for dynamic anisotropy in 2D dielectric
photonic crystals. We demonstrate that these approaches can be taken into acoustics and, for sources exterior
to a crystal, a lattice medium generates wide or narrow acoustic beams. By doing so we highlight the
versatility and tunability that is achievable using a basic phononic structure, without requiring significant
complexity, and bring numerical, experimental and theoretical analysis to bear to provide a comprehensive
analysis of the collimation effects created.

The plan of the article is as follows: section 2 presents the experimental setup and measurement based on
the Self-Mixing Interferometry (SMI) sensing methodology [3, 27]. Section 3 is devoted to the higher-order
Multi-scale Finite Element Method (HMsFEM) [2, 28] used to numerically solve the scattering problem.
Results obtained are compared to experiments and standard Finite Element Method (FEM) references.
Section 4 shows that High Frequency Homogenization theory (HFH) allow us to propose physical
interpretations of the collimation effect at different frequencies. Unlike most of the studies that plot
dispersion relations around the edges of the Brillouin zone [29, 30], we analyse the Fermi surfaces to get a
fuller picture of the wave phenomena responsible for the observed self-collimation effects at 14.2 and 18 kHz.
Finally some concluding remarks are drawn together in section 5.

2. Experiments

The finite crystal used here is a rectangular cuboid array of 400 (4×10×10) 3D-printed polymer spheres
1.38 cm in diameter with a centre-to-centre spacing a= 1.5 cm and is shown in figure 1. A commercial
loudspeaker (Visaton SC5) is set 16 mm from the crystal—which corresponds roughly to the wavelength of
the acoustic wave—and facing the thinner facet of the crystal (see figure 1). It is driven with square pulses of
sinusoidal signals with frequencies centered at 14 kHz and 18 kHz. The pulses have a duration of 12 periods
of the sinus and a spacing in time of 21 ms thus avoiding echoes appearing in the measurements while
producing a relatively large frequency band signal. To visualize the acoustic propagation in a non-intrusive
manner we use a methodology based on the observation of the refractive index change in the air induced by
pressure changes [14]. This acousto-optic effect is captured through a compact interferometric sensor
designed for this measurement with the principle first described in [3]. It consists of a commercial laser
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Figure 1. Experimental setup: the crystal and the associated acoustic source are mounted on a rigid structure built with metallic
rods. The structure is moved along X2 and X3 axis using motorized translation stages while the sensor and the distant reflector
remain in a fixed position. (a) Top-view. (b) Side view. (c) Photograph of the setup.

diode (Thorlabs L1550P5DFB) with single-mode emissions at λ= 1550 nm that points at a reflector so that
a part of the emitted light re-enters the laser’s cavity producing interferences between the inner optical wave
and the back-reflected one. This interferometric approach is known as SMI [27, 31] and it is sensitive to any
changes in the time of flight in the external cavity that realizes the laser and the reflector. In the context of
acoustic sensing, this change is due to the acousto-optic effect that links the refractive index of air to the
pressure among other parameters [32]. With pressure levels encountered in the acoustic domain, the
relationship change in refractive index with pressure can be considered as perfectly linear. As expressed in [3]
the laser emitted power variations P(t) and the refractive index ones δn(t) along the laser propagation axis z
are linked as

P(t) = P0 cos

(
4πν

c

ˆ Lext

0
δn(t,z)dz+Ψ

)
, (1)

where P0 is the average emitted power, ν is the laser frequency, Lext is the length of the external cavity andΨ
is a constant phase term. A part of the light emitted by the laser diode is collected using the monitoring
photodiode that is included in the laser package and the photogenerated current is then amplified and
converted thanks to a custom-made amplifier to a voltage variation that is acquired using a National
Instrument acquisition card (USB-6361). This terminal voltage is then an image of the integration of the
pressure field along the laser axis in function of time. Images of the acoustic wave propagation come from the
sensor (laser+ reflector) which is translated with a fixed step of 1.5 mm on both x and y axes; each position
of the sensor represents a pixel of the image shown in figures 2(c) and 3(c). The experiment is repeated for
each laser position in order to represent the integrated pressure field in two-dimensional maps.

