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Peculiar phenomena have been observed in analyses of anisotropic flow (v,) fluctuations in ultracentral
nucleus-nucleus collisions: The fourth-order cumulant of the elliptic flow (v,) distribution changes sign. In
addition, the ATLAS Collaboration has shown that cumulants of v, fluctuations of all orders depend significantly
on the centrality estimator. We show that these peculiarities are due to the fact that the impact parameter b
always spans a finite range for a fixed value of the centrality estimator. We provide a quantitative determination
of this range through a simple Bayesian analysis. We obtain excellent fits of STAR and ATLAS data, with a
few parameters, by assuming that the probability distribution of v, solely depends on b at a given centrality. This
probability distribution is almost Gaussian, and its parameters depend smoothly on b, in a way that is constrained
by symmetry and scaling laws. We reconstruct, thus, the impact parameter dependence of the mean elliptic flow
in the reaction plane in a model-independent manner, and assess the robustness of the extraction using Monte
Carlo simulations of the collisions where the impact parameter is known. We argue that the non-Gaussianity
of v, fluctuations gives direct information on the hydrodynamic response to initial anisotropies, ATLAS data
being consistent with a smaller response for n = 4 than for n = 2 and n = 3, in agreement with hydrodynamic

calculations.
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I. INTRODUCTION

There is growing interest in the study of ultracentral
nucleus-nucleus collisions at ultrarelativistic energies. Their
impact parameter is close to zero, which results in average
geometries that are nearly isotropic in the transverse plane [1].
Ultracentral collisions have been studied in dedicated anal-
yses [2] (and by means of specific triggers [3]) of Pb + Pb
collisions at the Large Hadron Collider (LHC). One of the
well-known outputs of these analyses is a tension between
theory and experiment, referred to as the “ultracentral flow
puzzle”: The measured triangular flow, vs, is larger than ex-
pected relative to elliptic flow, v, [1]. This discrepancy has
been addressed in a number of theoretical studies [4-9], and
the puzzle is not yet fully resolved. Recently, ultracentral
collisions have also been used as a laboratory to measure
the compressibility, or speed of sound, of the quark-gluon
plasma [10-16], and to highlight the impact of the ground-
state deformation of the colliding ions on the collective
flow [17-21].

Another interesting observation in ultracentral collisions
concerns the fourth-order cumulant of the elliptic flow dis-
tribution, denoted by c;{4}, and measured as a four-particle
correlation, which changes sign from negative to positive
as the collisions become more central. The negative value
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is well understood [22] and is generated by elliptic flow
in the reaction plane. In central collisions, the distribution
of the anisotropic flow vector is dominated by fluctua-
tions [23] which are essentially Gaussian [24], implying that
all cumulants should vanish beyond second order (variance).
Therefore, one would expect {4} to go smoothly from neg-
ative to zero as the centrality percentile decreases. While it
is understood that this behavior is associated with the ca-
pability of the experiments to resolve the centrality of the
collisions [25], we still miss a quantitative understanding of
how an imperfect determination of the collision impact pa-
rameter (the true centrality variable) generates the positive
c»{4} values measured in Au + Au collisions at the Relativis-
tic Heavy Ion Collider (RHIC) [17], and in Pb + Pb collisions
at the LHC [26]. In turn, one could address whether the same
physical mechanism explains the observation of the ATLAS
Collaboration that the root-mean-square value of v,, v,{2},
differs by a few percent, still in ultracentral collisions, depend-
ing on whether one defines the collision centrality using the
charged multiplicity (N.,) or the transverse energy (E7).

In this paper, we show that, indeed, both observations
related to v,{2} and c,{4} are naturally explained if one prop-
erly takes into account the difference between the centrality
as defined experimentally (using typically the multiplicity in
some detector [27]) and the true centrality [28], as defined

©2024 American Physical Society
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by the impact parameter, b, of the collision. The impact
parameter determines the geometry of the collision area. It
plays a key role not only for elliptic flow, but more gener-
ally for any phenomenon involving collective flow [29]. Its
probability distribution at fixed multiplicity can be precisely
reconstructed using a simple Bayesian analysis [28], which is
recalled in Sec. II.

Assuming that the probability distribution of the
anisotropic flow vector is close to a two-dimensional
Gaussian [24] that depends solely on b, in Sec. III we fit
experimental data on the cumulants of flow fluctuations
(whose definitions are recalled in Sec. IIl A) measured by
the ATLAS and the STAR Collaborations (as presented
in Sec. III B). From purely Gaussian fits (Sec. IIIC), we
achieve in Sec. III D a reconstruction of the impact parameter
dependence of the mean elliptic flow in the reaction plane,
and of the width of v, fluctuations, for n = 2,3,4. The
change of sign of the fourth-order cumulant of the elliptic
flow distribution is then discussed in Sec. IIl E. We show that
implementing leading non-Gaussian corrections (discussed
in Sec. III F), which are the skewness (for elliptic flow) and
kurtosis (for all other harmonics), in the fit to data improves
the description of the experimental results. We argue that
the non-Gaussianity of the nth flow harmonic coefficient
distribution gives direct information about the hydrodynamic
response coefficient, v,/e,, where &, denotes the spatial
anisotropy of the initial entropy density profile [30].

In Sec. IV, we test our assumptions against models where
the impact parameter is known. Since v, stems from linear
response to &, [30-32], we need a Monte Carlo model of ini-
tial entropy density fluctuations. We use the popular TRENTo
model [33]. We point out that the distribution of ¢, at fixed
b is somewhat correlated with the event multiplicity. This, in
turn, implies that our starting assumption, that the distribution
of v, depends solely on b, is not quite correct. We estimate the
impact of this correlation on our results.

In Sec. V, we summarize our results and discuss avenues
for research opened by our analysis, arguing in particular for
future hydrodynamic calculations at fixed impact parameter to
facilitate theory-to-data comparisons.

Technical material related to cumulant expansions is
relegated to the Appendix.

II. CENTRALITY FLUCTUATIONS

We define the centrality c of a collision from the cumulative
distribution function of the minimum bias impact parameter
distribution. Typically for ¢ < 75%, it is related to b by the
geometric relation

nb?

Cc = ,
Oinel

ey

where oy, 18 the inelastic nucleus-nucleus cross sec-
tion (which is 767 £26 fm?> in Pb+Pb collisions at
LHC [35], and about 685 fm? for Au+ Au collisions at
RHIC). We only study collisions central enough that Eq. (1)
holds. All our results will be given in terms of ¢, but Eq. (1)
can be used to express them in terms of b.

The centrality of a collision, as defined by Eq. (1), is
not measured. In heavy-ion experiments, one uses a spe-
cific observable as a proxy for the centrality, typically the
charged hadron multiplicity or transverse energy collected in a
detector. We denote this observable generically by N. The dis-
tribution of N, which we denote by P(N), is displayed in the
top rows of Figs. 1 and 2 for ATLAS data (Pb + Pb collisions
at /syy = 5.02 TeV) and STAR data (Au + Au collisions at
/svnv = 200 GeV), respectively. Arrows label selected values
of the experimentally defined centrality cexp, Which is the tail
distribution (complementary cumulative distribution function)
of N, or Er, depending on which of these two centrality
estimators one chooses.

In this section, we briefly recall how the probability dis-
tribution of ¢ at fixed N, P(c|N), can be reconstructed from
P(N) [28].!

The idea is to first determine the probability of N at fixed
centrality, P(N|c) and then use Bayes’s theorem, as we recall
below. Model calculations show that, for the collision systems
under consideration, the distribution of N at fixed ¢ is Gaus-
sian to a very good approximation:

R(2
P(N|c) = _w) Q)

1
—eX
V2mon(c) P < 20%(c)
where N(c) and oﬁ(c) denote the mean and variance of N,
which depend on centrality. Throughout this paper, we use the
notation (f|c) to denote the average value of f at fixed c. With
this notation, N(c) and 0’1%,(6) can be written in the following
way:

N(c) = (Nlc),
on(c) = (N?[c) — (N|c)*. A3)

The measured distribution P(N) is the integral over
centrality:

1
P(N) = / P(N|c)dc. )
0

By fitting Egs. (2) and (4) to the measured P(N), one can
reconstruct N(c) (assumed to be a positive analytic function,
typically the exponential of a polynomial) and o7 (c = 0) [28].

