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1 Introduction

Neutrinos are probably the most mysterious known elementary matter particles. Neutrino
flavour oscillations comprise the sole established piece of empirical evidence for the existence
of physics beyond the renormalisable Standard Model (SM) of particle physics that has been
found in laboratory experiments on Earth. In addition to mixing with each other, neutrinos
may exhibit a mixing with new singlet fermions, often dubbed sterile neutrinos, which can
provide a portal to a hidden sector, cf. e.g. [1–3] and references therein. The probably simplest
incarnation of this idea is the extension of the SM by right-handed neutrinos; this idea
is not only motivated by the observation that all other known elementary fermions have
right-handed partners (and those would actually be needed for anomaly-freedom in many
gauge-extensions of the SM), but also by the fact that right-handed neutrinos appear in
many popular neutrino mass models, and in particular in the type-I seesaw mechanism [4–9].
Moreover, they could potentially resolve several puzzles in particle physics and cosmology
that cannot be explained within the SM [10, 11], such as the baryon asymmetry in the
Universe [12] through leptogenesis [13] or the existence of dark matter [14, 15] (cf. [16–18]
and [19, 20] for reviews). The neutrino minimal Standard Model (νMSM) [21, 22] represents
a UV-complete example [23] in which all of these can be achieved simultaneously with a
new physics scale below the electroweak scale [24, 25].

From a phenomenological point of view, sterile neutrinos represent a type of heavy neutral
lepton (HNL) of unknown mass mN . In the minimal scenario, their only interaction with
the SM is due to their coupling to the SM weak currents [26, 27], which is suppressed by
the elements |UαN | ≪ 1 of the complete neutrino mixing matrix (with α = e, µ, τ). For the
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purpose of this work, the coupling of HNLs to weak gauge bosons (W and Z) and Higgs
bosons h can be described by the phenomenological Lagrangian [28]:

L ⊃ −mW

v
νN U∗

αN γµeLαW +
µ − mZ√

2v
νN U∗

αN γµνLαZµ − mN

v
√
2

UαN hνLανN + h.c., (1.1)

with mZ , mW the weak gauge boson masses and v ≃ 174GeV the Higgs field vacuum
expectation value. The HNLs are described by four-spinors νN that can be Dirac or Majorana.1

The mass scale mN is unknown; while it is traditionally associated with values near the scale
of Grand Unification, neutrino oscillation data can be explained even for mN ∼ eV [35], and
technically natural models with mN below the electroweak scale exist (cf. e.g. section 5 in [3]).

This paper explores the possibility of constraining the properties of HNLs with mN in
the MeV range with short and medium baseline reactor neutrino experiments, which has
been poorly covered by searches to this date. In principle, HNLs in this mass range can
simultaneously explain the observed baryon asymmetry and the neutrino masses [24, 36],
but there are constraints from primordial nucleosynthesis and the subsequent history [36–
41] as well as astrophysics [42]. When combined with direct searches (cf. [11, 43]), these
essentially rule out the existence of HNLs with masses below the pion mass (mπ = 139MeV)
in the simplest models [44–46], including the νMSM. However, both the upper bounds
from experiments2 and the lower bound from big bang nucleosynthesis (BBN)3 considerably
relax in less minimal scenarios, and some of them can entirely be avoided if there is an
extended dark sector [50] or new HNL interactions.4 Finally, the cosmological constraints
necessarily rely on assumptions about the early universe, while the supernova bound depends
on the details of modelling the explosion [53] and has been shown to be totally avoidable in
case of axion-like particles [54]. This motivates independent direct searches for MeV scale
HNLs in experiments on Earth.

In this work, we consider the model [28] described in equation (1.1), with one species
of Dirac-HNLs. For Majorana fermions the total decay rate becomes a factor 2 larger, with
differences in the angular distribution [55]. Since the angular distribution is randomized in

1In realistic low scale seesaw models, the HNLs typically form so-called pseudo-Dirac fermions [29–31] that,
in some sense, lie between Dirac and Majorana [32–34].