For the temporal results shown in figures 2(a), (b) and 3(a), (b) the experimental data is temporally
downsampled by a fourfold factor leading to a time resolution of 4 µs. It is then filtered spectrally with a
Gaussian window to obtain the acoustic response with chosen central frequency and bandwidth. The
Gaussian window presents a full width at half maximum of 5.25 kHz and is centered in 14.5 kHz and
17.7 kHz as shown in figures 2(a) and 3(a).

3. Simulation using a higher-order multi-scale finite element method

3.1. Mathematical formulation
For the modelling we use the (non-dimensionalised) Helmholtz equation that holds for time-harmonic
acoustic waves:

∂2u

∂x21
+

∂2u

∂x22
+

∂2u

∂x23
+Ω2u= 0, (2)

for u(x) = u(x1,x2,x3) with r=
√
x21 + x22 + x23 > s (i.e. everywhere outside of the spheres in the absence of a

source) with Ω= ωa/c, with a the cubic array pitch (in unit of meters) and where ω is the angular frequency
(in unit of rad s−1) and c= 340 m s−1. Consistent with the acoustically sound-hard boundary conditions on
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Figure 2. Experimental observation at 14 kHz showing endoscopic effect: (a) spectrum of the transmitted signal for an excitation
centered at 14 kHz; the dotted line denotes the Gaussian window used. (b) Transmitted time trace in solid red with the signal
from the input side shown in solid blue. (c) Snapshot of the amplitude of integrated pressure at time t= 1.72 ms (see movie at
[Multimedia 1]).

Figure 3. Experimental observation at 18 kHz of the endoscopic effect: (a) Spectrum of the transmitted signal for an excitation
centered at 18 kHz; the dotted line denotes the Gaussian window used. (b) Transmitted time trace in solid red with the signal
from the input side is shown in solid blue. (c) Snapshot of the amplitude of the integrated pressure at time t= 0.88 ms (see movie
at [Multimedia 2]).

each sphere, we take Neumann boundary conditions, the normal derivative of the function being zero, to
hold on the surface of each sphere

∂u

∂n
|r=s= 0, (3)

where n denotes the outwards pointing vector to the spheres. Section 4 also presents the Bloch eigenvalue
problem (2)–(3) posed in a periodic cell with Floquet-Bloch conditions. Here, we use a standard finite
element scheme implemented in the Comsol Multiphysics package, since the computational domain is just a
cubic cell containing a single sphere.
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3.2. Method
We use the HMsFEM [2, 28] to rapidly solve the three-dimensional Helmholtz equation for the finite array
excited by a source. The underlying methodology is to solve the Helmholtz equation in a relatively coarse
grid and exploit carefully constructed multi-scale basis functions that capture local heterogeneity
information and wavenumber information; [2, 28] compare and contrast HMsFEM with classical
polynomial-based FEM highlighting the advantages in terms of speed and accuracy. A major advantage of
HMsFEM is that it significantly reduces the degrees of freedom of the FEM defined on the fine scale mesh
and thereby saves both a huge amount of CPU time and memory. The construction of the multiscale basis in
a coarse element, K, for two types of multiscale basis associated with the boundary and interior interpolation
points of the polynomial basis functions is the key building block required for HMsFEM. The first type is
obtained by solving

∆ϕi +Ω2ϕi = 0, in K, (4)

ϕi =Φi, on ∂K, (5)

in which Φi (a Dirichlet datum) is the polynomial shape function corresponding to the ith interpolation
point that lies on the boundary ∂K of K. For the second type of multi-scale basis, one needs to solve

∆ϕj +Ω2ϕj =Φj, in K, (6)

ϕj = 0, on ∂K, (7)

where Φj (now a volumetric forcing) is the interior polynomial shape function associated with the jth

interpolation point that lies inside K.
The power of the HMsFEM approach is that we replace each standard polynomial basis function in the

