

Irreducible backgrounds

Reducible backgrounds

curvature.

Non-prompt





Fake-Rate determination for the ttH coupling measurement with a signature of two same electric charge light leptons associated with a tau using the ATLAS detector at the LHC

Santu Mondal, on behalf of the ATLAS collaboration

## Introduction

- The associated production of a top-quark pair with the Higgs boson (ttH) allows a direct measurement of top quark Yukawa coupling.
- A search for  $t\bar{t}H$  in multilepton final state is presented.
- Search is based on 80 fb<sup>-1</sup> dataset recorded with the ATLAS experiment during 2015-2017 at  $\sqrt{s}$  = 13 TeV.
- Multilepton signatures are primarily sensitive to the decays  $H \to WW^*$ ,  $H \to \tau\tau$ , and  $H \to ZZ^*$ .

Mainly originate from  $t\bar{t}W$  and  $t\bar{t}(Z/\gamma^*)$ , followed by VV

production. Smaller contribution arising from the rare

Charge misassignment (QMisID) arises from hard

bremsstrahlung as well as asymmetric conversion

 $(e^{\pm} \rightarrow e^{\pm} \gamma^* \rightarrow e^{\pm} e^{+} e^{-})$  or mismeasured track

conversions, heavy-flavour hadron decays or the

improper reconstruction of other particles. The main

from

leptons originate

processes like tZ, tW, WtZ, ttWW, VVV, ttt, tttt.



- The  $2l1\tau_{had}$  final state is primarily sensitive to H  $\rightarrow \tau\tau^*$ , and  $H \rightarrow WW^*$ , and selected by the following requirements:
- Two light leptons (electrons or muons) of same charge.
- One hadronically decaying τ lepton oppositely charged to light leptons.
- At least 4 jets of which one b-tagged jet.

# Background estimation

- The electron charge misassignment rate is measured in data using samples of  $Z \rightarrow e^+e^-$  events.
- Event categorization:



containing one or two b-jets

- The categorisation according to the flavour of the sub-leading lepton is motivated by the fact that this lepton is more likely to be non-prompt.
- Event categories were used to determine the non-prompt light
- Normalisation factors for non-prompt-lepton

- Presence of an e<sup>-</sup>

(two or three reconstructed jets)

### • The fake $\tau_{had}$ background mainly arises from $t\bar{t}$ and $t\bar{t}V$ events with a jet misidentified as a $\tau_{had}$ candidate.

material

- lepton background.
- contributions are estimated from the likelihood fit.

## The fake $\tau_{had}$ background

contribution is coming from tt.

- Specific control region is primarily designed, enriched in dileptonic  $t\bar{t}$  events, such that the selected  $\tau_{had}$  candidates primarily originate from jets.
- It defined requiring two opposite-charge leptons, at least three jets, one b-tagged jet, and one  $\tau_{had}$  candidate.
- It is used to determine a normalisation factor to correct mismodelling of the fake  $\tau_{had}$  rate in the simulation.
- The normalisation factor (NF) is measured as a function of  $p_T(\tau_{had})$ .

|           | p <sub>T</sub> (GeV) | NF              |             | p <sub>T</sub> (GeV) | NF              |
|-----------|----------------------|-----------------|-------------|----------------------|-----------------|
| one-prong | 25–45                | $1.05 \pm 0.06$ | three-prong | 25 – 50              | 1.25 ± 0.42     |
|           | ≥70                  | $0.64 \pm 0.12$ |             | ≥ 75                 | $0.52 \pm 0.71$ |

- The fraction of fake  $\tau_{had}$  background with an electron misidentified as a  $\tau_{had}$  candidate is ~10% and is estimated with the simulation.
- The total systematic uncertainty depends on  $p_T(\tau_{had})$  and is on average about 13% (60%) for one-prong (three-prong)  $\tau_{had}$ candidates.



Diboson

Non-prompt e Non-prompt μ

Mat Conv



### Results





- A maximum-likelihood fit is performed to determine the ttH cross section.
- The measured ttH production cross section (extrapolation to the inclusive phase space) is

$$\hat{\sigma}(t\bar{t}H) = 294^{+182}_{-162} \text{ fb}$$

The predicted SM cross section is

$$\sigma(t\bar{t}H) = 507^{+35}_{-50} \text{ fb}$$

The measured cross section is consistent with the SM prediction within uncertainties.