2The experimental constraints can vary by orders of magnitude depending on the underlying assumptions
regarding the relative size of the HNL mixing with different flavours [47], which has not been fully accounted
for in the global fits in the current literature [44–46]. The results obtained here are, however, comparably
robust in this regard, as they do not rely on lepton number violation, and existence of other HNL decay
channels has a negligible impact on the sensitivity when the decay length greatly exceeds the dimensions of
the experiment.

3Primordial nucleosynthesis primarily constrains the HNL lifetime, cf. (2.7), so the mixing |UαN | with any
individual SM generation α is in principle unconstrained from below, provided that the HNL mixes sufficiently
strongly with another SM flavour β ̸= α. In combination with neutrino oscillation data a lower bound can
be derived, but this depends on the number of HNL flavours. While strongly hierarchical |UαN |2 are ruled
out in the νMSM and models with effectively two HNL flavours [44, 46, 48], the constraints relax in models
with more HNL flavours [45, 49]. When taking this freedom into consideration, mN in the MeV range is still
disfavoured by cosmology, but not strictly ruled out [36].

4Examples for specific scenarios in which the BBN bound may be avoided include models that were designed
to explain the MiniBooNE excess [51, 52]. While these proposals involve slightly higher HNL masses, the
HNL lifetime can be kept short enough to avoid the BBN constraint for mN ∼ 10 MeV by lowering the new
physics scale.
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the experiments considered here and their decay lengths always greatly exceed the dimensions
of the experimental setup, one can in good approximation re-scale the sensitivity curves by a
factor 2 for Majorana HNLs. We further assume that the HNLs exclusively mix with the
first SM generation, consistent with benchmark BC6 in [56].5 While this does not represent
a fully consistent model of neutrino masses, it can approximately capture many aspects of
the phenomenology of realistic models and provides well-defined benchmark, cf. [57].

This paper is organised as follows. Section 2 describes the expected HNL signal from a
reactor neutrino flux. In section 3, most of the experimental searches for sterile neutrinos
and HNLs that have been carried out in the past years are discussed. Section 4 describes
the opportunity to detect this signal with short-baseline reactor experiments such as SoLid
and TAO, compared to the mid-baseline JUNO detector. Section 5 provides a discussion
on the background rejection strategies that can be applied in this analysis, using the SoLid
experiment as an example. Finally, conclusions are drawn in section 6.

2 Signal characteristics: HNL production and decay rates

If heavy neutrinos exist and couple to electron neutrinos, these HNLs must appear in nuclear
β-decays due to the mixing UeN . The HNL flux from a nuclear reactor is proportional to
the initial reactor neutrino flux, Φ(Eν̄e), suppressed by the coupling |UeN |2 and a phase
space factor,

Φ(EN ) = θ(EN − mN ) |UeN |2
√
1−

(
mν

Eν

)2
Φ(Eν̄e). (2.1)

EN denotes the energy and mN the rest mass of the massive ν̄N , and θ(EN − mN ) is the
Heavyside step function, which ensures that the energy of the HNL is not smaller than its
rest mass. The exponential suppression with the distance, which is controlled by the total
HNL decay rate, is neglected due to the very long decay length. This can be justified for the
values of the proper HNL lifetime τN considered in this work, cf. (2.7) below.

The HNL flux obtained is shown in figure 1 as a function of the neutrino energy, for
different values of the HNL mass. For illustration, the electron anti-neutrino flux from the
BR2 reactor is used and is shown by the dashed line. A coupling of |UeN |2 = 10−4 is taken
as reference, which is slightly larger than the best exclusion by the Bugey experiment of
0.8× 10−4 [58]. At lower energies, the cut off from the energy conservation requirement is
visible. For higher energies, the phase space factor ensures that all spectra have the same shape.

The HNLs will generally be unstable, albeit possibly long-lived, allowing for decays-
in-flight into SM particles. In the mass range of 1 MeV – 10 MeV, the HNL can decay via
three different modes.

In the e+e− mode, which can only take place if mN ≥ 2me = 1.022 MeV, the HNL decays
into a light neutrino and a e+e− pair, as shown in figure 2,

νN −→ νj + e+ + e− (2.2)
5While the exclusive mixing with the first generation is strictly speaking incompatible with neutrino

oscillation data and strongly disfavoured in the νMSM [44, 48], it can approximately be realised in models
with three flavours of HNLs [45].
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Figure 1. Expected HNL flux from the BR2 reactor in case of a coupling of |UeN |2 = 10−4, for
different proposed masses of the HNL, shown by the colors. The dotted line indicates the reactor
ν̄e spectrum.