classical FEM with a multiscale basis function constructed by solving a Helmholtz equation dependent upon
the local problem. Since the basis functions are constructed in a local domain, the computational cost is
affordable. Importantly, these multiscale bases are defined in a very coarse mesh, therefore, the degrees of
freedom of the resulting linear system with HMsFEM is greatly reduced compared to a classical FEM. This
enables us to solve the three-dimensional sphere array, with close spacing, both accurately and rapidly. In our
numerical simulations, the size of each coarse element (1.5× 1.5× 1.5 cm) is set to be exactly the same as the
cubic cell that contains only one polymer sphere and the computational domain consists of 20× 10× 20
coarse elements. Therefore the size of the simulation domain is 30× 15× 30 cm. Here, for simplicity, we use
cubic elements to approximate the spheres and the length of the fine-scale cubic element is 1/60th the length
of the coarse-scale element. Perfectly matched layers [33] with a thickness of one coarse element are
implemented to absorb outgoing waves on all sides of the computational domain. The dimension of the final
linear system to be solved is merely 119 629 after utilizing the static condensation algorithm [34] and the
CPU time for solving this linear system is just under a minute using Matlab. The accuracy for all numerical
tests are within a 5% relative error, with the reference solution calculated by FEM on an extremely fine mesh
as the reference solution. Hence, we can avoid mesh independent study. We emphasize that it is prohibitive to
simulate using FEMs directly since they have to be solved over the fine-scale mesh that resolves all the
interfaces. Consequently, this results in a very large linear system. In this case, even if we use just first-order
FEM subject to the fine-mesh to perform the numerical simulations, one needs to solve linear systems whose
degrees of freedom add up to over 10 millions. Furthermore, this large linear system usually exhibits a very
large condition number [35], making its resolution extremely expensive.

3.3. Results
The results of both the physical experiments and the HMsFEM numerical simulations for 14.2 and 18 kHz
are shown in figures 4 and 5, respectively; the left columns correspond to the experiments, whereas the right
ones show the numerics. The upper rows correspond to the top view of the crystal (x1x2 plane), the lower
row to the side view (x2x3 plane): there is remarkable agreement between the numerical simulations and the
experiments. Both frequencies demonstrate distinctive collimation effects, at 14.2 kHz we see a plane wave
exit the crystal that is roughly the width of the crystal, whereas at 18 kHz we observe a focused beam exit the
crystal. The fidelity of the field maps shown in figures 4 and 5 also confirm a negligible perturbation from the
thin rods supporting the spheres in the experimental setup that are not included in the simulation model.

4. Periodic acoustic wave problem

We now move to investigate the band spectrum of the sonic crystal since these allow us to look at
iso-frequency contours and surfaces and hence gain physical understanding and interpretation of the
collimation shown in figures 4 and 5.
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Figure 4. Comparison between experiments (left panels) and numerical simulations (right panels) at 14.2 kHz from top (upper
panels) and side (lower panels) view.

Figure 5. Comparison between experiments (left panels) and numerical simulations (right panels) at 18 kHz from top (upper
panels) and side (lower panels) view.
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Figure 6. Bloch dispersion curves around the edges of the irreducible Brillouin zone (shown inset) for a cubic array of rigid
spheres of diameter 1.38 cm with periodicity 1.5 cm. The global minimum of the second (optical) band at point X corresponds to
the frequency of the source in figures 2 and 4 which is plotted as the dash-dotted horizontal blue line at frequency f = 14.2 kHz.
The frequency of the source in figures 3 and 5 is drawn as a dash-dotted horizontal purple line at frequency f = 18 kHz. The red
dashed line show HFH approximations around the X point from equation (10). The yellow dashed lines represent free-space
propagation.

For acoustic waves propagating through an infinite, perfect, triply periodic medium, one can invoke the
Floquet-Bloch theorem [29, 30] and consider the cubic cell, in non-dimensional coordinates,−1< x1,x2,
x3 < 1 with quasi-periodic conditions applied to the faces. The quasi-periodic Bloch boundary conditions
are given as

u(x+ di) = eiκ·diu(x) , (8)

where di is the lattice vector along xi, i = 1,2,3. For instance d1 = (2,0,0). Equation (8) also involves the
Bloch wave-vector κ= (κ1,κ2,κ3) characterizing the phase-shift as one moves from one cell to the next.

This Bloch problem is solved numerically and the dispersion relations that link the frequency ω and
Bloch wavenumber |κ| are deduced; as is conventional in solid state physics [29] only a limited range of
wavenumbers need be considered in order to detect band-gaps, namely the wavenumbers along the
right-angled tetrahedron ΓXMR shown in the irreducible Brillouin zone (IBZ) in figure 6; there are some
exceptions to this limitation such as operators on graphs [36]. The vertex coordinates are Γ = (0,0,0),
X= (π/a,0,0),M= (π/a,π/a,0) and R= (π/a,π/a,π/a).