ATLAS-CONF-2019-045

Fake-Rate determination for the ttH coupling measurement with a signature of two same electric charge light leptons associated with a tau using the ATLAS detector at the LHC

Santu Mondal, on behalf of the ATLAS collaboration







# ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

#### **Motivation**

- The associated production of a top-quark pair with the Higgs boson (ttH) allows a direct measurement of top quark Yukawa coupling.
- A search based on  $80~{\rm fb^{-1}}$  dataset recorded with the ATLAS experiment during 2015-2017 at  $\sqrt{s}$  = 13 TeV for  ${\rm t\bar{t}H}$  in multilepton final state is presented.
- Multilepton signatures are primarily sensitive to the decays  $H \to WW^*$ ,  $H \to \tau\tau$ , and  $H \to ZZ^*$ .

#### **Event selection**

The  $2l1\tau_{had}$  final state is primarily sensitive to H  $\to$   $\tau\tau^*$ , and H  $\to$  WW\* and selected by the following requirements:

- Two light leptons (electrons or muons) of same charge.
- One hadronically decaying  $\tau$  lepton oppositely charged to light leptons. At least 4 jets of which one b-tagged jet.



Pre-fit S/B (black line) and S/√B (red dashed line) ratios for each analysis category

### Backgrounds

#### Irreducible

- Mainly originate from  $t\bar{t}W$  and  $t\bar{t}(Z/\gamma^*)$ , followed by VV production.
- Smaller contribution arising from the rare processes like tZ, tW, WtZ, ttWW, VVV, ttt, tttt.

#### Reducible

- Charge misassignment.  $(e^{\pm} \rightarrow e^{\pm} \gamma^* \rightarrow e^{\pm} e^{+} e^{-})$
- Material conve<mark>rsions, heavy-</mark>flavour hadron decays or the improper reconstruction. The main contribution is coming from tt.
- The fake  $\tau_{had}$  background (from  $t\bar{t}$  and  $t\bar{t}V$  events with a jet misidentified as a  $\tau_{had}$  candidate).



The fractional contributions of the various backgrounds in the  $2l1\tau_{had}$  final state

#### **Estimation**

- The electron charge misassignment rate is measured in data using samples of  $\mathbf{Z} \rightarrow \mathbf{e}^+ + \mathbf{e}^-$  events.
- Event categorization:



- Event categories were used to determine the non-prompt light lepton background.
- Normalisation factors for non-prompt-lepton background contributions are estimated from the likelihood fit.



#### The fake τ<sub>had</sub> background

- Specific control region is primarily designed, enriched in dileptonic  $t\bar{t}$  events, such that the selected  $\tau_{had}$  candidates primarily originate from jets.
- It defined requiring two opposite-charge leptons, at least three jets, one b-tagged jet, and one  $\tau_{had}$  candidate.
- It is used to determine a normalisation factor to correct mismodelling of the fake  $\tau_{had}$  rate in the simulation.
- The normalisation factor is measured as a function of  $p_T(\tau_{had})$ .

|           | p <sub>T</sub> (GeV) | NF          |             | p <sub>T</sub> (GeV) | NF          |
|-----------|----------------------|-------------|-------------|----------------------|-------------|
| one-prong | 25-45                | 1.05 ± 0.06 | three-prong | 25 - 50              | 1.25 ± 0.42 |
|           | ≥ 70                 | 0.64 ± 0.12 |             | ≥ 75                 | 0.52 ± 0.71 |

- The fraction of fake  $\tau_{had}$  background with an electron misidentified as a  $\tau_{had}$  candidate is ~10% and is estimated with the simulation.
- The total systematic uncertainty depends on  $p_T(\tau_{had})$  and is on average about 13% (60%) for one-prong (three-prong)  $\tau_{had}$  candidates.

#### **Results**



Comparison between data and prediction in the ttH to multi-lepton final states



The observed best-fit values of the ttH signal strength  $\mu$  and their uncertainties by analysis channel and combined.

- A maximum-likelihood fit is performed to determine the  $t\bar{t}H$  cross section.
- The measured ttH production cross section (extrapolation to the inclusive phase space) is

$$\hat{\sigma}(t\bar{t}H) = 294^{+182}_{-162} \text{ fb.}$$

ATLAS-CONF-2019-045

- The predicted SM cross section is  $\sigma(t\bar{t}H) = 507^{+35}_{-50}$  fb
- The measured cross section is consistent with the SM prediction within uncertainties.