Figure 2. Feynman diagram describing the appearance of HNL after the nuclear β-decay (left) and
its subsequent decay in the e+e− mode (right).

Here νj denotes the active neutrino, with j being the electron flavor under the assumption
that the HNL couples to electrons.

In the radiative mode, given that mN > m(νj), the HNL decays into a neutrino and
one or two photons,

νN −→ νj + γ (2.3)
νN −→ νj + γ + γ (2.4)

In the invisible mode, the HNL decays into three light neutrinos,

νN −→ νj + νk + ν̄k (2.5)

The precise decay rates and branching ratios for these channels are model dependent. In
the energy range of reactor neutrinos (1–12 MeV), the dominant decay into visible particles is
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Figure 3. Decay rate into an e+e− pair as a function of the HNL mass, for different values of the
interaction coupling.

into an e+e− pair. Indeed, the photon channel is suppressed by a factor ∼ 10−3 with respect
to the e+e− channel, and therefore can be neglected.

The e+e− channel also happens with a much shorter decay time than the radiative
decay. For reference, if mN = 5 MeV (and |UeN |2 ∼ 1), τ(νN → νje+e−) ≈ 10 s while
τ(νN → νjγ) ∼ 1010 s.

In this analysis, we follow the decay rates of the νMSM [59–62]. The decay rate for
the e+e− mode is calculated in close analogy to the muon decay rate, taking into account
the different phase-space factors due to the mass of the HNL, mN . In the HNL rest frame,
and assuming a Dirac HNL, one obtains

ΓN = G2
F m5

N

192π3 |UeN |2(1 + h(m2
e/m2

N )) (2.6)

with the Fermi constant GF , and h(m2
e/m2

N ) the phase-space factor calculated following
ref. [59]. Note that for the Majorana hypothesis, there is a factor of two difference, and a
pseudo-Dirac scenario would lie in between these two.

In this work, all visible HNL decays are assumed to happen through the e+e− mode.
The e+e− decay rate was determined as outlined in ref. [59], and the reactor spectrum was
obtained from the parametrisation by Mueller [63]. The decay rates are finally evaluated
as a function of the HNL mass and the interaction coupling |UeN |2.

The HNL lifetime in the HNL rest frame is inversely proportional to the decay rate
and therefore inversely proportional to the 5th power of the HNL mass and to the squared
mixing parameter. It is given by

τ−1
N = ΓN ≈ 7.8 s−1

(
mN

10 MeV

)5
(1.4 |UeN |2 + |UµN |2 + |UτN |2) (2.7)

in the mass range we consider.
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3 Summary of existing short baseline reactor experiments

Nuclear reactors are a widely used source of electron antineutrinos in the intermediate
energy range of 1 to 12 MeV. If a mixing between electron antineutrinos and heavy neutral
counterparts exists, it can produce a detectable rate of HNLs in the sensitive energy range
of these experiments. Up to date, no dedicated reactor experiment exists to search for
HNLs. There exist, however, a sizeable variety of reactor neutrino oscillation experiments
worldwide, operating at various distances from either commercial nuclear power plants or
research reactors.

For HNL masses (1–12 MeV) and couplings (|UeN |2 < 10−2) relevant to the current
best exclusion limits for a decay in flight measurement, the decay probability at distances
ranging from meters to kilometers away from the production source can be considered as
uniform. Therefore, the total detectable HNL flux for increasing reactor-detector distance
can be compensated with a larger detector volume, and especially by a larger solid angle
coverage of the detector. The HNL production rate will scale linearly with reactor power,
thus favoring experiments at high power reactors. Reactor induced gamma and/or neutron
backgrounds will also increase with the reactor power, but they can be further reduced
by an appropriate detector location providing natural shielding or by the use of dedicated
active or passive shielding.