The dispersion curves for a triply periodic array of rigid spheres, shown in figure 6, illustrate several
interesting features: a partial stop-band where wave propagation is disallowed along ΓX and XM between
13.2 and 14.2 kHz, coalescing bands at high-symmetry pointsM,X and R and regions of flat dispersion
curves where the group velocity is zero and features of slow sound occur [37]. One can see that the group
velocity is vanishing at the second band near the high-symmetry point X in figure 6; the frequency 14.2 kHz
indicated by the dash-dotted blue line should thus be associated with an interesting wave phenomenon.
Excitation at, or very close, to the frequency predicted would lead to oscillations that resemble a standing
wave as it seems to be the case in figure 4; crucially this standing wave has directionality that can be identified
from the wavenumber description in the Brillouin zone shown in figure 6.

To further confirm the physical mechanism leading to the collimation effect experimentally and
numerically observed at 14.2 kHz, we propose to replace the sonic crystal by an effective medium in the high
frequency regime. The property of this effective medium should depend both on the frequency and the Bloch
wavenumber, as the phenomenon occurs well beyond the quasi-static limit.

4.1. Interpretation of collimated beam forming at 14.2 kHz with high frequency homogenization
The collimation effect observed at 14.2 kHz is related to strong anisotropy as shown by the isofrequency
surface of figure 7 which is wrapped around X point with strong ellipticity in κ1 and κ3 directions. The slight
mismatch of frequency to 14.2 kHz for the infinite periodic crystal is attributed the finite size of the crystal
used in the experiment and simulations. This leads to a plane wave like behavior in the crystal and results in
the wave leaving the crystal with a flat phase profile. This is, in effect, a collimation experiment where the
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Figure 7. Isofrequency contours for the second band at 14.2 kHz. Left: zoomed-in 3D representation shows an ellipsoid flattened
in the Γ−X direction. The blue lines are obtained with a plane-wave expansion method and superimposed with a red surface
derived with HFH. Right: 2D representation of the isofrequency contour in the plane κ3 = 0 with the free-space isofrequency
contour at 14.2 kHz in yellow dashed line. The large ellipsoid shown on the left panel appears as smaller ellipses on the right panel.

compact source is transformed into a plane wave similar to the Luneburg lens based on index gradient
media [38–47]. The collimation effect is related to the excitation of a single Bloch mode of the crystal leading
to a plane wave like propagation in the crystal as illustrated in figure 4. This is further confirmed by two
experimental observations: (i) we observe a clear single frequency contribution at the exit of the crystal in
figure 2(a) and (ii) the group velocity is significantly reduced as observed in figure 2(b) with the pulse delay.
The movie of the experiment [Multimedia 1] is instructive in showing the combined effect of the low group
velocity and the resultant delay allowing the wavefield to spread across the crystal.

In figure 6, we approximate the dispersion curves computed via Finite Elements (Comsol Multiphysics)
with asymptotic curves originated in the High-Frequency Homogenization theory (HFH) developed in [48].
The multiple scales used for HFH are a short-scale ξi = xi/l and a long-scale Xi = xi/L for i = 1,2,3 where l
and L represent respectively the characteristic small scale (half length of a cell) and the long scale. A small
parameter is formed as ϵ := l/L and expansions of the frequency Ω2 =Ω2

0 + ϵΩ2
1 + . . . and the solution

u= u0 + ϵu1 + . . . are substituted in (2). Here Ω0 is a standing wave frequency given at the high-symmetry
points X, Γ,M and R of the irreducible Brillouin zone and a perturbation scheme can be developed about the
band edges. The leading-order term for u is u0(ξ,X) = f0(X)U0(ξ) where the function f 0 representing an
envelope of the solution u0 is obtained by an equation only on the long scale: The theory is detailed in [48].
Changing back to the original xi coordinates the effective medium equation reads,

Tij
∂2f0
∂xi∂xj

−
(
Ω2 −Ω2

0

)
l2

f0 = 0. (9)