Note that the centrality dependence of al\z,(c) cannot be
inferred from data [28], so that assumptions must be made.
Since we are only interested in ultracentral collisions with
ckK1, Ulf,(c) is likely to differ little from cr,%, (0) anyway, and
we expect results to be robust, irrespective of the centrality
dependence of o3 (c). In order to quantify the corresponding
uncertainty, we test different scenarios. In Refs. [28,34], it
was assumed that the variance was proportional to the mean.
This is the case if the multiplicity is the sum of contributions
from identical, independent sources. We use a more general
parametrization introduced in Ref. [36], where the ratio of
variance to mean varies linearly with the mean, which is
empirically motivated by the results of initial-state models.

"Note that in Ref. [28], the centrality was denoted by c;,.
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FIG. 1. Top: Distributions of the charged multiplicity N, (left) and transverse energy Er (right) measured by the ATLAS collaboration in
Pb + Pb collisions at \/syy = 5.02 TeV [26]. Lines are fits using Eqgs. (2) and (4) [34], and arrows label selected values of the experimentally
defined centrality c.,, (see text). Lower panels display the cumulants of anisotropic flow, defined by Egs. (11) and (12), measured in events with
given N, (left) or Ey (right), for charged particles in the transverse momentum range 0.5 < p; < 5 GeV/c. Dashed lines are fits assuming
Gaussian flow fluctuations at fixed impact parameter (Sec. III C) and solid lines are fits with non-Gaussian corrections added (Sec. III F).
Dashed lines and solid lines are on top of one another for v,{2}, so that only the solid lines appear.

Specifically, we assume that

2 2 Y
2(c)  o2(0) N©
N - NO) (”(1 V)N<0>>’ ©)

where y is a constant. The assumption that the variance is
proportional to the mean corresponds to y = 1. State-of-the-
art models favor a larger value, y >~ 2 [36]. This implies that
fluctuations are smaller by a factor of 2 in central collisions
than in peripheral collisions, relative to the expectation from
independent sources. Note that there is at present no direct
evidence from data for such a suppression of fluctuations in

central collisions. The statement is that global theory to data
comparisons favor models where such a suppression occurs.
We vary y between 1 and 3 to study the sensitivity of our
results to this parameter.

Our fits to P(N) are displayed as lines in the top panels
of Figs. 1 and 2. For ATLAS data, the difference between fit
and data is very small, at the percent level. The fit parameters
are given in Table I of Ref. [34]. For STAR data, the collab-
oration does not provide the histogram of N, [17], but only
an analytic parametrization of the relation between N, and
the experimentally defined centrality (see caption of Fig. 1).
We use this relation to infer the probability distribution of
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FIG. 2. STAR results on Au+ Au collisions at ,/syy = 200
GeV [17]. Top: Probability distribution of dNy,/dn in Au + Au.
The line is a fit using Egs. (2) and (4). As in Fig. 1, arrows label
some values of the experimentally defined centrality cx,. Middle
and bottom: v,{2} and nc,{4}, defined from Egs. (11) and (12), for
charged particles in the transverse momentum range 0.2 < p, < 2
GeV/c. Lines are fits assuming Gaussian flow fluctuations at fixed
impact parameter (Sec. III1 C).

Ny, following the procedure described in Ref. [37]. One sees
in the upper panel of Fig. 2 that our fit deviates from data
in the tail of the distribution.”> We believe that the reason is
that the parametrization used by STAR is only approximate
in the tail. For this reason, our analysis of STAR data is
much less precise than that of ATLAS data. Precision could
be greatly improved if the histogram of N, was provided by
the STAR Collaboration. The fit determines the probability
P(N|c), defined by Eq. (2). The probability distribution of ¢ at
fixed N is then given by Bayes’s theorem:*

P(N|c)
P(N)

An approximate analytic form of P(c|N) can be derived using
Eq. (2), expanding N(c) to first order in ¢ around c¢ =0,

P(cIN) = (6)

2For STAR data, we obtain N(c) = 662 exp(—3.2c — 0.8¢% —
1.4¢3) and oy (c = 0) = 42.

3Note that the distribution of ¢ is flat since it is defined as a
cumulative distribution, namely, P(c) = 1.

and neglecting the variation of the width, oy(c) = oy (0). A
simple calculation then gives

[c —eMN)J

P(cIN) ocexp | ————5— | (7

20

where we have omitted the normalization constant, and

_ NO)-N

Ny = ————— )
—(dN/dc)e=o
0

o w® )

—(dN/dc)c=o

Equation (7) shows that the distribution of centrality at fixed
N is approximately Gaussian.

Distributions corresponding to Pb 4 Pb collisions at 5.02
TeV and to the ATLAS detector calculated numerically using
Eq. (6) are displayed in Fig. 3 for two values of N, and two
values of E7. For the smaller values (blue lines), one sees that
the distribution is approximately Gaussian, as expected from
Eq. (7). The distribution of c is broader at fixed N, (top panel)
than at fixed E7 (bottom panel), corresponding to a larger
o,.. Using the numerical values in Table I of Ref. [34], we
indeed obtain o, ~~ 1.2% if the centrality estimator is N, and
o, = 0.85% if the centrality estimator is E7. This means that
E7 is a better centrality estimator* than N,,. For the larger
values of N, or E7 (red lines), the Gaussian is truncated due
to the boundary condition ¢ 2> 0. The cases displayed actually
correspond to ultracentral collisions where ¢(N) < 0 [29],
implying that the most probable value of c is 0.

“This is due to the different pseudorapidity coverage [34].
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Let us discuss the dependence of results on the value of
the parameter y. Larger y implies larger o3 (c), that is, larger
fluctuations of N for fixed ¢, which in turn implies larger fluc-
tuations of ¢ for fixed N. This is confirmed by the numerical
results in Fig. 3, where P(c|N) become broader as y increases.
However, this effect is nearly negligible. We shall use the
value y = 2 throughout Sec. III, where we fit experimental
results.

Finally, note that in the case of STAR data, the width of the
centrality distribution would be twice as large as for ATLAS
data, as also shown in Ref. [28].

III. UNDERSTANDING ATLAS AND STAR DATA

In this section, we interpret the experimental results on
anisotropic flow cumulants displayed in Figs. 1 and 2.

A. Definitions and notations

We first briefly recall the definition of anisotropic flow and
of its cumulants. The “flow picture” [38], which is assumed
throughout this paper, is that in a collision event particles are
emitted independently according to an underlying probability
distribution, P(¢), where ¢ is the azimuthal angle. Through-
out this paper, we choose the direction of the impact parameter
as the x axis, corresponding to ¢ = 0. The complex [39]
anisotropic flow coefficient [40] is defined as

2 )
V, = / e"P(p)deo. (10)
0

The probability distribution P(¢) fluctuates event by event,
and so does V). The experimentally measured cumulants of
order 2, 4, and 6 are defined by [26]:

2} = (IVal?) = va{2)%,
eald) = (V') = 2(Vu?)? = —uaf4)?,
a6} = (IVal%) = AV (V) + 12(V, )’

= 4v,{6)°, (11)

where angular brackets denote an average value over events
for a given value of the centrality estimator. The ATLAS
Collaboration normalize cumulants of order four and higher
in such a way that they are invariant through a global rescaling
of V,,, by introducing

ald)  udd)?

el = E T T ner
a6l v
S N TR TN (42

B. Presentation of results from ATLAS and STAR

The ATLAS Collaboration measure v,{2} (rms anisotropic
flow) and nc,{4} for n = 2, 3, 4, as well as nc,{6}, while the
STAR Collaboration measure v,{2} and v,{4}* = —c,{4}. The
ATLAS analysis is carried out with two different centrality
estimators, the charged multiplicity near mid-rapidity (N,
left panels of Fig. 1) and the transverse energy in calorimeters
at larger rapidities (E7, right panels).