An overview of reactor neutrino experiments capable of searching for HNL decays is
given in table 1. Values are given for the sterile experiments listed in [64] as well as for the
large θ13 experiments (Daya Bay, Double Chooz and RENO), together with those of the
experiments being the focus of this work: SoLid and the upcoming JUNO and JUNO-TAO
(reffered to as “TAO” in the following) detectors.

The differences in size, distance and available reactor power roughly cancel out and
provide all experiments with a comparable decay rate, as is demonstrated in figure 4. For
each experiment, the rate at every mass-coupling pair was determined based on the detector
description in table 1 and the neutrino spectra parametrisation from ref. [63]. The fission
fractions have been estimated separately for each kind of reactor. For all LEU reactors, the
fission fractions obtained from table 9 in ref. [73] have been used; for NUCIFER, the only
experiment at a MEU reactor (Osiris), the mean values of figure 15 in ref. [67] were taken.
For all experiments at HEU reactors, the internal SoLid fission fractions have been considered
with 0.01 % 238U. Figure 4 shows the contours in the coupling constant and HNL mass plane
assuming 1 mHz and 1 µHz signal decay rates. The differences in shape, mainly at higher
HNL masses, are due to a higher or lower 238U fission fraction in the different fuel types.

Very short baseline neutrino experiments combine interesting features of being located at
very close proximity to the reactors, and capable of efficiently reducing the background via
pulse shape discrimination and/or segmentation. Their detection technologies are typically
based on liquid and plastic/composite scintillators. An overview of the existing and planned
detectors of this type can be found in ref. [64]. While their designs are optimized to address
long standing anomalies pointing to new mass states at ∆m2 ∼ 0.1 eV2, which effectively
correspond to detector configurations operating at L/E ∼ 1 m/MeV [77], most of them could
probe the decay in flight to electron-positron pairs induced by HNLs without any specific
modification to their design or operations.
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Reactor properties Detector properties

Cores Power
GWth

Fuel Distance
m

Volume
m3 Type Depth

m.w.e.
STEREO [65] 1 0.055 HEU 9.4 1.8 Gd-LS 15

SoLid [66] 1 0.065 HEU 6.2 1.6 Li-PS 8
NUCIFER [67] 1 0.070 MEU 7.2 0.8 Gd-LS 12

PROSPECT [68] 1 0.085 HEU 7.9 3.8 Li-LS < 1
Neutrino4 [69] 1 0.090 HEU 6.3 1.8 Gd-LS 3–5

NEOS [70] 1 2.73 LEU 23.7 1.0 Gd-LS 20
DANSS [71] 1 3.1 LEU 10.9 1.0 Gd-PS 50

Double Chooz [72] 2 8.52 LEU 412 10.3 Gd-LS 120
Daya Bay [73] (EH1) 2 4.96 LEU 364 46.8 Gd-LS 250

Daya Bay (EH2) 4 10.15 LEU 505 46.8 Gd-LS 265
Daya Bay (EH1+2) 6 15.11 LEU 458 93.6 Gd-LS 250–265

RENO [74] 6 16.38 LEU 502 18.7 Gd-LS 110
JUNO [75]

JUNO-TAO [76]
8
1

26.61
4.6

LEU
LEU

52.52k
30

23.2k
2.8

LAB
Gd-LS

1800
25

Table 1. An overview of sterile, θ13 and mass hierarchy experiments which could probe the existence
of HNLs. A separation is made between low (LEU), medium (MEU) and high (HEU) enriched uranium
fuel in the reactor core(s). DANSS and SoLid are the only experiments in this table using plastic
scintillators (PS), all others are liquid scintillator (LS) detectors.