T ij’s are integrated quantities of the leading order and first order short scale solutions with Tij = 0 for i ̸= j in
the present illustrations. As in [48], assuming Bloch waves, the asymptotic dispersion relation for Ω reads,

Ω∼ Ω0 −
Tij

2Ω0
κiκj, (10)

where κi = Ki − di and di = 0,−π/2,π/2 depending on the band edge in the Brillouin zone about which the
asymptotic expansion originates ; these asymptotics give the red dashed curves in figure 6 and the red surface
in figure 7. For the case of multiple modes originating from the same point, as is the case for the second and
third bands at pointM and the first and second bands at point R, equation (10) is no longer valid and one

obtains two coupled equations for f(i)0 , i = 1,2. This homogenization theory is not limited to long-waves
relative to the microstructure, one apparent failing is that the asymptotics appear to be only valid near the
band edge frequencies but further refinements are possible, using foldings of the Brillouin zone, that extend
the theory to provide complete coverage of the dispersion curves and provide accuracy at all frequencies, see
e.g. [49] and further developments in [50, 51].

8
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Figure 8. The isofrequency contours for the second band at 18 kHz. Left: zoomed-in 3D representation shows concentric
near-squares centred around Γ and flat perpendicular to the Γ−X direction. Right: 2D representation of the isofrequency
contour in the plane κ3 = 0 with the free-space isofrequency contour at 18 kHz in yellow dashed line. The large cube shown on
the left panel appears as smaller squares on the right panel.

Figure 7 shows an ellipsoid flattened in the Γ−X direction. The black lines are obtained from direct
computation with Comsol Multiphysics. This isofrequency surface is superimposed by a red surface obtained
from HFH. We point out that this demonstrates the sharpness of HFH approximation not only along the IBZ
boundary as in figure 5, but also within the IBZ. The effective medium at 14.2 kHz is described by the matrix
coefficients T11 = T33 = 31.4 and T22 = 244.4, which confirms the large anisotropy along the x2 axis in
agreement with the observed guiding effect in that direction with the sonic crystal in figure 4. Interestingly,
the 2D acoustic magnifying hyperlens of Zhang’s group consisting of brass fins in air embedded on a brass
substrate [52] depicts elliptical isofrequency contours similar to those in figure 7 at a working frequency of
6.6 kHz. When viewed from the Γ point, elliptical contours within the dashed circle in figure 7 appear locally
hyperbolic. One indeed observes a collimated beam on the exit of the hyperlens in [52], analogous to that on
the exit of the sonic crystal in figure 4. In electromagnetism [22] demonstrate self-collimation for a source
inside a finite crystal in the microwave regime where the isofrequency contours are also hyperbolic and here
we see a similar effect, but now for acoustic waves.

4.2. Interpretation of collimated beam forming at 18 kHz with Fermi surfaces and slowness curves
We directly use the isofrequency curves for this case as they give a self-explanatory insight of the physics.
Indeed, by looking at the isofrequency surfaces in figure 8 we see that they form a slightly deformed cube. The
concentric near-squares have almost flat edges in the Γ−X direction and notably the isofrequency contour
in the plane κ3 = 0 surrounds the Γ point in figure 8 leading to anti colinear phase and group velocity (see
also movie at [Multimedia 2]). In the crystal this is reminiscent of an endoscope or self-guiding effect where
the narrow support of the source is conserved across the crystal and then leaves the crystal as a focused beam.

Unlike the 14.2 kHz observation of collimation, at 18 kHz we experimentally observe the excitation of
several Bloch modes in the crystal as expected from figure 3(a). The field is dominated by the mode giving
these cubic equifrequency surfaces that lead to the self-guiding effect in the crystal. We note the similarity of
the isofrequency contour at 18 kHz with that in [16] that leads to a self-guiding effect in 2D photonics
whereas we propose a 3D experimental realization of the effect in acoustics. We further refer to [21] for
validation in the microwave regime of self-collimation and to [53] for a 3D focusing effect via
all-angle-negative refraction.