Both ATLAS and STAR analyses are carried out for all
centralities (typically from 0 to 80%). Our study focuses on
central collisions. Therefore, we only show the results for 5%
of events corresponding to the largest values of N, or Er.

The second-order cumulants yield the rms anisotropic
flow: v3{2} and v4{2} originate from initial-state fluctuations
and depend mildly on N, or E7, whereas v, {2} shows a strong
increase as the multiplicity decreases. The latter observation
corresponds to the onset of in-plane elliptic flow, driven by the
almond geometry of the overlap area [31].

Higher-order cumulants have been much studied for ellip-
tic flow [41-43]. The standard picture [24] is that v,{4} and
v2{6} coincide to a good approximation with the mean elliptic
flow in the reaction plane, resulting in a negative c,{4} and
positive c,{6} [Eq. (11)]. Equation (12) implies the approxi-
mate relation

ncy{6} =~ (—nea{4})*2, (13)

which holds in off-central collisions. For central collisions,
or large values of the multiplicity, nc,{4} becomes positive
for ATLAS data and, correspondingly, v,{4}* becomes neg-
ative. The same behavior is observed for STAR data. A hint
of this change of sign had previously been seen by ALICE
(see Fig. 4 of Ref. [44]). This phenomenon is discussed in
detail in Sec. III E, where we show that the positive c{4} is a
generic phenomenon, generated by the centrality fluctuations
discussed in Sec. II.

The higher-order cumulants of vs [45] and vy [46] have
been less studied, though they can be measured very ac-
curately. The negative values measured by the ATLAS
Collaboration for nc3{4} and nc4{4} in Fig. 1 imply in partic-
ular non-Gaussian flow fluctuations, which will be discussed
in Sec. IITF.

C. Gaussian fluctuations

We now introduce our model, which will be further refined
in Sec. IITF. We assume that the probability distribution of
V, at fixed centrality is approximately Gaussian [24], which
amounts to applying the central-limit theorem to flow fluctua-
tions. Dropping the subscript n for simplicity, and separating
the complex V into real and imaginary parts, V = v, + iv,,
we write

_ [vx — l_}(c)]z + U§> (14)

1
PVie) = wol(c) xp ( o2(c)

where v(c) and ovz(c) denote the mean and variance of V at
fixed c:

i(c) = (Vle),
o (c) = (IVIPle) — {V]c) . (15)

Note the similarity of Egs. (14) and (15) with Egs. (2)
and (3). We recall that a strong nuclear deformation spoils the
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Gaussian approximation [37], and that we assume spherical
nuclei throughout this paper.’

The mean, v(c), is along the x axis because the average
collision geometry (obtained from an ensemble of events
with the same impact parameter) is symmetric under y — —y
(symmetry with respect to the reaction plane). For symmetric
collisions at midrapidity and ¢ > 0, symmetry under ¢ —
¢ + m implies that v(c) vanishes for vs. For collisions at
¢ = 0 (zero impact parameter), azimuthal symmetry implies
that v(c) vanishes also for even harmonics.

In practice, we consider a nonzero v(c) only for elliptic
flow, where it corresponds to the mean elliptic flow in the
reaction plane [47]. v(c) is an analytic function of ¢ which
vanishes at ¢ = 0. We expand it in powers of the centrality:

ﬁ(c)=a1c+a202+a3c3. (16)

Higher orders in ¢ are not needed for the range of centralities
considered in this paper. For quadrangular flow, vy, the leading
contribution to v(c) allowed by symmetry is proportional to
2, corresponding to v4 ~ v% [48], and we have checked that
it is negligible in the centrality range that we consider in this
paper.

The variance, avz(c), is also an analytic function of c. For
each harmonic, we expand it in powers of c:

Of(c)on +Ajc+ Ay 17

Again, three terms suffice for the considered centrality range.

The experimentally measured cumulants in Eq. (11) are
functions of moments (|V|¥) (we have again dropped the
subscript n for simplicity), where the average value is taken
at fixed N. Thus, we introduce the more appropriate notation
(IVI¥IN) = (|V|*). The crucial point is that each N corre-
sponds to a range of centralities, as discussed in Sec. II.
Therefore, these moments are evaluated in two steps. First,
one evaluates them at fixed centrality. Then, one averages over
centralities.

In our approach, the moments at fixed centrality are those
of the Gaussian distribution in Eq. (14):

(IVIPle) = o + 7%,

(IVI*e) = 207 + 4020% + 0,

(IVI°lc) = 600 + 18040% 4 9020* + ©°, (18)
where we have used the shorthand notations v and 03 for v(c)
and o2(c).

The average over centrality is done using the probability
P(c|N) defined in Sec. II:

(VIEINY = f IV Fle)P(clN)de. (19)

Finally, from these moments one evaluates the cumulants in
Eq. (11).

For each harmonic, we carry out a combined fit of exper-
imental data with this model. In the case of ATLAS data,
the “combined” fit uses both N.,- and E7-binned data, and

SThis is also the reason why we do not analyze STAR data on U +
U collisions [17] in this work.

all cumulant orders. For n = 3 and n = 4, there are three fit
parameters, which are the A; in Eq. (17). For n = 2, there are
three additional fit parameters, namely, the a; in Eq. (16).

The fits are displayed as dashed lines in Figs. 1 and 2. They
are excellent for v,{2}. In Fig. 1, this implies that differences
in rms v, results due to the different centrality determination
method, as emphasized by the ATLAS collaboration [26], are
fully captured in our approach. In the case of elliptic flow,
vy, our fits explain as well the change of sign of fourth-
order cumulant, c,{4}, again capturing the differences due to
the centrality determination between the left and right pan-
els of Fig. 1. For triangular and quadrangular flows, vs and
v4, the model cannot reproduce the measured fourth-order
cumulants. For this reason, non-Gaussian corrections must
be included. They will be discussed in Sec. III F, where the
values of the fit parameters are also listed.

D. The centrality dependence of anisotropic flow

The fit to data returns preferred values for the set of param-
eters a; and A; in Egs. (16) and (17). Using these equations,
we reconstruct the centrality dependence of the mean elliptic
flow in the reaction plane, v,(c), and of the standard deviation
of flow fluctuations, o,,(c), which are displayed in Fig. 4.

The magnitude of o, (c = 0) roughly matches that of v, {2}
for the rightmost points in Figs. 1 and 2. This is intuitive
as these points correspond essentially to collisions at zero
centrality, where anisotropic flow is solely due to fluctuations.
For ATLAS data, 0,, and o,, are of comparable magnitude,®
while o,, is smaller by approximately a factor 2.

Still for ATLAS data, one observes that o,, increases as
a function of centrality for all harmonics. This is natural
since larger ¢ implies a smaller system size, hence larger
fluctuations. When the initial density profile is the sum of N
independent sources, the variance of eccentricity fluctuations
varies like 1/N [49] [see Eq. (AS)]. Therefore, one typically
expects that crvzn (c) is inversely proportional to the mean mul-
tiplicity, N(c).

The increase of fluctuations seen in Fig. 4 is in fact much
faster than expected from this simple baseline. The rela-
tive increase of avzn (c) for central collisions is quantified by
dlIn ofn /dcl.—o = A1 /Ao, where we have used Eq. (17). The fit
to ATLAS data returns values in the range 13 < A; /A < 22,
depending on the harmonic. This means that a 1% increase in
the centrality results in a 13% to 22% increase in the variance
of flow fluctuations. This must be compared with the relative
increase in 1/N(c), which is only 4% [34]. Thus, data indi-
cates that flow fluctuations are suppressed in central collisions
relative to the simple baseline of independent sources. As will
be shown in Sec. IV, the same phenomenon is observed in
simulations.