Figure 4. The coupling constants for which the expected decay rates inside the detector volume as a
function of the HNL mass are, respectively 1 mHz (full lines) and 1 µHz (dashed lines). They have
been evaluated for all the experiments listed in table 1.
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4 Expected rates in the Solid, JUNO and TAO detectors

Reactor neutrino experiments are primarily designed to detect electron anti-neutrinos via
the Inverse Beta Decay (IBD) reaction resulting in the detection of the positron (and its
annihilation with an electron in the detector material). This prompt signal, followed by
a second (delayed) signal emitted by the thermalised neutron that is captured on nuclear
isotopes. Typically, these are nuclei with a high thermal neutron capture cross section, such
as Lithium (SoLid) or Gadolinium (Daya Bay). However, that’s not always required. For
instance, JUNO and TAO identify the neutron capture on Hydrogen and Carbon. In fact, the
HNL production in β-decays happens (figure 2 left) inside the reactor, and it is not observed
in the experiment. Therefore, the HNL signal will be identified via the observation of its
decay (figure 2 right), where a prompt-delay signal coincident pattern is absent in contrast to
reactor νe IBD interactions, as the e+ and e− produced in the HNL decay are seen by the
experiments as a single event. We refer to these non-coincident signals as “singles”, for which
dedicated background study and rejection strategy needs to be developed (see section 5).

Even though some of the short/medium baseline reactor neutrino detectors listed in
section 3 have a physics trigger designed to select the IBD coincident signals, they also have
an electromagnetic energy threshold trigger in place that is used to either calibrate or monitor
the detector stability. This trigger scheme is suitable to detect the decay products of an
HNL in the mass range between 1 and 12 MeV, which is the most sensitive energy range
for reactor neutrino experiments. At lower energies, the decay rate is not high enough for
its detection. At higher energies, the flux becomes too small. JUNO and TAO will not
trigger directly on IBD coincidences but they use a vertex fitting logic trigger [78] that is
sensitivity to non-coincident signals above ∼300 keV.

Three different detectors are considered in this work: i) the SoLid like detector (with size
of 80 cm by 80 cm by 250 cm), ii) the TAO detector (sphere of 1.8 m diameter) [76] and iii)
the JUNO experiment (bigger version of TAO with 35.4 m diameter) [75]. The first is next
to (6 m distance) the BR2 reactor in Belgium (60 MW). The second is 30 m from one of the
Taishan reactor cores (4600 MW) in China. The latter, also in China, is at a medium distance
(53 km) from 8 reactor cores dispatched in two different power plants (∼ 27 103 MW).

With all the ingredients described above, the expected HNL signal rate in the various
detectors can be computed. For that, the expected HNL flux is combined with its predicted
decay rate and fraction of decays that will happen inside the detector. The results are
shown in figure 5 for a SoLid-like and TAO-like detectors. As a reference, some lines with
recognisable rates are added shown by the horizontal lines.

The expected HNL signal rates in the detector can be converted into a trigger rate
by using simple kinematics, together with the values provided by the experiment’s design.
For JUNO and TAO, the trigger efficiency for a visible energy above 1 MeV is 100% (see
refs. [75, 76]), while for SoLid the trigger efficiency is low for visible energies below 2 MeV and
therefore this energy threshold is assumed instead. Figure 6 shows the expected trigger rates
for the three experiments as a function of the HNL mass and coupling (mN ,|UeN |2), where
the previous mentioned energy thresholds are taken into account. Previous experiments have
already placed exclusion limits on the parameter space investigated in this work. These
limits are superimposed on the trigger rate, indicating what is the signal rate the experiment
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Figure 5. Rate of HNL decays in the SoLid (left) and the TAO (right) detectors.

needs to extract over the background in order to achieve a competitive result. Figure 6
shows the complementarity between the different detectors. In the case of TAO, the higher
reactor power and larger size compensate for its distance compared to SoLid (5 times closer).
Comparing JUNO to SoLid, its larger size and higher reactor power do not compensate for the
distance to the reactor. However, the more efficient trigger capabilities allow to obtain similar
constrains at low (1–2.5 MeV) and high (>8 MeV) HNL masses with both JUNO and SoLid.

As mentioned before, in this analysis, the signal consists in the light emitted by the
electron-positron annihilation produced in the HNL decays (singles). Therefore, the HNL
search will face an important background contamination, which needs to be removed for a
better understanding of the signal candidates. In the context of the IBD coincidence analysis,
all relevant backgrounds have already been studied extensively, but when looking for singles,
additional backgrounds need to be taken into account.