4.3. Quantitative measurement of the collimation effect
The acoustic source is a 48 mm diameter emitter corresponding to two times the acoustic wavelength at
14 kHz and 2.5 times at 18 kHz. It is located at a 20 mm distance from the crystal input side. This distance is
0.8 times the wavelength at 14 kHz and one wavelength at 18 kHz. Thus, the source is considered to be within
the near field region for each of the frequency studied in the article. The source diameter is larger than the
wavelength, leading to a non-isotropic radiation pattern from the source. We present additional data
processing to quantify the collimation effect of the crystal. Figure 9 shows the radiation pattern of the source

9
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Figure 9. Directivity pattern of the acoustic source in free space (red dotted line) and in presence of the phononic crystal (blue
solid line), at (a) 14 kHz and (b) 18 kHz.

both in free space and in presence of the phononic crystal. At 14.2 kHz the source shows a beam width of 83◦

at half maximum, this value is reduced to 32◦ in presence of the crystal. Similar data processing at 18 kHz
shows a reduction of beam width from 59◦ in free space to 28◦ in presence of the crystal. This confirms that
the crystal achieves a significant collimation effect, by reducing the beam width by a factor 2.6 and 2 at
14 kHz and 18 kHz respectively.

5. Concluding remarks

We have conclusively shown strongly collimated beam effects through a three-dimensional acoustic
phononic crystal consisting of a finite rectangular cuboid array of 4× 10× 10 polymer spheres 1.38 cm in
diameter in air, arranged in a primitive cubic cell with pitch 1.5 cm for chirps with central frequencies at
14.2 kHz and 18 kHz. Our study is making use of three-dimensional higher-order multi-scale finite element
simulations that enable us to capture the essence of the wave phenomena for our scattering problem in the
time domain. These simulations show excellent agreement with time-domain experiments based on an
in-house laser feedback interferometer setup. The prediction of the two frequencies where these effects are
achieved requires analysis of band spectra of a three-dimensional periodic structure, that reveals the
prominent role played by the Floquet-Bloch waves in the infinite periodic counterpart of the finite
rectangular cuboid array of rigid spheres. Visualization of four-dimensional Fermi surfaces in the infinite
crystal is somewhat delicate and thus we further analyse effective properties of the periodic structure through
the lens of a high-frequency homogenization method. Our analysis shows one needs to be extra-careful when
just considering edges of the three-dimensional Brillouin zone instead of its volume. While Fermi surfaces
(here 4D dispersion surfaces) contain within them all the information required to completely describe the
stop band structure of a 3D periodic structure, dispersion curves such as in figure 6 can obscure important
features such as the remarkable isofrequency contours in figures 7–8, and most notably at 18 kHz wherein
the phase and group velocity are anti-linear. This a frequency regime where the dispersion curves in figure 6
are difficult to decipher. Moreover, it is not obvious to conclude from figure 6 that there should be highly
directive wave propagation within the crystal at 14.2 kHz, as evidenced by figure 4. On the other hand, the
combination of HFH that reveals strong effective anisotropy of the crystal through inspection of the T ii

coefficients deduced from equation (9), and of the isofrequency contours that display a remarkably flat
isosurface in figure 7, sheds light on the waveguiding effect through the phononic crystal at 14.2 kHz. The
sonic crystal can be viewed as a waveguide counterpart to a uni-directive metamaterial antenna with a
vanishing effective refractive index such as in [54]. It is well known that curved wave fronts emanating from a
source in free space are transformed into planar ones in a zero index slab [55, 56]. In the present case, the
combination of low group velocity in the X1 direction and large dynamic anisotropy of the sonic crystal at
14.2 kHz makes it possible to design an effective highly anisotropic low-index waveguide. Quite unexpectedly
for such a simple phononic crystal consisting of a finite rectangular cuboid array of rigid spheres, it turns out
that isofrequency contours can design for practically implementable collimated beams at two seemingly non
remarkable frequencies, at least according to the dispersion diagram. It is only through further inspection of
isofrequency surfaces and contours, in conjunction with high frequency homogenization, that the true
nature of the wave propagation within the crystal is unveiled at these frequencies. Our study thus emphasizes
the richness of physical phenomena via anomalous dispersion in 3D phononic crystals. We hope our study
will foster experimental efforts in manipulation of sound in miscellaneous phononic crystals whose dynamic
effective properties of practical importance for wavefront shaping might have been overlooked.
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