The increase of o2 with centrality is weaker for STAR
data. However, our reconstruction is in this case less robust

®Note that the ATLAS analysis only includes particles with p, >
0.5 GeV/c. Since v3(p,) increases with p, more steeply than v,(p,),
the p; cut enhances v; relative to v,.
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FIG. 4. Centrality dependence of the mean elliptic flow, and of the rms width of anisotropic flow fluctuations reconstructed by fitting
ATLAS data in Fig. 1 (left panel), and by fitting STAR data in Fig. 2 (right panel). The different kinematic cuts (0.5 < p, < 5 GeV/c for
ATLAS data, 0.2 < p, < 2 GeV/c for STAR data) and, to a lesser extent, the different collision energies, explain why the STAR Collaboration
measure v, values that are smaller than those measured by the ATLAS Collaboration. For ATLAS data, the full lines correspond to the
reconstruction done as explained in this section. The dash-dotted lines display the modification induced by correlations between v, and
multiplicity, discussed in Secs. IVD and IV E. For STAR data, the dashed lines correspond to the reconstruction done as explained in this
section. The full lines display the modifications induced by taking into account the non-Gaussian corrections discussed in Sec. III F.

than that obtained for ATLAS data for the reasons outlined in
Sec. II.

The mean elliptic flow in the reaction plane, v,(c), over-
rides 0,,(c) already at 4% centrality for ATLAS data. In the
case of STAR data, the crossing between v,(c) and o,,(c)
occurs for a larger value of ¢, which is, however, less precisely
determined.

E. Explaining the change of sign of c,{4}

We now explain the origin of the change of sign of nc,{4}
from negative to positive as a function of N, or Er, as shown
in Fig. 1.

Inserting the moments of Eq. (18) into the definition of
cn{4} in Eq. (11), one obtains

el = 2((o2) = (02)) + 4((020%) — (o 2)(0%)
+ (%) —2(0*)?, (20)

where angular brackets denote an average over c at fixed N.
Thus c¢,{4} is decomposed as the sum of three terms. The
first term involves fluctuations of UUZ, the second term the
correlation between ovz and 92, while the third term is solely
due to v.

For harmonics n = 3 and 4, ¥ vanishes, and only the first
term involving the fluctuations of o2 remains. It is always
positive, as can be seen in the red and green dashed lines of
the corresponding panels of Fig. 1. The value of nc,{4} is of
the same order of magnitude for both the harmonics, typically
1% or 2%.

For n = 2, on the other hand, due to the nonzero v, the first
term is typically the smallest of the three. For the smallest val-
ues of Ny, or E7 (off-central collisions) in Fig. 1, the dominant
contribution is the third term, so that c,{4} ~ —* [24] upon
neglecting the variation of v with centrality. Next comes the

second term involving the covariance of o> ad v°. Since both
O'U2 and 92 increase with c, it is positive. As Ny, or E7 increases
(central collisions), it gradually overrides the third term, and
explains the positive sign of ¢, {4} at large N, or E7.

‘We now derive an approximate analytic estimate of ¢;{4} in
this region. We neglect the first term of Eq. (20). We evaluate
the second term by expanding o%(c) and  to first order in c:

o2(c) ~ a2(0) + di’z c
v - v dC o—0 ’
dv
v ~ — . 21
v(c) el (21)

For the second line in Eq. (20), one obtains

do? (dv z 3 2
= <dc> (%) = (eMe?),  (22)
where the derivatives are evaluated at ¢ = 0.

This expression can be further simplified using the property
that the distribution of ¢ is approximately Gaussian, Eq. (7).
For values of N small enough that the truncation of the Gaus-
sian at ¢ = 0 has a negligible effect (blue lines in Fig. 3),
the mean centrality ¢(N) coincides with the experimentally
defined centrality ceyp [50]. Decomposing ¢ = cexp + 8¢, and
using (8¢) = 0, (3¢?) = 02, (8¢*) = 0, one obtains

() = (e} (c?) = 2072 Cexp- (23)

We finally approximate the third line of Eq. (20) by using
the linear expansion of v(c) in Eq. (21) and neglecting the
centrality fluctuation, that is, we replace ¢ with cexp:

(") —2(0*)* ~ —(dl)4c4 (24)
- dC exp‘
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Inserting Egs. (22), (23), and (24) into Eq. (20), we finally
obtain

o (dv\', do? (dv\* ,
C2{4}_— % Cexp+8% % O Cexp- (25)

We recall that the derivatives in this expression are evaluated
at ¢ = 0. In this expression, only cex, depends on the value of
N, or E7. In addition, o, depends on whether the centrality
estimator is N, or Er.

The first term in the right-hand side of Eq. (25) is the
negative contribution from the mean elliptic flow in the reac-
tion plane [51]. The second term is positive and proportional
to of, which means that it comes from centrality fluctua-
tions. Inspection of Eq. (25) shows that the change of sign
of c2{4} occurs at a centrality Cexp X (6.)*3. The poorer the
centrality resolution, the earlier c;{4} becomes positive. This
explains why a positive v, {4} signal is in general not observed
at RHIC in the 0-5% centrality window [52,53]. It is only
found for U + U collisions due to strong nuclear deformation
effects [17].

Inspection of Eq. (25) further shows that the value of
Cexp Where ¢;{4} reaches its maximum is smaller by a factor
22/3 ~ 1.6 than the value at which it changes sign. The max-
imum value of ¢»{4} is proportional to 03/3. Using the values
o, >~ 1.2% for N, 0. >~ 0.85% for E, one obtains that it is
larger by a factor >~ 2.4 for N, than for Er, consistent with
ATLAS data in Fig. 1. We provide, thus, a sound understand-
ing of the detailed features that characterize the experimental
measurements.

Perhaps more importantly, the maximum value of c¢,{4} is
directly proportional to do2 /dc, that is, to the increase of flow
fluctuations with centrality. We have pointed out at the end of
Sec. III D that this increase is faster than one would naively
expect from an independent source model. We now see that
a faster increase also results in a larger positive ncy{4}. A
similar reasoning could be applied to the cumulant of order
6, c2{6}, which we leave for future work. Note that according
to our numerical calculation in Fig. 1, it changes sign twice. It
would be insightful to improve the precision of this measure-
ment with future LHC Run 3 Pb + Pb data, whose analysis is
underway.

F. Non-Gaussian corrections

The picture of Gaussian flow fluctuations presented in
Sec. III C is motivated by the central limit theorem, applied to
fluctuations in the early stages of the collision. The collision
involves nonetheless only a few hundred nucleons, such that
finite-size corrections are expected in the form of higher-order
cumulants, the first two being the skewness and the kurtosis.’
There is no general theorem for the signs of skewness and
kurtosis of a random variable, but there are systematic trends
depending on the support of the underlying distribution. For a
positive variable, such as the particle multiplicity [54] or the

"The term “kurtosis” sometimes refers to the central moment
of order four, while the cumulant is called the “excess kurtosis.”
Throughout this paper, the kurtosis denotes the cumulant.

transverse momentum per particle [36,55], the skewness and
kurtosis are usually positive.® On the other hand, for a variable
which lies on the unit disk, such as the complex flow V,, or
the initial anisotropy ¢, (see the Appendix), skewness [56—59]
and kurtosis [60] are usually negative.

When anisotropic flow is only due to fluctuations, there is
no skewness by symmetry, but one expects a negative kurtosis.
This was first observed by the ALICE Collaboration for v3
in Pb + Pb collisions [45], in the form of a positive v3{4},
which was then unexpected. The negative kurtosis of v, and
v3 was subsequently observed in p + Pb collisions [42,44,61—
65], where the smaller system size implies even larger non-
Gaussianities. In the case of elliptic flow in nucleus-nucleus
collisions, higher-order cumulants are generated by elliptic
flow in the reaction plane, as shown in Sec. III C. They do not
directly reflect non-Gaussian fluctuations, whose signatures
are somewhat elusive. The skewness of the elliptic flow vector
distribution along the direction of the reaction plane can be
inferred from the small splitting between v,{4} and v,{6} in
mid-central Pb + Pb collisions [42,43]. Similarly, the kurtosis
can be extracted, albeit with complications [66,67].

The leading non-Gaussian corrections relevant for central
nucleus-nucleus collisions of interest in the present analy-
sis are discussed in the Appendix. We discuss cumulants of
the initial anisotropies, &,, but the formalism is identical for
cumulants of anisotropic flow, upon replacing ¢ = ¢, by v
everywhere. We parametrize the skewness and the kurtosis via
two parameters Skw, and Krt,. They are normalized in such a
way that they depend weakly on centrality. They are infensive
quantities, in the same way as the intensive skewness of p,
fluctuations [55,68].