The TAO experiment will be deployed ∼10 m underground, so the cosmic and atmospheric
background is reduced. Moreover, it is shielded by several sub-detectors to mitigate and veto
the major backgrounds. The outer shielding includes: i) 1.2 m of water in the surrounding
tanks, instrumented with photomultipliers and acting as a Cherenkov veto, ii) 1 m of plastic
scintillator (high density polyethylene) on the top comprising the muon veto system, and iii)
10 cm of lead at the bottom. In this way, the total background rate for singles before selection,
dominated by internal radioactivity, is of only ∼100 Hz [75], while the cosmogenic background
after the muon veto remains below 1 Hz. In the case of JUNO, the cleanliness of the
environment further reduces the internal radioactivity compared to TAO. Moreover, in JUNO
and TAO the reconstruction efficiency is close to 100% in the energy range considered here,
with an excellent energy resolution of ∼3 and 1%, respectively. This will allow these detectors
to use the energy spectrum to efficiently separate the signal and background via a pulse
shape discrimination techniques, as shown for the analysis of solar neutrino elastic scatterings
in the 2–16 MeV energy range, where a signal to noise ratio (S/N) of O(1) is achieved (see
table 4 in [82]). The reactor off trigger rate in SoLid before any pre-selection applied is of
the order of 2 kHz (section 3.2 in [66]). As it initially has a larger background, we take the
SoLid detector as an extreme case to evaluate the background mitigation impact in section 5.

– 9 –



J
H
E
P
0
7
(
2
0
2
4
)
1
2
8

Figure 6. Expected HNL trigger rate for the SoLid detector (top), JUNO (top left) and TAO
(top right) detectors. As a reference for the analyzer, the excluded regions from the Bugey [58],
Borexino [79] and TRIUMF [80, 81] experiments are superimposed. These bounds were obtained
from HNL decay searches from reactor neutrinos at Bugey and from solar neutrinos at Borexino. For
TRIUMF, the contour was obtained with π → eν peak searches, not discussed here.

5 Background mitigation in SoLid

5.1 Intrinsic radioactivity

A huge background activity originates from the natural radioactivity of the materials used
in detector construction itself, and surrounding it. Among them, 238U, 232Th, 40K are the
dominating background sources found in all materials. The radioactive isotope 208Tl is
also a common background in experiments looking for rare events. A prompt emission of
a β-decay electron with a delayed α particle with a time delay of tens of micro seconds
with β emission is an specific signal of the 238U chain. It is followed by the so-called BiPo
decay, which consists in the decay of 214Bi to 214Po. The β-decays of the 214Bi generate a
“single” signal that closely resembles that of the HNL decay. However, an α-decay occurs
subsequently, transforming the daughter nucleus, 214Po, into stable 210Pb. Discrimination of
this BiPo induced background is achieved by identifying the coincidence between the prompt
Bi (β-induced) and delayed Po (α-induced) scintillation signals.

– 10 –
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5.2 Cosmics and atmospheric muons

Particles of cosmogenic origin (specially atmospheric muons) cause the more important
backgrounds for the HNL analysis. Fast neutrons, created by spallation processes when the
muon collides in the atmosphere, leading to a “single” signal that mimics the searched for
HNL signal. These muons can also spallate neutrons from the material that surrounds the
detector when they reach it, adding an additional background. In addition, if the muon
merely clips the edge of the detector, the signal might be poorly identified and resemble
to that of the HNL. The muon can also be stopped in the detector and decay, resulting in
yet an additional background for the HNL analysis.

5.3 Missing backgrounds

The behaviour of the missing background can be inferred from the reactor-off signal that
remains after subtracting the backgrounds that are already simulated (i.e. 214Bi-214Po, cosmic
muons and cosmic-induced neutrons). Also the natural radioactive elements are ingrained in
the concrete and construction materials. To investigate the different reactor gamma sources,
dedicated studies and data treatments need to be carried out using the spatial distribution
and energy spectrum of the different signals.