We do not write explicitly the corrected form of the Gaus-
sian distribution in Eq. (14), because we are only interested
in its moments. The latter are simply expressed in terms
of cumulants using the generating function, as explained in
detail in the Appendix. The skewness and kurtosis appear as
additional contributions to the moments of order 4 and higher.
This amounts to replacing Eqs. (18) with (see the Appendix)

(IVPle) = o) + 7%,

(IVI*e) = (2 + o2Krt,)o! + 4(1 + 028kw, )0 20° + o7,

(IVI°lc) = (6 + 907Krt, )0l +9(2 + o7 (Krt, + 45kw,))
x 00> 4+ 9(1 + 20, Skw, o, v* + 0°. (26)

For v3 and v4, the mean anisotropy v vanishes, and the mo-
ments only depend on o, and on the kurtosis.

Taking into account these non-Gaussian corrections
amounts to adding one more fit parameter, Krt,, for both vs;
and vy, and two more fit parameters, Skw, and Krt,, for v;.
The resulting fits to ATLAS data are displayed as solid lines
in Fig. 1, and the values of fit parameters are listed in Table 1.
The difference with respect to the Gaussian fit is significant
only for the cumulants of order four or higher. The negative
kurtosis significantly improves agreement with data for nc3 {4}

8A typical example is the Poisson distributions, whose all
cumulants are equal.
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TABLE I. Values of the fit parameters defined by Eqs. (16), (17),
and (26), and of the chi square per degree of freedom, for the
“combined” fit to ATLAS data in Fig. 1. Two sets of parameters
are provided. The first set, in roman characters, corresponds to the
procedure described in Sec. III F, where the (non-Gaussian) proba-
bility distribution of anisotropic flow is assumed to depend only on
centrality (full lines in Fig. 4) The second set, in italics, assumes
a specific correlation between anisotropic flow and the centrality
estimator N, which is discussed in Sec. IV D (dash-dotted lines in
Fig. 4).

1%} V3 V4
a; 1.10 = 0.01
0.96 £ 0.04
ap —-10.7 £ 0.3
—49+ 1.2
as 75 +£3
11 + 12
10%A, 4.67 £ 0.01 591 + 0.01 1.754 £ 0.005
5.17 £ 0.03 6.55 £ 0.01 1.96 £ 0.02
10°A, 103 £ 0.3 10.6 + 0.1 2.86 £ 0.06
11.2 £0.7 59+£0.2 14 + 0.1
10%A, —28 £ 04 —62 £ 0.2 —1.8 £ 0.1
—4.3 £ 0.9 1.0 £ 03 04 £+ 0.2
Skw, -36 £ 5
25+ 8
Krt, —18 £5 -29 £ 1 —243 £ 10
39 + 17 —12+2 —197 £ 17
x2/dof 2.9 1.7 1.4
4.2 11.7 4.3

and ncy4{4}, as expected. This is reflected by the chi square of
the fit, which is reduced from about 20 to less than 2. Note,
however, that the fit does not capture the variation pattern
of ncy{4} when the centrality estimator is N, which is less
regular than when the centrality estimator is E7. For elliptic
flow, the improvement brought by the non-Gaussian terms is
marginal. However, it is interesting to notice that the fit returns
negative values of Skw, and Krt,, which is also expected,
albeit with large error bars. In the case of STAR data, the
improvement brought by the non-Gaussian correction is not
visible by eye. The fit returns a positive value of the skewness,
and a large negative value of the kurtosis.

The values of the fit parameters entering Eqgs. (16) and (17)
differ depending on whether or not non-Gaussian corrections
are added. For ATLAS data, the change is small enough that it
would be barely visible on Fig. 4, where we actually display
the results obtained with the non-Gaussian terms included. For
STAR data, both sets of results are shown, and the difference
is significant. It shows that the reconstruction has large uncer-
tainties, as anticipated from the discussion in Sec. II.

We now interpret the values of the skewness and kurtosis
returned by our fit to ATLAS data in a simple hydrodynamic
picture, where anisotropic flow results from a linear hydrody-
namic response to an initial anisotropy:

Vn = Knén, (27)

where V, is the complex flow, ¢, the complex eccentricity,
and «, a (real) hydrodynamic response coefficient, which

depends on n [69], usually smaller than unity. This is a good
approximation for n = 2 and n = 3 in both ideal and viscous
hydrodynamics [70]. For n = 4, there are corrections due to
a nonlinear coupling with elliptic flow [39,69], but they are
negligible for central Pb + Pb collisions, on which we focus
now. Within this linear response scenario, Eq. (A3) gives

Pemp(en), (28)

where we denote by c,,,(v,) the cumulants of the (two-
dimensional distribution) of V;, and by c¢;u,(e,) those of the
distribution of ¢,. Using Eq. (A6), where v, = «,&, and 0,,, =
k,0¢,, one then obtains

Cmp(vn) = K:,nJr

Skw,, = — Skwg,,

Krt, = —Krt,,, 29)
which means that the intensive skewness and kurtosis of flow
are amplified by a factor 1 /K,f relative to those of the initial
eccentricity.

Now, we shall see in Sec. IVF that initial-state models
return values of

Skw,, ~ Krt, ~ —2. (30)

In the case of the elliptic-power distribution [56], which is
a generic parametrization of the distribution of ¢,, the cu-
mulants can be calculated analytically [66], and one obtains
precisely Skw,, = Krt,, = —2inthelimité < land N > 1,
where N is the number of sources. Putting together Egs. (29)
and (30), one then obtains the linear response coefficients
from the kurtosis as

-2
Krt,,

&

€29

Kn

and a similar equation for the skewness. Using the values of
Krt,, in Table I, we obtain

0.26 < k3 < 0.41,
0.09 < k4 < 0.11. (32)

The error bars on Skw,, and Krt,, are too large to obtain a
meaningful estimate of «,. The estimates in Eq. (32) are in
the ballpark of hydrodynamic results [69], if one properly
takes into account the kinematic cut p; > 0.5 GeV/c of the
ATLAS analysis, which preferentially selects particles with
higher v,. It is interesting to note that the uncertainty is
smallest for the highest harmonic 4, which is also the most
sensitive to viscosities in the hydrodynamic picture. Hence,
the non-Gaussianity of the quadrangular flow distribution [71]
gives rather direct access to the hydrodynamic response, and
can potentially help tighten the experimental constraints on
transport coefficients of QCD from Bayesian analyses [72].
Before drawing definite conclusions, however, hydrodynamic
simulations at fixed impact parameter should be carried out
in order to test whether higher-order cumulants of anisotropic
flow are accurately determined by linear response to the ec-
centricity, as assumed in Eq. (28).
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IV. MODELS OF INITIAL FLUCTUATIONS
A. Motivation

We assess the accuracy of the reconstruction carried out in
Sec. III using model simulations where the impact parame-
ter is known in each event. Ideally, these model simulations
should be event-by-event hydrodynamic simulations [73], in
which one calculates the particle multiplicity as well as the
anisotropic flow v, for a large number of simulated events.
One can then test the reconstruction by carrying out two sets
of simulations. First, one can generate events randomly, mim-
icking minimum-bias events in an actual experiment. These
events can then be analyzed in the same way as in an experi-
ment, by binning them according to the particle multiplicity
and evaluating the cumulants [Eq. (11)] in each bin. Sec-
ond, one can also generate events at fixed impact parameters,
which cannot be done experimentally. With this second set
of simulations, one can study the fluctuations of multiplicity
and anisotropic flow at a fixed impact parameter to test the
reconstructed results.

Full event-by-event hydrodynamic simulations are numer-
ically time-consuming, and we choose to test our assumptions
using a simpler framework. First, as done in the previous
section, we consider that final-state anisotropic flow coeffi-
cients, V,, originate from a linear response to the initial-state
anisotropies, ¢&,. Furthermore, we consider that the charged
multiplicity of an event, such as N, is largely determined
by the initial entropy, obtained by integrating the entropy
density deposited in the collision process at midrapidity over
the transverse coordinates. Therefore, we choose to simulate
only the initial conditions of the heavy-ion collision. Such a
simulation is not as realistic as a full hydrodynamic calcu-
lation, but we hope that it captures the salient features, in
particular the effect of the geometry, as mediated by impact
parameter, and the event-by-event fluctuations.

B. Modeling initial conditions

We use the TRENTo model, which is a Monte Carlo gen-
erator of initial density profiles (entropy profiles, in our case)
in high-energy nuclear collisions [33], routinely employed in
state-of-the-art simulations [74,75].°

The model first samples the positions of nucleons within
each nucleus. Then, it defines thickness functions 74 p(x, ) for
each nucleus (A and B, respectively) according to the positions
of these nucleons, where x| denotes the transverse coordinate.
We assume that the entropy density s(x, ) is proportional to
the geometric mean of these thickness functions, s o /T Tp,
which corresponds to the option p = 0 in the code. The con-
tribution of each nucleon to the thickness function is allowed
to fluctuate randomly, and these fluctuations are controlled by
a parameter k.'° We choose the value k = 2, for which the

9Note that recent works use TENTo as an initial condition for the
energy density, rather than the entropy density.

19 Additional sources of fluctuations at the nucleon level can be
introduced by adding a fluctuating subnucleonic structure to the
colliding nucleons [76]. For the purpose of this study, it is enough

relative fluctuations of the entropy at b = 0 have the same
magnitude as those of the charged multiplicity in ATLAS data
(specifically, o, (0)/Na(0) == 4% [34]).

We run the TRENTo model for Pb+ Pb collisions at
JSvy = 5.02 TeV. We first generate 4 x 10% minimum-bias
events. In each event, we evaluate the total entropy, S, and the
initial eccentricities |g,|, for n = 2, 3, 4. We assume that the
charged multiplicity N, of the event is proportional to S. We
fix the proportionality factor by running TRENTo simulations
at b = 0 (see below) and evaluating the average value of S
for these collisions, S(b = 0). Now, the average value of N,
for b =0 can be reconstructed from the histogram of N,
displayed in the upper left panel of Fig. 1, as explained in
Sec. II, and one obtains the value N, (b = 0) >~ 3104 [34]. We
choose the proportionality factor as Ny (b = 0)/S(b = 0), and
rescale the minimum-bias distribution of S values accordingly.

Figure 5 displays the distribution of N, from this model
calculation (upper panel), as well as the cumulants of the
eccentricity distributions (middle and lower panels), obtained
by replacing V,, with ¢, in Egs. (11) and (12). The similarity
with Fig. 1 is obvious. The magnitude of &,{2} is significantly
larger than that of v, {2}, as expected in hydrodynamic models,
where the response coefficient «, = v,{2}/¢,{2} is smaller
than unity. The higher-order cumulants of ¢, nc,{4} and
ncy{6}, change sign like the cumulants of v, in Fig. 1. If v,
was strictly proportional to ¢, then the proportionality factor
would cancel between the numerator and the denominator of
Eq. (12), and nc,{4} and nc,{6} would be identical for v, and
en. One sees that nc, {4} reaches positive values significantly
larger for v, in Fig. 1 than for &; in Fig. 5. Note also that nc; {4}
becomes negative again for the largest values of N,. This sec-
ond change of sign, which is not seen in data (where it could
be hidden by error bars), arises from the non-Gaussianity of ¢,
fluctuations. As will be discussed in detail in Sec. IV F, these
fluctuations have negative kurtosis at fixed impact parameter,
and the highest values of N, correspond to collisions at zero
impact parameter.

The differences between model and data for nc,{4} may
be due to the fact that our model of initial conditions is not
realistic. They might be also explained by deviations from the
linear response. Recent calculations [77] have shown that in
the case of ultracentral Pb + O collisions, nc,{4} is negative
for ¢, fluctuations but positive for v, fluctuations, meaning
that the hydrodynamic response indeed increases nc,{4}. We
do not investigate the origin of this interesting difference, as
our goal is simply to test the reconstruction procedure on
mock data.

C. Reconstruction of the centrality dependence

We then analyze the results of these simulations exactly
as we analyze the ATLAS data. First, we fit the distribution of
N, asin Sec. 11, so as to reconstruct the distribution of central-
ity at fixed N, P(c|N.). Next, we fit the results on cumulants
using Eqgs. (26), where v is replaced by & everywhere. The

to consider smooth structureless nucleons, modeled as Gaussian pro-
files. The corresponding nucleon size is w = 0.5 fm.
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FIG. 5. Top: distributions of the charged multiplicity N, ob-
tained in the TRENTo simulation from a rescaling of the initial-state
entropy, as explained in the text. The solid gray line is a fit using
Egs. (2) and (4), as in the case of ATLAS and STAR data in Figs. 1
and 2. Lower panels display the cumulants of eccentricity fluctu-
ations (e,, n =2, 3, 4) as a function of N, defined by Eqs. (11)
and (12) with v, — ¢,. Lines are fits using Egs. (26). Full lines are
obtained by assuming that the distribution of ¢, only depends on
centrality, as in Sec. III. Dash-dotted lines are obtained by modeling
the correlation between ¢, and N, using Eqgs. (34) and (38), with
o = —2and o) = aj = —1 (see text).

mean eccentricity & (c) and the variance of fluctuations o; (c)
are parametrized as polynomials as in Sec. III. The resultmg
fits, displayed as full lines in Fig. 5, are excellent, as in the
case of ATLAS data.

The full lines in Fig. 6 display the functions &,(c) and
0g,(c) for n = 2, 3,4, as returned by the fit. In order to test
the accuracy of this reconstruction, we run the TRENTo model
at fixed impact parameter. We generate 4 x 10° events for
each value of c.!" The resulting values of & (c) and o, (c)
are displayed as symbols in Fig. 6. One sees that o.,(c) and
o¢,(c) are accurately reconstructed. But the reconstruction is

'The TRENTo calculation returns oy = 785 fm?,
agreement with the ALICE result [35].

in good

FIG. 6. Centrality dependence of the mean eccentricity &,, and
of the rms width of eccentricity fluctuations, o,, in our TRENTo
simulations. Symbols are values calculated directly by running the
model for fixed centrality. Lines are obtained by fitting the mock data
of Fig. 5, either with (dash-dotted lines) or without (full lines) taking
into account the correlation between eccentricity and multiplicity at
fixed centrality (see text).

not as precise in the second harmonic: Specifically, it slightly
overestimates &;(c) and underestimates o, (c).

D. Correlations between anisotropy and multiplicity

The origin of this slight discrepancy can be traced back to
the existence of a correlation between the initial anisotropy,
en, and the entropy, S, at fixed centrality, which we have
not considered in our calculations. In other terms, in writing
Eq. (19) we have implicitly assumed that the multiplicity, N,
and V), are independent variables at fixed c. Releasing this
assumption, we generalize Eq. (19) for the moments of the
flow fluctuations:

(IVIIN) = / (IVI*le. N)P(cIN)de, (33)
meaning the average of |V |¥ at fixed ¢ does in general depend
on N. A similar equation holds if one replaces anisotropic
flow, V, by the initial anisotropy, &

Since the distribution of &, = (&,y, &,y) at fixed ¢, P(g,|c),
is Gaussian up to small corrections, which will be discussed
below, it suffices to specify how the parameters of the Gaus-
sian in Eq. (14) are correlated with N (which in this case
represents the initial-state entropy, S) at fixed c, for instance,
the reaction plane eccentricity, &,. A simple and yet effective
way to parametrize its correlation with N is by means of a
power law dependence, with an exponent «:

N a(c)
&2(c, N) = (exlc,N) = 52(6)(1%) . (34)

In practice, at fixed ¢ the fluctuations of N around the average
N(c) are small enough that one can linearize Eq. (34):
N —N(c
g (c,N)~z&(c)| 1+ oz(c)_—() . 35)
N(c)
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Averaging over N, the second term vanishes, and the average
value of &,(c, N) is &(c) as it should. We now relate «(c) to
the linear correlation between &,, and N, which is the standard
measure of a correlation. We multiply Eq. (35) by N and
average over events at fixed c:

_ o2
(62xN) — 82N = OlézﬁN, (36)

where the dependence on c is implicit. We use this equation to

evaluate «(c) numerically, by running simulations at fixed c.
The exponent « is related to the traditional Pearson corre-

lation, p, computed between ¢,, and N in the following way:

(e2N) =8N oy &

T_’
N 02y

o (37

O02x ON

where o0y, = V (8§x) — &, denotes the standard deviation of
the reaction-plane eccentricity, &;,. In the limit ¢ — 0, az-
imuthal symmetry implies that p vanishes, while o converges
to a finite value. Therefore, characterizing this correlation
via an effective exponent « as in Eq. (36), rather than by
the Pearson coefficient, seems more convenient for ultracen-
tral collisions, as we expect its variation with the centrality
to be negligible. Indeed, variables associated to fluctuations
are expected to approach the ultracentral limit in a smooth,
nonsingular way.