5.4 Mitigation strategies

The data selection criteria using direct cuts on different variables will greatly reduce the
background rate, but a more effective mitigation strategy will be achieved using of the Machine
Learning (ML) techniques. Out of the many available ML methods, one of the most commonly
used are boosted decision trees (BDT) due to the easiness in understanding the algorithm
and the impact of the input parameters. A previous study conducted using MiniBooNE
Monte Carlo samples showed that BDT has a better signal identification performance than
Artificial Neural Networks (ANN) [83]. This algorithm is implemented within the TMVA
package of ROOT [84]. A gradient BDT is also available in the listed methods of this
package. The BDT combines several discriminating variables into one final discriminator
using correlations between them. This gives a better signal to background separation than
applying a cut on individual variables at a time. The main challenge in using BDTs is that
any mismatch in the distributions between the real data and the Monte Carlo (MC) due to a
miss-modeling of the background in the MC will be reflected in the training output, which can
mimic that of signal events. Hence the input parameters should be correctly modeled in the
Monte-Carlo. A comparison between background selected real data sample and corresponding
MC backgrounds before training BDT will help to solve this issue. Another issue with BDTs
is that they will learn statistical fluctuations by heart and are therefore very easy to overtrain.

A preliminary study done by the SoLid collaboration shows that a first pre-selection can
already bring the reactor off rate to ∼100 Hz (same as TAO) [85]. The S/N can be further
improved by a factor of ∼200 using this kind of ML data analysis techniques feed with simple
input features for each event signal cluster: its position, the reconstructed energy and the
number of signal clusters being the most relevant ones.
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Figure 7. TAO sensitivity contours at 90% CL. On the left, for 1 year of data taking (similar
exposure than SoLid Phase 1) and three different S/N values. On the right, for 3, 6 and 10 years of
exposure, with a realistic S/N = 10−1 (conservative value compared to solar analysis).

6 Results and discussion

The final sensitivity contours in the (mN ,|UeN |2) parameter space will depend on the expected
background rate, the total exposure, and the reconstruction efficiency. Awaiting a final official
analysis, we have produced sensitivity contours at 90% confidence level (CL) using various
hypotheses for these parameters. For TAO (figure 7), we have considered different data taking
periods (1, 3, 6 and 10 years), while for SoLid (figure 8) we have considered Phase 1 duration
(∼300 days). Figure 9 puts together the expected contours obtained for the SoLid, TAO and
JUNO detectors, taking a relatively realistic signal to noise ratio (S/N) for each of them: we
assume that JUNO and TAO can reach a S/N of 10−1, while for SoLid the best S/N can be
10−3. The results are compared to the limits set by Bugey [58] (black), Borexino [79] (red)
and Triumf [80, 81] (green) experiments. We can see the complementary energy range probed
by the reactor neutrino experiments compared to accelerator experiments like Triumf and the
solar neutrino data of Borexino. If a S/N of O(1) is achieved in TAO (probed possible with
the techniques used in [82]), it may set the best HNL laboratory limits up to now between 1
and 8–9 GeV with only 1 year of data taking. On the other hand, we note that even if the
expected signal rates are initially larger in SoLid than in JUNO (see figure 6), after taking
into account the reconstruction efficiency, together with the larger exposure and better S/N
achieved in JUNO with respect to SoLid, the former has a better performance at the end.

7 Conclusions and outlook

In this work, we studied the capabilities of short and medium baseline reactor experiments to
search for HNLs with masses in the MeV range and constrain their properties. Our results
highlight the feasibility and discovery potential of such searches. As an example, a sensitivity
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Figure 8. Expected limits at 90% CL for the SoLid detector (Phase 1, ∼300 days) in the accessible
HNL mass region for different signal to noise regimes and reconstruction efficiencies, the latter ranging
from 1 to 20%.

Figure 9. Expected limits (90% C.L.) for the SoLid (cyan), JUNO (light blue) and TAO (dark blue)
detectors. A reconstruction efficiency of 10% is assumed for the SoLid experiment, while JUNO and
TAO reconstruct all of the events in the reactor energy range. TAO will take data for at least three
years, which is the exposure considered here for both TAO and JUNO, while for SoLid the data taking
period of Phase 1 is used.
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estimate has been made for three reactor experiments: Solid, JUNO and TAO, showing
promising capabilities. We encourage the short baseline neutrino community to use their
datasets to conduct a search for MeV HNL at reactor experiments, which can lead to the
best laboratory limits for HNL masses in the range 2–9 MeV.
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