A similar discussion applies to the correlation between o2

&n

and N, which we parametrize by an equation similar to (34):

2 2 N\
Gsn (Cv N) = Uen (C)(m) s (38)

with a new exponent «,(c). The value of «, is calculated
using an equation similar to Eq. (36), up to the following
modifications. The left-hand side of Eq. (36) is the connected
correlation, (£,,N)., which one should replace with the con-
nected correlation ((eﬁx —i—eﬁy)N )e, Obtained by subtracting
lower-order correlations order by order [the explicit expres-
sion is derived in the Appendix, Eq. (A10)]. In the right-hand
side of Eq. (36), one should simply replace &,(c) with oszn (c).
The values of « and «, obtained from TzENTo model sim-
ulations at fixed centrality are displayed in Fig. 7. They are
nonzero in magnitude and negative. Equations (34) and (38)
then imply that, for a given impact parameter, collisions
producing a larger multiplicity have on average a smaller ec-
centricity in the reaction plane, as well as smaller eccentricity
fluctuations. We have checked, by varying the parameters of
the TR;ENTo model, that this is a generic feature. In particular,
larger values of the fluctuation parameter k (corresponding to
lower event-by-event entropy density fluctuations) result in
even more negative values of o and o). One sees also that
the value of «, is almost identical for n = 2 and n = 3. Sur-
prisingly, we discover that the exponents « and «,, display a
significant variation with ¢ in the 0-10% window.'> We do not
understand the precise the origin of this variation. It implies

2By contrast, they are almost constant for semicentral collisions
covering the 10-40% range.
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FIG. 7. Centrality dependence of the exponents « [Eq. (34)] and
a),, with n =2, 3 [Eq. (38)] in TENTo simulations at fixed impact
parameter. The symbols are direct numerical evaluations, while the
lines indicate the values which we have used in order to evaluate
the impact of these coefficients on our fits and the reconstruction
procedure (see text).

that these variables approach the ultracentral limit in a rather
singular manner. We suspect that it is related to the selection
of participant nucleons [78] that is the starting point of the
TrENTo calculation. In particular, fluctuations in the number
of participants should decrease drastically in the limit ¢ — 0,
which may drive the singular behavior of other quantities. We
leave the investigation of this phenomenon to a future study, as
here we are only interested in knowing whether the inclusion
of nonzero « and «;, values improves the reconstruction of the
eccentricities at fixed impact parameter, which we study now.

E. Assessing the accuracy of the reconstruction

The values of o and o), can be calculated in simulations, but
they are properties of the specific model used. Which values
are appropriate for the final-state flow coefficients is unknown.
Therefore, our goal is not to correct for the effect of this
correlation, but merely to assess its importance. For the sake
of simplicity, we neglect the centrality dependence of « and
a,, and we choose constant values o = =2, o) = o = —1,
indicated as dashed lines in Fig. 7. With these values, we
repeat the fit to the minimum-bias simulations, shown as dash-
dotted lines in Fig. 5.

The fit is slightly worse for the largest values of N, (this
is true in particular for ncy{4}), which makes sense since
they correspond to very small centralities, where values of «),
closer to 0 would be preferred (Fig. 7). On the other hand,
the values of £,(c) and o, (c) returned by the fit are in better
agreement with the direct calculations, as shown by the dash-
dotted lines in Fig. 6.

We are now in a position to assess the robustness of the
reconstruction carried out using ATLAS data in Sec. III. In
Egs. (26), we replace v and o> with the expressions given in
Egs. (34) and (38), and then repeat the fit of the data, using the
aforementioned values « = —2 and o) = oy = —1. In other
words, we assume that the correlation between the final-state
anisotropic flow, V, and the multiplicity, N, is the same as
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FIG. 8. Non-Gaussianity of initial anisotropy fluctuations at
fixed centrality in the TRENTo model. We display the centrality
dependence of the intensive skewness (for ;) and kurtosis of &,
fluctuations, quantified by the coefficients Skw, and Krt. defined
in the Appendix. Vertical bars are estimates of statistical errors.
Different symbol types have been slightly displaced horizontally to
avoid overlap. The horizontal dotted line is the kurtosis value for the
power distribution [56].

the correlation between initial-state anisotropy, &,, and the
initial-state entropy, S, returned by the TRENTo model. We
redo the fit of N;-based ATLAS data (left panel of Fig. 1)
on this basis. The resulting fit (not shown) underestimates
v,{2} for the largest values of N, which results in a larger
chi square, as shown in Table I. The corrected reconstructed
centrality dependence of v, and o, is displayed in Fig. 4
as dash-dotted lines. The effect of the correlation is quali-
tatively the same as in the TRENTo results of Fig. 6. It is
a rather small effect. The conclusion is that, even though
the correlation between anisotropic flow V and the centrality
estimator N is unknown, the reconstruction of the centrality
dependence from data is robust. It would be interesting to
study this phenomenon in greater depth in future, by either
performing state-of-the-art hydrodynamic calculations where
the correlation between V and N can be explicitly evaluated,
or by analyzing some appropriate final-state observable that
may quantify this correlation.

F. Non-Gaussian eccentricity fluctuations

We finally discuss the impact of the non-Gaussianity of the
eccentricity fluctuations, characterized by their skewness and
kurtosis at fixed centrality. Figure 8 displays the centrality
dependence of the intensive skewness and kurtosis, defined
by Eq. (A6) in the Appendix. They are defined in such a way
that they should depend little on centrality, and the values
are indeed approximately constant. The kurtosis of €3 and &4
fluctuations is remarkably close to a value of —2, which cor-
responds to the value of the non-Gaussianities for the power
distribution [56,60], in the limit of a large system (« > 1). We
have checked that this result is robust as one varies the fluctu-
ation parameter, k, of the TRENTo calculations. We postulate
that it is, to a large extent, a universal property. This should be
checked in dedicated studies.

The next question is whether or not we are able to recon-
struct this non-Gaussianity from the cumulants in Fig. 5. Krt,,
and Krt,, are fairly well reconstructed. If we assume that
the distribution of ¢, at fixed c solely depends on centrality
(dash-dotted lines in Fig. 5), we obtain Krt,, = —2.85 £ 0.02
and Krt,, = —2.69 £ 0.02. If we introduce the correlation
between ¢, and multiplicity, i.e., initial-state entropy (solid
lines in Fig. 5), we obtain Krt,, = —1.94 £ 0.02 and Krt,, =
—1.91 £ 0.02, in much better agreement with the direct cal-
culation shown in Fig. 8. For the second harmonic, the errors
on Skw,, and Krt,, are an order of magnitude larger than for
€3 and g4. These intrinsic non-Gaussianities are hidden by the
mean eccentricity in the reaction plane.

We have also studied how the skewness and kurtosis re-
constructed from ATLAS data vary depending on whether
or not one takes into account the correlation between V and
multiplicity. The results are given in Table I. For v,, they vary
a lot and change sign, which further confirms that the intrinsic
non-Gaussianity is poorly constrained. The kurtosis of v3 also
changes by more than a factor 2. That of vy4, on the other hand,
is remarkably stable.

V. CONCLUSIONS

We have shown that the peculiar behavior exhibited by the
cumulants of anisotropic flow fluctuations as they approach
the limit of ultracentral collisions is a consequence of the finite
centrality resolution, i.e., of impact parameter fluctuations at
fixed values of the experimental centrality estimators. More
specifically, we have shown that the fluctuations of v, at
fixed impact parameter are essentially Gaussian, and that the
positive value of c,{4} is a generic consequence of impact
parameter fluctuations.

On the other hand, non-Gaussian fluctuations of vz and vy
mostly reflect intrinsic non-Gaussanities. We have postulated
that the intensive kurtosis of initial anisotropy fluctuations
is universal to a good approximation. If this is correct, then
the intensive kurtosis of v fluctuations, which is accurately
reconstructed, gives direct access to the hydrodynamic re-
sponse coefficient, which is the ratio vs/e4. This is the first
data-driven estimate of this coefficient, which does not rely
on a specific model of initial conditions.

We have also shown that the impact parameter dependence
of anisotropic flow (specifically, of the mean elliptic flow in
the reaction plane, and of v, fluctuations) can be reconstructed
from data in a fairly robust way. This has the potential to
greatly facilitate theory-to-data comparisons in future, as run-
ning hydrodynamic simulations at fixed impact parameter is
straightforward, requiring limited statistics of events to reach
a high accuracy.

One of the outputs of our reconstruction is that anisotropic
flow fluctuations increase much faster as a function of im-
pact parameter than one would expect from naive system-size
scaling. This fast increase is, in particular, responsible for the
large positive value of nc,{4} observed by ATLAS. Under
the assumption that the hydrodynamic response is linear, this
gives a new, direct data-driven constraint on models of initial
conditions.
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APPENDIX: CUMULANT EXPANSION
IN THE INTRINSIC FRAME

In this Appendix, we define cumulants of fluctuations of
initial anisotropy coefficients, &, = (&, €,). The same for-
malism can be applied to V, fluctuations. There are two
differences between the cumulant expansion presented below
and that done in experiments. The first difference is that we
consider an ensemble of events with the same centrality c, as
opposed to an ensemble of events with the same centrality
estimator. This, however, does not modify the formalism. The
second difference is that we work in the “intrinsic frame,”’
where the impact parameter is along the x axis. Except for
¢ =0, where the ensemble of events possesses azimuthal
symmetry, the cumulants defined below differ from the usual
ones, and cannot be measured. But they can be evaluated in
model calculations, where the impact parameter is known.

The reason why the cumulant expansion as carried out
here is useful is that it can be organized systematically as
a function of two key parameters: The first parameter is the
system size, which we denote by N.!*> The underlying picture
is that initial fluctuations are in the form of N independent
sources [49] (whose order of magnitude is the number of
participant nucleons [78]), but the formalism is more general
than this specific picture. The second parameter is the mean
reaction plane eccentricity, whose definition will be recalled
below, and which we denote by &. It vanishes for ¢ = 0. For
¢ > 0, it quantifies the magnitude of breaking of azimuthal
symmetry.

We derive the leading corrections to the Gaussian dis-
tribution assuming that the system is large (N > 1) and
almost symmetric (¢ < 1), which is the appropriate limit for
ultracentral nucleus-nucleus collisions.

Let (&, €,) denote the initial anisotropy of an event in a
given Fourier harmonic in the intrinsic frame. The correspond-
ing cumulants «,,, were defined by Abbasi et al. [79] as a
double series of connected moments (see also [66,77]):

Kmp = (8;”&‘5>C,

(AD)

where the subscript ¢ means that one takes the connected part
of the product by subtracting out all the lower-order correla-
tions, e.g., (€2), = (&2) — (&,)%

3In the main text, N denotes a slightly different quantity, namely,
the centrality estimator.

When the system possesses azimuthal symmetry, either
exact or approximate, simplifications occur, which appear
more clearly if one introduces the complex eccentricity & =
&x + igy [80]. Instead of the cumulants of &, and ¢,, we in-
troduce the cumulants of ¢ and the complex conjugate &*,
which are defined through the following generating function
of a complex parameter A:

Am)EP

* * _
In (exp (Ae™ + A%¢)) = Z —m!p!

m,p=0

Crmps (A2)

where angular brackets denote an ensemble average over
events at fixed centrality c. Note that cop = 0.

For m + p > 1, the cumulants c,,, defined by Eq. (A2)
are connected moments of the complex eccentricity and its
conjugate:

Cmp = <8m(8*)p)c'

Symmetry with respect to the x axis implies that c,,, is real
and symmetric, ¢, = cpy. If the distribution is azimuthally
symmetric, then only the diagonal terms c,,,, are nonvanish-
ing.

We will assume that the distribution of ¢ is azimuthally
symmetric for the third and fourth Fourier harmonics. For the
second Fourier harmonic, azimuthal symmetry is broken by
the reaction plane eccentricity & = cjo, which is treated as a
small parameter. The order of magnitude of the cumulants is
generically

(A3)

Cp ~ EMPINTP,

(A4)

For a fixed order m + p, they are strongly ordered as a func-
tion of the difference |m — p|, that is, |cy| <K [c11], |€30] K
lea1ls [eao] K fean| K ezl

The cumulants we shall need are the following:

0 meanecc. fluct. asymmetry

Coo Cio €20

ciy ¢ | = variance skewness
2 kurtosis
0 & &N
~ I/N &/N? (AS)
1/N3

The leading terms are cjo =& and ¢j| = 082 (mean eccen-
tricity and variance of fluctuations) which define the usual
Gaussian distribution of eccentricity [24]. We will include the
skewness and kurtosis, which are smaller than & and 652 by
1 /N2, and are the leading non-Gaussian correction, but we
shall neglect the fluctuation asymmetry ¢y because it is of
higher order in &, and negligible for small impact parameters.
This justifies the ansatz in Eq. (14), where the standard devia-
tions of v, and v, are assumed to be equal.

In order to suppress the dependence of the skewness and
kurtosis on centrality, we introduce intensive measures [55],
which we denote by Skw, and Krt,. They are related to the
cumulants through the relations

Ccy = é(of)ZSkwg,

(02) Krt,. (A6)

€22
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Equation (A4) shows that Skw and Krt are of order unity.
With these notations and approximations, the matrix of
cumulants (A5) becomes

c c c 0 ¢ 0
00 10 20 s a2
ci1 e | = o; 8(0‘6) Skw, (A7)
2 (082)3Krt5

Since the cumulants k;,, in Eq. (A1) have been used pre-
viously in the literature, we list their relations with the
cumulants appearing in Eq. (A7):

C1o0 = K10,

C11 = K20 + Ko2 X 2K20,
C20 = K20 — K2,

C21 = K30 + K12 = %Kso,

€2 = K40 + Koa + 2K = §K40, (A8)

where the approximate equalities have been obtained by ne-
glecting terms of order % and higher, which amounts, using

Eq. (A4), to neglecting c,,, ~ 0 for |m — p| > 1, specifically
Cy0 = cC30 =c31 =c40 = 0.

The moment of order 2k, {|,|*), which is needed in
Sec. III'F, is obtained by exponentiating Eq. (A2), expanding
in a double series of A and A*, and isolating the coef-
ficient of (AA*)F in the power-series expansion, which is
straightforward using formal calculus. This is how the explicit
expressions (26) are obtained.

Finally, the cumulants of the correlations between the ini-
tial anisotropy and the total entropy (which we denote here by
N since the final multiplicity is proportional to the entropy, to
a good approximation), which are used in Sec. IV D, are given
by a straightforward generalization of Eq. (A2):

AP

* * _
In (exp (Ae* + A¥e + uN)) = Z liaT

m,p=>0

(A9)

Cmpgq -

With this notation, the linear correlation between &, and N
[left-hand side of Eq. (36)] is c19;. We also provide, for the
sake of completeness, the explicit expression of ¢y, which is
necessary in order to evaluate the exponent «;, in Eq. (38):
ciir = (ee"N).
= (ee*N) — (ee*)(N) — 2(eN)(e) + 2(e)>(N). (A10)

In the same way, one could evaluate the correlations of the
skewness and kurtosis with the multiplicity, which correspond
respectively to ¢ and ¢pp;.
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